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MOMENTS OF THE INVERSE SCATTERING OPERATOR OF THE
BOLTZMANN EQUATION: THEORY AND APPLICATIONS∗
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Abstract. In this paper useful physical objects called moments of the inverse scattering operator
(MISO) of the Boltzmann equation (BE) are studied. The existence and uniqueness of the MISO is
proven and a simple, generally valid, iterative scheme to actually compute those objects is given. The
applications of the MISO extend from the computation of the solution for the space-homogeneous BE
for small electric and magnetic fields to the exact computation of any transport parameter. This can
be done for all moments of the space-inhomogeneous BE and for arbitrary electric and magnetic field
intensities. The concept of MISO offers an elegant way to avoid the relaxation time approximation
(RTA) every time it comes into play, not only theoretically but also in practical computations.
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1. Introduction. In contemporary semiconductor device simulation two ap-
proaches are common: For industrial application the so-called transport models (TMs)
are widely used to compute terminal currents and to perform small signal and noise
analysis. On the research side, one prefers, when possible, to directly solve the space-
inhomogeneous Boltzmann equation (BE) either using Monte Carlo (MC) methods or
directly. The two methods often lead to different results. When trying to understand
the origin of these discrepancies, one is immediately confronted with the relaxation
time approximation (RTA). The RTA has been used to derive the TMs from the BE
as a standard method mainly due to the lack of alternative ways to treat the problem.
In the case of device simulation, it is impossible to validate the correctness of the RTA
because there is no general method for directly comparing it with exact solutions.

The aim of this paper is to develop a method that avoids the RTA. It will allow,
among others, the exact computation of transport parameters and noise sources for
any moment of the BE using the MC method. The key feature in this formalism is the
derivation and computation of moments of the inverse scattering operator (MISO).
Although the formalism was primarily developed to be applied to semiconductors, it
can also be used to analyze any open system described by a BE (linear or not).

The paper is organized in four sections. First, we recall the approximations in
deriving a TM and point out how the knowledge of the MISO enables us to locally
compare term by term the TM with the outcome of an MC simulation, i.e., with the
solution of the BE. In section 3, we will outline the sufficient mathematical conditions
under which the MISO exist, and we will present a natural way to compute them. In
section 4, five useful applications are presented. First, the MISO are used to compute
the solution of the space-homogeneous BE for small electric and magnetic fields.
Then, transport parameters, Hall factors, and relaxation times (RTs) are computed
in a very general way. At the end of the section, an exact expression is derived for
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the correlation functions of the Langevin noise sources for arbitrary moments of the
space-homogeneous nondegenerate BE. Finally, section 5 gives conclusions and a brief
outlook on future work.

2. Direct comparison of TMs with the BE.

2.1. Derivation of TMs from the BE. The first step in the derivation of any
TM from the BE

∂tf + �v · ∇rf − q

�

�E · ∇kf = Sf(2.1)

is to introduce some kind of RT τ , which ideally should contain all information about
the scattering operator (SO) S:

∂tf + �v · ∇rf − q

�

�E · ∇kf =
f − n

neq
feq

τ(f, �r, t,�k, �E)
.(2.2)

The function τ may depend on moments of the distribution function f , the position
in real space �r, the momentum �k, the time t, and the electric field �E. Multiplying
both sides of (2.2) by τ results in

τ(f, �r, t,�k, �E)∂tf + τ(f, �r, t,�k, �E)�v · ∇rf

−τ(f, �r, t,�k, �E)
q

�

�E · ∇kf = f − n

neq
feq.

(2.3)

In (2.1)–(2.3), feq denotes the Boltzmann distribution function normalized to one

(
∫
Bz

f2
eq(

�k)d3k = 1) and n :=
∫
Bz

f(�k)d3k, neq :=
∫
Bz

feq(�k)d3k, with Bz the Bril-
louin zone. The symbol neq is used here for convenience, although the actual equilib-
rium density differs from neq by a constant due to the normalization condition.

To be able to compare (2.2) and (2.3) with the exact BE (2.1), one has to invert
the SO (2.4):

(2.4)

∫
S−1(�k,�k′)∂tf(�k′)d3k′ +

∫
S−1(�k,�k′)�v(�k′) · ∇rf(�k′)d3k′

−
∫

S−1(�k,�k′)
q

�

�E · ∇k′f(�k′)d3k′ = f(�k) − n

neq
feq(�k).

Note that S−1 ◦S �= 1l! This crucial statement will be explained in detail in section 3.
RTs are introduced because the original BE (2.1) causes a major problem when

one wants to derive a transport equation: The distribution function f does not appear
isolated in the equation. The only term in which f is isolated is ∂tf , which is the
partial derivative of f by the time, which is not an equation for f . By introducing
an RT τ , f appears isolated on the rhs of the equation. This is the main reason why
RTs are introduced. To do the same in an exact way, the simplest possibility is to
reverse the SO. This is the only possibility for expressing in an exact mathematical
way what the RTA tries to achieve on a heuristic basis. In (2.2), the term − n

neq
feq was

introduced phenomenologically to express the fact that at thermodynamic equilibrium
the collision term disappears. The mathematical reason is, however, that the SO S has
an eigenvector with eigenvalue 0, which is the equilibrium distribution feq in the case
of Boltzmann statistics. Therefore, (2.4) is the rigorous mathematical formulation of
what was done approximately and heuristically by introducing an RT.
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The second step is to build a moment of interest of (2.3) by multiplying (2.3) by

a function g(�k) and integrating over the momentum space,

(2.5)

∫
Bz

[
g(�k)τ(f(�k, �r))∂tf(�k, �r)

]
d3k +

∫
Bz

[
g(�k)τ(f(�k, �r))�v(�k) · ∇rf(�k, �r)

]
d3k

−
∫
Bz

[
g(�k)τ(f(�k, �r))

q

�

�E · ∇kf(�k, �r)
]
d3k =

∫
Bz

g(�k)

[
f(�k, �r) − n

neq
feq(�k, �r)

]
d3k,

where g(�k) is a function in which we are interested. g(�k) could be, e.g., a power of
the velocity.

Building moments in a similar fashion with (2.4) leads to

(2.6)

∫
Bz

∫
Bz

[
g(�k)S−1(�k,�k1, �r)∂tf(�k1, �r)

]
d3k1d

3k

+

∫
Bz

∫
Bz

[
g(�k)S−1(�k,�k1, �r)�v(�k1) · ∇rf(�k1, �r)

]
d3k1d

3k

−
∫
Bz

∫
Bz

[
g(�k)S−1(�k,�k1, �r)

q

�

�E · ∇k1f(�k1, �r)
]
d3k1d

3k

:=

∫
Bz

S−1
g (�k1, �r)∂tf(�k1, �r)d

3k1 +

∫
Bz

S−1
g (�k1, �r)�v(�k1) · ∇rf(�k1, �r)d

3k1

−
∫
Bz

S−1
g (�k1, �r)

q

�

�E · ∇k1f(�k1, �r)d
3k1 =

∫
Bz

g(�k)

[
f(�k, �r) − n

neq
feq(�k, �r)

]
d3k,

where

S−1
g (�k1, �r) =

∫
Bz

g(�k)S−1(�k,�k1, �r)d
3k(2.7)

is a moment of the inverse scattering operator (ISO) in (2.5).
The third step is to perform a partial integration of the k-gradient term in (2.5)

and to neglect the boundary term

∫
Bz

g(�k)τ(f(�k, �r))
q

�

�E · ∇kf(�k, �r)d3k � − q

�

�E ·
∫
Bz

∇k(g(�k)τ(f(�k, �r)))f(�k, �r)d3k.

(2.8)

Because the function S−1
g (�k1, �r) can be discontinuous in some points (for some silicon

MC models, this happens on the boundary surfaces between two valleys), we cannot
exactly transform the k-gradient term of (2.6) as in (2.8). Instead we have to decom-

pose the domain Bz into subdomains, where the function S−1
g (�k1, �r) is continuous,

and keep all the boundary terms, which in general will not disappear, as follows:

(2.9)
∑
i

∫
Bzi

S−1
g (�k, �r)

q

�

�E · ∇kf(�k, �r)d3k

= − q

�

�E ·
∑
i

∫
Bzi

∇k(S−1
g (�k, �r))f(�k, �r)d3k +

q

�

�E ·
∑
i

∮
∂Bzi

S−1
g (�k, �r)f(�k, �r)�nda,

where
⋃

i Bzi = Bz.

The boundary term
∑

i

∮
∂Bzi

S−1
g (�k, �r)f(�k, �r)�nda does not vanish. To our knowl-

edge it has never been investigated numerically whether this term is negligible for all
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moments and for all field strengths of practical interest, e.g., for bulk silicon. We will
therefore keep this term in our numerical analysis.

To derive common TMs, only a small number of functions g is relevant. For the
drift-diffusion (DD) model, only the moment corresponding to g1 = �v is needed. The
hydrodynamic model is obtained by considering the moments g1 = �v, g2 = ε (where

ε(�k) is the energy) or ||v||2 and g3 = τg2�v. Finally, for the so-called six moments
method (see [6]), the additional moments g4 = ε2 and g5 = τg4�v are considered. These
moments equations, together with the Poisson equation and the current continuity
equation (the contraction of the BE with the constant function 1), constitute a TM
that should approximate the solution to the BE coupled with the Poisson equation.
These equations are usually parametrized using the electrostatic potential, the particle
density(ies), and the mean value of g2 and g4. To close this system, further steps are
needed: The g3 (resp., g5) moment is inserted into the ∇r term of the g2 (resp., g4)
moment and approximations are done, such as the use of the Einstein relation, the
replacement of tensorial transport coefficients by scalars, and the use of a closure
relation for the last moment (see, e.g., [13], [3], [1], [12]). Finally, all expressions still
unknown are called transport coefficients and computed using a model (analytical
and/or bulk MC simulation) and parametrized by the functions listed above.

2.2. Transport parameters. In order to illustrate potential applications of the
outlined concept, we directly compare the moments of well-known macroscopic TMs,
such as the DD model and the energy-balance (EB) model (see, e.g., [12, Chap. 1.1.3]),
with the corresponding terms from the BE containing the exact ISO. The equation
for the current in the DD model reads

τp∂t(〈�v〉) − μn�E −D∇rn = 〈�v〉=: −
�J

q
,(2.10)

where τp is the momentum RT, μ the mobility tensor, D the diffusivity tensor, n the
density, and 〈�v〉 :=

∫
Bz

�vfd3k (〈�v〉 /n is the mean velocity).
If we compare term by term the lhs of (2.10) with the lhs of (2.6), we find the

following conditions for the DD model to be exact:

τp∂t(〈vi〉)
!
=

∫
Bz

S−1
vi

(�k1, �r)∂tf(�k1, �r)d
3k1, i = 1, . . . , 3,(2.11)

(2.12)(
μn�E

)
i

!
=− q

�

�E ·
∫
Bz

∇k(S−1
vi

(�k, �r))f(�k, �r)d3k +
q

�

�E ·
∑
j

∮
∂Bzj

S−1
vi

(�k, �r)f(�k, �r)�nda,

i = 1, . . . , 3,

(−D∇rn)i
!
=

∫
Bz

S−1
vi

(�k1, �r)�v(�k1) · ∇rf(�k1, �r)d
3k1, i = 1, . . . , 3, 〈vi〉eq = 0.(2.13)

Note that (2.13) gives a natural definition of the mobility tensor

(2.14)

(μ)ij : = − q

n�

∫
Bz

∂kj (S
−1
vi

(�k, �r))f(�k, �r)d3k +
q

n�

∑
l

∮
∂Bzl

S−1
vi

(�k, �r)f(�k, �r)(�nda)j ,

i = 1, . . . , 3.
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The corresponding equations for the EB model are

τp∂t(〈�v〉) − μn�E − μn∇r

(
kB
q

〈T 〉
n

)
−D′∇rn = 〈�v〉 ,(2.15)

3

2
kB

⎛
⎜⎜⎜⎝〈T 〉 − n

〈T 〉 eq
neq︸ ︷︷ ︸

:=Teq

⎞
⎟⎟⎟⎠ = −τEq 〈�v〉 · �E − τE∇r

[
−κn∇r

(
〈T 〉
n

)
+

5kB
2

〈T 〉 〈�v〉
n

]
,

(2.16)

where τE is the energy RT, κn the heat conduction coefficient, 〈T 〉eq /neq the tempera-

ture in thermodynamic equilibrium, D′ := kB

q
〈T 〉
n μ, and 〈T 〉 := m

3kB
·Tr(

∫
Bz

(�v ⊗ �v)fd3k).

If we compare (2.15) and (2.16) with (2.6), we find the following conditions for the
EB model to be exact:

−μ

(
∇r

(
kB 〈T 〉

q

))
i

!
=

∫
Bz

S−1
vi

(�k1, �r)�v(�k1) · ∇rf(�k1, �r)d
3k1, i = 1, . . . , 3,(2.17)

(2.18) τEq 〈�v〉 · �E
!
=−1

2
m

3∑
i=1

q

�

�E ·
∫
Bz

∇k(S−1
vivi

(�k, �r))f(�k, �r)d3k

+
1

2
m

3∑
i=1

q

�

�E ·
∑
j

∮
∂Bzj

S−1
vivi

(�k, �r)f(�k, �r)�nda,

−τE∇r

[
−κn∇r

(
〈T 〉
n

)
+

5kB
2

〈T 〉 〈�v〉
n

]
!
=

1

2
m

3∑
i=1

∫
Bz

S−1
vivi

(�k1, �r)�v(�k1) · ∇rf(�k1, �r)d
3k1.

(2.19)

Although the terms in the rhs of (2.11)–(2.13) and (2.17)–(2.19) look rather cum-

bersome, this is not the case. As soon as we know S−1
g (�k, �r) for all required g, we

can easily compute such terms for a given device with an MC simulation and then
locally compare with the terms of the TM. It should be noted that by construction the
following holds: If the transport coefficients computed by the MC method are rein-
serted into the TMs as a function of position only (not as a function of the density
or the mean energy), then the TMs will exactly reproduce the MC density and the
MC current density in the case of the DD and EB models, as well as the MC energy
current density in the case of the EB model. Another way to verify this statement is
to reinsert electric field, density, and mean energy from the MC solution of the BE
into the TMs that contain the exact transport coefficients, and to observe that they
indeed solve these equations. Therefore, the restrictions imposed on these TMs to
be valid (restrictions arising from the models for the transport coefficients) become
obsolete as soon as the exact expressions (2.11)–(2.13) and (2.17)–(2.19) are used.

Based on this motivation for the computation of MISO, we show how to actually
compute them in a general way.
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3. Existence and computation of the MISO.

3.1. Derivation of an equation for the MISO. We start with the general
form of the BE,

(3.1) ∂tf(�r, t,�k, b) + �̇r · ∇rf(�r, t,�k, b) + �̇k · ∇kf(�r, t,�k, b)

=
∑
b0

∫
Vb0

f(�r, t,�k0, b0)w(�r, t)(�k0, b0|�k, b)d3k0−
∑
b0

∫
Vb0

f(�r, t,�k, b)w(�r, t)(�k, b|�k0, b0)d
3k0,

where �r is the position in space, �k the position in k-space, b a band-valley index, Vb

the k-space of band-valley b, and w(�r, t)(�k, b|�k0, b0) is the scattering rate from point

(�k, b) to (�k0, b0) (at time t and space position �r, respectively). Note that the Pauli
blocking factors (1 − f) are included in the scattering rates w. Since 0 < 1 − f ≤ 1,
they will never increase the magnitude of w. This will be of some importance below.
In the following we will work under the assumption that the Vb are compact pairwise
disjoint subsets of R

3, and w(�r, t)(�k, b|�k0, b0) : Vb × Vb0 → R is a continuous function

of �k and �k0. We define K :=
⋃N

i=0 Vbi .
The scattering operator S is defined as

S(�r, t)(�k, b|�k0, b0) := w(�r, t)(�k0, b0|�k, b) − δ3(�k − �k0)δb,b0Wtot(�r, t)(�k, b),(3.2)

with Wtot(�r, t)(�k, b) :=
∑

b′

∫
Vb′

w(�r, t)(�k, b|�k′, b′) d3k′ > 0.

By definition, w(�r, t)(�k0, b0|�k, b) is a bound continuous compact operator on the
Banach space C0(K) with ||·||∞ (see, e.g., [14, p. 70]).

In the remainder, the argument (�r, t) will be omitted, and the Dirac notation
sometimes will be used for better readability (e.g., |f〉 := f). We will also sometimes
use the “◦” notation

(A ◦B)(�k, b|�k1, b1) :=
∑
b0

∫
Vb0

A(�k, b|�k0, b0)B(�k0, b0|�k1, b1)d
3k0(3.3)

to avoid confusion. Using the Dirac notation, the lhs of (3.1) can be written as

(3.4) S|f〉 :=
∑
b0

∫
Vb0

S(�k, b|�k0, b0)f(�k0, b0)d
3k0

=
∑
b0

∫
Vb0

(
f(�k0, b0)w(�k0, b0|�k, b) − f(�k, b)w(�k, b|�k0, b0)

)
d3k0.

Now we want to define an inverse operator H for the SO, i.e., an ISO. First of
all, one cannot define the ISO naively as H ◦S|f〉 = |f〉 for all f ∈ C0(K), because S
has an eigenvector with eigenvalue 0 (indeed only one, as we will show later), namely,
the Boltzmann function feq.

1 Therefore, we have to invert the SO on the space Ker⊥

perpendicular to its kernel Ker := {λ|feq〉 | λ ∈ R}. To do so, we define explicitly

Ker⊥ := {Pfeq |g〉 | g ∈ C0(K)},(3.5)

1Also in the case of degenerate systems and/or systems with two-particle scattering (e.g., e-e
collisions) the eigenvector with eigenvalue 0 exists and is unique, but it will depend on the solution
f of the BE, because the scattering operator S depends on f . This will not impact the validity of
our approach.
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where

Pfeq := 1l − |feq〉〈feq|,(3.6)

feq is chosen such that

〈feq|feq〉 = 1,(3.7)

and the scalar product is given by

〈f |g〉 :=
∑
b

∫
Vb

f(�k, b)g(�k, b)d3k.(3.8)

A trivial but important property of S is

S|g〉 = S ◦ Pfeq |g〉.(3.9)

Now, the ISO H, if it exists on Ker⊥, can be unequivocally defined on C0(K) based
on the properties it must fulfill:

1. H ◦ S|g〉 !
= |g〉 for all g ∈ Ker⊥,

2. H|f1〉 = 0,

with f1(�k, b) := 1√∑
b′ |Vb′ |

= const, where |Vb′ | is the volume of Vb′ . Using (3.9),

condition 1 can be rewritten as

H ◦ S|g〉 = H ◦ S ◦ Pfeq |g〉
!
=Pfeq |g〉 ∀g ∈ C0(K).(3.10)

The appropriateness of condition 2 will now be explained in detail. First, note that
ST |f1〉 = 0 (〈f1|S = 0) by definition of Wtot. Without condition 2 we could define an
infinite number of ISOs, because if H satisfies condition 1, then H + |v〉〈f1| fulfills the
same condition for any |v〉. Let H∗ be an ISO fulfilling condition 1, and |h∗〉 := H∗|f1〉.
We can always rewrite H∗ as H∗ = H⊥ + |h∗〉〈f1|, where H⊥ := H∗−|h∗〉〈f1|. (Note
here that because H⊥ fulfills conditions 1 and 2, it is unambiguously defined and,
therefore, independent of H∗.) By multiplying (3.1) by 〈f1| we obtain ∂tn+∇r

〈
�̇r
〉

= 0,
which is nothing but the current continuity equation. (In the case of semiconductors,

the boundary term
∮
∂Vb0

f�̇k ·�nda always disappears due to the inversion symmetry of

the Vb0 .) Thus, by multiplying (3.1) by H∗ and using (3.10), we obtain

(3.11) H∗∂t|f〉 + H∗�̇r · ∇r|f〉 + H∗�̇k · ∇k|f〉 = |f〉 − 〈f |feq〉 |feq〉

= H⊥∂t|f〉 + H⊥�̇r · ∇r|f〉 + H⊥�̇k · ∇k|f〉.

The last equation shows that H⊥ already contains the full physical information, and
that it is reasonable to define H := H⊥, i.e., H|f1〉 = 0.

We can now write an equation for the ISO:

H ◦ S|g〉 !
= |g〉 − |feq〉 〈feq|g〉 ∀g,(3.12)

and finally write the operator equations for H:

H ◦ S !
= δ3(�k − �k0)δb,b0 − feq(�k, b)feq(�k0, b0) = 1l − |feq〉〈feq|,(3.13)
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H|f1〉
!
= 0.(3.14)

Next we have to solve for (3.13), (3.14). From (3.2) and (3.13) we obtain

(3.15)

H ◦ S =
∑
b2

∫
Vb2

H(�k, b|�k2, b2)w(�k0, b0|�k2, b2)d
3k2 −Wtot(�k0, b0)H(�k, b|�k0, b0)

!
= δ3(�k − �k0)δb,b0 − feq(�k, b)feq(�k0, b0).

By rearranging the terms, this equation can be written as

(3.16) H(�k, b|�k0, b0)

=
∑
b2

∫
Vb2

H(�k, b|�k2, b2)
w(�k0, b0|�k2, b2)

Wtot(�k0, b0)
d3k2−

δ3(�k − �k0)δb,b0

Wtot(�k0, b0)
+feq(�k, b)

feq(�k0, b0)

Wtot(�k0, b0)
.

Now remember that we are interested only in MISO,

Hg(�k0, b0) :=
∑
b

∫
Vb

g(�k, b)H(�k, b|�k0, b0)d
3k = 〈g|H,(3.17)

for which we can rewrite (3.16) as

(3.18) |Hg〉 := Hg(�k0, b0)

=
∑
b2

∫
Vb2

Hg(�k2, b2)
w(�k0, b0|�k2, b2)

Wtot(�k0, b0)
d3k2 −

(
g(�k0, b0) − 〈g〉eq feq(�k0, b0)

Wtot(�k0, b0)

)
,

where 〈g〉eq := 〈feq|g〉.
If we define

A(�k0, b0|�k2, b2) :=
w(�k0, b0|�k2, b2)

Wtot(�k0, b0)
,

AT (�k0, b0|�k2, b2) :=
w(�k2, b2|�k0, b0)

Wtot(�k2, b2)
,

|lg〉 := lg(�k0, b0) :=

(
g(�k0, b0) − 〈g〉eq feq(�k0, b0)

Wtot(�k0, b0)

)
,(3.19)

we can express (3.18) as

|Hg〉 = A|Hg〉 − |lg〉(3.20)

and (3.14) as

〈Hg|f1〉 = 0.(3.21)

Note that

S(�k|�k0) = (AT (�k|�k0) − 1l)Wtot(�k0).(3.22)

So far we found that if, for a given g, there exists one and only one solution to
(3.20) and (3.21), then this solution will have the properties we are looking for.
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3.2. Computation of the solution. One could think that by iteratively in-
serting the lhs of (3.20) into the rhs, we could solve the problem, i.e.,

|Hg〉 = An|Hg〉 −
n−1∑
k=0

Ak|lg〉.(3.23)

However, the way to solve (3.20) is somewhat more involved.
Before we go to the solution we discuss an additional condition we have to impose

on A. The term A(k, b|k0, b0) is nothing but the probability for a particle to end in
(k0, b0) after one scattering event, having started in (k, b). Am(k, b|k0, b0) is then the
probability of going to (k0, b0) after m scattering events. In the following we will
work under the assumption that there exists an M ∈ N such that AM (k, b|k0, b0) >
0 for all (k, b), (k0, b0). It means that it is possible, starting from any (k, b), to reach
any (k0, b0) after M scattering events. Under this assumption, AM is a strong positive
compact operator.

Proposition 3.1. The first Krein–Rutman theorem [9] ensures the existence
and uniqueness of a stationary solution in thermodynamic equilibrium (∃!f ∈ C0(K) |
S|f〉 = 0).

Proof. We first prove r(AM ) = 1. By construction, ||A|| := supx∈C0(K)\{0}
||Ax||∞
||x||∞ � 1, and A|f1〉 = |f1〉. Therefore, r(A) � 1, and because by definition

r(A) � ||A||, we find M
√
r(AM ) = r(A) = ||A|| = 1. The first Krein–Rutman theorem

ensures that there is only one strict positive function u ∈ C0(K) such that AMu =
r(AM )u = u. Of course this function is nothing but f1. Now we are interested

in (AT )
M

. By construction, (AT )
M

is a strong positive compact operator. Using
again the Krein–Rutman theorem we find a unique v with 0 < v ∈ C0(K) such that

(AT )
M
v = r((AT )

M
)v. Because u > 0 and v > 0, we find 0 < 〈u|v〉 = 〈AMu|v〉 =

〈u|(AT )
M
v〉 = r((AT )

M
)〈u|v〉. Thus, r((AT )

M
) = 1 and (AT )

M
v = v. Then, because

(AT )
M+1

v = AT v ⇐⇒ AT v = c ∗ v with c real and cM = 1, AT v = v. Using (3.22)
gives Sfeq = 0 with feq := v

Wtot
. The function feq is the only solution.

To solve (3.20), we construct a sub-Banach space Q ⊂ C0(K), where the solution
is unique. Using two important properties of A,

1. A|f1〉 = |f1〉 by definition of Wtot,
2. AT |Wtotfeq〉 = |Wtotfeq〉 because S|feq〉 = 0,

we can define

PL := 1l − |f1〉〈feqWtot|
〈f1|feqWtot〉

,(3.24)

which has the following important properties:

P 2
L = PL,(3.25)

PL ◦A = A ◦ PL = PL ◦A ◦ PL.(3.26)

Using PL, we define the space Q := {PLx|x ∈ C0(K)}. Because Wtotfeq and f1 are
continuous functions, Q is a Banach space.

Proposition 3.2. A is a linear compact operator on Q.
Proof. Let x ∈ Q. By definition of Q and property (3.25), PLx = x. Therefore,

using property (3.26), Ax = A ◦ PLx = PL ◦Ax ∈ Q.



1218 S. C. BRUGGER, A. SCHENK, AND W. FICHTNER

Note that |lg〉 ∈ Q because

〈feqWtot|lg〉 = 0.(3.27)

By multiplying (3.20) by PL we reformulate the problem on Q:

PL|Hg〉 = PL ◦A ◦ PL|Hg〉 − |lg〉.(3.28)

Defining |H⊥
g 〉 := PL|Hg〉 we obtain

(1l −A)|H⊥
g 〉 = −|lg〉.(3.29)

Proposition 3.3. (1l − AM ) is invertible on Q, and, therefore, (1l − A) is also
invertible on Q.

Proof. We first prove ||AM ||∞ < 1 on Q. Let x be in Q. x is a continuous
function and 〈feqWtot|x〉 = 0 because 〈feqWtot|PL = 0. By definition, feqWtot is a
strict positive function, and therefore x must have a positive part and a negative part.
We define x+(k) := x(k) if x(k) � 0, x+(k) = 0 else, and x−(k) := x(k) if x(k) < 0,
x−(k) = 0 else. By definition, x(k) = x+(k) + x−(k) for all k ∈ K. Without loss
of generality, ||x||∞ = ||x+||∞. Then, remembering that AM is strictly positive, we
have |AMx| = | |AMx+| − |AMx−| | < |AMx+| � ||x+||∞. Therefore, ||AM ||∞ < 1. It
means that (1l − AM ) has an inverse on Q that can be written as a Neumann series:

(1l−AM )−1 =
∑∞

i=0 A
Mi

. Rewriting (1l−AM ) as (1l−A)◦
∑M−1

j=0 Aj and multiplying

by (1l−AM )−1, we find 1l =
∑∞

i=0 A
Mi ◦ (1l−A) ◦

∑M−1
j=0 Aj = (1l−A) ◦

∑∞
i=0 A

Mi ◦∑M−1
j=0 Aj . Thus, clearly (1l −A)−1 =

∑∞
i=0 A

Mi ◦
∑M−1

j=0 Aj =
∑∞

i=0 A
i.

Multiplying (3.29) by (1l −A)−1 gives the solution we were looking for:

|H⊥
g 〉 = −

∞∑
i=0

Ai|lg〉.(3.30)

Thus, problem (3.20) has a unique solution on Q, but infinitely many of the form
Hλ

g := H⊥
g +λ|f1〉, λ ∈ R, on C0(K). In (3.21) we imposed the condition 〈Hg|f1〉 = 0

to obtain a unique solution. The only Hλ
g fulfilling this condition is H

λg
g with

λg := −〈f1|H⊥
g 〉,(3.31)

which is the unique solution we are looking for.
Equation (3.30) represents an iterative method for computing H⊥

g , i.e., for finding
an exact solution of (3.13), (3.14) for any g ∈ C0(K).

As 〈Hg| = 〈g|H exists for all g ∈ C0(K), H also exists and is unique. Thus,
(3.13) together with (3.14) also has a unique solution.

3.3. Connection between H and S−1. We show the connection between H
and S−1, as well as between Hg and S−1

g . If we let the operator H act on both sides
of (3.1), we find with (3.13)

H∂t|f〉 + H�̇r · ∇r|f〉 + H�̇k · ∇k|f〉 = |f〉 − 〈f |feq〉 |feq〉.(3.32)

We want to dispose of the term 〈f |feq〉 and replace it with a term containing the
density. By computing the 0th moment of (3.32), we obtain

(3.33) 〈H1|∂t|f〉 + 〈H1|�̇r · ∇r|f〉 + 〈H1|�̇k · ∇k|f〉 = n− 〈f |feq〉neq

⇔ 〈f |feq〉 =
n

neq
− 1

neq
〈H1|∂t|f〉 −

1

neq
〈H1|�̇r · ∇r|f〉 −

1

neq
〈H1|�̇k · ∇k|f〉,
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where H1(�k0, b0) :=
∑

b

∫
Vb

H(�k, b|�k0, b0)d
3k and neq :=

∑
b

∫
Vb

feq(�k, b)d
3k. Inserting

(3.33) into (3.32) results in

(3.34)(
H − |feq〉〈H1|

neq

)
∂t|f〉+

(
H − |feq〉〈H1|

neq

)
�̇r · ∇r|f〉+

(
H − |feq〉〈H1|

neq

)
�̇k · ∇k|f〉

= |f〉 − |feq〉
n

neq
.

With the definition S−1(�k, b|�k0, b0) := H(�k, b|�k0, b0) − feq(�k, b)H1(�k0, b0)/neq we find
(2.4). Finally, one obtains for the g-moment

S−1
g (�k0, b0) := Hg(�k0, b0) −

〈g〉eq H1(�k0, b0)

neq
.(3.35)

Note that S−1
g (�k0, b0) fulfills by definition the equations

AS−1
g = S−1

g (�k, b) +

⎛
⎝g(�k, b) − 〈g〉eq

neq

Wtot(�k, b)

⎞
⎠ ⇔ |S−1

g 〉 = A|S−1
g 〉 − |hg〉,(3.36)

〈S−1
g |f1〉 = 0,(3.37)

where hg(�k, b) := (g(�k, b) − 〈g〉eq
neq

)/Wtot(�k, b) (compare with (3.20) and (3.21)).

The proof of the existence and of the uniqueness of S−1
g up to a constant is

herewith completed.
Putting (3.30) and (3.35) together leads to

∣∣S−1
g

〉
= − (1l − |f1〉〈f1|) ◦

∞∑
i=0

(PL ◦A ◦ PL)
i|hg〉 = − (1l − |f1〉〈f1|) ◦

∞∑
i=0

Ai|hg〉,

(3.38)

which is an iterative method for computing S−1
g for any given operator S and function

g.

3.4. The Dirac delta distribution. Before going to the applications we would
like to discuss the hypothesis on w(�k, b|�k′, b′). At the beginning of this section we

chose w(�k, b|�k′, b′) to be a continuous function of its arguments �k and �k′. In many

“physical” models, however, the function w(�k, b|�k′, b′) is replaced with a distribution

(usually a sum of Dirac’s delta “functions” of a continuous function of �k and �k′). In
the following we argue against delta distributions (functions) based on the concept of
regularization of the delta distribution. A function belonging to a family of continuous
functions δγ(ε) depending on a continuous parameter γ is called a regularization of
the delta function iff limγ→∞

∫ ∞
−∞ δγ(ε)f(ε)dε = f(0) for all continuous functions

of the energy f(ε), and
∫ ∞
−∞ δγ(ε)dε = 1 for all γ. Now, remember that the delta

distributions contained in the usual scattering rates arise from Fermi’s golden rule, i.e.,

from the regularization δ
(F )
γ (ε) := (sin(εγ)2)/(γπε2). Replacing in the scattering rate

w the delta distributions with δ
(F )
γ (ε) for any γ < ∞, the hypotheses on w are again

fulfilled. This fact can be interpreted physically, mathematically, and numerically.
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Physically, a simple argument can be found for why γ should be smaller than ∞:
From the Heisenberg uncertainty principle there is no exact energy conservation in
a finite amount of time. Thus, the delta distribution is just a useful approximation.
Mathematically, the situation is quite different if one considers the limit γ → ∞
before or after computing the MISO. Taking the limit before the computation of
the MISO leads to an operator A, which is not compact and, even worse, leads to
infinitely many solutions to the BE at thermodynamic equilibrium (see [11]). Taking
the limit after the computation of the MISO trivially leads to a single well-defined
solution for each g ∈ C0(K). Numerically, a computer using double arithmetic cannot

digitize the difference between a delta distribution and, e.g., the regularization δ
(a)
γ (ε)

such that supp(δ
(a)
γ ) = [−γ−1, γ−1] and γ > 10307. This means that when solving

the BE on a computer, one is actually working with a delta distribution. For these
reasons we conclude that a delta distribution contained in the scattering rates can
and should be replaced with a well-chosen regularization. Metaphorically speaking,
delta distributions give birth to operators which are a bit like monsters (due to their
noncompactness) and, although they are interesting objects from a mathematical
point of view (see, e.g., [2] and [11]), they create artificial problems from a physical
point of view.

4. Applications.

4.1. Introduction. The knowledge of the MISO and of the solution f of the
BE is necessary and sufficient to compute all transport parameters next to and far
from thermodynamic equilibrium. In this section, five important applications are
presented.

4.2. Low-field solution to the BE. The space-homogeneous, stationary BE

− q

�

�E · ∇k|f〉 − q(�v ∧ �B) · ∇k|f〉 = S|f〉(4.1)

can be solved for small electric and magnetic fields using the ansatz (see, e.g., [10])

f(�k) = feq(ε(�k)) + q
∂feq
∂ε

(ε(�k)) �E · �Λa(�k) + q
∂feq
∂ε

(ε(�k))(�v ∧ �B) · �Λb(�k).(4.2)

Inserting (4.2) into (4.1) and taking into account only the first order terms in the
magnetic and electric fields leads to

(�v ∧ �B) · �Λb = 0,(4.3)

because (�v ∧ �B) · �v = 0, and

〈(1 − feq)(�v)i| = −〈(�Λa)i)|S.(4.4)

It is important that (4.4) be derived only by using the principle of detailed balance.
The solution to (4.4) is trivially

(�Λa)i(�k) = −S−1
(1−feq)vi

(�k).(4.5)

Therefore, the solution to the low-field BE is

f(�k) = feq

(
1 +

q

kBT
(1 − feq) �E · S−1

(1−feq)�v

)
(4.6)
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in the case of Fermi–Dirac statistics, and

f(�k) = feq

(
1 +

q

kBT
�E · S−1

�v

)
(4.7)

in the case of Boltzmann statistics.
In the low-field case the solution of the BE is therefore determined only by the

equilibrium distribution feq and by S−1
(1−feq)�v

(resp., S−1
�v ).

4.3. Transport parameters. As already mentioned in section 2, tensorial trans-
port parameters can be exactly computed using MISO. For example, the mobility is
given by

μij :=
q

n�

∫
K

S−1
vi

∂kjfd
3k(4.8)

and the diffusivity tensor by

Dij := − 1

n

∫
K

S−1
vi

vjfd
3k.(4.9)

Note that in the case of Boltzmann statistics, setting f = feq in (4.8) and (4.9) yields
the well-known Einstein relation for all components of the tensors

kBT

q
μij = Dij .(4.10)

These transport coefficients are exact and unique. Their definition does not re-
quire any restrictions except those already contained in the BE. If they are used in the
associated TM, its solution will reproduce the corresponding moment(s) of the BE. In
two and three dimensions this is, to the authors’ knowledge, the first generally valid
scheme ever described which can be used to compute tensorial transport coefficients
for all possible geometries and configurations.

A straightforward application is the customization of the model for the transport
coefficients for a given device. Using (4.8) and (4.9), transport coefficients can be
computed in a device for different bias points (using, e.g., the MC method), especially
in the parts of the device where the usual bulk models for the transport coefficients
are no longer valid. Then, a customized model for the device can be extracted by
choosing a proper local parametrization. In the case of the DD model the transport
coefficients can be parametrized using, e.g., the local electric field or the local current
density. This custom model will be, of course, valid only for the considered device,
but nevertheless, it will enable us to compute the direct current (DC), alternating
current (AC), and noise characteristics of the device in a much simpler way than by
directly working with the BE.

4.4. Hall factor. When a constant voltage is applied between A and B (see
Figure 4.1), and a constant magnetic field Bz′ is present in the z′ direction, then two
Hall factors can be defined,

RH :=
V21

d1Jx′Bz′
,(4.11)

R∗
H :=

V43

d2Jx′Bz′
,(4.12)
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Fig. 4.1. Piece of bulk material.

where V21 is the voltage between the points 1 and 2, V43 is the voltage between the
points 3 and 4, and Jx′ is the current density in x′-direction. Under the assumption
that the electric fields Ey′ in the y′-direction and Ez′ in the z′-direction are constant,
the definitions can be rewritten as

RH :=
Ey′

Jx′Bz′
,(4.13)

R∗
H :=

Ez′

Jx′Bz′
.(4.14)

To obtain expressions for RH and R∗
H , the current density equation in the space-

homogeneous case can be written as

�J

nq
= μ�E + α�B,(4.15)

where μ is defined in (4.8), and α is defined as

αij :=
1

n

∫
K

S−1
vi

(�v ∧∇kf)j d
3k.(4.16)

For better readability, only the case of Boltzmann statistics will be considered.
In the low-field case, f can be replaced with (4.7), leading to

αij =
1

n

q

kBT

∫
K

S−1
vi

(
�v ∧∇k(feq �ES−1

�v )
)
j
d3k,(4.17)

where the field-independent term disappeared because �v ∧ �v = 0. Taking advantage
of the linearity of (4.17) in �E, (4.15) can be rewritten as

�J

nq
= μ�E + Bxγx �E + Byγy �E + Bzγz �E,(4.18)

with

(γl)ij :=
1

n

q

kBT

∫
K

S−1
vi

(
�v ∧∇k(feqS

−1
vj

)
)
l
d3k.(4.19)

Therefore,

�E = (μ + Bxγx + Byγy + Bzγz)
−1

�J

nq
.(4.20)
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If R is the matrix that transforms the (x, y, z)-coordinate system into the (x′, y′, z′)-
coordinate system, then the Hall factors can be written as

RH =
(R (μ + Bxγx + Byγy + Bzγz)

−1
R−1)yx

qnBz′
,(4.21)

R∗
H =

(R (μ + Bxγx + Byγy + Bzγz)
−1

R−1)zx
qnBz′

.(4.22)

Equation (4.21) is more general than the formula given in [7] and reduces to the
formula given in [10] in special cases. In the case of unstrained bulk silicon, e.g.,
because of the symmetries of the crystal, (4.18) takes the form

�J

neqq
= μeq

�E − γeq �B ∧ �E,(4.23)

where

μeq :=
q

neq�

∫
K

S−1
vx

∂kx
feqd

3k,(4.24)

γeq :=
1

neq

q

kBT

∫
K

S−1
vx

(
�v ∧∇k(feqS

−1
vy

)
)
z
d3k.(4.25)

The Hall factors are then

RH =
1

qneq

γeq
μ2
eq + γ2

eqB
2
z′
,(4.26)

R∗
H = 0,(4.27)

where RH and R∗
H are independent of the transformation matrix R, i.e., of the crystal

orientation.

4.5. RTs. The RT for the g-moments of the space-homogeneous BE is usually
computed using the formula (see [8, p. 136])

τg = −〈g|f − feq〉
〈g|S|f〉 .(4.28)

At least in all semiconductors (strained and unstrained), (4.28) is fully inappropriate,
because in the low-field limit (4.28) reduces to the singular expression 0

0 in the case of
even functions g, such as, e.g., ε, ε2, v2, and v4. To solve this problem, the alternative
expression

τg = −
�n ·

∫
(∇kf)S−1

g d3k

�n ·
∫

(∇kf)gd3k
(4.29)

can be used, where �n is the vector pointing in the direction of the electric field.
Equation (4.29) never becomes singular in the limit of vanishingly small electric fields.

An extensive application of this theory to silicon can be found in [4].
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4.6. Langevin noise sources. We are interested in the BE with an additional
Langevin term, the so-called “Boltzmann–Langevin” equation (BLE)

∂tf(�r, t,�k, b) + �̇r · ∇rf(�r, t,�k, b) + �̇k · ∇kf(�r, t,�k, b) = Sf + δs(�r, t,�k, b).(4.30)

The BE describes the average state of an infinite number of systems with identical
initial conditions, whereas the BLE describes the evolution of one of these systems.
The Langevin source term is responsible for the deviation from the average state.

By multiplying (4.30) by S−1
g , we obtain

〈S−1
g |∂tf〉 + 〈S−1

g |�̇r · ∇rf〉 + 〈S−1
g |�̇k · ∇kf〉 = 〈g〉 − 〈g〉eq

n

neq
+ 〈S−1

g |δs〉.(4.31)

We want to derive an expression for the Fourier transform of correlation functions of
〈S−1

g |δs〉 around a stationary state for the homogeneous BLE with constant density
n; i.e., we want to compute

Cgg′(ω) :=

∫ ∞

−∞
limT→∞

1

2T

∫ T

−T

(〈S−1
g |δs〉)(t)(〈S−1

g′ |δs〉)(t + s)dte−iωsds for constantn.

(4.32)

We define the correlation function

C(ω)(�k, b|�k0, b0) :=

∫ ∞

−∞
limT→∞

1

2T

∫ T

−T

δs(t)(�k, b)δs(t + s)(�k0, b0)dte
−iωsds.

(4.33)

Note that

Cgg′(ω) =
∑
b,b0

∫
Vb

∫
Vb0

S−1
g (�k, b)S−1

g′ (�k0, b0)C(ω)(�k, b|�k0, b0)d
3kd3k0.(4.34)

We know from [5, eq. (1.55a), p. 21], that for a homogeneous nondegenerate system
with given density, we obtain

(4.35) C(ω)(�k, b|�k0, b0)

= δ3(�k − �k0)δb,b0
∑
b1

∫
Vb1

w(�k, b|�k1, b1)f(�k, b)d3k1

+ δ3(�k − �k0)δb,b0
∑
b1

∫
Vb1

w(�k1, b1|�k, b)f(�k1, b1)d
3k1

− w(�k0, b0|�k, b)f(�k0, b0) − w(�k, b|�k0, b0)f(�k, b),

where f(�k, b) is the stationary homogeneous solution to (3.1).2

By plugging (4.35) into (4.34) and rearranging terms, we obtain

Cgg′(ω) =
∑
b

∫
Vb

Kgg′(�k, b)f(�k, b)d3k = 〈Kgg′〉 ,(4.36)

2In the case of particle-particle scattering the corresponding additional contribution to the cor-
relation function has to be added (see [5, eq. (1.55b), p. 21]).
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where

Kgg′(�k, b) :=
∑
b0

∫
Vb0

w(�k, b|�k0, b0)

⎡
⎢⎢⎢⎣

S−1
g (�k, b)S−1

g′ (�k, b)

−S−1
g (�k, b)S−1

g′ (�k0, b0)

−S−1
g (�k0, b0)S

−1
g′ (�k, b)

+S−1
g (�k0, b0)S

−1
g′ (�k0, b0)

⎤
⎥⎥⎥⎦ d3k0.(4.37)

Note that (4.37) is invariant under the transformation S−1
g (�k, b) → S−1

g (�k, b) +
αgf1. Therefore, Cgg′(ω) is independent of condition (3.14), as it should be.

Thus, the function Cgg′(ω) is nothing but the expectancy of Kgg′ . Since we
can compute Kgg′ , we can also compute 〈Kgg′〉 in a very efficient way with an MC
simulation. We call Cgg′(ω) the Langevin noise source of the functions g, g′. It
describes white noise because it does not depend on ω.

5. Conclusion. The formalism developed in section 3 cannot only be used for
studying interesting systems like strained semiconductors, where the SO is fully de-
pendent on the band-valley index, but also for studying electron-hole systems. To do
so we have only to formally replace the distribution function fh of the holes in the
valence bands by fe := 1 − fh, i.e., the distribution function for the electrons in the
valence bands.

We have described a method based on exact S−1
g moments of the inverse scattering

operator (MISO) of the Boltzmann equation (BE). This formalism is therefore free
of any relaxation time approximation (RTA). We have shown under what sufficient
conditions the S−1

g exist, and we gave an explicit algorithm to compute them.
We have demonstrated that the knowledge of the S−1

g enables the exact com-
putation of transport parameters, correlation functions, and Langevin noise sources.
Moreover, the important assumptions underlying the transport models (TMs) and
method such as, e.g., the impedance field method (IFM) can be critically examined
by our approach.

In forthcoming papers, we will give a general discretization scheme to numerically
compute any MISO and extend the method to time-dependent scattering operators
(SOs).
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