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Moments of convex distribution functions

and completely alternating sequences

Alexander Gnedin1 and Jim Pitman2,∗

Mathematisch Instituut and University of California, Berkeley

Abstract: We solve the moment problem for convex distribution functions on
[0, 1] in terms of completely alternating sequences. This complements a recent
solution of this problem by Diaconis and Freedman, and relates this work to
the Lévy-Khintchine formula for the Laplace transform of a subordinator, and
to regenerative composition structures.

1. Introduction

It is well known that the distribution function F of a probability measure on the
unit interval [0, 1] is uniquely determined by its sequence of moments

(1.1) c(n) :=
∫

[0,1]

xn dF (x) , n = 0, 1, . . .

defined by Lebesgue-Stieltjes integration. A complete characterization of such mo-
ment sequences was discovered by Hausdorff [15]. To recall his result, for j =
0, 1, 2, . . . , let ∇j denote the jth iterate of the difference operator

∇c(n) := c(n) − c(n + 1), n = 0, 1, 2, . . . .

That is,

(1.2) ∇jc(n) =
j∑

i=0

(−1)i

(
j

i

)
c(n + i), n ≥ 0, j ≥ 0.

Definition 1.1. A sequence c = (c(0), c(1), . . .) is completely monotone if

(1.3) ∇jc(n) ≥ 0 for all j ≥ 0, n ≥ 0.

Theorem 1.2 (Hausdorff [15]). A sequence c can be represented as the moment
sequence (1.1) for some probability distribution F on [0, 1] if and only if c(0) = 1
and c is completely monotone.
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A sequence c generates a triangular array (c(n, m); 0 ≤ m ≤ n, n = 0, 1, . . .) by
the formula

(1.4) c(n, m) :=
(

n

m

)
∇n−mc(m) , 0 ≤ m ≤ n.

Obviously, c is completely monotone if and only if

(1.5) c(n, m) ≥ 0, 0 ≤ m ≤ n.

For such a sequence c with c(0) = 1, for each n = 0, 1, . . . the numbers (c(n, m), 0 ≤
m ≤ n) form the probability distribution of a random variable Sn with values
0, 1, . . . , n:

(1.6) c(n, m) = P(Sn = m), 0 ≤ m ≤ n.

Hausdorff showed that then there is the convergence in distribution,

(1.7) lim
n→∞

P(Sn/n ≤ x) = F (x),

at all continuity points x of the unique probability distribution function F whose
nth moment is c(n). Moreover,

(1.8) c(n, m) =
(

n

m

) ∫
[0,1]

xm(1 − x)n−m dF (x) , 0 ≤ m ≤ n.

This probabilistic interpretation of Hausdorff’s theorem can be further developed
as follows.

Theorem 1.3 (B. de Finetti’s theorem [9], §VII.4). For c completely monoto-
ne with c(0) = 1, the triangular array (1.4) defines the probability distribution of
the random number Sn of successes in the first n trials of an infinite exchangeable
sequence of successes and failures, according to (1.6). For such an exchangeable
sequence, Sn/n converges almost surely to a random variable X with distribution
function F , and conditionally given X, the trials are independent with success prob-
ability X.

In a recent study of moment problems [7], Diaconis and Freedman considered
the family of probability distributions F on [0, 1] with a nondecreasing density f
on the semi-open interval [0, 1[ , so that

F (x) =
∫

[0,x]

f(u)du , 0 ≤ x < 1.

Note that F (1−) < 1 is allowed, in which case the distribution has an atom of
magnitude 1 − F (1−) at 1. Equivalently, F (x) is a convex function of x ∈ [0, 1],
with F (0) = 0. Diaconis and Freedman showed the following.

Theorem 1.4 ([7], Theorem 10). A sequence c with c(0) = 1 is the moment
sequence of a convex probability distribution function F on [0, 1] with F (0) = 0
if and only if for each fixed n = 1, 2, . . . the sequence c(n, m) is non-negative and
nondecreasing in m:

(1.9) c(n, 0) ≥ 0 and c(n, m + 1) − c(n, m) ≥ 0 , 0 ≤ m < n.
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In view of (1.6) and (1.7), condition (1.9) is a natural discrete analogue of the
nondecreasing density condition for F .

In the course of our work on partition structures derived from regenerative ran-
dom sets [12–14], we faced a similar problem of characterizing the Laplace exponent
of a subordinator in terms of its values at positive integers. We noticed that this
problem was equivalent to the moment problem for convex distributions on [0, 1],
and that both problems can be reduced to a known integral representation of se-
quences a subject to the following condition, which was studied by Choquet. See
[1, Definition 6.1, p. 130] for history and terminology.

Definition 1.5. A sequence a is completely alternating if the sequence −∇a is
completely monotone. That is to say:

(1.10) ∇ja(n) ≤ 0 , j = 1, 2, . . . , n = 0, 1, . . . ,

The fundamental representation of completely alternating sequences is provided
by the following theorem.

Theorem 1.6 (Contained in [1], Proposition 6.12). A sequence a is completely
alternating if and only if there exists a bounded measure ν on [0, 1[ and constants
A ≥ 0 and B such that

(1.11) a(n) = An + B +
∫

[0,1[

1 − xn

1 − x
ν(dx) .

The data (A, B, ν) are uniquely determined.

In Section 2 we show how Theorem 1.6 follows easily from Hausdorff’s Theorem
1.2, and then deduce the following variant of Theorem 1.4.

Theorem 1.7. A sequence c is the sequence of moments of a convex distribution
function on [0, 1] with F (0) = 0 if and only if c(0) = 1 and the sequence a defined
by

(1.12) a(0) = 0, a(n) = n c(n − 1), n = 1, 2, . . .

is completely alternating.

Comparing Theorems 1.4 and 1.7, we deduce that condition (1.9) on a sequence
c with c(0) = 1 is equivalent to the condition that a derived from c via (1.12)
is completely alternating. We check this directly by algebra in Section 3, thereby
providing a new proof of Theorem 1.4. We explain in Section 4 how we were first led
to Theorem 1.7 by consideration of the Lévy-Khintchine formula for the Laplace
transform of a subordinator. Finally, Section 6 relates distributions with higher
convexity properties to alternating sequences of higher order.

2. Proofs of Theorems 1.6 and 1.7

Proof of Theorem 1.6. Let a be a completely alternating sequence with a(0) =
0. Then −∇a is a completely monotone sequence which can be represented by
Hausdorff’s theorem as

(2.1) −∇a(n) =
∫

[0,1]

ξnν(dξ), n = 0, 1, . . .
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for a unique bounded measure ν on [0, 1]. Hence, by summing a geometric series

(2.2) a(n) = nν{1} +
∫

[0,1[

1 − ξn

1 − ξ
ν(dξ), n = 0, 1, . . . .

This is the special case of (1.11) with B = 0. This case, applied after first subtract-
ing a(0) from all terms of a completely alternating sequence a, gives the general
form (1.11) with B = a(0). Conversely, if a is defined by (1.11) or its special case
(2.2), then (2.1) is obtained by subtraction, hence −∇a is the completely monotone
moment sequence of ν.

We note in passing that the linear term nν{1} in (2.5) could be absorbed into the
integral by extending the integral from [0, 1[ to [0, 1], with evaluation of the inte-
grand by continuity at ξ = 1. But in this and the similar expressions (1.11) and (2.2)
we prefer to display this term separately to avoid any possible misunderstanding.

Our proof of Theorem 1.7 is based on the integral representation of probability
distributions with convex distribution functions, used also by Diaconis and Freed-
man. Let

Fξ(x) :=
x − ξ

1 − ξ
1(x ≥ ξ), ξ ∈ [0, 1[,

which is the distribution function of the uniform distribution on [ξ, 1] , with density

fξ(x) =
1

1 − ξ
1(x ≥ ξ), x ∈ [0, 1].

Let F1(x) = 1(x = 1), corresponding to a unit mass at 1.

Lemma 2.1 ([7], Lemma 2). The formula

(2.3) F (x) =
∫

[0,1]

Fξ(x)ν(dξ),

sets up a bijection between convex probability distribution functions F on [0, 1] with
F (0) = 0 and probability measures ν on [0, 1]. This relation between F and ν implies

(2.4)
∫

[0,1]

g(x) dF (x) =
∫

[0,1]

( ∫
[0,1]

g(x) dFξ(x)

)
ν(dξ)

for every non-negative measurable g.

Proof. A convex distribution function F with F (0) = 0 has on [0, 1[ a nondecreasing
density f , a version of which is the right derivative of F . Hence it is clear that a
unique probability measure ν is defined by

f(x) =
∫

[0,x]

ν(dξ)
1 − ξ

, x ∈ [0, 1[ ,

and ν{1} = F (1) − F (1−), from which (2.4) follows by Fubini’s theorem.

Lemma 2.2. Let F be the mixture of Fξ’s with respect to ν(dξ) for some probability
measure ν on [0, 1], as in Lemma 2.1. Then the moments of F are determined by

(2.5) n

∫
[0,1[

xn−1 dF (x) = nν{1} +
∫

[0,1[

1 − ξn

1 − ξ
ν(dξ) , n = 1, 2, . . . .

Let a(0) = 0 and let a(n) be the common value of both sides of (2.5) for n = 1, 2, . . ..
Then a is completely alternating. Indeed −∇a is the completely monotone moment
sequence of ν, as in (2.1).
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Proof. By elementary integration, the moments of Fξ are given by

(2.6) n

∫
[0,1]

xn−1 dFξ(x) =
1 − ξn

1 − ξ
, n = 1, 2, . . . .

So (2.5) is the instance of (2.4) with g(x) = nxn−1. The rest is read from the
previous discussion of (2.2) and (2.1), as formalized in Theorem 1.6.

Proof of Theorem 1.7. If c is the moment sequence of F , and a is derived from c via
(1.12), then a is completely alternating by the previous lemma. Conversely, given
a sequence c with c(0) = 1, let a be derived from c via (1.12). If a is completely
alternating, then Theorem 1.6 represents a(n) by the right side of (2.5) for n =
1, 2, . . ., for some unique probability measure ν on [0, 1]. Then, by (2.5), the sequence
of moments of F is the same as if F were the convex distribution function uniquely
associated with ν via (2.4). Finally, F equals this convex distribution function, by
uniqueness of the solution of the Hausdorff moment problem.

Remark. A subtle point of the above argument is that possibly
∫
[0,1[

x−1 dF (x) =
∞, in which case the left side of (2.5) has no meaning for n = 0. We insist in any
case that a(0) = 0 in Theorem 1.7 and Lemma 2.2 by definition. Later discussion in
Section 4 makes it clear that 0 is the limiting value of λ

∫
[0,1[

xλ−1 dF (x) as λ ↓ 0.
But this fact is not relevant to the present argument.

3. Some algebra

Here we check directly that condition (1.9) on a sequence c with c(0) = 1 is equiv-
alent to the condition that a derived from c via (1.12) is completely alternating.
According to the Leibnitz rule from the calculus of finite differences, the product
xy of two sequences x and y has successive differences

∇j(xy)(n) =
j∑

i=0

(
j

i

)
∇j−ix(n + i)∇iy(n).(3.1)

Applied to a(n) := nc(n − 1), with c(−1) := 0, this gives

(3.2) ∇ja(n) = n∇jc(n − 1) − j∇j−1c(n).

A simple computation using (1.4) and (3.2) now shows that

(3.3) c(n, m + 1) − c(n, m) =
−1

m + 1

(
n

m

)
∇n−ma(m + 1) , 0 ≤ m < n.

The equivalence of (1.9) and the completely alternating condition on a is now
evident from (3.2) for n = 0 and (3.3).

4. Subordinators

We explain in this section how we were led to formulate Theorem 1.7 by the ap-
pearance of completely alternating sequences and monotone densities in another
context: the Lévy-Khintchine formula for the Laplace transform of a subordinator.

Let H denote a probability distribution on [0,∞]. Recall that H is called infi-
nitely divisible if for every n = 2, 3, . . . there exists a sequence of n independent and
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identically distributed random variables, with values in [0,∞], whose sum is distrib-
uted according to H. It is well known that H is infinitely divisible with H[0,∞[ > 0
if and only if H is the distribution of Y (1) for some subordinator (Y (t), t ≥ 0),
that is a process with stationary independent nonnegative increments with values
in [0,∞], and Y (0) = 0. Note that this process may jump to the terminal value ∞
in finite time, but is not identically ∞.

Theorem 4.1 (Lévy-Khintchine formula [2]). The Laplace transform of a
subordinator (Y (t), t ≥ 0) is given by the formula

(4.1) E [e−λY (t)] = e−tΦ(λ)

with Laplace exponent

(4.2) Φ(λ) = λd +
∫

]0,∞]

(1 − e−λy)Λ(dy)

for some d ≥ 0 and some measure Λ on ]0,∞], with (d, Λ) determined uniquely by
the distribution of Y (t) for any fixed t > 0.

Remark. The constant d accounts for the continuous drift component of the sub-
ordinator, while Λ, called the Lévy measure, governs the Poisson rates of jumps of
various sizes. In particular, the mass Λ{∞} is the rate at which the process jumps
to ∞.

Proof. We sketch only the following derivation of (4.1) and (4.2), adapted from [2,
pp. 5-7], because it highlights the connection with monotone density problems. Let
(Y (t), t ≥ 0) be a subordinator. By independence and stationarity of increments

E [e−λY (s+t)] = E [e−λY (s)] E [e−λY (t)],

which implies (4.1) with 0 < Φ(λ) < ∞ by virtue of the well known functional
equation for the exponential function. Using again the properties of increments,

Φ(λ) = lim
m→∞

m(1 − e−Φ(λ)/m) = lim
m→∞

m E[1 − e−λY (1/m)]

= λ lim
m→∞

∫
]0,∞[

e−λy m P(Y (1/m) ≥ y) dy ,

where m P(Y (1/m) ≥ y) dy is a measure with nonincreasing density for each m =
1, 2, . . .. By continuity properties of the Laplace transform these measures must
converge, as m → ∞, to a measure Λ(y)dy with nonincreasing density and a possible
atom d at 0. Thus

(4.3) Φ(λ) = λd + λ

∫
]0,∞[

e−λyΛ(y)dy

from which (4.2) follows by integration by parts, with measure Λ defined through
Λ ]y,∞] = Λ(y) , y ≥ 0, for a right-continuous choice of the monotone density
Λ(y).

To relate the Lévy-Khintchine formula to the discussion of the previous sections,
make the change of variables x = e−y in (4.3) to rewrite this equation as

(4.4) Φ(λ) = λd + λ

∫
]0,1[

xλ−1Λ(− log x) dx ,



36 A. Gnedin and J. Pitman

or again

(4.5) Φ(λ) = λ

∫
]0,1]

xλ−1dF (x) ,

where F (x) is the convex distribution function with F (0) = 0, with increasing
derivative Λ(− log x) for x ∈ [0, 1[ and with an atom of magnitude d at 1. Formula
(4.5) shows that the problem of characterizing moment sequences of convex prob-
ability distribution functions on [0, 1] with F (0) = 0 is identical to the problem of
characterizing the sequence of evaluations Φ(1), Φ(2), . . . for the Laplace exponent
Φ of a subordinator subject to the normalization condition Φ(1) = 1. Since (4.2)
can be rewritten as

(4.6) Φ(λ) = λd +
∫

[0,1]

1 − xλ

1 − x
ν(dx),

where ν(dx) is the image of (1 − e−z)Λ(dz) via x = e−z, we deduce the following
corollary of Theorem 1.6.

Corollary 4.2. There exists a subordinator with Laplace exponent Φ subject to a
prescribed sequence of values

Φ(0) = 0, Φ(1), Φ(2), . . .

if and only if this sequence is completely alternating. The value of Φ(λ) is then
determined for all λ ≥ 0 by the Lévy-Khintchine formula (4.2), for some uniquely
determined d and Λ.

Theorem 1.7 can be read from Corollary 4.2 and the alternate representation
(4.5) of the Laplace exponent. This is how we first recognized that the completely
alternating condition of Theorem 1.7 was equivalent to the condition (1.9) in The-
orem 1.4.

Further remarks. According to a classical theorem of Münz [18], a sufficient con-
dition for density in C[0, 1] of the space of functions spanned on x 	→ xλn , n =
1, 2, . . . , is that λn → ∞ and

∑
n 1/λn = ∞. So the value of Φ(λ) at every real

λ ≥ 0 is determined by the values Φ(λn) at points of such a sequence (λn). Newton’s
interpolation series [10] allows to explicitly recover Φ(λ) from the discrete evalua-
tions Φ(λn) , n = 1, 2, . . .. In the same vein as Corollary 4.2, Hausdorff’s theorem
implies that a sequence Ψ(0) = 1, Ψ(1), Ψ(2), . . . is the sequence of evaluations of

Ψ(λ) = E(e−λX)

for some distribution of X on [0,∞] if and only if this sequence is completely
monotone. In that case the distribution of X, and hence Ψ(λ) for all λ ≥ 0,
is uniquely determined. As observed by Feller [8], consideration of the sequences
Ψ(0) = 1, Ψ(ε), Ψ(2ε), . . . for ε = 2−k and k = 0, 1, 2, . . . , leads to Bernstein’s theo-
rem that a function Ψ is the Laplace transform of some probability distribution on
[0,∞[ if and only if Ψ is infinitely differentiable with Ψ(0) = 1 and (−1)nΨ(n) ≥ 0
for every n, where Ψ(n) is the nth derivative of Ψ.

Similarly, a function Φ is the Laplace exponent of some subordinator if and only
if Φ is infinitely differentiable with Φ(0) = 0 and (−1)nΦ(n) ≤ 0 for every n. See [9]
for further discussion, and [1] for the theory of completely monotone and completely
alternating functions defined on a semigroup instead of the positive integers or the
positive halfline.
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5. Regenerative composition structures

We sketch in this section a probabilistic interpretation of completely alternating
sequences, based on our recent work [12–14] on regenerative compositions and their
associated partition structures. We note in passing that developments and applica-
tions of de Finetti’s theorem have played an important role in a number of studies
of measure-valued processes and associated particle systems [4–6]. The general idea
is that some random allocation or splitting of a mass continuum can be described in
terms of a simpler combinatorial model obtained by independent random sampling
of n points in the continuum. Probabilities in the combinatorial model are typically
represented as moments of random variables of interest in the continuum model.
The combinatorial models are consistent in a natural sense as the sample size n
varies, and the continuum model is recovered as a law of large numbers limit.

The simplest illustration of this idea is provided by de Finetti’s theorem for
sequences of zeros and ones (Theorem 1.3). Suppose the unit interval is split by a
point X into two interval components [0, X] and ]X, 1]. Let U1, U2, . . . be a sequence
of independent uniform [0, 1] variables independent of X, and let

Sn =
n∑

i=1

1(Ui ≤ X).

Associating each Ui with a ‘ball’, and [0, X] and ]X, 1] with two ‘boxes’, Sn describes
an allocation of n balls in two boxes, with Sn balls in the left-hand box, and n−Sn

balls in the right-hand box. As n varies, these allocations are sampling consistent,
meaning that if a ball is picked uniformly at random and deleted from the nth
random allocation, the result is distributed like the (n−1)th random allocation. To
paraphrase de Finetti’s theorem: every sampling consistent sequence of distributions
for the allocation of balls Sn can be realized via this scheme directed by some
random variable X ∈ [0, 1], and X is recovered as the limit of Sn/n as n → ∞.

A straightforward generalization of this model provides an interpretation of de
Finetti’s theorem for exchangeable sequences with a finite or countably infinite
number of possible values. Let

0 = X0 ≤ X1 ≤ X2 ≤ · · · ≤ 1

with limn Xn = 1 be the cumulative random sums

Xk =
k∑

j=1

Pk

associated with some random discrete distribution (P1, P2, . . .). Let U1, U2, . . . be a
sequence of independent uniform [0, 1] variables independent of the Xk’s, and set

Nn,j :=
n∑

i=1

1(Xj−1 < Ui ≤ Xj), j = 1, 2, . . . .

Then the random sequence of counts

(Nn,1, Nn,2, . . .) with
∞∑

j=1

Nn,j = n
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can be interpreted as a random allocation of n balls into a sequence of boxes labeled
by j = 1, 2, . . .. These allocations are sampling consistent in an obvious sense, and
according to de Finetti’s theorem every sampling consistent sequence of allocations
can be represented this way, with Pj the limiting frequency of balls in box j.

In some applications of random discrete distributions, the labeling of atoms of
the distribution is of little or no importance. If all that matters is the relative sizes
of these atoms, and perhaps some ordering of these atoms (not necessarily a simple
indexing by positive integers), the natural combinatorial object is an allocation
of n balls into some finite number of non-empty boxes, which might be either
ordered or unordered. For n a positive integer, a composition of n is a sequence of
positive integers with sum n. A partition of n is a non-increasing composition of n.
The terms of a composition may be called its parts. A composition structure is a
sequence (Cn, n = 1, 2, . . .) of random compositions of integers which is sampling
consistent, that is:

If n identical balls are distributed into an ordered series of boxes according to
(Cn), then a distributional copy of Cn−1 is obtained by discarding one of the
balls picked uniformly at random, independently of (Cn), and then deleting
an empty box in case one is created.

This is a variation of Kingman’s notion of a partition structure [17], which is a
sequence of random partitions of integers (Pn) subject to the same consistency
condition, except that after discarding a ball and deleting an empty box if necessary,
the boxes are permuted to obtain a partition of n − 1. Kingman [17] established
a one-to-one correspondence between partition structures (Pn) and distributions
for a sequence of nonnegative random variables V1, V2, . . . with V1 ≥ V2 ≥ . . . and∑

i Vi ≤ 1. In Kingman’s paintbox representation, the random partition Pn of n is
constructed as follows from (Vk) and a sequence of independent random variables
Ui with uniform distribution on [0, 1], where (Ui) and (Vk) are independent: Pn is
defined to be the sequence of ranked sizes of blocks of the partition of [n] generated
by a random equivalence relation ∼ on positive integers, with i ∼ j if and only if
either i = j or both Ui and Uj fall in Ik for some k, where the Ik are some disjoint
random sub-intervals of [0, 1] of lengths Vk. See also [20] and papers cited there for
further background.

Gnedin [11] gave a similar representation of composition structures, using a ran-
dom closed R ⊂ [0, 1] to separate points of a uniform sample into clusters. Given
R, define an interval partition of [0, 1] comprised of gaps, that is open interval com-
ponents of [0, 1] \ R, and of individual points of R. A random ordered partition of
the set [n] := {1, . . . , n} is constructed from R and independent uniform sample
points U1, . . . , Un by grouping the indices of sample points which fall in the same
gap, and letting the points which hit R to be singletons. A random composition
Cn of n is then constructed as the sequence of block sizes in this partition of [n],
ordering the blocks from left to right, according to the location of the corresponding
sample points in [0, 1]. Gnedin showed that every composition structure (Cn) can
be so represented. As in Kingman’s representation of partition structures, R can
be interpreted as an asymptotic shape of Cn, provided Cn is properly encoded as an
element of the metric space of closed subsets of [0, 1] with the Hausdorff distance
function.

An interesting class of composition structures (Cn) is obtained by supposing that
R is the closure of {1 − exp(−Y (t)), t ≥ 0} for some subordinator (Y (t), t ≥ 0).
As shown in [12], these composition structures are characterized by the following
regenerative property:
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For all n > m ≥ 1, given that the first part of Cn is m, the remaining
composition of n − m is distributed like Cn−m.

Let q(n, m) denote the probability that the first part of (Cn) is of size m. Then for
each composition λ = (λ1, . . . , λ�) of n

(5.1) P(Cn = λ) =
�∏

j=1

q(Λj , λj),

where Λj = λj + . . . + λ�. We showed in [12] that this formula together with a
recursion implied by sampling consistency forces

(5.2) q(n, m) =
−

(
n
m

)
∇mΦ(n − m)
Φ(n)

for some unique sequence Φ(n), n = 0, 1, 2, . . . with Φ(0) = 0 and Φ(1) = 1. Non-
negativity of the matrix q shows that Φ is completely alternating. So Corollary 4.2
now provides the integral representation

(5.3) Φ(n) = nd +
∫

]0,1]

(1 − (1 − x)n)ν̃(dx) .

for ν̃(dx) the image of the Lévy measure Λ(dy) of the subordinator via the trans-
formation from y to 1 − exp(−y), and hence

(5.4) q(n, m) = nd 1(m = 1) +
(

n

m

)∫
]0,1]

xm(1 − x)n−mν̃(dx).

6. Higher convexity

A distribution function F on [0, 1] is said to be (k + 1)-convex if the derivative
F (k−1) exists and is a convex function on [0, 1[ (see [3, 16, 19] and references
therein for this and other generalized concepts of convexity and their applications
in statistics). The moment problem for this class of distributions can be analyzed
in the same way as for the convex distributions we considered above (which were
2-convex, with k = 1). For a (k + 1)-convex F , Taylor’s formula with remainder
becomes

(6.1) F (x) = P (x) +
∫

[0,x]

(x − ξ)k

(1 − ξ)k
ν(dξ), x ∈ [0, 1[ ,

where ν is a bounded measure on [0, 1] and P is a polynomial of degree at most
k − 1. We suppose further that P = 0. In this case the analogue of (2.5) becomes

(n + 1)k↑c(n) = A (n + 1)k↑ + k!
∫

[0,1[

⎡
⎣xn+k −

k−1∑
j=0

(
n + k

j

)
(x − 1)j

⎤
⎦ ν(dx)

(x − 1)k
,

where nk↑ = n(n + 1) · · · (n + k− 1) and A ≥ 0. A principal role is delegated to the
k-associated sequence

a(0) = . . . = ak−1 = 0, ak(n) = nk↓ c(n − k) for n ≥ k,

which is k-alternating sequence meaning that (−∇)kak is completely monotone. A
generalization of Proposition 1.7 emerges.
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Proposition 6.1. For each k = 1, 2, . . . , a distribution function on [0, 1] is (k+1)-
convex with F (j)(0+) = 0 for j = 0, . . . , k − 1 if and only if c(0) = 1 and the
k-associated sequence ak is k-alternating.

The side condition in the proposition kills the polynomial part P in (6.1), a
condition which was guaranteed by F (0) = 0 in the case k = 1. If the coefficients
of P are nonnegative, it is still possible to give a characterization in terms of a
k-associated sequence alone, whose initial k terms are no longer zeroes, rather need
to be defined in a nontrivial way by Newton’s interpolation.
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