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Flow in a laminar boundary layer is modeled using a slip boundary condition. The slip condition changes the

boundary layer structure from a self-similar profile to a two-dimensional structure. Although the slip condition

generally leads to decreased overall drag, two-dimensional effects cause local increases in skin friction. Other effects

include thinner boundary layers, delayed transition to turbulence, and changes in the heat transfer at the wall.

Without a thermal jump condition, slip will lead to increased heat transfer. When a thermal jump boundary

condition is added to simulate real gases, the heat transfer decreases to below the no-slip values.

Nomenclature

a = iteration coefficient
b = iteration coefficient
CD = drag coefficient
cp = specific heat ratio
FD = drag force
f = nondimensional stream function
i = index in K1 direction
j = index in � direction
K1 = nonequilibrium parameter
Kn = Knudsen number
L = length
Nu = Nusselt number
n = distance in tangential direction
P = static pressure
q00 = heat flux
Re = Reynolds number
s = distance in normal direction
T = temperature
u = velocity in the x direction
v = velocity in the y direction
x = position in flow normal direction
y = position in flow tangential direction
� = thermal conductivity
� = slip length
� = specific heat ratio
� = step size
� = boundary layer thickness
�� = displacement thickness
� = nondimensional position
�99 = nondimensional boundary layer thickness
� = momentum thickness
� = mean free path
� = viscosity
	 = density

 = accommodation coefficient
� = shear stress
� = kinematic viscosity

Subscripts

g = gas
L = length
M = momentum
o = freestream
slip = property of gas or liquid at wall
T = thermal
x = position on length of plate
� = boundary layer thickness

Superscripts

� = nondimensional value
0 = derivative with respect to �
00 = second derivative with respect to �

I. Introduction

A S the number of applications of microelectromechanical
systems (MEMS) increases, the study of gas and liquid flows at

themicroscale has become a topic of increasing interest [1,2]. In both
gas and liquid phases, these flows are often dominated by surface
interactions, making correct modeling of the wall boundary
conditions essential. Slightly rarefied gas flows, with Knudsen
numbers less than 0.1, are modeled using theMaxwell slip condition
[3]:
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where uslip is the wall slip velocity, ug is the gas velocity at the wall,
uw is the wall velocity, @u=@n is velocity gradient normal to the wall,

M is the tangential momentum accommodation coefficient, Tg is the
temperature of the gas, and @T=@s is the temperature gradient along
the wall.

For an isothermal wall, this simplifies to
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where Kn is the Knudsen number at the wall, u� is the
nondimensional velocity, and n� is the nondimensional distance in
the wall normal direction.

Recent research [4] suggests that as length scales in liquid flows
approach the continuum limit, a similar slip condition may apply.
This slip condition is given as

uslip � �
@u

@n

�

�

�

�

wall

(3)

Received 4 February 2006; revision received 12 May 2006; accepted for
publication 14 May 2006. Copyright © 2006 by the American Institute of
Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper
may be made for personal or internal use, on condition that the copier pay the
$10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code $10.00 in correspondence with
the CCC.

∗Graduate Student Research Assistant, Department of Aerospace
Engineering. AIAA Student Member.

†Professor, Department of Aerospace Engineering. AIAA Associate
Fellow.

JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER
Vol. 20, No. 4, October–December 2006

710



where � is the slip length for the liquid. Although experimental
measurements [5] suggest that the slip length for hydrophobic
surfaces with water are on the order of 1 �m, the existence of liquid
slip, aswell as the appropriate length scales for�, is still the subject of
controversy within the fluid mechanics community [6].

A first-order solution, based on integral methods, of the boundary
layer equations suggests that the boundary layer thins as a result of
slip effects [7]. However, integral methods were unable to show any
changes in skin friction. An expanded version of this analysis
suggested that heat transfer was unaffected by the appearance of
velocity slip [8]. Computational studies have also been made of
external flow conditions, such as gas flows over flat plate airfoils [9].
These studies have shown that nonequilibrium effects will change
the skin friction on a flat plate in slip flow.

This paper provides a semi-analytic solution to the boundary layer
equations for a flat plate under slightly rarefied flow conditions. The
changes to the flow structure, including velocity profile and
boundary layer thickness, are analyzed. The changes in viscous drag
and heat transfer for the flat plate are calculated and correlated as
functions of flow properties.

II. Fluid Flow in a Laminar Boundary Layer with Slip

A. Formulation of Boundary Layer Equations with Slip Flow

As shown in Fig. 1,flowover a plate can be described as consisting
of a uniform external flow region and a boundary layer of finite
thickness.

The flow is governed by the continuity equation and conservation
of momentum in the x direction:
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This flow was first studied extensively by Blasius [10] who
assumed steady, incompressible, laminar flow, no significant
gradients of pressure in the x direction, and that velocity gradients in
the x direction are small compared to velocity gradients in the
y direction. Based on these assumptions, Eqs, (4) and (5) then
simplify into the boundary layer equations given as
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These equations can then be transformed, using the non-
dimensionalizations and nondimensional stream functions given as

x� � x=L (8)

y� � y
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(9)
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v� � v
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� 0:5��f0��� � f���� (14)

where L is the length of the flat plate.
A governing equation for f can be found by substituting these

results into the x momentum Eq. (7):

f000��� � �0:5f���f00��� (15)

For flow at nonrarefied length scales, the boundary conditions for
the problem are no slip, and no throughflowat thewall, andu is equal
to the freestream velocity as y approaches infinity. In nondimen-
sional variables, these become

u��y� 0� � 0 ) f0��� 0� � 0 (16)

v��y� 0� � 0 ) f��� 0� � 0 (17)

u��y ! 1�� 1 ) f0�� ! 1�� 1 (18)

Based on these boundary conditions, Blasius was able to solve the
problem using a shooting method, which gave an initial value of

f00��� 0� � 0:33206 (19)

Using this result, Blasius calculated the self-similar laminar
boundary layer, with a velocity profile and nondimensional shear
stress.

When gas flow approaches the continuum limit, the no-slip
condition given by Eq. (16) is replaced by the slip-flow condition
given as Eq. (2). If we use the nondimensionalizations given in
Eqs. (8–14), this condition can be nondimensionalized to obtain

f0�0� � �2 � 
M�

M

Knx Re
1=2
x f00�0� � K1f

00�0� (20)

whereKnx andRex are theKnudsen andReynolds numbers based on
x, and K1 is a nondimensional parameter that describes the behavior
at the surface:

K1 �
�2� 
M�
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When liquid flows approach the continuum limit, an alternate
definition of K1 based on the slip length can be derived using the
same nondimensionalizations:

K1 �
�

x
Re

1=2
x (22)

The revised boundary condition suggests that self-similarity will
be lost, and the velocity will be a function of both � andK1. Although
the definition of u� is unchanged, the definition of v� must beFig. 1 Boundary layer flow over a flat plate.
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modified to incorporate the derivative of the stream function with
respect to K1:

v� � v
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When all other derivatives in x are rewritten to include a K1 term,
the ordinary differential equation given in Eq. (15) is replaced by a
partial differential equation:
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The no-slip governing equation will be recovered when K1 is
equal to zero. At large values of K1, Eq. (24) faces three distinct
problems: the emergence of a singularity, the breakdown of the
boundary layer assumptions, and the breakdown of the Navier–
Stokes equations. Each of these phenomena should be considered in
greater depth.

Large values ofK1 correspond to small values of x, or the leading
edge of the plate. Because the definition of � given in Eq. (12) is
inversely proportion to the square root of x, the boundary layer
equations approach a singularity as x approaches zero,
corresponding to K1 approaching infinity.

Even before nondimensionaliziation, Eq. (7) is not accurate at the
leading edge of the plate. The boundary layer equations are
formulated on the assumption that the velocity gradients in the
x direction are small compared to velocity gradients in the
y direction. At the leading edge of the plate, this assumption is no
longer true, leading to formation of a Stokesflow region [11]. Correct
use of the boundary layer equations requires that this region be
relatively small, which requires aReynolds number of 500 or greater.

For gasflows at values ofK1 that correspond to aKnudsen number
of 0.1 or greater, the Navier–Stokes equations break down, and
Eq. (24) is no longer an accurate physical description of the flow.
However, this region is smaller than the Stokesflow region described
above and can be disregarded so long as larger values of Reynolds
numbers, and smaller values of K1, are achieved downstream.

For all of these reasons, this formulation of the boundary layer
equations is susceptible to error at large values of K1. However, just
as when the no-slip boundary layer is integrated, the error in the
leading edge can often be disregarded. When the values are then
integrated over x to provide quantities such as drag and heat transfer
on the body, the contribution of the free-molecular and transition
regions, and the error that is introduced in these areas, will be
relatively small compared to the total integral.

To solve in the slip domain, the partial differential equation must
be solved over large regions of K1, including the entire slip-flow
region, as well as into the transitional and free-molecular flow
regions. This can be accomplished using amarching code, beginning
from large values of K1, and marching the code until K1 approaches
zero. Because large values ofK1 correspond to small values of x, this
approach marches in the flow direction, similar to existing boundary
layer codes [11].

B. Numerical Solution of Fluid Flow in Boundary Layer Equations

with Slip Flow

Equation (24) is discretized using center-difference approxima-
tions for all derivatives with respect to �. To simplify the expression,
f0 is substituted for @f=@�:
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For the mixed derivative, a first-order upwind expression is used,
as shown in Eq. (27):
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This yields the following expression for fi�1;j:
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When K1 is large, flow is uniform in the x direction, giving the
initial conditions:

f0�K1 ! 1�� 1 (29)

f�K1 ! 1�� � (30)

Along the wall, the boundary conditions are the no-through-flow
condition given by Eq. (17) and the slip condition given by Eq. (20).
The slip condition is implemented through the following first-order
approximation:
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The proposed scheme is conditionally stable. The following
stability criteria apply:
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From the initial conditions at large K1 specified in Eqs. (29) and
(30), a maximum step size �K1 is calculated using Eqs. (32) and
(33). The stream function at the next step is calculated explicitly
using Eq. (28), and values of f0 calculated using Eq. (25). Because
the maximum step size �K1 becomes prohibitively small as K1

approaches zero, the calculation is halted when it reaches a value of
K1 of less than 0.005. The solution at K1 equal to zero is then
calculated using the classical no-slip solution.

Because this is an explicit marching scheme, there are no
convergence criteria. Instead, the calculation is repeated with
varying grid sizes to ensure grid independence. This algorithm is
used with a starting K1 value ranging from 100 to 200, and ��
varying from 0.0001 to 0.005, to produce the results given.

C. Computational Results for Fluid Flow

The value of the stream function f for K1 ranging from 0 to 10,
which includes the entire slip-flow region, is show in Fig. 2. This
figure shows that, for any value of � in the boundary layer, f
decreases as the flow becomes more rarefied. Values of u� and v� are
shown in Figs. 3 and 4. These results show that, at any given vertical
position � in the boundary layer, u� will increase, and v� will
decrease, as the flow becomes more rarefied.

The nondimensional friction, or f00�0�, is shown in Fig. 5. Figure 5
shows the surprising result that the friction in theflowpeaks not at the
no-slip condition, but at a value ofK1 of approximately 0.50. This is a
result of the loss of self-similarity in the flow.

Closer inspection of the velocity contours shows that they velocity
v� also peaks locally for values of K1 less than 1.0. This gives some
insight into the reason for this local increase in friction. As the flow
proceeds along the plate, the value of K1 decreases, and the slip
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velocity along the wall also decreases. Continuity requires that fluid
moves away from the wall, leading to an increase in v�.

The nondimensional wall shear stress f00�0� is shown in Fig. 6.
f00�0� has a peak value of 0.4358 when K1 is equal to 0.0467. The
two-dimensional effects cause a peak local friction of approximately
25% greater than the no-slip value. f00�0� returns to the no-slip value
as K1 approaches 0 and asymptotically approaches zero as K1

approaches infinity.
Figure 7 shows f0�0�, or the nondimensional slip velocity, as a

function of K1. These results show that the wall velocity
asymptotically approaches the freestream velocity as rarefaction
increases.

As the Knudsen number approaches zero, K1 also approaches
zero, where the no-slip condition and the classical boundary layer
solution are recovered. As the Knudsen number becomes large, K1

approaches infinity, and the nondimensional slip velocity
approaches 1, indicating 100% slip at the wall.

Figure 8 shows the normalized x velocity profiles in the boundary
layer for various values ofK1. One result that can be seen in Fig. 8 is
that even as the wall velocity changes drastically, the overall

boundary layer thickness does not change as rapidly. The physical
thickness of the boundary layer is given by Eq. (34):

�99 � �99 Re
1=2
x x (34)

For the no-slip boundary layer, �99 is a constantwith a value of 5.0.
For a boundary layer with slip, �99 varies along the plate. Figure 9
shows the value of �99, where u

� is equal to 0.99, as a function ofK1.
As the nondimensional wall slip velocity increases to greater than
0.99, the boundary layer thickness becomes zero. This occurs at
values of K1 greater than 80.

The definition of boundary layer thickness can be substituted into
the definition of K1:

K1 �
�2 � 
�




Kn�

�99
(35)

Because �99 does not change by large amounts over the plate, this
result suggests that slip-flow effects are a strong function of
boundary layer thickness.

Fig. 2 Stream function as a function of position.

Fig. 3 Nondimensional x velocity as a function of position.

Fig. 4 Nondimensional y velocity as a function of position.

Fig. 5 Nondimensional friction as a function of position.
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The displacement thickness and momentum thickness of the
boundary layer will also vary with K1. The displacement thickness,
which measures the amount of the fluid displaced from the boundary
layer, is defined as

�� �
Z 1

o

�

1 � u

uo

�

dy (36)

This can be converted into nondimensional coordinates:

��
�������������
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The momentum thickness, which measures the amount of
momentum removed from the boundary layer, is defined as
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This can be expressed in nondimensional form:

�
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o

f0�1 � f0� d� (39)

The nondimensional momentum thickness and displacement
thickness as functions ofK1 are plotted in Fig. 10. These results show
that both the velocity and momentum thickness decrease as K1, and
the amount of slip, increase. The results of this analysis can also be
used to predict possible transition to turbulence within a rarefied
boundary layer. A Reynolds number based on velocity thickness is
calculated, as shown in Eq. (40):

Re� �
	 �u��

�
(40)

Previous researchers have found that laminar boundary layers
become unstablewhenRe� approaches 520 [12]. of slip is to decrease
��, this suggests that transition to turbulence may be delayed in a
rarefied boundary layer.

Fig. 6 Skin friction as a function of nonequilibrium.

Fig. 7 Slip velocity as a function of nonequilibrium.

Fig. 8 Nondimensional x velocity profiles.

Fig. 9 Boundary layer thickness as a function of nonequilibrium.
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D. Calculation of Drag Force

There are two engineering reasons to be interested in slipflowover
a flat plate: decreases in skin friction and changes in heat transfer
along the surface.

The wall friction �w for a laminar boundary layer is given by the
expression below:

�w � �

�
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� @u

@y

�

� �
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@y
� 	1=2�1=2u

3=2
o

x1=2
f00�0� (41)

The friction is proportional to the value of f00�0� given in Fig. 6.
Equation (41) can be integrated over the entire plate to obtain the net
viscous drag force:

FD � 	1=2�1=2u
3=2
o

Z

L

0

f00�0�
x1=2

dx (42)

The drag coefficient CD is defined as

CD � FD

L�	U2=2� (43)

where FD is the drag per unit span of the airfoil.
For a flat plate with no slip, the drag coefficient can be obtained by

integrating analytically, to obtain

CD � 1:328Re
�1=2
L (44)

For a flat plate with slip, the result must be obtained numerically.
By substituting the definition of K1 into (42), and performing the
appropriate change of variables, we obtain

CD � 4:0Re
�1=2
L K1

Z 1

K1�L�

f00�0�
K2

1

dK1 (45)

The drag coefficient based on this integral is plotted in Fig. 11. The
percent change in drag due to these effects compared to the no-slip
solution is plotted in Fig. 12. These results show a slight increase in
drag for slightly rarefied flows and then a large decrease in drag at
higher Knudsen numbers.

III. Heat Transfer in a Laminar Boundary Layer with
Slip

A. Formulation of Boundary Layer Heat Transfer Equations with

Slip Flow

Once the velocity profile is calculated, the heat transfer in a slip
flow can be calculated using the same approach that is used in the
nonslip solution [13]. If viscous dissipation is neglected, then the
equation for conservation of energy in a boundary layer with steady
flow is given as

u
@T

@x
� v

@T

@y
� �

	cp

@2T

@y2
(46)

A nondimensional temperature T� can be defined using the stream
temperature To and the surface temperature Tw:

T� � T � Tw

To � Tw

(47)

If we assume that T� is a function of � and K1, and apply the
appropriate nondimensionalizations, Eq. (47) can be rewritten as

Fig. 10 Velocity and momentum thickness as functions of non-

equilibrium.

Fig. 11 Drag coefficient as a function of nonequilibrium.

Fig. 12 Change in drag coefficient as a function of nonequilibrium.
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where Pr is the Prandtl number of the fluid.
The heat transfer equations are discretized using center-difference

approximations in the � direction, and a forward difference
approximation in theK1 direction, similar to themethod used to solve
the momentum equation. This results in the expression:

T�
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The stability criterion requires that all coefficients remain positive:
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PrK1f
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4:0
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The correct solution of the boundary layer heat transfer will
require use of appropriate wall boundary conditions. The thermal
boundary conditions for slip flow of a gas will differ from those of
slip flow of a liquid, and the two cases will be considered separately.

B. Heat Transfer with Slip Without a Temperature Jump

Thermal boundary conditions for liquids at the microscale have
not been extensively studied. Currently, calculations for heat transfer
in liquids at the microscale assume that there is no thermal jump
accompanying the velocity jump. If this is correct, then for liquids the
temperature boundary condition at the wall will be the same as for
nonslip flows:

T��� 0� � Ts (54)

In nondimensional form, this becomes

T���� 0� � 0 (55)

The boundary condition far from the wall will be

T���1�� T1 (56)

In nondimensional form, this becomes

T����1� � 1 (57)

At large values of K1, the velocity approaches uniform flow, and
the steady-state energy equation becomes

@2T�

@�2
� Pr

2
�
@T�

@�
� 0 (58)

This equation can be solved as an ordinary differential equation.
The solution to this equation is used as the boundary condition at
large values of K1:

T��K1 ! 1�� erf�
������

Pr
p

�=2� (59)

Using these boundary conditions, the heat transfer of a liquid
boundary layerwithwall slip is computed for Prandtl numbers of 1.0,
2.0, 3.0, 4.0, and 5.0. These values represent typical values for water
and organic solvents near room temperature.

The heat transfer coefficient h is proportional to the local
derivative at the wall:
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where q00
s is the surface heat flux.

The derivative of the temperature at the wall as a function ofK1 is
shown in Fig. 13. For the no-slip condition, the derivative at the wall
is approximated by the following:

dT�

d�

�

�

�

�

��0

�0:332Pr1=3 (61)

When compared with the no-slip results, Fig. 13 shows that for a
liquid slip flow, the derivative at the wall, and the wall heat transfer,
will increase as a result of slip.

To find the total heat transfer within the slip boundary layer, we
integrate over the entire plate:

�h� 1

L

Z

L

o

k

�

uo

�x

�

1=2 dT��0�
d�

dx (62)

Substituting the definition of K1 into Eq. (62) transforms the
equation into:

Nu L � 2Re
1=2
L K1

Z 1

K1�L�

dT0�0�
K2

1

dK1 (63)

This equation is used to calculate the average heat transfer over the
entire surface, as shown in Fig. 14. These results can be compared
with the no-slip value for the Nusselt number:

Nu L � 0:664Re
1=2
L Pr1=3 (64)

Figure 14 shows the average heat transfer over a flat plate increases
when slip occurs.

C. Heat Transfer in Gas Flows with Slip

The same rarefied flow effects that produce velocity slip at the
surface for gas flows will also produce a temperature jump [3]. The
temperature jump boundary condition is given as

Fig. 13 Wall temperature gradient as a function of nonequilibrium for

liquid flows.
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where 
T is the thermal accommodation coefficient.
Equation (65) can be nondimensionalized to obtain
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Data on thermal accommodation coefficients are extremely
limited [14], but the thermal accommodation coefficient and the
momentum accommodation coefficients appear to be approximately
equal. If this assumption is used, then Eq. (66) simplifies to

T���� 0� � 1

Pr
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� � 1
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�

�

�

�

wall

(67)

At large values ofK1, the temperature jumpwill become infinitely
large, and the gradients at the wall will be negligible, giving a
uniform temperature field:

T��K1 ! 1�� 1 (68)

Figures 15 and 16 show the wall temperature as a function of K1

and Pr for values of � of 7=5 for a diatomic gas and 5=3 for a
monatomic gas. These results show the temperature jump is a
substantial percentage of the temperature difference for the flow in
the slip-flow regime.

Figures 17 and 18 show the wall temperature derivative as a
function of K1 and Pr for values of � of 7=5 and 5=3. These results
show that the heat transfer increases with increased Prandtl number.
The heat transfer also increases as the specific heat ratio decreases.
However, this change is generally less than 1%. These results also
show that the local heat transfer peaks at a value of K1 of
approximately 0.5. The peak location increases with increased
Prandtl number and decreases with increased specific heat ratio.

When these results are compared with the no-slip results, it is clear
that heat transfer at the wall will decrease in highly rarefied flows and
increase under moderately rarefied conditions. For slightly rarefied
flows, the increased velocity near the surface more than offsets the
reduced heat transfer due to the temperature jump. For flows with

Fig. 14 Average Nusselt number as a function of nonequilibrium for

liquid flows.

Fig. 15 Wall temperature as a function of nonequilibrium for �� 7=5.

Fig. 16 Wall temperature as a function of nonequilibrium for �� 5=3.

Fig. 17 Wall temperature gradient as a function of nonequilibrium for

�� 7=5.
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larger Knudsen numbers, the heat transfer result is dominated by the
temperature jump condition. The decreased heat transfer at higher
Knudsen numbers agrees qualitatively with experimental results for
heat transfer in heated cylinders at these Knudsen numbers [15].

Figures 19 and 20 show the average Nusselt number as a function
ofK1 andPr for values of � of 7=5 and 5=3. These results again show
an increase in heat transfer under slightly rarefied conditions and a
decrease in heat transfer under highly rarefied conditions.

IV. Conclusion

The equations for a laminar boundary layer can be solved
nondimensionally in the presence of slip. The boundary layer loses
the self-similarity of the no-slip Blasius solution. The loss of self-
similarity leads to an increase in skin friction under some conditions.
Other effects of slip included a thinner boundary layer and a more
stable velocity profile.

The heat transfer in the boundary layer is also affected by the
presence of slip. In liquid flows, where there is no temperature jump,

the heat transfer increases as the slip velocity increases. In gas flows,
a temperature jump condition is added and shown to scale with the
velocity slip. The presence of the thermal jump condition decreases
the heat transfer in the system. For slightly rarefied flows, increased
fluid velocity near the wall more than offsets effects of the
temperature jump, and the heat transfer will still be greater than for
the no-slip case. For more rarefied flows, the heat transfer will
decrease to values less than those of the no-slip case.

These results can be applied to analyze a variety of systems,
including potential microdevice designs and flight in low-density
atmospheres.

Acknowledgment

The authors gratefully acknowledge support for thiswork from the
Air Force Office of Scientific Research through MURI Grant
F49620-98-1-043.

References

[1] Ho, C. M., and Tai, Y. C., “Micro-Electro-Mechanical Systems
(MEMS) and Fluid Flows,” Annual Review of Fluid Mechanics,
Vol. 30, 1998, pp. 579–612.

[2] Gad-el-Hak, M., “The Fluid Mechanics of Microdevices—The
Freeman Scholar Lecture,” Journal of Fluids Engineering, Vol. 121,
No. 1, 1999, pp. 5–33.

[3] Maxwell, J. C., “On Stresses in Rarefied Gases Arising from
Inequalities of Temperature,” Philosophical Transactions of the Royal
Society of London, Vol. 170, 1879, pp. 231–256.

[4] Wantanabe, K., Yanuar, andMizunama, H., “Slip of Newtonian Fluids
at Slid Boundary,” JSME International Journal (B), Vol. 41, No. 3,
1998, pp. 525–529.

[5] Tretheway, D. C., and Meinhart, C. D., “Apparent Fluid Slip at
Hydrophobic Microchannel Walls,” Physics of Fluids, Vol. 14, No. 3,
2002, pp. L9–L12.

[6] Stone, H. A., Stroock, A. D., and Ajdari, A., “Engineering Flows in
Small Devices,” Annual Review of Fluid Mechanics, Vol. 36, 2004,
pp. 381–411.

[7] Lin, T. C., and Schaaf, S. A., “Effect of Slip on Flow Near a Stagnation
Point and in a Boundary Layer,” NACA TN 2568, 1951.

[8] Kogan,M.N.,RarefiedGasDynamics, PlenumPress,NewYork, 1969,
pp. 386–400.

[9] Sun, Q., and Boyd, I. D., “Flat-Plate Aerodynamics at Very Low
Reynolds Number,” Journal of Fluid Mechanics, Vol. 502,
March 2004, pp. 199–206.

[10] Blasius, H., “Grenzschichten in Flüssigkeiten mit kleiner Reibung,”
Zeitschrift für Mathematik und Physik, Vol. 56, No. 1, 1908, pp. 1–37.

Fig. 18 Wall temperature gradient as a function of nonequilibrium for

�� 5=3.

Fig. 19 Average Nusselt number as a function of nonequilibrium for
�� 7=5.

Fig. 20 Average Nusselt number as a function of nonequilibrium for

�� 5=3.

718 MARTIN AND BOYD



[11] White, F., Viscous Fluid Flow, 2nd ed., McGraw–Hill, New York,
1991, pp. 276–282.

[12] Schlichting, H., Boundary Layer Theory, 2nd ed., McGraw–Hill, New
York, 1960, pp. 391–408.

[13] Incropera, F. P., Introduction to Heat Transfer, 3rd ed., Wiley, New
York, 1990, pp. 386–399.

[14] Karniadakes, G. E., and Beskok, A., Microflows, Springer–Verlag,
New York, 2002, pp. 51.

[15] Baldwin, L., Sandborn, V., and Laurence, J., “Heat Transfer from
Transverse and Yawed Cylinders in Continuum, Slip, and Free
Molecule Air Flows,” Journal of Heat Transfer, Vol. 82, No. 2, 1960,
pp. 77–88.

MARTIN AND BOYD 719


