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Based on lattice simulations with two flavors of dynamical, O�a�-improved Wilson fermions we present
results for the first two moments of the distribution amplitudes of pseudoscalar mesons at several values of
the valence quark masses. By extrapolating our results to the physical masses of up/down and strange
quarks, we find the first two moments of the K� distribution amplitude and the second moment of the ��

distribution amplitude. We use nonperturbatively determined renormalization coefficients to obtain results
in the MS scheme. At a scale of 4 GeV2 we find a�2 � 0:201�114� for the second Gegenbauer moment of
the pion’s distribution amplitude, while for the kaon, aK1 � 0:0453�9��29� and aK2 � 0:175�18��47�.
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I. INTRODUCTION

In recent years exclusive reactions with identified had-
rons in the final and/or initial state are attracting increasing
attention [1]. The reason for this interest is due to the fact
that they are dominated by rare configurations of the
hadrons’ constituents: either only valence-quark configu-
rations contribute and all quarks have small transverse
separation (hard mechanism) [2–9], or one of the partons
carries most of the hadron momentum (soft or Feynman
mechanism). In both cases, the information about hadron
structure is new and complementary to that in usual in-
clusive reactions, the prominent example being the deep-
inelastic lepton hadron scattering.

Hard contributions are simpler to treat than their soft
counterparts and their structure is well understood, see e.g.
Ref. [10] for a recent discussion. They can be calculated in
terms of the hadron distribution amplitudes (DAs) which
describe the momentum-fraction distribution of partons at
zero transverse separation in a particular Fock state, with a
fixed number of constituents. DAs are ordered by increas-
ing twist; the leading twist-2 meson DA, ��, which de-
scribes the momentum distribution of the valence quarks in
the meson �, is related to the meson’s Bethe-Salpeter
wave function ��;BS by an integral over transverse mo-
menta:

 ���x;�2� � Z2��2�
Z jk?j<�

d2k?��;BS�x; k?�:

Here x is the quark momentum fraction, Z2 is the renor-
malization factor (in the light-cone gauge) for the quark-

field operators in the wave function, and � denotes the
renormalization scale. In particular the leading-twist DA of
the pion and of the nucleon have attracted much attention
in the literature. Furthermore, SU(3) flavor symmetry
breaking effects in the DAs of strange mesons are impor-
tant for predictions of the exclusive B-decay rates (e.g.
B! K;K�) in the framework of QCD factorisation [11],
perturbative QCD [12], soft-collinear effective theory
(SCET) [13,14] or light-cone sum rules, e.g. [15–17]. In
some cases, for instance weak radiative decays, B! �� vs
B! K��, the uncertainty in SU(3) breaking is actually the
dominant source of theoretical error.

The theoretical description of DAs is based on their
representation [2–9] as matrix elements of a suitable non-
local light-cone operator. For example, for positively
charged pions or kaons one defines

 h0j �q��z����5��z; z�u�z�j�
��p�i

� if�p�
Z 1

�1
d�e�i�p	z����;�

2�; (1)

where q � d, s, z� is a lightlike vector, z2 � 0, ��z; z� is
the straight-line-ordered Wilson line connecting the quark
and the antiquark fields and f� is the usual decay constant
f� � 132 MeV, fK � 160 MeV [18]. The physical inter-
pretation of the variable � is that x � �1� ��=2 and 1�
x � �1� ��=2 are the fractions of the meson momentum
carried by the quark and antiquark, respectively. The defi-
nition in (1) implies the normalization
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Z 1

�1
d�����;�

2� � 1: (2)

For brevity, below we often drop the subscript and write �
instead of �� unless we are referring to a specific meson.

A convenient tool to study DAs is provided by the
conformal expansion [19–22]. The underlying idea is
similar to the partial-wave decomposition in quantum me-
chanics and allows one to separate transverse and longitu-
dinal variables in the Bethe-Salpeter wave-function. The
dependence on transverse coordinates is formulated as a
scale dependence of the relevant operators and is governed
by renormalization-group equations. The dependence on
the longitudinal momentum fractions is described in terms
of Gegenbauer polynomials C3=2

n ��� which are nothing but
irreducible representations of the corresponding symmetry
group, the collinear conformal group SL�2;R�.

In this way one obtains [4–7,19,20,22]

 ����;�
2� �

3

4
�1� �2�

�
1�

X1
n�1

a�
n ��

2�C3=2
n ���

�
: (3)

To leading-logarithmic accuracy (LO), the (nonperturba-
tive) Gegenbauer moments an renormalize multiplicatively
with

 an��
2� � L�

�0�
n =�2�0�an��

2
0�; (4)

where L 
 �s��2�=�s��2
0�, �0 � 11� 2Nf=3, and the

anomalous dimensions ��0�n are given by

 ��0�n � 8CF

�Xn�1

k�1

1

k
�

3

4
�

1

2�n� 1��n� 2�

�
(5)

with CF � 4=3. Note that the multiplicative renormaliz-
ability in leading order is not an accident: It relies on the
fact that the tree-level counterterms retain the symmetry
properties of the Lagrangian [21].

Since the anomalous dimensions increase with spin, the
higher-order contributions in the Gegenbauer expansion
are suppressed at large scales so that asymptotically only
the leading term survives

 ���;�2 ! 1� � �as��� �
3
4�1� �

2�: (6)

For this reason, one usually assumes that the conformal
expansion is well convergent at all scales of practical
interest, and retaining the first few terms only in the
conformal expansion provides one with a reasonable ap-
proximation for convolution integrals of the typeR

1
�1 d�����=�1� �� that one encounters in many

applications.

To next-to-leading order (NLO) accuracy, the scale de-
pendence of the Gegenbauer moments is more complicated
and reads [23–25]

 an��2� � an��2
0�E

NLO
n �

�s��
2�

4�

Xn�2

k�0

ak��2
0�E

NLO
k d�1�nk :

(7)

Here we adopt the usual convention that an empty sum is
equal to zero. Moreover, a0 � 1 and
 

ENLO
n � L�

�0�
n =�2�0�

�
1�

��1�n �0 � �
�0�
n �1

8��2
0

� ��s��2� � �s��2
0��

�
; (8)

where ��1�n are the diagonal two-loop anomalous dimen-
sions [26], �1 � 102� �38=3�Nf, and the mixing coeffi-

cients d�1�nk , k � n� 2, are given in closed form in
Refs. [24,25], see also, for instance, Ref. [27] for a recent
compilation. For the lowest moments n � 0, 1, 2 one needs

 ��1�0 � 0; ��1�1 �
23 488

243 �
512
81Nf;

��1�2 �
34 450

243 �
830
81Nf

(9)

and

 d�1�20 �
7

30
�5CF � �0�

��0�2

��0�2 � 2�0

�1� L�1���0�2 =�2�0��:

(10)

If the mass difference between the u and d quarks is
neglected, G-parity implies that the pion DA ����;�� is
an even function of �, i.e all odd moments in �, a�2n�1,
vanish. The K-meson DA need not be even, and the cal-
culation of aK1 will be one of our goals.

The coefficients an at some reference scale �0 are non-
perturbative quantities and have to be evaluated using a
nonperturbative technique or must be extracted from ex-
periment. In historic perspective, most of the discussion
over the years was centered on a particular model of the
pion DA proposed by Chernyak and Zhitnitsky in 1982 on
the basis of their calculation of a�2 using QCD sum rules
[28]. Using this model and assuming dominance of the
hard rescattering mechanism in exclusive reactions,
Chernyak and Zhitnitsky were able to describe an impres-
sive amount of experimental data that were available at that
time [29].

Since then, the original argumentation by Chernyak and
Zhitnitsky and the model itself have been largely discred-
ited. Three different approaches have been used: direct
calculations using QCD sum rules, pioneered in [28];
analysis of experimental data on the pion electromagnetic
and transition form factors (e.g. [30]) and the Bweak decay
form factor, using light-cone sum rules; and lattice calcu-
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lations. The summary of these results is presented in
Table 2 of Ref. [31]; see also, for instance, Refs. [27,32]
for another recent compilation. It turns out that a�2 can only
be determined with large errors, whatever approach is
chosen. A fair average is probably

 a�2 �4 GeV2� � 0:17
 0:15: (11)

The K-meson DA has attracted comparatively less at-
tention. The numerical value of the first moment aK1 was
the subject of significant controversy until recently. The
existing estimates are all obtained using different versions
of QCD sum rules [33–36] and yield an average [31]

 aK1 �4 GeV2� � 0:05
 0:03: (12)

For the second moment, the old estimate by Chernyak and
Zhitnitsky was aK2 =a

�
2 � 0:59
 0:04. Two recent sum rule

calculations [31,33], including radiative corrections to the
sum rules, give however aK2 =a

�
2 ’ 1 pointing towards a

very small SU(3) violation in this coefficient.
Estimates of yet higher-order Gegenbauer coefficients

are rather uncertain. The light-cone sum-rule calculations
of the transition form factor F���� in Refs. [32,37–39]
suggest a negative value for a�4 , which is consistent with
the result a�4 �1 GeV2�>�0:07 obtained in Ref. [40].
However, this conclusion may be premature because yet
higher moments have been omitted (however, in Ref. [41]
they are estimated to be small). Moreover, there does not
seem to be any convincing method to estimate the uncer-
tainty due to the model dependence of the analysis. While
it seems that distribution amplitude moments beyond the
second are extremely difficult to access on the lattice, it
might be possible to estimate them using the transverse
lattice approach [42] or from the operator product expan-
sion in lattice QCD [43,44].

Last but not least, we have to mention the estimate of the
pion DA in the middle point where the momentum is
shared equally between the quark and the antiquark [45]

 ���� � 0� � 0:6
 0:15; (13)

and the measurement of the pion DA in diffractive dijet
production by E791 [46]. Unfortunately, it turns out that
collinear factorization is broken for dijet production
[47,48], so that the interpretation of this beautiful experi-
ment is not straightforward, see also [49,50].

The lattice computation of DAs of pseudoscalar� andK
mesons will be at the focus of this paper. On the lattice, we
cannot compute nonlocal matrix elements of the form (1).
However, via the light-cone operator product expansion

(OPE), moments h�ni of the DAs defined by

 h�ni���
2� �

Z 1

�1
d��n����;�

2�; (14)

are related to matrix elements of the local operators

 OM
�0...�n

�0� � in �q�0���0
�5D
$

�1
. . .D
$

�n
u�0�; (15)

by

 h0jOM
f�0...�ng

�0�j��p�i � if�pf�0
. . .p�ng

h�ni�: (16)

Here M refers to the fact that the operator is defined in

Minkowski space, D� is the covariant derivative, D
$

�

D
!

�D
 

and f. . .g denotes the symmetrization of all indices
and the subtraction of traces. The moments h�ni are related
to the Gegenbauer moments an by simple algebraic rela-
tions:

 a1 �
5
3h�i; a2 �

7
12�5h�

2i � 1�; etc: (17)

Although the first lattice calculation of h�2i� appeared
almost 20 years ago [51,52], there has been surprisingly
little activity in this area in recent times [53–55] to com-
plement other theoretical investigations. Our preliminary
result for h�2i� was presented in [56] and we found in the
MS scheme at �2 � 5 GeV2, h�2iMS

� ��2 � 5 GeV2� �
0:281�28�. This represents the most recent lattice
result. The authors of Ref. [55], on the other hand,
performed a simulation in quenched QCD and renormal-
ized their results perturbatively to the MS scheme
at �2 � 7:1289 GeV2, h�2iMS

� ��
2 � 7:1289 GeV2� �

0:280�49��0:030
�0:013.

This paper is organized as follows. In Sec. II we describe
our lattice technology including the operators and renor-
malization prescriptions used. Section III contains our
numerical results together with appropriate extrapolations
towards the physical limits. Finally, in Sec. IV we summa-
rize our findings by considering the results in terms of
Gegenbauer moments. Here we also discuss the insights
that we gain on the shape of the Pion and Kaon distribution
amplitudes. We tabulate our results in the appendix.

II. LATTICE TECHNIQUES

We define a meson two-point correlation function in
Euclidean space as

 CO�t; ~p� �
X
~x

e�i ~p	 ~xhOf�0...�ng
� ~x; t�J�~0; 0�yi !

A
2E
h0jOf�0...�ng

�0�j��p�i�e�Et � 	O	Je�E�Lt�t��; 0� t� Lt; (18)
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where Of�0...�ng
is the Euclidean lattice transcription of

Eq. (15),

 O f�0...�ng
� �q�f�0

�5D
$

�1
. . .D
$

�ng
u; (19)

A � h��p�jJ�0�yj0i, E �
�������������������
m2

� � ~p2
q

, Lt is the temporal
extent of the lattice and we use J�x� 
 ��x� � �q�x��5u�x�
or J�x� 
 A4�x� 
 O4 � �q�x��4�5u�x� as the interpolat-
ing operator for the pseudoscalar mesons. The 	 factor tells
us how the operator behaves under time reversal, t! Lt �
t. We find that for 	J, 	� � � while 	A4

� �.
To increase the overlap of our interpolating operators

with the ground state, we perform Jacobi smearing at the
source [57], while the operators we use at the sink are local.
Finally, we note that when working with operators involv-
ing derivatives, we perform the Fourier transform in
Eq. (18) at the ‘‘center-of-mass’’ of the operator [58].

A. Choice of operators

We need to choose the lattice operators to perform the
matching of the appropriate representations of the H(4)
group—the group of Euclidean lattices relevant for our
numerical computations—to the corresponding represen-
tations of the O(4) group—the group of rotations and
reflections in four Euclidean dimensions.

For the first moment of pseudoscalar mesons containing
nondegenerate mass quarks we consider two types of op-
erators which we denote generically by Oa

�
�� � 
� and
Ob
��, e.g.

 O a
41 � Of41g; (20)

 O b
44 � Of44g �

1
3�Of11g �Of22g �Of33g�: (21)

The first operator, Oa
41, requires a nonzero momentum

component in the 1-direction which we choose as small
as possible, i.e., we take ~p � �p; 0; 0�, where p � 2�=Ls
and Ls is the spatial extent of our lattice. Using rotational
symmetry, we average over the momentum choices ~p �
�0; p; 0� and ~p � �0; 0; p�, using the operators in Eq. (20)
with f41g replaced with f42g and f43g, respectively. The
second operator, Ob

��, can be evaluated at ~p � �0; 0; 0�.
In this situation, there will be no mixing with operators

of equal or lower dimensions, however there are improve-
ment terms that could be included [59]. Unfortunately the
improvement coefficients are not known, so we are forced
to neglect their contribution, however they are expected to
be small and as such are unlikely to affect our results.

For the case of the second moment, which appears for
mesons with both degenerate and nondegenerate mass
quarks, we also have two classes of operators Oa

�
�,
Ob
�

 [60], e.g.

 O a
412 � Of412g; (22)

 O b
411 � Of411g �

Of422g �Of433g

2
: (23)

From Eq. (16), we see that Oa
�
� requires two nonvanish-

ing spatial components of momentum, ~p � �p; p; 0�, while
Ob
�

 needs only one, ~p � �p; 0; 0� [61]. Consideration of

this fact alone would lead one to choose Ob
�

, since

momentum components in different directions on the lat-
tice lead to a poorer signal. However, lattice operators with
two or more covariant derivatives can mix with operators
of the same or lower dimension. It turns out that for
forward matrix elements, Ob

�

 suffers from such mixings
while Oa

�
� does not.
For matrix elements involving a momentum transfer

between the two states, i.e., nonforward matrix elements,
both operators Oa

�
� and Ob
�

 can mix with operators

involving external ordinary derivatives, i.e. operators of
the form @�@
 	 	 	 � �q 	 	 	 q�. For example, Oa

412 in Eq. (22)
mixes only with the following operator [60]

 O a;@@
412 � @f4@1� �q�2g�5q�: (24)

The situation for Ob
�

 is a lot worse as it can potentially

mix with up to seven different operators [60]. While six of
these operators may vanish in the continuum limit, there
exists a mixing operator of lower dimension, and as such its
contribution must be correctly taken into account nonper-
turbatively. Thus Oa

�
� offers the best possibility to extract
a value of h�2i from a lattice simulation.

B. Set of gauge fields

Our gauge field configurations have been generated with
two flavors of dynamical fermions, Nf � 2, using the
Wilson gluon action and nonperturbatively O�a� improved
Wilson fermions. For four different values � � 5:20, 5.25,
5.29, 5.40 and up to four different � values per � we have
generated O�2000–8000� trajectories. Lattice spacings and
spatial volumes vary between 0.075–0.123 fm and
�1:5–2:2 fm�3, respectively. A summary of the parameter
space spanned by our dynamical configurations can be
found in Table I. We set the scale via the force parameter,
with r0 � 0:467 fm [62,63]. For more details regarding
our definitions and conventions, see Ref. [64].

Correlation functions are calculated on configurations
taken at a distance of 10 trajectories using 4 different
locations of the fermion source. We use binning to obtain
an effective distance of 20 trajectories. The size of the bins
has little effect on the error, which indicates residual
autocorrelations are small.

Concerning the influence of the finite size of our lattices,
our experience with other observables suggests that it is not
significant for the ensembles considered here. However, in
our simulations on smaller lattices (not included in the
present analysis) finite size effects are to be expected, the
study of which is under investigation.
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C. Extracting the matrix elements

We calculate the average of matrix elements computed
with the following choices of momenta
 

Oa
�
: ~p � �p; 0; 0�

~p � �0; p; 0�

~p � �0; 0; p�;

Ob
��: ~p � �0; 0; 0�;

Oa
�
�: ~p � �p; p; 0�

~p � �p; 0; p�

~p � �0; p; p�;

(25)

with the indices of the operators chosen accordingly.
The matrix elements of the operators given in Eqs. (20)–

(22) are then extracted from ratios of two-point functions.
In forming the ratios from Eq. (18), we first need to
determine 	O for the various operators. We find 	Oa

41
�

�, 	Ob
44
� �, 	Oa

412
� � and 	Ob

411
� � [65].

This gives the ratios (for 0� t� Lt)

 R1a �
COa

4i�t�

CO4�t�
� �ipih�i

bare
a ; (26)

 R1b �
COb
�t�

CO4�t�
� �

E2
~p �

1
3 ~p

2

E~p
h�ibare

b F�E~p; t�; (27)

 R2a �
COa

4ij�t�

CO4�t�
� �pipjh�2ibare

a ; (28)

where i and j are spatial indices, and O4 
 A4�x� �
�q�x��4�5u�x� is the operator given in Eq. (19) with no
derivatives and �0 � 4. In Eq. (27), F�E~p; t� �

coth�E~p�t� Lt=2�� and tanh�E~p�t� Lt=2�� for J�x� 

��x� and J�x� 
 A4�x� pseudoscalar mesons, respectively.

Figure 1 shows a typical example of the ratio in Eq. (26)
using a J�x� 
 A4�x� pseudoscalar meson (h�i45

a ), where
we observe a plateau between t � 7 and t � 40. After
extracting R1a from the plateaus, we use Eq. (26) to extract
h�ibare

a . Similarly, a hyperbolic tangent fit to the ratio R1b in
Fig. 2 and a constant fit to R2a in Fig. 3 allow for the
extraction of h�ibare

b and h�2ibare
a , respectively.

Here and in the following, we use the notation h�ni5 and
h�ni45 to distinguish the results for J�x� 
 ��x� and
J�x� 
 A4�x� pseudoscalar mesons, respectively.

D. Operator renormalization and mixing

In general, bare lattice operators must be renormalized
in some scheme S and at a scale M. If the operator is

-0.014
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-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0  5  10  15  20  25  30  35  40  45

Im
[R

(t
)]

t/a

FIG. 1. The imaginary part of R1a as defined in Eq. (26) using
a J�x� 
 A4�x� � �q�x��4�5u�x� meson interpolating field, for
� � 5:29, �sea � 0:135 50 and valence masses, �val1 �
0:135 50, �val2 � 0:134 30.

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0  5  10  15  20  25  30  35  40  45

R
(t

)

t/a

FIG. 2. R1b as defined in Eq. (27) using a J�x� 
 A4�x� �
�q�x��4�5u�x� meson interpolating field, for � � 5:29, �sea �
0:135 50 and valence masses, �val1 � 0:135 50, �val2 �
0:134 30. Fit function is y � A tanh�b�t� Lt=2��, where A and
b are fit parameters.

-0.02

-0.015

-0.01

-0.005

 0

 0  5  10  15  20  25  30  35  40  45

R
(t

)

t/a

FIG. 3. R2a as defined in Eq. (28) using a J�x� � �q�x��5u�x�
meson interpolating field, for � � 5:29, �sea � 0:135 90 and
degenerate valence masses, �val1 � 0:134 90, �val2 � 0:134 90.
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multiplicatively renormalizable, which is the case for the
operators (20) and (21), we have

 OS�M2� � ZS
O�M

2�O�a�; (29)

where O�a� denotes the bare operator at lattice spacing a.
Since h�ni is computed from a ratio of two-point functions
with the operator O in the numerator and the 4-component
of the axial vector current O4 in the denominator the
renormalized value is given by

 h�niS�M2� �
ZS
O�M

2�

ZO4

h�nibare; (30)

if O is multiplicatively renormalizable.
In this work, we renormalize our operators nonperturba-

tively. Here we restrict ourselves to a short outline of the
procedure. More details can be found in Section 5.2.3 of
Ref. [66], and a fuller account will be given in a forth-
coming publication.

We start from a MOM-like renormalization condition
imposed on the lattice [67,68] and perform a chiral ex-
trapolation of the nonperturbative renormalization factors
at fixed � and fixed momentum. We then apply continuum
perturbation theory to calculate the renormalization group
invariant renormalization factor ZRGI from the chirally
extrapolated Zs [66]. Our results for the operators (20)
and (21), i.e. ZRGI

1a and ZRGI
1b , can be found in Table II,

where also ZO4
is given. Note that Z and ZRGI coincide for

O4 because the anomalous dimension of the axial vector
current vanishes.

In the final step we have to convert ZRGI to the MS
scheme at some renormalization scale M2 � �2. This is
done perturbatively, and the result depends on the value of
�MS in physical units. We use r0�MS � 0:617 [62] and
r0 � 0:467 fm to obtain �MS � 261 MeV. For the opera-

tors (20) and (21) we find ZMS=ZRGI � 0:7154 at the scale
�2 � 4 GeV2.

If there are operators having the same quantum numbers
and the same or lower dimension, they may mix with the
operator we are interested in and we must renormalize our
operator via

 OS
i �M

2� �
X
j

ZS
ij�M

2; a�Oj�a�: (31)

From [60] we know that Oa
412 (Eq. (22)) mixes with

Oa;@@
412 [Eq. (24)] such that the renormalized operator can be

written as

 OS
412 � ZS

412O
a
412 � Z

S
mixO

a;@@
412 : (32)

If we restrict ourselves to forward matrix elements, the
operator Oa;@@

412 cannot contribute and Oa
412 becomes effec-

tively multiplicatively renormalizable. Thus we can com-
pute ZS

412 in Eq. (32) nonperturbatively as sketched above.
A sample result is shown in Fig. 2 of Ref. [69], where ZRGI

2a

is called Zf5gRGI. Our numbers for ZRGI
2a are also given in

Table II.
The mixing factor ZS

mix, on the other hand, has only been
computed in one-loop tadpole-improved lattice perturba-
tion theory [58]. In order to avoid the logarithms in the
perturbative expressions we work at the scale �2 � 1=a2,
where a is obtained from the value of r0=a in the chiral
limit [64]. In this way we find the numbers given in
Table III.

The values of the conversion factor ZMS
2a =Z

RGI
2a at the

relevant scales are again computed in continuum perturba-
tion theory and are collected in Table IV.

Denoting the unrenormalized values of f� and h�2i by
fbare

� and h�2ibare, respectively, we have from Eq. (16)

 h0jOa
412j��p�i � fbare

� p1p2p4h�
2ibare; (33)

and

 h0jOS
412j��p�i � fbare

� p1p2p4�Z
S
412h�

2ibare � ZS
mix�

� f�p1p2p4

�
ZS

412

ZO4

h�2ibare �
ZS

mix

ZO4

�
: (34)

Here the renormalized f� is given by

 f� � ZO4
fbare

� ; (35)

and for the renormalized h�2i we get

 h�2i �
ZS

412

ZO4

h�2ibare �
ZS

mix

ZO4

: (36)

So we first obtain h�2i at the scale �2
0 � �1=a�

2. Using
the relation between h�2i and the Gegenbauer moment a2,
Eq. (17), along with the NLO scale dependence of the
latter, Eq. (7), we get h�2i at the scale �2 � 4 GeV2. We
calculate the running coupling from the 4-loop approxima-
tion of the �-function in the MS scheme with �MS �

0:261 GeV [62].

III. NUMERICAL RESULTS

A. Mesons with mass degenerate quarks

Investigating quark mass degenerate mesons, i.e., the
matrix element Eq. (16) using the operator in Eq. (15)
with identical masses for the fermion propagators, allows
us to investigate the structure of the pions. In this case, all
odd moments vanish, hence we focus on the lowest non-
trivial moment, h�2i.

For each of our data sets, we extract a value for h�2ibare

from Eq. (28) and renormalize using Eq. (36). In Table V
we present our results for h�2ibare. We find that the results
for h�2i using the A4 meson interpolating operator lead to
very poorly constrained chiral and continuum extrapola-
tions for operators involving 2 derivatives. Hence in the
following we only discuss the results for h�2i obtained
using the � interpolating field.
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In order to obtain a result in the continuum limit at the
physical pion mass, we first extrapolate our results at
constant � to the physical pion mass. In Fig. 4 we display
the chiral extrapolations for � � 5:40 (top) and 5.29 (bot-
tom), while Fig. 5 contains the corresponding extrapola-

tions for � � 5:25 (top) and 5.20 (bottom). These results
exhibit only a mild dependence on the quark mass and their
values at the physical pion mass agree within errors. The
smooth linear behavior of h�2i was predicted in
Refs. [70,71] where it was shown that at next-to-leading
order in chiral perturbation theory, all possible nonanalytic
corrections to the matrix elements (16) are contained in
f�.

Now that we have calculated results at the physical pion
mass for each choice of �, we are in a position to examine
the behavior of our results as a function of the lattice
spacing. In Fig. 6 we use the values of r0=a extrapolated
to the chiral limit for each � (see Table 3 of Ref. [64]) to
study the dependence of our results on the lattice spacing.
Even though our operators are not O�a�-improved, we find
a negligible dependence on the lattice spacing, at least
when compared to the statistical errors.

Employing a linear extrapolation to the continuum limit
at the physical pion mass, we find the second moment of
the pion’s distribution amplitude to be

 h�2iMS
� ��2 � 4 GeV2� � 0:269�39�; (37)

with an acceptable �2=dof � 0:5, which is close to the
value h�2iMS

� ��2 � 4 GeV2� � 0:286�49��0:030
�0:013 found in

Ref. [55], and larger than the asymptotic value, h�2ias �
0:2.

B. Mesons with mass nondegenerate quarks

When the masses of the quark and the antiquark in
Eq. (16) become unequal, the odd moments will no longer
vanish and—with appropriate adjustment of the quark
masses—we can directly obtain the corresponding mo-
ments of the Kaon. The results that will be discussed in
this section are tabulated in Tables VII, VIII, IX, and X.
Because of the large amount of resources required to
calculate these partially quenched results, we simulate at
a fixed value of � � 5:29 where we have four different sea
quark masses at our disposal. As a result, we are not able to
examine the lattice spacing dependence of these results.
However, we take encouragement from our results in the
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FIG. 4. Chiral extrapolation of h�2i� at constant � for � �
5:40 (top) and � � 5:29 (bottom) for Oa

412 from Eq. (22) in the
MS scheme at �2 � 4 GeV2.
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previous section, where we found that discretization effects
are small for h�2i, and neglect the extrapolation to the
continuum limit.

Occasionally the raw data is so noisy that it is not
possible to perform a stable fit to one or more of the ratios
in Eqs. (26)–(28). In such instances, we are unable to
report a result and hence gaps are present in Tables VII,
VIII, IX, and X.

1. Second moment

Figure 7 shows the second moment, h�2iK, extracted
from Eq. (28) at the working point, � � 5:29, �sea �
0:13500, as a function of the squared Kaon mass, m2

K, for
various choices of the valence quark masses. Here when we
refer to the Kaon mass, we mean a pseudoscalar mass
which is a function of two valence quarks, mK �

mps��val1; �val2�, where �val1 � �val2. (These masses are
provided in the third columns of Tables VII, VIII, IX,
and X.) A solid symbol indicates the point where �val1 �
�val2 � �sea. The behavior towards the chiral limit of the
available data points suggests that indeed a linear extrapo-

lation is possible. The vertical dotted line indicates the
physical kaon mass, mK � 0:494 GeV.

In order to obtain a result at the physical � and K
masses, we performed similar fits at all available sea quark
masses corresponding to �sea � 0:134 00, 0.135 00,
0.135 50, 0.135 90, and then tried to extrapolate in the sea
quark mass (orm� � mps��sea; �sea�) to m� � 0:140 GeV.
This final extrapolation, however, turns out to be unreliable
(large �2=dof). Hence we attempt to fit to all the data
available with the global ansatz

 h�2iK � �� �m2
���sea; �sea� � �m

2
K��val1; �val2�; (38)

with three fit parameters, �, �, �. After performing such a
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FIG. 7. h�2iK, extracted from Eq. (28) at the working point,
� � 5:29, �sea � 0:135 00, as a function of the squared Kaon
mass, m2

K, for various choices of the valence quark masses.
Results are quoted in the MS scheme at �2 � 4 GeV2. The
vertical dotted line corresponds to the physical Kaon mass.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

<ξ
2 >

mK
2  [GeV2]

0.13400
0.13500
0.13550
0.13590
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considered. Results are quoted in the MS scheme at �2 �
4 GeV2. The vertical dotted line corresponds to the physical
Kaon mass.
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FIG. 9. Results for h�2iK as in Fig. 8 but with all four values of
�sea separated for clarity. Each solid line corresponds to the fitted
ansatz, Eq. (38), for m���sea; �sea� evaluated at, going from top
to bottom, �sea � 0:134 00, �sea � 0:135 00, �sea � 0:135 50
and �sea � 0:135 90. The vertical dotted lines correspond to
the physical Kaon mass.
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fit we find

 � � 0:264�7�; � � �0:000 05�841�;

� � �0:016�9�;
(39)

with a �2=dof � 1:06. The fit results indicate that the
dependence of h�2iK on the sea quark mass is negligible,
while the dependence on the valence quarks is very small.

In Fig. 8 we display all our results for h�2iK for all four
sea quark masses, together with the fitted ansatz, Eq. (38),
at the physical pion mass, i.e. �� �m2

�;phys �

�m2
K��val1; �val2�, given by the solid line. For further clari-

fication, the result of this fit is also shown in Fig. 9 for each
value of �sea separately. In this figure, each solid line
corresponds to the fitted ansatz, Eq. (38), for
m���sea; �sea� evaluated at, going from top to bottom,
�sea � 0:134 00, �sea � 0:135 00, �sea � 0:135 50 and
�sea � 0:135 90. For example, in the top figure, the solid
line refers to �� �m2

��0:134 00; 0:134 00� �
�m2

K��val1; �val2�, where m2
��0:134 00; 0:134 00� is taken

from Table I.
To obtain our final result, we insert the physical values

for m� and mK, together with the fitted parameters in
Eq. (39), into Eq. (38) and we find in the MS scheme at
�2 � 4 GeV2

 h�2iMS
K ��

2 � 4 GeV2� � 0:260�6�: (40)

Since we only have results with nondegenerate quark
masses at one value of � � 5:29, we are not able to
perform a continuum extrapolation of h�2iK. We are, how-
ever, able to gain an estimate of the systematic error due to
discretization effects by comparing the result for h�2i� at
� � 5:29 with that in the continuum limit (37). Such a
comparison suggests that there is a systematic error of
roughly 6% due to discretization effects.

Comparing the results in Eqs. (37) and (40), we see that
second moments for the Kaon and pion coincide within
errors, in agreement with findings in Refs. [31,33].

2. First moment

Figures 10 and 11 show the first moment, h�iK, for the
working points � � 5:29, �sea � 0:13500 and � � 5:29,
�sea � 0:13590, respectively, as obtained from the two
operators Oa

�
 (20) and Ob
�� (21). The results are plotted

as a function of the mass splitting of the two quarks making
up the meson, or more specifically m2

K �m
2
�. Here mK is

the mass of a pseudoscalar meson constructed with one
heavy and one light quark, while m� is the mass of a
pseudoscalar meson constructed with two light quarks,
i.e. mK��val1; �val2�, m���val1; �val1� with �val1 � �val2.
The points lie on a straight line, once again as predicted
in Refs. [70,71].

The vertical lines in Figs. 10 and 11 show the location of
the physical K-� mass splitting and it is here that we
extract our results for h�iK at each sea quark mass. These

results are given in Table VI together with slopes obtained
from the simple fit

 h�iK � B�m2
K �m

2
��: (41)

We observe that at each �sea, the four sets of results
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FIG. 10. Result for h�i5a and h�i5b for � � 5:29, �sea �
0:135 00, in the MS scheme at �2 � 4 GeV2. The vertical dotted
line corresponds to the physical m2
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obtained with two different operators and two different
Kaon interpolating fields all agree well.

In order to extract a result at the physical pion mass, we
examine the sea quark mass dependence of our results by
plotting them as a function of the pion mass calculated with
�val � �sea (Table I) in Figs. 12 and 13 for the operators
Oa
�
 (20) and Ob

�� (21), respectively. We extrapolate
linearly in the mass of the light quark to the physical
pion mass and quote the results in the last row of
Table VI. Averaging over the four results, we find

 h�iMS
K ��

2 � 4 GeV2� � 0:0272�5�: (42)

Similar to the result for h�2iK in Eq. (40), we expect that
there is a systematic error of roughly 6% due to discretiza-
tion effects.

IV. SUMMARY AND CONCLUSIONS

We have presented results for the second moment of the
pion’s distribution amplitude and the first two moments of
the Kaon’s distribution amplitude, calculated on lattices
generated by the QCDSF/UKQCD collaboration with two
flavors of dynamical fermions. We use nonperturbatively
determined renormalization coefficients (apart from the
mixing with the operators containing total derivatives,
which is calculated perturbatively) to convert our result

to the MS scheme at 4 GeV2. Our results give model-
independent insights into the distribution amplitude of
pseudoscalar mesons with degenerate and nondegenerate
quark masses.

We find for the pion h�2i� � 0:269�39�, which is
in agreement with other results appearing in the literature
and larger than the asymptotic value. For the
K-meson we obtain h�iK � 0:0272�5��17� and h�2iK �
0:260�6��16�, where the first error is statistical and the
second is an estimate of the systematic error due to the
fact that we have results with nondegenerate quarks at one
value of � � 5:29 only, i.e., no continuum extrapolation.
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FIG. 14. Distribution amplitude of the pion using the expan-
sion in Eq. (3) with our result for a�2 � 0:201�114� and a�4 � 0.
This result is obtained in the MS scheme at �2 � 4 GeV2. The
shaded area indicates the results obtained when a�2 varies be-
tween the maximum and minimum values allowed by its error.
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FIG. 15. Distribution amplitude of the Kaon using the expan-
sion in Eq. (3) with our results for aK1 � 0:0453�9��29� and aK2 �
0:175�18��47�. These results are obtained in the MS scheme at
�2 � 4 GeV2. The shaded area indicates the results obtained
when aK1 and aK2 vary between the maximum and minimum
values allowed by their errors.
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The coefficients an in the Gegenbauer expansion of the
DAs in Eq. (3) are related to the moments h�ni by simple
algebraic relations (17). Using our result in Eq. (37) we
obtain, for the �-meson

 a�2 ��
2 � 4 GeV2� � 0:201�114�; (43)

and from Eqs. (40) and (42) for the K-meson:

 aK1 ��
2 � 4 GeV2� � 0:0453�9��29�; (44)

 aK2 ��
2 � 4 GeV2� � 0:175�18��47�: (45)

While our result for a�2 is larger than the transverse lattice
result [42], all three numbers are well within the range
suggested by QCD sum rule estimates and supported (for
the pion) by the analysis of CLEO data on the ����
transition form factor, cf. Eqs. (11) and (12). Also the
SU(3) breaking in the second Gegenbauer coefficient turns
out to be small, in agreement with [31,33]. We note that in
the context of SU(3) flavor violation, one might be worried
about the absence of a dynamical strange quark in our
simulations, however there has recently appeared a Nf �
2� 1 lattice calculation of aK1 [72] which is in good
agreement with our result, giving us confidence that the
effects of a dynamical strange quark are probably small.

Our results indicate that it is important to consider not
only the chiral extrapolation of the lattice results to the
physical quark masses, but also to perform simulations at
small enough lattice spacings to allow for a reliable ex-
trapolation to the continuum limit.

The corresponding DAs obtained by the truncation of
the general expression in Eq. (3) after the second term are
shown in Fig. 14 and 15 for the � and the K-mesons,
respectively. Note that the K-meson DA is tilted towards

larger momentum fractions carried by the heavier strange
quark, which is in agreement with general expectations.

In order to illustrate the possible effect of higher-order
terms in the Gegenbauer expansion, we also show in
Fig. 16 the pion DA obtained with the addition of the
fourth-order polynomial with the coefficient a�4 �
�0:10�5� taken from Ref. [38]. In both cases (with and
without a�4 ) the value of the DA in the middle point agrees
well with the estimate in Eq. (13). The question whether
the ‘‘camel-hump’’ structure of the DA is present in the
physical DA depends on the contribution of yet higher-
order polynomials that are beyond the reach of the present
analysis.
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APPENDIX: LATTICE RESULTS BY WORKING
POINT

The following tables summarize our findings at individ-
ual working points.
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FIG. 16. Distribution amplitude of the pion using the expan-
sion in Eq. (3) with a�2 � 0:201�114� and a�4 � �0:10�5�. This
result is obtained in the MS scheme at �2 � 4 GeV2. The
shaded area indicates the results obtained when we fix a�2 at
its central value and let a�4 vary between the maximum and
minimum values allowed by its error.

TABLE I. Lattice parameters: Gauge coupling �, sea quark
hopping parameter �sea, lattice volume, the force scale, r0, and
pion mass. The latter three are given in lattice units.

� �sea Volume r0=a am�

5.20 0.134 20 163 � 32 4.077(70) 0.5847(12)
5.20 0.135 00 163 � 32 4.754(45) 0.4148(13)
5.20 0.135 50 163 � 32 5.041(53) 0.2907(15)
5.25 0.134 60 163 � 32 4.737(50) 0.4932(10)
5.25 0.135 20 163 � 32 5.138(55) 0.3821(13)
5.25 0.135 75 243 � 48 5.532(40) 0.255 56(55)
5.29 0.134 00 163 � 32 4.813(82) 0.5767(11)
5.29 0.135 00 163 � 32 5.227(75) 0.420 57(92)
5.29 0.135 50 243 � 48 5.566(64) 0.326 96(64)
5.29 0.135 90 243 � 48 5.840(70) 0.239 56(71)
5.40 0.135 00 243 � 48 6.092(67) 0.403 01(43)
5.40 0.135 60 243 � 48 6.381(53) 0.312 32(67)
5.40 0.136 10 243 � 48 6.714(64) 0.220 81(72)

MOMENTS OF PSEUDOSCALAR MESON DISTRIBUTION . . . PHYSICAL REVIEW D 74, 074501 (2006)

074501-11



TABLE II. Results for the nonperturbative RGI renormalization constants, ZRGI, for the operators defined in Eqs. (20)–(22) as well
as for O4.

� ZRGI
1a ZRGI

1b ZRGI
2a ZO4

5.20 1.52(4) 1.55(5) 2.4(1) 0.765(5)
5.25 1.52(4) 1.55(5) 2.4(1) 0.769(4)
5.29 1.54(4) 1.56(5) 2.45(10) 0.772(4)
5.40 1.57(3) 1.60(4) 2.5(1) 0.783(4)

TABLE III. Results for the renormalization mixing coefficient, ZMS
mix, computed in tadpole-improved perturbation theory in the MS

scheme at the scale �2 � �1=a�2, where a is obtained from the value of r0=a in the chiral limit [64].

� �2 � 1=a2 [GeV2] ZMS
mix

5.20 5.3361 �0:002 58
5.25 6.2001 �0:002 53
5.29 6.9696 �0:002 50
5.40 9.7344 �0:002 40

TABLE IV. Results for ZMS
2a =Z

RGI
2a at �2 � �1=a�2 for the lattice spacings a in our simulations.

� �2 � �1=a�2 [GeV2] ZMS
2a =Z

RGI
2a

5.20 5.3361 0.5650
5.25 6.2001 0.5545
5.29 6.9696 0.5465
5.40 9.7344 0.5262

TABLE V. Bare results for h�2i5a and h�2i45
a calculated on each dataset with degenerate valence quark masses �val � �sea.

� �sea h�2i5a h�2i45
a

5.20 0.134 20 0.1353(47) 0.1447(46)
5.20 0.135 00 0.1296(77) 0.1575(62)
5.20 0.135 50 0.1518(65) 0.140(10)
5.25 0.134 60 0.1380(55) 0.1328(82)
5.25 0.135 20 0.1450(67) 0.1706(57)
5.25 0.135 75 0.1371(82) 0.1541(93)
5.29 0.134 00 0.1434(54) 0.1537(47)
5.29 0.135 00 0.1346(37) 0.1587(35)
5.29 0.135 50 0.1578(76) 0.1737(68)
5.29 0.135 90 0.1401(94) 0.1769(77)
5.40 0.135 00 0.1488(42) 0.1516(58)
5.40 0.135 60 0.1581(86) 0.1780(74)
5.40 0.136 10 0.1495(83) 0.172(11)
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TABLE VIII. Bare results for h�i and h�2i for various choices of valences quarks with �val1 � �val2, together with the corresponding
pseudoscalar mass, mps��val1; �val2�. Here � � 5:29 and �sea � 0:135 00.

� � 5:29, �sea � 0:135 00
�val1 �val2 amps h�i5a h�i45

a h�i5b h�i45
b h�2i5a h�2i45

a

0.133 90 0.133 90 0.531 34(84) 0.000 35(68) 0.000 28(78) 0.1332(29) 0.1521(32)
0.134 30 0.133 90 0.512 36(86) 0.006 22(70) 0.006 47(81) 0.006 642(76) 0.006 706(75) 0.1336(31) 0.1532(34)
0.134 30 0.134 30 0.492 93(76) 0.000 40(73) 0.000 28(85) 0.1339(28) 0.1544(28)
0.135 00 0.133 90 0.478 03(88) 0.017 31(94) 0.017 13(92) 0.018 38(28) 0.018 50(27) 0.1342(35) 0.1555(38)
0.135 00 0.134 30 0.457 71(90) 0.010 78(80) 0.011 00(96) 0.011 63(20) 0.011 79(20) 0.1344(37) 0.1566(40)
0.135 00 0.135 00 0.420 53(82) 0.000 49(92) 0.0002(10) 0.1346(37) 0.1587(35)
0.135 50 0.133 90 0.452 54(91) 0.0253(11) 0.025 27(98) 0.026 57(50) 0.026 86(51) 0.1345(40) 0.1573(43)
0.135 50 0.134 30 0.431 42(93) 0.0191(11) 0.0188(10) 0.019 96(45) 0.020 13(45) 0.1345(42) 0.1587(45)
0.135 50 0.135 00 0.392 49(98) 0.0080(10) 0.0078(12) 0.008 33(27) 0.008 32(27) 0.1344(47) 0.1602(50)
0.135 50 0.135 50 0.362 83(91) 0.0006(12) 0.0001(13) 0.1344(50) 0.1619(44)
0.136 00 0.133 90 0.426 03(97) 0.0335(13) 0.0335(15) 0.035 05(92) 0.035 18(93) 0.1346(46) 0.1590(49)
0.136 00 0.134 30 0.403 92(99) 0.0274(14) 0.0271(15) 0.028 46(90) 0.028 42(92) 0.1344(49) 0.1598(52)
0.136 00 0.135 00 0.3628(10) 0.0159(12) 0.0157(13) 0.016 90(79) 0.016 58(86) 0.1339(56) 0.1617(58)
0.136 00 0.135 50 0.3309(11) 0.0085(14) 0.0079(15) 0.008 64(57) 0.008 27(71) 0.1332(64) 0.1637(64)
0.136 00 0.136 00 0.2962(11) 0.0010(18) 0.0006(19) 0.1320(81) 0.1665(65)

TABLE VII. Bare results for h�i and h�2i for various choices of valences quarks with �val1 � �val2, together with the corresponding
pseudoscalar mass, mps��val1; �val2�. Here � � 5:29 and �sea � 0:134 00.

� � 5:29, �sea � 0:134 00
�val1 �val2 amps h�i5a h�i45

a h�i5b h�i45
b h�2i5a h�2i45

a

0.134 00 0.134 00 0.5767(11) �0:00027�99� 0.0001(11) 0.1434(54) 0.1537(47)
0.134 40 0.134 00 0.5583(10) 0.0053(10) 0.0059(11) 0.005 873(71) 0.005 989(92) 0.1445(58) 0.1552(50)
0.135 25 0.134 00 0.5179(11) 0.0179(14) 0.0190(15) 0.018 44(30) 0.018 88(40) 0.1468(70) 0.1586(60)
0.135 25 0.134 40 0.4981(11) 0.0121(14) 0.0131(15) 0.012 57(24) 0.012 90(32) 0.1475(76) 0.1600(64)
0.135 25 0.135 25 0.4541(11) 0.1490(94) 0.1636(77)
0.135 80 0.134 00 0.4906(11) 0.0259(15) 0.0270(17) 0.026 66(58) 0.027 41(78) 0.1480(83) 0.1607(70)
0.135 80 0.134 40 0.4700(11) 0.0201(16) 0.0210(18) 0.020 80(53) 0.021 46(73) 0.1485(90) 0.1621(75)
0.135 80 0.135 25 0.4237(12) 0.0076(19) 0.0083(20) 0.008 26(33) 0.008 67(50) 0.149(11) 0.1656(90)
0.135 80 0.135 80 0.3913(14) 0.150(14) 0.169(11)
0.136 30 0.134 00 0.4639(15) 0.0332(19) 0.0337(21) 0.0352(14) 0.0367(19) 0.151(11) 0.1633(91)
0.136 30 0.134 40 0.4423(16) 0.0275(19) 0.0277(22) 0.0294(15) 0.0311(20) 0.153(13) 0.1651(99)
0.136 30 0.135 25 0.3929(21) 0.0154(23) 0.0150(25) 0.0172(16) 0.0191(27) 0.159(18) 0.171(13)
0.136 30 0.135 80 0.3569(32) 0.0081(28) 0.0072(29) 0.0093(18) �0:0009�17� 0.165(35) 0.178(18)
0.136 30 0.136 30 0.305(14) 0.17(15) 0.183(36)

TABLE VI. h�iK at the physical m2
K �m

2
� mass splitting together with the slope, B, of the fit in Eq. (41) for � � 5:29, in the MS

scheme at �2 � 4 GeV2. The last row contains the values for h�iK chirally extrapolated in the sea quark mass to the physical point.

�sea h�i5a B5
a h�i45

a B45
a h�i5b B5

b h�i45
b B45

b

0.134 00 0.0215(5) 0.098(4) 0.0222(8) 0.099(6) 0.0231(4) 0.104(3) 0.0223(19) 0.121(18)
0.135 00 0.0234(2) 0.102(1) 0.0231(2) 0.102(1) 0.0247(2) 0.110(1) 0.0248(1) 0.110(1)
0.135 50 0.0240(5) 0.120(3) 0.0246(3) 0.121(2) 0.0276(3) 0.123(2) 0.0277(3) 0.124(2)
0.135 90 0.0251(6) 0.123(4) 0.0237(4) 0.126(3) 0.0271(1) 0.121(1) 0.0267(2) 0.119(1)

0.0261(3) 0.0252(11) 0.0287(9) 0.0289(16)
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[56] M. Göckeler et al., hep-lat/0510089.
[57] C. Best et al., Phys. Rev. D 56, 2743 (1997).
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