
 Open access  Journal Article  DOI:10.1140/EPJA/I2002-10214-6

Moments of isovector quark distributions in lattice QCD — Source link 

William Detmold, William Detmold, Wally Melnitchouk, Anthony W. Thomas

Institutions: University of Adelaide, University of Washington, Thomas Jefferson National Accelerator Facility

Published on: 01 Sep 2002 - Physical Review D (Springer, Berlin, Heidelberg)

Topics: Isovector, Chiral perturbation theory, Lattice QCD, Quantum chromodynamics and Pion

Related papers:

 First moments of nucleon generalized parton distributions in chiral perturbation theory at full one-loop order

 Chiral perturbation theory for nucleon generalized parton distributions

 Generalized parton distributions of the pion in partially-quenched chiral perturbation theory

 Generalized form factors, generalized parton distributions, and the spin contents of the nucleon

 Parton Distribution Functions and Lattice QCD

Share this paper:    

View more about this paper here: https://typeset.io/papers/moments-of-isovector-quark-distributions-in-lattice-qcd-
nw10hahusn

https://typeset.io/
https://www.doi.org/10.1140/EPJA/I2002-10214-6
https://typeset.io/papers/moments-of-isovector-quark-distributions-in-lattice-qcd-nw10hahusn
https://typeset.io/authors/william-detmold-2motn6veu3
https://typeset.io/authors/william-detmold-2motn6veu3
https://typeset.io/authors/wally-melnitchouk-1b080cy1pv
https://typeset.io/authors/anthony-w-thomas-ayor2bjre1
https://typeset.io/institutions/university-of-adelaide-3p19hv6c
https://typeset.io/institutions/university-of-washington-2tqpyv72
https://typeset.io/institutions/thomas-jefferson-national-accelerator-facility-11kpr8hi
https://typeset.io/journals/physical-review-d-agj9oh33
https://typeset.io/topics/isovector-3mt2d5f7
https://typeset.io/topics/chiral-perturbation-theory-iosojwnp
https://typeset.io/topics/lattice-qcd-1bvu1zu8
https://typeset.io/topics/quantum-chromodynamics-38v96hig
https://typeset.io/topics/pion-30e1p87h
https://typeset.io/papers/first-moments-of-nucleon-generalized-parton-distributions-in-48v3qn7v9e
https://typeset.io/papers/chiral-perturbation-theory-for-nucleon-generalized-parton-a36f9gmcmb
https://typeset.io/papers/generalized-parton-distributions-of-the-pion-in-partially-smm9yjgjde
https://typeset.io/papers/generalized-form-factors-generalized-parton-distributions-411159leuv
https://typeset.io/papers/parton-distribution-functions-and-lattice-qcd-28hub21c38
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/moments-of-isovector-quark-distributions-in-lattice-qcd-nw10hahusn
https://twitter.com/intent/tweet?text=Moments%20of%20isovector%20quark%20distributions%20in%20lattice%20QCD&url=https://typeset.io/papers/moments-of-isovector-quark-distributions-in-lattice-qcd-nw10hahusn
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/moments-of-isovector-quark-distributions-in-lattice-qcd-nw10hahusn
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/moments-of-isovector-quark-distributions-in-lattice-qcd-nw10hahusn
https://typeset.io/papers/moments-of-isovector-quark-distributions-in-lattice-qcd-nw10hahusn


PUBLISHED VERSION  

Detmold, William; Melnitchouk, Wolodymyr; Thomas, Anthony William  
Moments of isovector quark distributions from lattice QCD Physical Review D, 2002; 
66(5):054501  

 © 2002 American Physical Society 

http://link.aps.org/doi/10.1103/PhysRevD.66.054501  
 
  
   

   
 

http://link.aps.org/doi/10.1103/PhysRevD.62.093023  
 
  
 

 
    
 

 
 

 
 

 

 
 
 

  

 

 
http://hdl.handle.net/2440/11142 

 
 
 

 
 

 
 
 
 

 
 

PERMISSIONS 

http://publish.aps.org/authors/transfer-of-copyright-agreement 

 

 

“The author(s), and in the case of a Work Made For Hire, as defined in the U.S. 
Copyright Act, 17 U.S.C. 

§101, the employer named [below], shall have the following rights (the “Author Rights”): 

[...] 

3. The right to use all or part of the Article, including the APS-prepared version without 
revision or modification, on the author(s)’ web home page or employer’s website and to 
make copies of all or part of the Article, including the APS-prepared version without 
revision or modification, for the author(s)’ and/or the employer’s use for educational or 
research purposes.” 

 

 

 

8th April 2013 

http://hdl.handle.net/2440/11142�
http://link.aps.org/doi/10.1103/PhysRevD.66.054501�
http://link.aps.org/doi/10.1103/PhysRevD.62.093023�
http://hdl.handle.net/2440/11142�
http://publish.aps.org/authors/transfer-of-copyright-agreement�


Moments of isovector quark distributions from lattice QCD

W. Detmold
Special Research Centre for the Subatomic Structure of Matter and Department of Physics and Mathematical Physics,

University of Adelaide, SA 5005, Australia

W. Melnitchouk
Jefferson Lab, 12000 Jefferson Avenue, Newport News, Virginia 23606

A. W. Thomas
Special Research Centre for the Subatomic Structure of Matter and Department of Physics and Mathematical Physics,

University of Adelaide, SA 5005, Australia

~Received 3 June 2002; published 10 September 2002!

We present a complete analysis of the chiral extrapolation of lattice moments of all twist-2 isovector quark

distributions, including corrections from Np and Dp loops. Even though the D resonance formally gives rise

to higher order non-analytic structure, the coefficients of the higher order terms for the helicity and transversity

moments are large and cancel much of the curvature generated by the wave function renormalization. The net

effect is that, whereas the unpolarized moments exhibit considerable curvature, the polarized moments show

little deviation from linearity as the chiral limit is approached.
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I. INTRODUCTION

Resolving the quark and gluon structure of the nucleon
remains one of the central challenges in strong interaction
physics @1#. Information about the nucleon’s internal struc-
ture is parametrized in the form of leading twist parton dis-
tribution functions ~PDFs!, which are interpreted as probabil-
ity distributions for finding specific partons ~quarks,
antiquarks, gluons! in the nucleon in the infinite momentum
frame. PDFs have been measured in a variety of high energy
processes ranging from deep-inelastic lepton scattering to
Drell-Yan and massive vector boson production in hadron-
hadron collisions. A wealth of experimental information now
exists on spin-averaged PDFs, and an increasing amount of
data is being accumulated on spin-dependent PDFs @2#.

The fact that such a vast array of high energy data can be
analyzed in terms of a universal set of PDFs stems from the
factorization property of high energy scattering processes, in
which the short and long distance components of scattering
amplitudes can be separated according to a well-defined pro-
cedure. Factorization theorems allow a given differential
cross section, or structure function, F, to be written ~as a
function of the light-cone momentum fraction x at a scale
Q2) in terms of a convolution of hard, perturbatively calcu-
lable coefficient functions, C i , with the PDFs, f i , describing
the soft, non-perturbative physics @3#:

F~x ,Q2!5(
i
E dz C i„x/z ,Q2/m2,as~m2!…

3 f i„z ,as~m2!…, ~1!

where m is the factorization scale. The coefficient functions
are scale and process dependent, while the PDFs are process
independent, and hence can be used to parametrize a wide
variety of high energy data.

Because the PDFs cannot be calculated within perturba-

tive QCD, the approach commonly used in global analyses

of high energy data is to simply parametrize the PDFs, with-

out attempting to assess their dynamical origin @4–7#. Once

fitted at a particular scale, they can be evolved to any other

scale through the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

~DGLAP! Q2-evolution equations @8#. The focus in this ap-

proach is not so much on understanding the non-perturbative

~confinement! physics responsible for the specific features of

the PDFs, but rather on understanding the higher order QCD

corrections for high energy processes.

In a more ambitious approach one would like to extract

information about non-perturbative hadron structure from the

PDFs. However, without an analytic solution of QCD in the

low energy realm one must rely to varying degrees on mod-

els of ~or approximations to! QCD within which to interpret

the data. An extensive phenomenology has been developed

over the years within studies of QCD-motivated models, and

in some cases remarkable predictions have been made from

the insight gained into the non-perturbative structure of the

nucleon. An example is the d̄2 ū asymmetry, predicted @9#
on the basis of the nucleon’s pion cloud @10#, which has been
spectacularly confirmed in recent experiments at CERN, Fer-
milab and DESY @11#. Other predictions, such as asymme-
tries between strange and anti-strange @12#, and spin-

dependent sea quark distributions, D ū2D d̄ @13#, still await
definitive experimental confirmation. Note that none of these
could be anticipated without insight into the non-perturbative
structure of QCD.

Despite the phenomenological successes in correlating
deep-inelastic and other high energy data with low energy
hadron structure, the ad hoc nature of some of the assump-
tions made in deriving the low energy models from QCD
leaves open questions about the ability to reliably assign sys-
tematic errors to the model predictions. One approach in
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which structure functions can be studied systematically from

first principles, and which at the same time allows one to

search for and identify the relevant low energy QCD degrees

of freedom, is lattice QCD.

Lattice QCD is rapidly developing into an extremely use-

ful and practical tool with which to study hadronic structure

@14#. There, the equations of motion are solved numerically

by discretizing space-time into a lattice, with quarks occupy-

ing the lattice sites and gluons represented by the links be-

tween the sites. Meaningful numerical results can be ob-

tained by Wick rotating the QCD action into Euclidean

space. However, because the leading twist PDFs are light-

cone correlation functions @involving currents with space-

time separation, z2
2(ct)2'0], it is, in practice, not possible

to calculate PDFs directly in Euclidean space—in this case a

null vector would require each space-time component to ap-

proach zero. Instead, one uses the operator product expan-

sion to formally express the moments of the PDFs in terms

of hadronic matrix elements of local operators, which can

then be calculated numerically.

In relating the lattice moments to experiment, a number of
extrapolations must be performed. Since lattice calculations
are performed at some finite lattice spacing, a, the results
must be extrapolated to the continuum limit, a→0, which
can be done by calculating at two or more values of a. Fur-
thermore, finite volume effects associated with the size of the
lattice must be controlled—working with a volume that is
too small can result in the omission of important physics,
arising from the long-range part of the nucleon wave func-
tion. Finally, since current lattice simulations typically use

quark masses mq
latt above 30 MeV, an extrapolation to physi-

cal masses, mq
phys'5 MeV, is necessary. Earlier work on

moments of spin-averaged PDFs @15,16# found that whereas
the lattice calculations yielded results typically 50% larger

than experiment when extrapolated linearly to mq
phys , inclu-

sion of the nonlinear, non-analytic dependence on mq arising
from the long range structure of the nucleon removes most of
the discrepancy.

In this paper we extend the analysis to the polarized sec-
tor, which is important for several reasons. Firstly, for many
years lattice calculations of the axial vector charge, gA , have
tended to lie 10% or more below the experimental value
determined from neutron b decay. Since this represents one
of the benchmark calculations in lattice QCD, it is vital that
the source of this discrepancy be identified. A preliminary
analysis of the effects of chiral loops found @17,18# that the
inclusion of the leading non-analytic ~LNA! behavior asso-
ciated with pN intermediate states in the extrapolation of gA

to mq
phys decreased the value of gA , thereby making the dis-

agreement worse. On the other hand, one knows that the D
resonance plays an important role in hadronic physics, so a
more thorough investigation of its effects on spin-dependent
PDFs is necessary before definitive conclusions can be
drawn. Indeed, we find that although the D contributions
formally enter at higher order in mp , the coefficients of
these next-to-leading non-analytic terms are large, and their
effects cannot be ignored in any quantitative analysis. In ad-
dition, since there are currently no data at all on the trans-

versity distribution in the nucleon, lattice calculations of sev-
eral low transversity moments provide predictions which can
be tested by future measurements. In order to make these
predictions reliable, it is essential that the lattice calculations
be reanalyzed to take into account the chiral corrections en-

tering extrapolations to mq
phys .

The remainder of this manuscript is structured in the fol-
lowing manner. In Sec. II we describe the calculations of the
moments of PDFs from matrix elements of local operators,
and summarize the details of extant lattice calculations. In
Sec. III we first examine the constraints from chiral pertur-
bation theory and the heavy quark limit on the behavior of
the moments of the various distributions as a function of the
quark mass. The importance of higher order terms in the
chiral expansion is then investigated within a model which
preserves the non-analytic behavior of chiral perturbation
theory. This information is used to construct effective param-
etrizations of the quark mass dependence of these moments,
which are then used to extrapolate the available lattice data
in Sec. IV. Finally, in Sec. V we discuss the results of this
analysis and draw conclusions.

II. LATTICE MOMENTS OF PARTON DISTRIBUTION

FUNCTIONS

A. Definitions

The moments of the spin-independent, q5q↑
1q↓, helic-

ity, Dq5q↑
2q↓, and transversity, dq5qÁ

2q', distribu-
tions are defined as

^xn&q5E
0

1

dx xn@q~x !2~21 !nq̄~x !# , ~2a!

^xn&Dq5E
0

1

dx xn@Dq~x !1~21 !nD q̄~x !# , ~2b!

^xn&dq5E
0

1

dx xn@dq~x !2~21 !nd q̄~x !# , ~2c!

where q↑(↓) corresponds to quarks with helicity aligned ~anti-
aligned! with that of a longitudinally polarized target, and
qÁ(') corresponds to quarks with spin aligned ~anti-aligned!
with that of a transversely polarized target.1 At leading twist,
these moments depend on ground state nucleon matrix ele-
ments of the operators

O
q

m1 . . . mn
5in21c̄g $m1Dm2•••Dmn%c , ~3a!

O
Dq

m1 . . . mn
5in21c̄g $m1g5Dm2•••Dmn%c , ~3b!

O dq

am1 . . . mn
5in21c̄sa$m1g5Dm2•••Dmn%c , ~3c!

1Note that from their definition, Eqs. ~2!, the moments alternate

between the total (q1 q̄) and valence (q2 q̄) distributions, depend-

ing on whether n is even or odd.
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respectively. Thus, for a nucleon of mass M, momentum P,
and spin S, one has

^P ,SuO
q

m1 . . . mnuP ,S&

52^xn21&qP $m1•••Pmn%
2traces, ~4a!

^P ,SuO
Dq

m1 . . . mnuP ,S&

52^xn21&DqMS $m1Pm2•••Pmn%
2traces, ~4b!

^P ,SuO dq

am1 . . . mnuP ,S&

52^xn21&dqMS [aP $m1]Pm2•••Pmn%
2traces, ~4c!

where the braces, $•••% (@•••#), imply symmetrization
~anti-symmetrization! of indices, and the ‘‘traces’’ ~contain-
ing contractions gm im j, etc.! are subtracted to make the ma-
trix elements traceless in order that they transform irreduc-
ibly. At higher twist ~suppressed by powers of 1/Q2), more
complicated operators involving both quark and gluon fields
contribute.

B. Lattice operators

The construction of the relations ~4! between moments of
PDFs and matrix elements of local operators relies on the
symmetry group of the Euclidean space in which one works.
When formulated on a discrete space-time lattice, the sym-
metry group is reduced and the discretized implementation
of these operators introduces several technical complications.

The discrete nature of the lattice topology means that the
symmetry group of the Euclidean continuum, the orthogonal
group O~4!, is broken to its hyper-cubic subgroup H~4! ~the
group of 192 discrete rotations which map the lattice onto
itself! @19#. Unfortunately, operators in irreducible represen-
tations of O~4! may transform reducibly under H~4! and this
may result in mixing with operators from lower dimensional
multiplets under renormalization. Consequently, care must be
exercised in the choice of operators on the lattice. For ex-

ample, the continuum operator O q
mn , which corresponds to

the momentum carried by quarks, can be represented on the

lattice by either O q
(a)

5c̄g $1D4%c ~belonging to a 6 represen-

tation! or O q
(b)

5c̄g4D4c2
1
3 ( i51

3 c̄g iD ic ~belonging to a 3

representation!. This may be regarded as an advantage since
in the a→0 limit these operators are identical and any dif-
ference at non-zero lattice spacing allows for an estimate of
the remaining finite size lattice artifacts to be made. In prac-
tice, this is currently somewhat ambitious, as the operator

O q
(a) requires that the hadron source should have non-zero

momentum components, which leads to a statistically less

well determined result. Consequently, for the operator O q
mn

we retain only the data corresponding to O q
(b) . The operators

associated with the unpolarized n52 and 3 moments are

given by O q
$114%

2
1
2 ( i52

3 O q
$ii4% and O q

$1144%
1O q

$2233%

2O q
$1133%

2O q
$2244% , respectively.

For the spin-dependent moments, the operator corre-

sponding to the axial charge is given by O Dq
3

5c̄g5g3c .

However, for the n51 moment one can have on the lattice

either O Dq
(a)

5c̄g5g $1D3%c or O Dq
(b)

5c̄g5g $3D4%c . Once

again, since the operator O Dq
(a) requires non-zero momentum,

we shall keep only the data corresponding to the better de-

termined O Dq
(b) operator. The operators required to calculate

other moments in Eqs. ~2! are described in Ref. @20#.
For spin greater than 3, there are no unique, irreducible

representations in H~4! for the twist-2 operators. This means

that the operators for moments n.3 will inevitably mix with

lower dimensional ~or lower spin! operators. To unambigu-

ously extract information about these moments, one would

need to consider all representations for a given spin, and,

with sufficiently accurate data, deduce the matrix elements of

the high spin operators from the low spin operators with

which they mix. Because of these difficulties, all lattice cal-

culations have so far been restricted to moments with n

<3. Nevertheless, some features of the PDFs can be reason-

ably reconstructed from just the lowest few moments, as de-

scribed in Ref. @16#.
Further subtleties arise when we consider the non-

perturbative renormalization of these operators and their

matching to other renormalization schemes. An operator,

Olatt(a), calculated using the lattice regularization scheme, is

connected to other schemes, for example MS, by a renormal-

ization factor:

OMS~m !5ZO~m ,a !Olatt~a !,

where m is the renormalization scale. To provide results in

standard schemes, the renormalization functions, ZO , must

therefore be calculated for each operator used. While this is

done perturbatively in most calculations, non-perturbative

determinations now exist @21#. In what follows, results are

presented in the MS scheme at a renormalization scale m2

'4 GeV2.

C. Lattice calculations

The first calculations of structure functions within lattice
QCD were performed in the late 1980s by Martinelli and
Sachrajda. Their pioneering calculations of quark distribu-
tions of the pion @22# and nucleon @23# were ambitious, given
the speed of the computers available at the time. More re-
cently, various calculations of greater precision have been
performed @19,20,24–37#. In the present analysis we will
focus mainly on the more recent QCDSF @30–33# and
LHPC-SESAM simulations @19,34,20#. The older data sets
from Gupta et al. @35# have large uncertainties associated
with renormalization, while the statistical precision of Refs.
@25,26# is comparatively low. In addition, several groups ~no-
tably the KEK @27,28#, Riken-BNL-Columbia ~RBC! @36,37#
and SESAM @29# Collaborations! have put particular empha-
sis on the n50 moments of the helicity and transversity
distributions—the axial and tensor charges. The simulations
have been made using various quark and gluon actions, on
different lattices and at different couplings. They have been
performed primarily in the quenched approximation, al-
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though more recently the LHPC @20# and UKQCD/QCDSF
@33# groups have begun to investigate the effects of un-
quenching. In Table I we summarize the data used here, for
which PDF moments and the corresponding pion masses are
published.

Before including the data sets in our analysis, we impose
a simple cut to reduce finite volume effects. In lattice calcu-
lations of any observable, one must ensure that the lattice
size is large enough for results not to be dependent on the
~unphysical! boundary conditions. This applies particularly
to calculations involving low energy states such as the
nucleon where the effects of the pion cloud are known to be
especially important. Being the lightest, and therefore long-
est range, asymptotic correlation of quarks and gluons, pions
are most sensitive to the boundary conditions. To avoid these
difficulties, we require that the lattice volume is large enough
that a pion will fit comfortably within it without ‘‘feeling the
edges of the box.’’ A pion of mass mp has a corresponding
Compton wavelength of order lp;1/mp , and, to avoid in-
terference of the pion with its periodic copies, we require
that the smallest dimension of the lattice box ~L! satisfies the
constraint

L.4 lp;
4

mp
. ~5!

The factor of 4 in this formula is popular @19#, although
somewhat arbitrary. This argument indicates that the lowest
mass data point of Ref. @31# and the lightest unquenched
points from Ref. @20# should be excluded from the analysis.
In terms of quark flow, the evaluation of matrix elements of
the operators in Eqs. ~3! includes both connected and discon-
nected diagrams, corresponding to operator insertions in
quark lines which are connected or disconnected ~except
through gluon lines! with the nucleon source—see Fig. 1.
Since the numerical computation of disconnected diagrams is
considerably more difficult, only exploratory studies of these
have thus far been completed @29#, and the data analyzed
here include only connected contributions. However, because
the disconnected contributions are flavor independent ~for
equal u and d quark masses!, they exactly cancel in the dif-

ference of u and d moments. Therefore, until more complete
lattice simulations become available, one can only compare
lattice moments of the flavor non-singlet u2d distribution
with moments of phenomenological PDFs @4–6#.

Whilst the chiral behavior of quenched QCD is different
from that of full QCD @38#, in the region where current lat-
tice data from both quenched and unquenched simulations
are available, the differences are well within the statistical
errors, indicating that internal quark loops do not play a sig-
nificant role over this mass range. As calculations begin to
probe lighter quark masses, the differences should become
more apparent and it will become necessary to analyze
quenched and unquenched data separately @39#. Until the dif-
ferences become statistically distinguishable, however, we
shall combine the data from the two sets of simulations.

III. CHIRAL BEHAVIOR OF PDF MOMENTS

To compare the lattice results with the experimentally
measured moments, one must extrapolate the data from the
lowest quark mass used (;50 MeV) to the physical value
(;5 MeV). This is commonly done by assuming that the
moments depend linearly on the quark mass. However, as
discussed in Ref. @15#, such a linear extrapolation overesti-
mates the experimental values of the unpolarized isovector
moments @4–6# by some 50% in all cases. Since the discrep-
ancy persists in unquenched simulations @19,20,34#, it sug-
gests that important physics is being omitted from either the
lattice calculations or their extrapolations. In Refs. @15,16#
the chiral behavior of the moments of the unpolarized is-
ovector distributions was found to be vital in resolving this

TABLE I. Simulation parameters for lattice calculations of the moments of PDFs included in our analysis.

Q/U corresponds to quenched/unquenched simulations, and NPIC denotes the nonperturbatively improved

clover quark action. ‘‘All’’ moments correspond to ^x i&q for i51,2,3, ^x i&Dq for i50,1,2, and ^x i&dq for i

50,1. The symbols shown in the final column correspond to those plotted in Figs. 8, 9 and 10.

Reference Q/U Quark action Lattice a ~fm! mp ~GeV! Moments Symbol

QCDSF @30# Q Wilson 163
332 0.1 0.6–1.0 All m

QCDSF @31# Q Wilson 243
332 0.1 0.35–0.6 All j

QCDSF @32# Q NPIC 163
332 0.1 0.6–1.0 All 3

QCDSF @33# Q NPIC 163
332 0.1 0.65–1.2 ^1&Dq , ^x2&Dq l

Q NPIC 243
348 0.075 0.7–1.2 ^1&Dq , ^x2&Dq d

Q NPIC 323
348 0.05 0.6–1.25 ^1&Dq , ^x2&Dq *

MIT @20# Q Wilson 163
332 0.1 0.58–0.82 All !

MIT-SESAM @20# U Wilson 163
332 0.1 0.63–1.0 All L

MIT-SCRI @20# U Wilson 163
332 0.1 0.48–0.67 All h

KEK @27,28# Q Wilson 163
320 0.14 0.52–0.97 ^1&Dq , ^1&dq .

FIG. 1. Connected ~a! and disconnected ~b! contributions to the

matrix elements of an operator ~indicated by the cross!. Such dia-

grams occur in quenched QCD as well as in full QCD.
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discrepancy. Here we summarize the results of the earlier
unpolarized study, and extend the analysis to the moments of
the spin-dependent isovector distributions in the nucleon.

A. Chiral symmetry and leading non-analytic behavior

The spontaneous breaking of the chiral SUL(Nf)
3SUR(Nf) symmetry of QCD generates the nearly massless
Goldstone bosons ~pions!, whose importance in hadron
structure is well documented. At small pion masses, hadronic
observables can be systematically expanded in a series in
mp—chiral perturbation theory (xPT) @40#. The expansion
coefficients are generally free parameters, determined from
phenomenology. One of the unique consequences of pion
loops, however, is the appearance of non-analytic behavior in
the quark mass. From the Gell-Mann–Oakes–Renner rela-

tion one finds that mp
2 ;mq at small mp , so that terms in-

volving odd powers or logarithms of mp are non-analytic
functions of the quark mass. Their presence can lead to
highly nonlinear behavior near the chiral limit (mp→0)
@41#. Because the non-analytic terms arise from the infrared
behavior of the chiral loops, they are generally model inde-
pendent.

The leading order ~in mp) non-analytic term in the expan-
sion of the moments of PDFs was shown in Ref. @42# to have

the generic behavior mp
2 log mp arising from pN intermediate

states. This was later confirmed in xPT @43#, where the co-
efficients of these terms were also calculated. In Ref. @15# a
low order chiral expansion for the moments of the non-
singlet distribution, u2d , was developed, incorporating the
LNA behavior of the moments as a function of mq and also
connecting to the heavy quark limit ~in which quark distri-
butions become d functions centered at x51/3) @16#. For the
moments of the unpolarized isovector distribution, these con-
siderations lead to the following functional form for the mo-
ments @16#:

^xn&u2d5anS 11cLNAmp
2 log

mp
2

mp
2

1m2D
1bn

mp
2

mp
2

1mb ,n
2

, ~6!

where ~for n.0) the chiral coefficient cLNA52(1

13gA
2 )/(4p f p)2 @43#, and bn is a constant constrained by

the heavy quark limit:

bn5

1

3n
2an~12m2cLNA!. ~7!

The n50 moment, which corresponds to isospin charge, is
not renormalized by pion loops. The parameter m is intro-
duced to suppress the rapid variation of the logarithm for
pion masses away from the chiral limit where xPT breaks
down. Physically it is related to the size of the nucleon core,
which acts as the source of the pion field @41#. Finally, the
fits to the data are quite insensitive to the choice of mb ,n ~as
long as it is large!, and it has been set to 5 GeV for all n @16#.

A similar analysis leads to analogous lowest order LNA
parametrizations of the mass dependence of the spin-
dependent moments @18#:

^xn&Du2Dd5DanS 11DcLNAmp
2 log

mp
2

mp
2

1m2D
1Dbn

mp
2

mp
2

1mb ,n
2

, ~8!

and

^xn&du2dd5danS 11dcLNAmp
2 log

mp
2

mp
2

1m2D
1dbn

mp
2

mp
2

1mb ,n
2

, ~9!

where the LNA coefficients are given by DcLNA52(1

12gA
2 )/(4p f p)2 and dcLNA52(114gA

2 )/@2(4p f p)2#
@43#. In the heavy quark limit, both Du(x)2Dd(x) and
du(x)2dd(x) are given by 5

3 d(x21/3) @44#, which leads to
the constraints

Dbn5

5

3n11
2Dan~12m2DcLNA!, ~10!

and

dbn5

5

3n11
2dan~12m2dcLNA!. ~11!

These are the most general lowest order parametrizations of
the twist-2 PDF moments consistent with chiral symmetry
and the heavy quark limits of QCD.

B. Phenomenological constraints

In Refs. @15,16# we presented analyses of unpolarized
data based on Eq. ~6!, where it was concluded that current
lattice data alone do not sufficiently constrain the extrapola-
tion of these moments, and more accurate data at smaller
quark masses (mq&15220 MeV) are required to determine
the parameter m . In that work, a central value of m
5500 MeV ~550 MeV when the heavy quark limit was not
included @15#! was chosen as it best reproduced both the
lattice data and the phenomenological values at the physical
point. However, the systematic error on this parameter is
very large; indeed, the raw lattice data are consistent with
m50 ~a linear extrapolation!.

In order to make the phenomenological constraint of m
more quantitative, we employ the following measure of the

goodness of fit of the extrapolated values ~at mp
phys) of the

first three non-trivial unpolarized moments to the phenom-

enological values, ^x i&u2d
expt , as a function of m:
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x~m !5(
i51

3
~^x i~m !&u2d2^x i&u2d

expt !2

~^x i&u2d
expt !2

. ~12!

We assume that both the lattice data for the unpolarized mo-
ments and their extrapolation based on Eq. ~6! are correct,
and use the phenomenological values for these moments as a
constraint.

The behavior of the function x(m) is shown in Fig. 2, and
the best value of m is indeed found to be 500 MeV. This
value is also comparable to the scale at which the behavior
found in other observables, such as magnetic moments and
masses, switches from smooth and constituent quark-like
~slowly varying with respect to the current quark mass! to
rapidly varying and dominated by Goldstone boson loops.
For fits to lattice data on hadron masses, Leinweber et al.

found values in the range 450 to 660 MeV @45# when a sharp
momentum cut-off was used. The similarity of these scales
for the various observables is not coincidental, but simply
reflects the common scale at which the Compton wavelength
of the pion becomes comparable to the size of the bare
nucleon. The value of m is also similar to the scale predicted
by the x2 fits to the model discussed in the following section
~see also Ref. @15#!.

C. D Intermediate states

When we come to the calculation of polarized PDFs, there
is considerable phenomenological evidence to suggest that
the D resonance will play an important role. Within the
cloudy bag model ~CBM!, a convergent perturbative expan-
sion of the physical nucleon, in terms of the number of vir-
tual pions, required the explicit inclusion of the D isobar
@46,47#—see also Ref. @48# for a recent, fully relativistic in-
vestigation. Without the D , the ratio of the bare to renormal-
ized pion-nucleon coupling constant was found to be very
large ~as in the old Chew-Wick model!. With it, they typi-
cally agree to within 10–15 %. The essential physics is that
the vertex renormalization associated with coupling to the D
or to an N2D transition compensates almost exactly for the
reduction caused by wave function renormalization. Of
course, the same mechanisms apply to the renormalization of
the axial charge, gA , as to the pion nucleon coupling, gpNN .

In the limit that the D is degenerate with the nucleon,
DM[M D2M→0, the leading non-analytic contribution
from the D is of the same order as that arising from the

nucleon, namely mp
2 log mp

2 . In the limit DM→` , the D con-

tribution can be integrated out, and it formally does not make
any non-analytic contribution. For a finite, but non-zero DM ,
the vertex renormalization involving the D is not a leading

non-analytic term, but instead enters as mp
3 /DM . However,

the coefficient of this next-to-leading non-analytic ~NLNA!

term is huge @49#—roughly three times bigger than the mp
3

term in the expansion of the nucleon mass @45#. Faced with
such a large coefficient, one cannot rely on naive ordering
arguments alone to identify the important physics.

The solution adopted by Leinweber et al. @45# in the
analysis of the chiral behavior of baryon masses was to cal-
culate corrections arising from those pion loop diagrams re-
sponsible for the most rapid variation with mq . The finite
spatial extension of the pion source leads naturally to an
ultraviolet cutoff at the pNN and pND vertices @50#. The
parameter, L;1/R ~with R the size of the source! associated
with these vertices is constrained phenomenologically. This
approach ensures that the LNA and NLNA behavior of xPT
is reproduced in the mp→0 limit, while the transition to the
heavy quark limit (mp.L), where pion loops are sup-
pressed as inverse powers of mp , is also guaranteed. Alter-
natively, one can study the variation of PDF moments with
mp within a model, such as the cloudy bag @47,51#, which
also ensures the full LNA and NLNA behavior of xPT, and
in addition provides a simple physical interpretation of the
short-distance contributions ~in this case through the MIT
bag model!. Rather than rely on a specific model, in the
present analysis we adopt the approach of Ref. @45# and cal-
culate the pion loop integrals with hadronic vertices con-
strained phenomenologically.

The overall renormalization of the forward matrix ele-
ments of the operators of Eqs. ~3! in nucleon states is then
given by

^NuO
i

m1 . . . mnuN&dressed5
Z2

Z i

^NuO
i

m1 . . . mnuN&bare , ~13!

i5q ,Dq ,dq , where Z2 is the wave function renormalization
constant,

Z2
21

511Z2
N

1Z2
D , ~14!

and Z i are the vertex renormalization constants described
below. The N and D contributions to the wave function
renormalization, illustrated in the first row of Fig. 3, are
given in the heavy baryon limit2 by @51#

2While the heavy baryon limit applies strictly when mp!M , the

form factor, u(k), strongly suppresses all of these integrals for mp

above 400 MeV and thus the heavy baryon expression provides an

adequate description of the meson loops in the region where they

are large and rapidly varying.

FIG. 2. The goodness of fit of the extrapolated values of the first

three non-trivial moments to the phenomenological values as a

function of m calculated using Eq. ~12!.
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Z2
N

5

3gA
2

~4p f p!2
E

0

`k4u2~k !dk

v3~k !
, ~15!

Z2
D

5

4

9

gpND
2

gpNN
2

3gA
2

~4p f p!2
E

0

` k4u2~k !dk

v~k !~v~k !1DM !2
, ~16!

where v(k)5Ak2
1mp

2 is the pion energy, and u(k) is the

form factor parametrizing the momentum dependence of the
pNN and pND vertices, for which we choose a dipole form,

u~k !5

L4

~k2
1L2!2

. ~17!

The numerical calculations are performed with a character-
istic momentum cut-off scale L50.8 GeV, just a little softer
than the measured axial form factor of the nucleon @52,53#—
although the results are relatively insensitive to the precise
value of L , as illustrated below. The ratio of the pND to
pNN couplings can be determined from SU~6! symmetry

(gpND /gpNN5A72/25); however, in the numerical calcula-
tions we consider a range of values for the ratio. SU~6! sym-
metry is also used to relate matrix elements of the twist-2
operators in the bare D and N-D transition to those in the
bare nucleon. In the future, lattice calculations of D or N

2D transition matrix elements will test the reliability of this
approximation.

The renormalization constants for the spin-independent,
helicity and transversity operators are given by

Zq
21

511Z1,U
NN

1Z1,U
DD

1Z1,U
tad , ~18a!

ZDq
21

511Z1,P
NN

1Z1,P
ND

1Z1,P
DN

1Z1,P
DD

1Z1,P
tad

1Z1,P
NWT

1Z1,P
DWT , ~18b!

Zdq
21

511Z1,P
NN

1Z1,P
ND

1Z1,P
DN

1Z1,P
DD

1

1

2
Z1,P

tad

1

1

2
Z1,P

NWT
1

1

2
Z1,P

DWT. ~18c!

The contributions from the coupling to nucleon intermediate
states are given by

Z1,U
NN

52

gA
2

~4p f p!2
E

0

`k4u2~k !dk

v3~k !
, ~19!

and

Z1,P
NN

5

1

3

gA
2

~4p f p!2
E

0

`k4u2~k !dk

v3~k !
, ~20!

for the unpolarized and polarized operators, respectively.
One can explicitly verify that the LNA behavior of these

contributions is mp
2 logmp

2 . The D contributions to the unpo-

larized and polarized operators are equivalent,

Z1,U
DD

5Z1,P
DD

5

20

27

gpND
2

gpNN
2

gA
2

~4p f p!2

3E
0

` k4u2~k !dk

v~k !~v~k !1DM !2
, ~21!

while the ND transition contributes only to the spin-
dependent operators,

Z1,P
DN

5Z1,P
ND

5

16

27

gpND
2

gpNN
2

gA
2

~4p f p!2

3E
0

` k4u2~k !dk

v2~k !~v~k !1DM !
. ~22!

FIG. 3. Contributions to the wave function and vertex renormalization of the nucleon matrix elements of the operators O
i

m1 . . . mn , i

5q ,Dq ,dq , in Eq. ~3!. Solid, double and dashed lines denote nucleon, D and pion propagators and the crossed circle and box indicate the

insertion of the relevant operators. Diagrams Z2
N and Z2

D denote the contributions to wave function renormalization ~a derivative with respect

to the external momentum is implied!.
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These contributions are illustrated in the middle row in Fig.
3. Expanding these terms for small mp , one finds that the
leading non-analytic terms associated with the D and N2D

transition contributions enter at orders mp
4 logmp

2 and mp
3 ,

respectively. The contributions from the tadpole diagrams,
which are independent of gA , are also identical for the un-
polarized and polarized cases, and given by

Z1,U
tad

5Z1,P
tad

52

2

~4p f p!2
E

0

`k3u2~k !dk

v2~k !
. ~23!

The tadpole contributions also enter at order mp
2 logmp

2 @43#,
as can be verified directly from Eq. ~23!.

While the inclusion of the D resonance is important for
quantitative descriptions of baryon structure, we also know
from phenomenological studies that the higher order ~in mp)
Weinberg-Tomozawa contact term @54,55# plays a vital role
in low energy S-wave pion–nucleon scattering @56#. Because
of the Adler-Weisberger relation @57# between pN cross sec-
tions and gA , any term which affects pN cross sections
should also have some effect on gA @58#. In fact, within the
CBM Morgan et al. @58# found that this term largely resolves
the discrepancy between the bag model value of gA51.09
and the empirical value of gA for bag radii R

P(0.9,1.1) fm. In the present treatment, since we do not use
the CBM explicitly, but rather parametrize the pion source
via the phenomenological form factor u(k), we determine
the overall strength of the Weinberg-Tomozawa term so as to
reproduce the contribution found in the CBM, as outlined in
Ref. @58#. The relative contributions of the diagrams with N

and D intermediate states, however, illustrated in the last row
of Fig. 3, can be fixed by SU~6! symmetry. These contribu-
tions to the operator renormalization can then be written

Z1,P
NWT

5CWTE
0

`k4u2~k !dk

v2~k !
, ~24!

Z1,P
DWT

5

CWT

18
~11A2 !

gpND
2

gpNN
2 E

0

` k4u2~k !dk

v~k !~v~k !1DM !
,

~25!

for the N and D intermediate states, respectively, where CWT

is the overall normalization. For the above range of R, the
physical value of gA can be reproduced to within a few per-
cent for the corresponding range of CWTP(0.21,0.30). In the
following numerical analysis, we use this range as an esti-
mate of the systematic error on the Weinberg-Tomozawa
contribution. Even though the non-analytic behavior of the

integrals in Eqs. ~24! and ~25! is mp
3 or higher, their contri-

butions are found to be significant. Note, however, that the
Weinberg-Tomozawa terms contribute only to spin-
dependent matrix elements, and make no contribution to un-
polarized matrix elements.

With the exception of the matrix elements of the unpolar-
ized, n50 operator, the renormalization of each moment of
the various distributions is independent of n. The n50 op-
erator, which corresponds to the isospin charge, is not

renormalized—additional contributions from operator inser-
tions on the pion propagator cancel those shown in Fig. 3.

The pion mass dependence of the various contributions to
the wave function and operator renormalization is shown in
Fig. 4. For the ratio of the couplings, gpND /gpNN , SU~6!

symmetry is assumed. The relative size of the terms Z1
NN and

Z1
DD in the spin-dependent and spin-independent cases al-

ready makes it clear that intermediate states involving D
resonances are much more significant in the former case. In

particular, whereas Z1,P
NN does little to counter the effect of the

wave function renormalization, the D contributions Z1,P
DD ,

Z1,P
ND , and Z1,P

DN essentially cancel its effect.

To explore the sensitivity of the results to the strength of
the D contribution, in Fig. 5 we show the combined effect of
the pion dressing on spin-averaged ~upper panel! and spin-
dependent ~lower panel! nucleon matrix elements in Eq. ~13!
for a range of values of the ratio gpND /gpNN . For illustra-
tion we choose values of gpND /gpNN equal to zero ~no D

states!, A72/25 ~SU~6! coupling! and 2 ~the phenomenologi-
cal value needed to reproduce the width of the physical D
resonance!. In the unpolarized case, the effect of this varia-
tion is relatively small—less than 3% over the entire range of
pion masses considered here. In contrast, the effect of the D

FIG. 4. Contributions to the pion loop renormalization of the

matrix elements of the twist-2 operators required to evaluate the

moments of the PDFs. The upper panel shows nucleon wave func-

tion renormalizations (Z2
N ,Z2

D) and spin-independent operator

renormalizations. The lower panel shows the contributions to the

renormalization of spin-dependent operators, and the shaded region

is an estimate of the uncertainty in the Weinberg-Tomozawa term,

Z1,P
WT[Z1,P

N WT
1Z1,P

DWT . The gpND /gpNN coupling constant ratio is set

to the SU~6! symmetric value of A72/25.
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on the helicity and transversity moments ~matrix elements of

the spin-dependent operators O
Dq

m1 . . . mn and O dq

m1 . . . mn) is far

more significant. If the contribution from the D ~and the N

2D transition matrix elements! is ignored (gpND /gpNN

50), Z2 /ZDqum
p
phys50.90, while including these contribu-

tions with SU~6! couplings increases this to Z2 /ZDqum
p
phys

51.01, and to Z2 /ZDqum
p
phys51.04 at the phenomenological

value gpND /gpNN52. Consequently, when the effects of the
D are included with a coupling constant which is consistent
with phenomenology, one finds that there is almost no cur-
vature in the extrapolation of the spin-dependent moments.
This result is relatively stable against variations @52,53# in
the dipole mass parameter, L , in the range
;0.721.0 GeV—especially for the spin-dependent mo-
ments, as illustrated in Fig. 6. Matrix elements of the twist-2
operators ~3! in bare nucleon states will necessarily be ana-

lytic functions of the quark mass (mq;mp
2 ), so the one pion

loop renormalization described above is the only possible
source of LNA contributions. Consequently, the LNA behav-
ior of the matrix elements in Eq. ~13! will be given by

^O i

m1 . . . mn&LNA5Z2
LNA

2Z i
LNA , i5q ,Dq ,dq . ~26!

If the N2D mass splitting is artificially reduced to zero, D
intermediate states become degenerate with the correspond-

ing nucleon intermediate states, and the respective D dia-
grams formally give rise to LNA contributions. Leaving the
gpND /gpNN ratio free, the coefficients of the LNA contribu-

tions ~the mp
2 logmp

2 term! to the various matrix elements can

then be written

^O q

m1 . . . mn&LNA5Z2
LNA

2Zq
LNA

52

1

~4p f p!2 F S 31

16

27

gpND
2

gpNN
2 D gA

2
11G ,

~27a!

^O Dq

m1 . . . mn&LNA5Z2
LNA

2ZDq
LNA

52

1

~4p f p!2 F S 22

4

9

gpND
2

gpNN
2 D gA

2
11G ,

~27b!

^O dq

m1 . . . mn&LNA5Z2
LNA

2Zdq
LNA

52

1

~4p f p!2 F S 22

4

9

gpND
2

gpNN
2 D gA

2
1

1

2G .

~27c!

This makes it clear that, whereas an increase in gpND /gpNN

from 0 ~no D contributions! tends to increase the effective
coefficient of the chiral logarithm in the unpolarized case, for
the spin-dependent operators it acts to suppress it. Indeed,
assuming the bare axial coupling gA51.26, at gpND /gpNN

52.43 the LNA coefficient for the polarized moments is
zero, and for larger values it even becomes positive. Whilst
this exact cancellation is an artifact of setting DM50, it
highlights the significant role played by the D resonance.

From this analysis and the numerical results shown ear-
lier, one can conclude that the inclusion of the D resonance
will cause only a minor quantitative change in the extrapo-
lation of unpolarized moments, and in practical extrapola-
tions of lattice data the D can be neglected with no loss of
accuracy, given the current uncertainties in the data. In con-

FIG. 5. Pion dressing of the matrix elements of the spin-

independent ~upper panel! and spin-dependent ~lower panel! opera-

tors in Eq. ~3! for various values of the ratio of coupling constants,

gpND /gpNN . The shading in the lower panel indicates the variation

about the dashed curve (gpND /gpNN5A72/25) caused by the un-

certainty in the Weinberg-Tomozawa term. The behavior of Z2 /Zdq

is similar to that of Z2 /ZDq .

FIG. 6. Dependence of the renormalization of the nucleon ma-

trix elements in Eq. ~13! on the dipole mass parameter L , at the

physical pion mass, for the SU~6! value of gpND /gpNN .
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trast, the D leads to a qualitatively different picture for the
extrapolation of the spin-dependent moments and must be
included there.

There are a number of possible approaches that can be
taken to account for the D contributions. One strategy would
be to include the one-loop renormalizations numerically in
the extrapolations, along the lines of the calculation of self-
energies in the hadron mass extrapolations in Refs. @39,45#.
One could also replace the momentum integrals in the ex-
pressions for Z1 and Z2 with discrete sums over momenta
which are available on the lattice, *d3k

→(1/V)(2p/a)3(kx ,ky ,kz
, where V is the spatial volume of

the lattice, as in the analysis of the r meson mass in Ref. @59#
~see also @60#!. Because of the discretization of space-time
on the lattice, the lattice momenta are restricted to values
km52pnm /aLm , where Lm is the number of lattice sites in
the m direction and the integer nm runs between 2Lm/2 and

1Lm/2. We have checked that at large mp
2 the differences

between the integrals and discrete sums are only a few per-

cent or less; however, at small mp
2 values the momentum gap

between km50 and the minimum momentum allowed, km

562p/aLm , may introduce corrections.
Although this procedure is more accurate in principle, in

practical extrapolations of lattice data it is not as straightfor-
ward to implement as an extrapolation formula based on a
simple functional form would be. For this purpose it is more
useful to preserve the simplicity of a single formula which
interpolates between the distinct realms of chiral perturbation
theory and contemporary lattice simulations, as proposed in
Refs. @15,16#. In order to test whether one can continue to
apply a modified form of the extrapolation formula in Eq. ~6!
to lattice data for the spin-dependent moments, as well as the
spin independent, we attempt to fit the pion mass dependence
of the renormalization factors shown in Fig. 5 using the form

Z2 /Z i5a i1b imp
2

1

g i ,LNA

~4p f p!2
mp

2 logF mp
2

mp
2

1m i
2G , ~28!

i5q ,Dq ,dq , with a i , b i and m i treated as free parameters,
but with g i ,LNA fixed to the values obtained analytically in
the limit DM→0, as shown in Table II. The fits to Z2 /Z i

(i5q ,Dq ,dq) are illustrated in Fig. 7 for the average of the

gpND /gpNN values from SU~6! symmetry (A72/25) and phe-
nomenology ~2!. Fits for other values of the coupling are

equally good. It is remarkable that the LNA form ~28! is

indeed able to reproduce the full calculations of Z2 /Z i with

such high accuracy, given that the full calculations include

higher order effects ~in mp) associated with the D and

Weinberg-Tomozawa contributions. The best fit values of m ,

shown in Table II, are only slightly smaller than those found

in earlier work @15,16#. Note that the functional form in Eq.

~28! does not include the modifications designed to ensure

the correct heavy quark limit, as in Eqs. ~6!–~9!—
incorporating this constraint leads to only marginal changes

in the parameter m @16#.
As discussed above, excluding the isospin charge, all mo-

ments of each operator are renormalized in the same manner.

Hence, our conclusions regarding the inclusion of the D iso-

bar apply equally well to extrapolations of gA5^1&Du2Dd

and all other moments of the helicity and transversity distri-

butions.

IV. EXTRAPOLATION OF LATTICE DATA

Having established that the LNA formula, Eq. ~28!, pro-
vides a good approximation to the full calculation, in this
section we examine the effects of extrapolating the available

TABLE II. Fits to the dependence on mp
2 of the calculated renormalization factors, obtained by varying

a i , b i and m i in Eq. ~28!. The LNA coefficients and the mass parameters m i are shown for various values of

the gpND /gpNN ratio: 0 ~no D), A72/25 ~SU~6!!, 2 ~phenomenological value! and 1.85 ~average of SU~6! and

phenomenological values!.

Z2 /Zq Z2 /ZDq Z2 /Zdq

gpND /gpNN cLNA m ~GeV! DcLNA m ~GeV! dcLNA m ~GeV!

0 3gA
2
11 0.45 2gA

2
11 0.28 2gA

2
1

1
2 0.32

A 72
25

107
25 gA

2
11 0.39 18

25 gA
2
11 0.25 18

25 gA
2
1

1
2 0.29

1.85 4.51gA
2
11 0.38 0.48gA

2
11 0.25 0.48gA

2
1

1
2 0.30

2 43
9 gA

2
11 0.37 2

9 gA
2
11 0.24 2

9 gA
2
1

1
2 0.29

FIG. 7. Fits to the calculated renormalization factors Z2 /Z i ,i

5q ,Dq ,dq , in Eq. ~13! using the functional form in Eq. ~28! as a

function of mp
2 . The pND to pNN coupling ratio has been set to

the average of the SU~6! and phenomenological values

(gpND /gpNN51.85), and gA to the tree level value, 1.26. The cor-

responding values of m are given in the third row of Table II.
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lattice data on the twist-2 PDF moments using the forms ~6!,
~8! and ~9!, with the LNA coefficients determined in the limit
DM→0. Rather than show the moments versus the scale and
renormalization scheme-dependent quark mass, Figs. 8, 9
and 10 give the moments of the unpolarized, helicity and
transversity distributions, respectively, as a function of the
pion mass squared. The data have been extrapolated using a
naive linear extrapolation ~short-dashed lines!, as well as the
improved chiral extrapolations with the LNA chiral coeffi-
cients and values of m given in Table II, with mb ,n fixed at 5
GeV @16#.

For the spin-dependent moments, four curves are shown
in Figs. 9 and 10: the long-dashed curves correspond to ig-
noring D intermediate states (gpND50), while the central
solid lines in each panel of the figures include the effects of
the D with a coupling ratio gpND /gpNN51.85 ~the average
of SU~6! and phenomenological values! and the central value
for the Weinberg-Tomozawa coefficient, CWT50.255. The
upper and lower solid lines correspond to gpND /gpNN52,

CWT50.30 and gpND /gpNN5A72/25, CWT50.21, respec-
tively. Because the effect of the D is almost negligible for the
unpolarized moments, these curves are all essentially collin-
ear, and for clarity only one is shown in Fig. 8. The extrapo-
lated values are shown in Table III, along with the associated
errors ~which are described in the Appendix! and the experi-

FIG. 9. The lowest three moments of the helicity distribution

Du2Dd , extrapolated using a naive linear extrapolation ~short-

dashed lines! and the improved chiral extrapolation described in the

text. In each panel, the long-dashed lines correspond to fits with no

D and the LNA coefficient determined from xPT, while the solid

lines are fits obtained using gpND /gpNN52 ~upper solid curves!

and A72/25 ~lower solid curves!. The lattice data are taken from the

sources listed in Table I.

FIG. 10. The lowest two moments of the transversity distribu-

tion du2dd . All curves are as described in Fig. 9.

FIG. 8. The lowest three non-trivial moments of the unpolarized

distribution u2d , extrapolated using a naive linear fit ~dashed

lines! and the improved chiral extrapolation ~solid lines!. The stars

indicate the experimentally measured moments at the physical pion

mass, and the lattice data are taken from the sources listed in Table

I, where the various plotting symbols are defined.
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mental values for the unpolarized and helicity moments
@4–7# ~there are currently no data for the transversity mo-
ments!. Note that even though there is no curvature expected
for large mp , the slopes of the linear and LNA fits differ
slightly at large mp values due to the constraints of the heavy
quark limit incorporated into the forms ~6!, ~8! and ~9!.

With respect to the moments of the unpolarized PDFs, this
analysis confirms our earlier finding that it is essential to
incorporate the correct non-analytic behavior into the chiral
extrapolation. When this is done, there is good agreement
between the extrapolated moments at the physical pion mass
and the corresponding experimental data. On the other hand,
for the polarized PDFs we have the surprising result that
once the D resonance is included, the effect of the non-
analytic behavior is strongly suppressed, and a naive linear
extrapolation of the moments provides quite a good approxi-
mation to the more accurate form.

In the case of the axial charge ~the n50 moment of Du

2Dd), the extrapolated value lies some 10% below the ex-
perimental value, with an error of around 5%. However, gA

appears to be particularly sensitive to finite volume correc-
tions, with larger lattices tending to give larger values of gA .
Furthermore, there is some sensitivity to the choice of
action—simulations with domain wall fermions ~DWF!,
which satisfy exact chiral symmetry, are found to give larger
values than those with Wilson fermions @36#. As almost all of
the currently available lattice data are obtained from very
small lattices (L;1.6 fm), we consider the current level of
agreement quite satisfactory.

Additionally, there is some uncertainty arising from the
inclusion of the heavy quark limit in our fits; if this con-

straint is omitted, the large mp
2 behavior of our fits coincides

with the linear fits that are shown as one would expect. For

^x&du2dd (^x&Du2Dd), a fit ignoring the heavy quark limit
gives a physical value of 0.559 ~0.257! rather than 0.506
~0.273! as given in Table III ~with a smaller effect in the
other moments!.

The uncertainty in the experimental determination of the
higher moments of the spin-dependent PDFs is considerably
larger, and from the current data one would have to conclude
from Fig. 9 that the level of agreement between experiment

and the extrapolated moments is acceptable. Clearly the scat-
ter in the lattice data for the second moment means that at
present we cannot have much confidence in the predicted
value. We do note, in addition, that this is one case where
there is a tendency for the full QCD points to lie somewhat
below the quenched QCD results. It is obviously of some
importance that this issue be resolved in future lattice simu-
lations.

V. CONCLUSION

The insights into non-perturbative hadron structure of-
fered by the study of parton distribution functions makes this
an extremely interesting research challenge. It is made even
more important and timely by the tremendous new experi-
mental possibilities opened by facilities such as HERMES,
COMPASS, RHIC-Spin and Jefferson Lab. Lattice QCD of-
fers the only practical method to actually calculate hadron
properties within non-perturbative QCD, and it is therefore
vital to test how well it describes existing data. Because cur-
rent limitations on computer speed restrict lattice simulations
to quark masses that are roughly a factor of 6 too large, one
must be able to reliably extrapolate the lattice data to the
physical quark ~or pion! mass in order to compare with ex-
periment.

Traditionally such extrapolations have been made using a

naive linear extrapolation as a function of mp
2 ~or quark

mass!. In Ref. @15#, Detmold et al. showed that it was essen-
tial to include the leading non-analytic behavior of chiral
perturbation theory in this extrapolation procedure. Only
then were the existing lattice data for the moments of the
unpolarized parton distribution functions in agreement with
the experimental moments. Here we have confirmed this
conclusion by calculating the next-to-leading non-analytic
behavior within a chiral quark model, including the D-isobar,
and showing that it led to precisely the same conclusion.

We have also investigated the variation of the moments of
the polarized parton distributions to next-to-leading order. In
this case the inclusion of the D-isobar makes a dramatic
difference. Indeed, once the D is included, the helicity and
transversity moments show little or no curvature as the chiral

TABLE III. Values of the unpolarized, helicity and transversity moments, extrapolated to the physical

pion mass using Eqs. ~6!, ~8! and ~9! and the parameters in Table II. The experimental and systematic errors

listed here are described in the Appendix. For comparison, experimental values of the moments where known

@unpolarized values from moments of distributions of Refs. @4–6#, helicity moments from Ref. @7# in scenario

I ~NLO!# and the best fit parameters (an ,Dan ,dan) are also listed.

Moment Value Extrapolation errors an ,Dan ,dan

Experimental Extrapolated Statistical D , WT states m

^x&u2d 0.145~4! 0.176 0.012 0.0008 0.022 0.141

^x2&u2d 0.054~1! 0.054 0.015 0.0003 0.007 0.044

^x3&u2d 0.022~1! 0.024 0.008 0.0001 0.003 0.019

^1&Du2Dd 1.267~4! 1.124 0.045 0.020 0.022 1.084

^x&Du2Dd 0.210~25! 0.273 0.015 0.005 0.005 0.262

^x2&Du2Dd 0.070~11! 0.140 0.035 0.003 0.003 0.135

^1&du2dd — 1.224 0.057 0.019 0.025 1.187

^x&du2dd — 0.506 0.089 0.008 0.010 0.490
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limit is approached and a naive linear extrapolation formula

is reasonably accurate. In case a more accurate extrapolation

procedure is desired, we propose convenient formulas which

suitably build in the non-analytic behavior in both the unpo-

larized and the polarized cases. The value of gA extracted

from the extrapolation procedure at the physical pion mass is

within 10% of the experimental value. Given the sensitivity

of this quantity to lattice volume ~current simulations use

quite small lattices! and quark action ~domain wall fermions

tend to give a larger value of gA than Wilson fermions!, we

consider this a very satisfactory result. We look forward with

great anticipation to the next generation of lattice simulations

of parton distribution functions at smaller quark masses and

on larger volumes.
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APPENDIX: STATISTICAL AND SYSTEMATIC ERRORS

In this appendix we describe the estimates of the statisti-
cal and systematic errors in our fits that are presented in
Table III. To determine an estimate of the error associated
with the statistical uncertainty of the lattice data, we use the
estimated standard deviation. For data, f i , and weights, v i ,
given at abscissas x i (i51, . . . ,n), the estimated standard

deviation of a fitting form f (x;aW ) with parameters aW is

s05A 1

n21 (
i51

n

v i@ f i2 f ~x i ;aW 0!#2, ~A1!

where aW 0 are the best fit parameters. The statistical errors
assigned to the fits are then determined by varying the fit
parameters (an ,Dan ,dan) from their optimal values ~given
in the right-most column of Table III! to obtain an increase of
unity in the standard deviation.

In order to estimate the systematic errors arising from the
form of our fits, we first consider the uncertainty in the val-
ues of gpND /gpNN and CWT , taking half the difference be-
tween the physical values of the moments obtained with
gpND /gpNN52, CWT50.30 and gpND /gpNN5A72/25,
CWT50.21. We also consider the uncertainty in the fit pa-
rameter m by taking half the difference between the physical
moments obtained with m 20% above and below the fits
obtained in Table II. The resulting systematic uncertainties
are listed in Table III.
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