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Abstract

This paper presents a system for rapid editing of highly dynamic motion capture data. At the heart of this system
is an optimization algorithm that can transform the captured motion so that it satisfies high-level user constraints
while enforcing that the linear and angular momentum of the motion remain physically plausible. Unlike most
previous approaches to motion editing, our algorithm does not require pose specification or model reduction, and
the user only need specify high-level changes to the input motion. To preserve the dynamic behavior of the input
motion, we introduce a spline-based parameterization that matches the linear and angular momentum patterns of
the motion capture data. Because our algorithm enables rapid convergence by presenting a good initial state of
the optimization, the user can efficiently generate a large number of realistic motions from a single input motion.
The algorithm can then populate the dynamic space of motions by simple interpolation, effectively parameterizing
the space of realistic motions. We show how this framework can be used to produce an effective interface for rapid
creation of dynamic animations, as well as to drive the dynamic motion of a character in real-time.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism-Animation

1. Introduction

Despite great advances in recent years, creating effective
tools for synthesis of realistic human motion remains an
open problem in computer animation. This is particularly
true for synthesis of highly dynamic character motion such
as running, leaping, jumping and other athletic and acrobatic
maneuvers that frequently occur in feature special effects
and video games. Synthesizing such motions can be chal-
lenging because any physical inaccuracies in these motions
are particularly noticeable.

Both spacetime optimization and controller synthesis ap-
proaches have been proposed for direct synthesis of dynamic
character motion. Although these methods do satisfy phys-
ical laws, they tend to appear overly smooth and at times
robotic. Furthermore, these methods do not provide interac-
tive control, often requiring considerable offline processing
time before the animation sequence is generated. In addition,
it is difficult to achieve a graceful degradation of realism for
the purpose of greater control.

In contrast to direct synthesis, methods based on adapta-
tion of motion capture data produce highly realistic motion,
especially in the neighborhood of captured motion samples.
They also run at interactive speeds, as they employ data in-
terpolation techniques. Unfortunately, these methods require
a large number of motion samples. If the animator wants
to interactively control a specific parameter of the anima-
tion such as the landing foot position in a particular acro-
batic stunt, the need for a large dataset is particularly pro-
nounced: the interpolation techniques would require an al-
ready existing family of motion sequences where the only
difference in motion is the landing foot position. Gathering
such a datataset is not only laborious, but it also requires
that the captured family of motions is similar in all other re-
spects (e.g. other landing points, initial and final state, over-
all style) — an aspect that is quite hard to reproduce by real
actors. In fact, the process of generating such parameterized
motions is the most challenging aspect of data acquisition
for video game production [Buc]. In addition, the animators
often wish to create non-realistic motions that defy the laws
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of physics, a space where motion capture simply fails to pro-
vide any samples.

We take the approach to acquiring similar motions is to
adapt a single motion sequence several times to synthesize a
family of motions that preserve physics constraints. Motions
created in this manner can satisfy an animator’s exact spec-
ifications with a minimum of deviation from the initial mo-
tion sequence. Ideally, we would like to use a minimal source
of motion data, perhaps a single captured movement, to cre-
ate a wide range of additional motions. Recently a num-
ber of dynamic motion adaptation methods have been pro-
posed [PW99, ZH99, TSK02, SP04, SHP04], and the work
presented in this paper falls into this category. In this paper,
we describe the momentum-based motion editing technique.
In contrast to the existing methods, our proposed framework
is particularly robust to large-scale motion modifications.
For example, we can adapt a forward leaping movement, to
a collection of leaping movement in different directions in-
cluding a backward leap, or a 360◦ leaping spin.

Using our motion editing framework, we show how a fam-
ily of dynamic movements can be synthesized based on the
animator’s needs for interactive control. Because our fam-
ily of motions samples the space widely, satisfies exact con-
straints, and otherwise deviates minimally from the origi-
nal source sequence, we can use simple interpolation tech-
niques to allow real-time exploration of this synthetic mo-
tion space. We describe a number of real-time animation
tools that can be constructed using these synthetic motion
families, such as interactive displacement of constraints (e.g.
varying foot landing position), as well as inverse control ex-
amples such as the determination of the natural volleyball
spike that would hit the ball arriving at a specific position
in space. In addition, we describe how the same synthetic
sampling/interpolation approach can be used to develop real-
time controllers for leaping character motion, all synthesized
from a single motion-captured leap.

2. Related work

Recent research in computer animation focused on tech-
niques for remapping existing data to given specifications
of a new scenario. In this paper, we build on the research in
both physics- and interpolation-based motion editing meth-
ods.

2.1. Physics-based motion editing

Optimal trajectory methods introduced by Witkin and Kass
[WK88] provide a powerful framework for enforcing dy-
namic constraints while searching for the most favorable
motion judged by the objective function. Extending physics-
based optimization to a full human figure, however, has
presented a significant challenge mainly due to the non-
linearity of the dynamic constraints, and sensitivity to the
starting point of the optimization. The dependency on the

initial point has been somewhat alleviated by starting out
with the captured motion sequence. Popović and Witkin
in 1999 developed a first method that transforms motion
capture data while preserving physical properties [PW99].
They found solutions by performing optimizations on the
reduced character model. More recently, editing motion
capture data based on spacetime optimization has become
a popular strategy for producing realistic character ani-
mations [RGBC96, SP04, SHP04]. These methods provide
control for modifying data while retaining physically plau-
sible properties of captured motion by restricting the opti-
mization space with additional kinematic constraints (e.g.
[RGBC96]), or by solving within the PCA-reduced space
of motions [SHP04]. It has recently been shown that rely-
ing on simplifications of dynamic constraints is not neces-
sary if proper scaling and estimation of joint angles, torques,
and Lagrange multipliers are provided [SP04]. Our work
uses a similar spacetime optimization framework. In con-
trast to other approaches, we formulate significantly simpler
momentum constraints on a complex character model, with-
out solving for muscle forces explicitly, similar to [LP02].
Since we do not compute internal torques for joints, scaling
and convergence issues are less critical in our optimization
framework.

Our physics-based motion editing approach is based on
the momentum constraints introduced by Liu and Popović
[LP02]. In that work, momentum constraints were used for
synthesis of highly dynamic motion from simple animations
that did not contain sufficient information to synthesize the
full motion. As a result, transition poses had to be intro-
duced to further restrict the optimization space. There are
two main advantages of momentum constraints over the full
dynamics constraints. First, since dynamic constraints are
reduced to only global momentum patterns, we are solving
for a much smaller set of unknowns, and over a much “bet-
ter behaved” set of constraints. This allows us to find solu-
tions quickly. Also, in our experience, these constraints do
not suffer from many local minima, thus enabling us to find
solutions significantly further away from the original mo-
tion. The second advantage of momentum constraints is that
they encode more about the natural motion than just physical
correctness. For example in natural motion, passive elements
such as tendons and ligaments store and release energy dur-
ing ballistic motion. To model this with a full dynamic sys-
tem, one would have to include a complex muscle model.
Momentum constraints effectively record the aggregate ef-
fect of the natural torque usage and energy storage/release
in a specific momentum pattern. This additional information
embedded within the momentum constraints ensures that
adapted motion is not just physically correct, but that it also
constrains the motion within the momentum exchange pat-
terns observed in nature. In contrast to the original paper that
introduced momentum constraints, our method applies mo-
mentum constraints directly on the motion capture data. Our
algorithm does not require any additional pose constraints at
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the transition points between flight and ground phases. Fur-
thermore, we introduce a novel spline-based representation
for the momentum patterns that can be used to intrinsically
enforce the similarity between the resultant motion and the
input motion.

Instead of formulating a physics-based optimization, dy-
namic filtering is an efficient alternative for motion editing
of smaller amplitude. Per-frame based frameworks largely
reduce the computation time, providing an interactive edit-
ing interface to the user [TSK02, SKG03]. Unfortunately,
the per-frame approach means that animators can modify the
spatial position of constraints, but not their position in time.
Tak et al. applied Kalman filter to estimate an optimal pose
for the current frame subject to the given constraints. The
result of the estimation is then rectified by least-square-fit
to ensure a physically sound motion [TSK02]. Shin et al.
approximated the adjustment made to the original motion
capture data by correcting the momentum of the character
during flight and using the balance constraints on the ground
[SKG03]. In general, these methods are geared toward the
local modification compared to the overall motion, such as
improving the balance, whereas our approach is able to han-
dle global changes of the motion such as transforming a for-
ward jump to a 360◦ backward spin jump. Another branch of
dynamic filtering employs dynamic tracking [ZH99, PR01].
These methods combine motion capture data and dynamic
simulation to retain human-like details from the data while
presenting interaction with the environment. These methods
produce motions that do not deviate significantly from the
input motion, relying on the existence of captured motion
that is similar to what the user intends to do.

2.2. Interpolation-based motion editing

Straightforward interpolation of joint angles usually fails
to preserve physical realism from the original data. How-
ever, many methods have shown that small modification of
the motion can be easily done by linear interpolation of
joint angles [BW95, WP95, WH97]. Combining interpola-
tion with kinematics constraints, Gleicher adapted original
motion to a new character while maintaining environmen-
tal constraints such as foot contacts on the floor [Gle98].
A more sophisticated interpolation was presented using ra-
dial basis functions to blend motion sequences with various
inverse-kinematic goals [RSC01] or different style [RCB98].
Unfortunately, data acquisition and post-processing for these
methods present a significant challenge since motion se-
quences need to be carefully crafted so that they contain the
same content yet different in style. Our approach only re-
quires one single motion capture sequence as the seed. This
seed is used to generate a family of motion sequences that
parameterize the dynamic space.

Lee and Shin presented a multi-level B-spline represen-
tation by which they transform existing motion to satisfy
desired constraints adaptively through direct manipulation
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Figure 1: System overview

[LS99]. Using B-spline representation, the motion edits can
be limited to user-specified frequency bands, providing a
more effective optimization framework. Our work adapts the
idea of using spline-based representation to constrain the
search of the optimization. We model the momentum curves
by a B-spline representation which are fitted to the original
motion so that the search space in the optimization is lim-
ited to solutions that have similar dynamic behavior of the
original motion.

3. Overview

Our system is based on an optimization algorithm that can
transform the captured motion to satisfy high-level user con-
straints while preserving physical realism. As input, the sys-
tem takes a single motion capture sequence and the user-
specified modification. We describe the algorithm in three
separate components: Motion pre-fitting, optimization, and
interpolation (see Figure 1). The pre-fitting optimizes a set
of coefficients used to model momentum curves so that they
are constrained to the similar shapes of the original motion.
The system then formulates a spacetime optimization that
solves for a new motion, where both high-level physical con-
straints and the user specification are met. With a family of
such optimized motions that parameterize certain dynamic
space, we can apply a simple linear interpolation to generate
arbitrary new motion within the dynamic space in real-time.

4. Motion editing with momentum constraints

Our algorithm adapts the momentum-based constraints
[LP02] for the task of motion editing. Instead of filling in
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missing data, motion editing must solve the converse prob-
lem of preserving the original data while still satisfying
animator-imposed constraints. There is no need for keyfram-
ing of any kind because the motion already starts in a good
initial state. Any underlying physical model employed by the
system must be flexible enough to precisely describe the ini-
tial state of the motion and, at the same time, rigid enough to
maintain a semblance of the original motion throughout the
editing process.

4.1. Motion pre-fitting

At the heart of our algorithm is a set of full-body angu-
lar and linear momentum curves. These curves constrain
the edited motion to the realm of physical realism without
the need to simulate expensive dynamical properties such
as joint torques and contact forces. The momentum curves
are parameterized by a set of coefficients that are pre-solved
to closely match the input motion. The advantage of this ap-
proach is twofold. First, a good initial state of the momentum
coefficients results in rapid convergence of the optimization.
Second, the coefficients that control the shape of the curves
can be fixed throughout the editing process, effectively per-
forming a biased search for similar motions in the momen-
tum space.

After the motion is captured using an optical system and
processed to fit the character’s skeletal structure, we em-
ploy the constraint detection technique described in [LP02]
to partition the motion into ground-contact and flight stages.
Since the the animator may at times wish to produce physi-
cally impossible jumps that are not constrained to the earth’s
gravity, and because the sampling rate varies for each input
motion sequence, we also need to determine the time inter-
val between two animation frames. Gravity and time step are
directly related because we can equivalently choose to find
the right gravitational constant that makes the motion real-
istic for a given unit time step. During free-fall stages, the
linear momentum is only affected by gravity and the angular
momentum remains constant. By observing that the center
of mass (COM) of the model must follow a parabolic trajec-
tory, p(t), we can compute the gravitational constant, g, by
solving a system of equations

p(t) = 1/2gt2 +v0t +C0

p(tn) = Cn

p(tn/2) = Cn/2

where t0..n are time steps in the free-fall stage, C0..n are cor-
responding values of the COM, and v0 is the unknown initial
velocity of the COM.

When the body is in contact with external forces, the mo-
mentum curves can no longer be represented by a simple
set of linear equations. Instead, we represent the momentum
curves with a 3rd-order non-uniform B-splines for their flex-
ibility and convenient knot based parameterization. In our

spline representation, the first and last knots have duplicity
4 to ensure interpolation of the end points (see [FvDFH92]).

A defining characteristic of motion is the shape and mag-
nitude of its momentum curve (see Figure 2). In the case of
our spline representation, the control points determine the
magnitude of the curve and the spacing of the knots influ-
ence the shape. We note that this formulation can capture a
greater variability of momentum patterns than the previously
used hardwired patterns [LP02]. This is especially important
when dealing with motion capture data due to wide range of
different maneuvers possible in the real world. To find a set
of control points, {ci|i ∈ 1..k}, and knots, {ui|i ∈ 1..k + 4},
that closely match the momentum pattern of the input mo-
tion, we solve the following constrained optimization prob-
lem for each momentum spline S(t,c0..k,u0..k+4):

min
S

n

∑
i=0

(mi −S(ti))
2 subject to















S(0) = m0
S(n) = mn
Ṡ(0) = v0
Ṡ(n) = vn

ui −ui−1 < ε, for i ∈ 1..k +4

where mi is the momentum of the input motion at time step
i, and vi = gM, where g is the gravitational constant in the
adjacent flight stage and M is the body mass of the character.
In other words, we perform a least-squares regression over
the momentum curve in the ground stage, while maintaining
C1 continuity through the transitions to the flight stages.

There are few exceptions to the problem described above.
When there is no adjacent flight stage, we remove the con-
straint corresponding to vi from the statement of the prob-
lem. Also, the constraint corresponding to v0 is entirely re-
moved when pre-fitting the vertical linear momentum curve
since the transition from a free-fall stage to a ground stage
is typically dominated by impulsive forces, which are not C1

continuous in the vertical momentum component.

4.2. Motion editing and optimization

In this section we discuss the process of editing motions us-
ing our system. As in [LP02] we model motion as an op-
timal dynamic process with a set of realistic constraints. In
general terms, our condition for optimality is that the output
motion be both as smooth, and as similar, to the original mo-
tion as possible. Constraints on the solution ensure that the
character’s limb do not bend unnaturally, that the character’s
feet do not pass through the ground, and that the character’s
full-body momentum curve follows the path of the pre-fit
momentum splines. The degrees of freedom to be optimized
are contained in Q

⋃

G, where Q is the set of joint angles
through time describing the motion and G is the set of the
control points controlling the momentum splines. In the ini-
tial state of the optimization, Q is a good initial guess at the
target motion formed by linearly interpolating the original
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Figure 2: Linear momentum of a jumping motion in verti-
cal direction. The gray area indicates the flight stage. Left:
The control points {ci|i ∈ 1..k}, visible as red circles, deter-
mine the magnitude of the curve. The spacing of the knots
{ui|i ∈ 1..k + 4}, visible as blue triangles, influence the
shape. Pre-fitting phase solves for a set of control points
and knots that closely match the momentum pattern of the
input motion (shown as green squares). Right: During the
spacetime optimization, ui is held fixed while ci is part of
free variables. In this example, the optimized control points
ci result in a more energetic jumping motion.

motion between user specified translations and orientations,
and G contains the pre-fit momentum coefficients. In addi-
tion to the constraints and objectives used in [LP02], we also
introduce a similarity objective and a pseudo balance objec-
tive as described in the following sections.

4.2.1. Similarity objective

The similarity objective is intended to keep the optimized
motion as similar to the original as possible. We formulate
this objective as the squared distance between the original
vector of DOFs, Qinit , and the solution vector, Q. Each joint
DOF is scaled by its natural bound. The energy function we
wish to minimize is then,

Es(Q) = (Qinit −Q)2

4.2.2. Pseudo balance objective

Since we do not model the specific human preference to stay
out of extreme leaning movements that in real life can of-
ten cause foot slipping on the ground, there are some in-
stances when the resulting motion would leave the charac-
ter unnaturally leaning without a means of support. To pull
the optimized solution away from these unstable regions,
we include a pseudo balance objective. The objective we
use attempts to minimize the squared distance between the
COM, C(t) of model in the first time-step, t0, and last time-
step, t f , of the initial and final ground stages of the mo-
tion. For interior ground stages, we instead minimize the
distance between the COM of the model in the middle frame
of the stage, C(tm), and the COM of the linearly interpo-
lated input motion, Corig(tm), in the same frame. In other
words, we introduce an additional objective function term,
Eb(Q) = (C(t0)−C(t f ))

2, for the initial and final ground

stage, and Eb(Q) = (Corig(tm)−C(tm))2 for each interior
ground stages. We find that the correct weight of these ob-
jectives do not vary much from motion to motion and, in
fact, as long as the weight is well scaled w.r.t. other parts of
the objective function, one value tends to “fit all”.

4.2.3. Spacetime optimization

To summarize, the unknowns of our system, Q and G, are
the character DOFs and the control points for the momen-
tum splines. Note that spline knots are omitted to maintain
the similar momentum pattern of the original motion. The
optimization enforces two types of constraints: environment
constraints, Ke, such as feet positions on the ground, and
momentum constraints, Km. The following spacetime for-
mulation finds the unknowns Q and G that minimize the ob-
jective function while satisfying all the constraints:

min
Q,G

Es(Q)+Eb(Q) subject to
{

Ke(Q) = 0
Km(Q,G) = 0

4.2.4. User interface

Our system provides several high level motion specifica-
tion tools so that the animator never has to think of edit-
ing in terms of constrained optimization. First, motions are
automatically partitioned into alternating flight and ground
stages. Alternatively, the user can manually adjust the par-
titioning to make corrections. Next, the user manipulates
ground stages with the mouse to translate their position and
turns a dial to change the orientations as desired. The system
treats these specifications as offsets from the original state
of a ground stage. In other words, given the original trans-
lation, qT, and original orientation, θ, of the ground stage,
the user specifies offsets ∆qT and ∆θ. The new translation
and rotation of the ground stage is then altered to be qT +
∆qT and θ + ∆θ, respectively. To form a good initial guess
at the solution for the frames of the flight stages, the system
linearly interpolates the offsets of the adjacent ground stages
over each time step of the flight stage. The resulting motion
is a crude approximation of the final result, but provides a
good initial state for the spacetime optimization. The anima-
tor can also change the height of the trajectory in a flight
stage by interactively shaping a visualization of the trajec-
tory. This is particularly useful when creating non-realistic
motion that defies gravity, as will be explained below. Once
the user is satisfied with the edits, the optimization process
takes between 1 to 5 minutes per motion. Alternatively, sev-
eral motions can be generated together in a batch mode.

4.3. Populating the dynamic space of motions

In this section we describe a technique for generating a con-
tinuous ranges of physically plausible motions from a single
motion capture sequence. The technique constructs an out-
put motion in real-time by performing a simple weighted av-
erage over the DOFs values from a set of sample motions. A
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Figure 3: Left: Line motion family that varies the translation
of a ground stage along a line. Middle: Grid motion family
that varies the translation of the ground stage along a 2 di-
mensional grid. Right: Circle motion family that varies both
the translation and orientation of the ground stage along a
semi-circle such that the orientation of the character is al-
ways aligned with the normal vector on the arc.

family of motions can be populated from the input motion by
systematically varying the position and orientation of one or
more ground stages and then performing a sequence of sim-
ilar optimization.

4.3.1. Motion families

We provide a user interface for the three most useful types
of motion families(see Figure 3). The first type varies the
translation of a ground stage along a line, the second type
varies the translation of the ground stage along a 2 dimen-
sional grid, and the third type varies both the translation and
orientation of the ground stage along a semi-circle such that
the orientation of the character is consistently aligned along
the normal vector of the arc. The size of the sample space
as well as the density at which it is sampled can both be ad-
justed as necessary. Other types of motion families can be
easily added.

Once a motion family is populated, we are able to gen-
erate arbitrary intermediary motions by blending the nearest
2n samples, where n is the number of dimensions in the pa-
rameterized space. We chose to use a simple linear blend-
ing method for several reasons. First and foremost, the algo-
rithm is very fast and well suited to any application where
the output motion must be generated “on the fly”. Since mo-
tion families are produced offline, they can be as densely
populated as necessary to increase the accuracy of the in-
terpolation. Second, since the members of a motion family
are produced by the same optimization setup, varying only
in specific dimensions (e.g. landing positions, height, orien-
tation, etc), it is often the case that they blend very well and
need not be sampled very densely at all. In our results sec-
tion, 9 samples is the most we ever required to adequately
sample the dynamic space of a motion.

4.3.2. Foot glide

Although foot glide is among the most troublesome artifacts
for most motion blending techniques, we find that it is im-
perceptible for both the line and grid motion families. How-
ever, when the global orientation and the translation of the

motion are interpolated simultaneously, as is the case in the
circle motion family, a very miniscule amount of foot glide
becomes perceptible. A simple fix is to apply a per-frame in-
verse kinematic (IK) solver to slightly adjust the lower body
to satisfy the positional constraints on each foot. Solving IK
on the lower body not only has the effect of planting the foot
firmly on the ground without changing the overall looks of
the motion, but is also light-weight enough to converge in
real-time, as the motion is being displayed.

4.3.3. Inverse control

So far we have shown how to populate the space of dynamic
motion by interpolating between samples. Here we will dis-
cuss a more intuitive way of controlling these animations. In
many applications the most important aspect to control is the
position and time at which the character makes contact with
an object in the environment. Consider the example of a soc-
cer header motion, where it is required that the character’s
head always makes contact with the soccer ball at the correct
moment in time. Starting from a single input motion we can
generate an arbitrary header by creating a grid motion fam-
ily that varies the translation of the landing stage. The joint
configuration at each time-step in the output motion is then
defined as a vector function q(x,y, t) of the landing position,
(x,y), and the time-step, t. If we denote the position of the
character’s head by the function h(q), the problem of finding
the motion that constrains the characters head to ball position
pc at time tc, is reduced to that of finding values (x,y) such
that pc = h(q(x,y, tc)). This is, in turn, analogous to mini-
mizing the energy function E(x,y) = (pc − h(q(x,y, tc)))2,
which can be solved efficiently by a simple gradient descent
method. The gradients are computed using finite differences.
One caveat is that q is actually a piecewise function that per-
forms a bi-linear interpolation of the 4 nearest sample mo-
tions. When one sample motion is replaced by another in the
set of 4, q ceases to be C1 continuous, causing convergence
problems with the gradient descent method. A simple so-
lution is to replace the linear blending functions f (x) = x
and g(x) = (x − 1) with smooth in/out functions such as
f (x) = sin2(x) and g(x) = cos2(x), thereby maintaining C1

continuity through the transitions.

4.4. Interactive control

One advantage of our motion generation algorithm is that
it provides for a wide range of physically plausible anima-
tions in real-time. To demonstrate the full benefit of this ap-
proach, we have created a video game interface where the
user controls the trajectory of a jumping character with a
multi-directional control pad (see Figure 6). We start with
a motion capture sequence of a character making two con-
secutive jumps. The interesting aspect of this motion is that
the character must exhibit foresight in the motion of the first
jump, so that the correct contact forces can be generate in
the intermediate ground stage, to create the necessary mo-
mentum for the second jump. The spacetime approach is
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Figure 4: In the example of the soccer header motion, the
user specifies the contact point of the head and the soccer
ball pc at timestep tc. Inverse control mechanism is able to
immediately determine the four nearest neighbors among the
sampled motions as well as their weights that interpolate the
desired motion. An efficient gradient descent method solves
for the landing position (x,y) by optimizing E(x,y) = (pc −
h(q(x,y, tc)))2.

ideal for editing such a motion because of the way it intrinsi-
cally models the interdependencies between different stages
of a motion. Our approach inherits the same key benefit from
spacetime, but allow us generate motions in realtime.

In this demonstration we wish to control the horizontal
translation vectors of the first and second jumps, d1 and d2,
respectively. First we generate a motion family by varying
both the first and last ground stages along a 3x3 grid. The
entire motion family then consists of 81 optimal motions
resulting from permuting the 9 possible starting positions
with 9 possible ending positions. This is necessary in order
to sample the entire range of possible ground stage transi-
tions between the two jumps. We are then able to populate
the space between sampled motions by linearly interpolat-
ing the nearest neighbor optimal solutions. In this case, we
have 4 dimensions in our sample space corresponding to the
values of d1 and d2, making for a total of 24 (or 16) near-
est neighbor motions. Therefore, we can express the output
motion as vector function q(d1,d2), whenever d1 and d2 are
within the bounds of the sample space. To make our demon-
stration even more interesting, we chain our jumping mo-
tion end to end, such that it continuously loops upon itself.
This is done by blending the second flight stage of the first
motion, qa(da1,da2), into the first flight stage of the second
motion,qb(db1,db2). In order to make the blending work, we
simply require that da2 = db1. In order words, we require the
length and direction of the blended jumps be the same.

The end result is an interactive jumping simulation where
the user controls the direction that the character jumps and
then sees the motion carried out in a physically plausible
manner. Due to the foresight discussed earlier, the character
must always have prior knowledge of the next two directions
it will jump. This causes some lag time between when the
user specifies a direction and when that motion will occur,
but this is only natural given the deterministic nature of the
ballistic motion.

Motion Sequences Frames Time

Forward jumps 1 46 2 min
Two-step hop 1 49 3.5 min

360 degree spin 1 79 3.5 min
Volleyball slam 9 44 17 min

Interactive controller 81 56 4.5 h

Table 1: Computation time for optimizations

5. Results

The motion sequences in our demonstration were captured at
120 frames per second using an optical motion capture sys-
tem. The character is composed of 18 rigid links and 43 de-
grees of freedom. S0(3) rotations are expressed in exponen-
tial map representation. The mass distribution of the model
is an appropriately scaled version of the population aver-
age as obtained from [dL96]. We used SNOPT [GSM96],
a nonlinearly-constrained optimization package, for solving
spacetime optimization, as well as for pre-fitting the momen-
tum curves. Most edits shown in the accompanying video
clips were done in less than 1 minute. The optimization pro-
cess for each motion took on the order of 2 to 4 minutes to
fully converge on a 2Ghz Pentium 4 machine (see Table 1).

5.1. Motion editing

Our system provides a set of UI tools to help the user rapidly
specify modifications to existing motions. In a hopping ex-
ample, the animator interactively manipulates the position,
height, and orientation of each ground stage. The character
must cover a longer distance, reach a greater height and as-
sume a new orientation in the modified hopping motion, so
she must lower her center of mass, lean farther to the right,
and pivot slightly in preparation for the take-off. Despite
these changes, the resultant motion remains stylistically sim-
ilar to the original. To show that our system is capable of
making drastic changes from the original motion, we edited
the same hopping motion to exhibit a 360◦ spin followed by
a 180◦ spin in the opposite direction(see Figure 5).

5.2. Real-time interpolation

In order to demonstrate real-time motion interpolation we
modified a motion with two consecutive leaps. We let the
user control the landing and take-off positions along an
evenly spaced grid to generate a set of parameterized mo-
tions. Since the interpolation can be performed in real-time,
we are able to generate a jumping motion with arbitrary take-
off and landing positions within the parameterized space
in an interactive fashion. Another example shows a soccer
header motion observed to miss its target. First, we correct
the motion by increasing the height of the jump to meet the
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ball at the point of contact. Next, we use our editing algo-
rithm to generate a motion family parameterized over the
space of the landing position of the motion. By interpolating
between the optimal motions, we are able to generate arbi-
trary intermediary motions where the character contacts the
ball at any location within the sampled space, in real-time.

5.3. Inverse control

A more intuitive way to edit motion capture data with ar-
bitrary positional constraints is to use our real-time inverse
control mechanism. In the volleyball slam example, the user
interactively specifies the position of the character’s hand in
mid-flight. Our system immediately determined the correct
linear interpolation of 4 nearest neighbor samples to meet
the positional constraint on the hand. The brightness of the
sample motions on the floor indicates the weights associated
with each sample. We used 9 sampled motions which are all
edits of the same input sequence. The demonstration shows
various slam motions being generated in real-time by using
the trajectory of the volleyball to guide the character’s mo-
tion. (see Figure 6).

5.4. Non-realistic motion

Our system can also be used to create a class of non-
realistic motions that allow the character to exhibit super-
human strength and to defy the laws of physics. Consider an
example where we wish to edit a jumping motion to reach
a higher mid-point in the same time span as the the original
motion. The first observation to make is that this is physi-
cally impossible without altering the gravitational constant,
which dictates the maximum rate at which the character re-
turns to the ground from the height of the jump. In our sys-
tem it is easy to alter the gravitational constant in one or
more ground stages. Still, the character must gain the mo-
mentum required to achieve the specified height on takeoff
and, subsequently, absorb the same amount of momentum on
landing. This requires a super-human muscle strength, but
since we do not directly model muscle forces, and we place
no limits on their magnitude, our system can easily handle
these imaginary circumstances. From the animators perspec-
tive, editing non-realistic motion is the same as editing any
other motion. To increase the height of a flight stage, the an-
imator simply manipulates a visualization of the trajectory
of the motion in the flight stage to the required height, and
then specifies whether the system should change gravity or,
alternatively, the total time in the flight stage. If the animator
chooses to leave the gravity unaltered, the system increases
the length of the time-step in each frame of the flight stage
and then continues the editing process as normal. In one ex-
ample, we edited a forward jump into a 2-meter-long back-
ward jump (see Figure 7).

6. Conclusion

This work builds on the research in both physics-based mo-
tion synthesis and interpolation-based motion editing ap-
proaches. In this paper we suggest that using physics-based
adaptation to create motion samples for the purpose of data
interpolation is perhaps a "sweetspot" between these two ap-
proaches. Once the dataset is created, this paradigm allows
animators to interactively edit the realistic dynamic motion.

The primary contribution of this work is a new
momentum-based method for adaptation of ballistic charac-
ter movement. In contrast to previous dynamic-based adap-
tation methods, our framework can produce an wide range
of motions that are significantly different from the original
motion. Our method does not require model reduction, or
a reduced motion space. Because we do not solve for the
generalized forces for each joint angle, our method is also
significantly faster than other physics-based transformation
methods. This speed allows us to create a large number of
motions within a reasonable time.

Once the family of parameterized motion samples has
been generated, we describe an interactive framework where
the animator can explore the space of realistic motions. We
also show how the same framework can be adapted for in-
verse control. Finally, we show how real-time data-driven
controllers for realistic human motion can be constructed
from a single motion capture sequence.

Naturally, our framework does not handle all realistic
character motions. It specifically applies to highly-dynamic
motions with ballistic stages. We suspect that momentum-
based approach would not be well suited for less energetic
motions such as walking. Furthermore, the number of sam-
ples required is exponentially proportional to the number
of dimensions, thus the current framework is hindered by
the offline computation of a large dataset. There are several
ways to facilitate the computation by taking advantage of
the fact that we are solving a sequence of very similar prob-
lems. A more intelligent sampling strategy is essential for
generalizing our approach to a multi-dimensional dynamic
space. Because our model does not account for realistic mus-
cle strength, and friction during ground contact there are
some extreme cases which do not produce realistic motion.
Adding heuristics such as balance during contact can to a
large extent eliminate these problems.
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Figure 5: A forward hopping motion (shown in yellow) is modified to make a 360 degree spin in the clockwise direction followed
by a 180 degree spin in the opposite direction (shown in blue).

Figure 6: Left: For a volleyball slam motion, the user interactively specifies the position of the character’s hand in mid-flight.
The system then determines the correct linear interpolation of the sampled motions to meet the positional constraint on the
hand. Middle: The volleyball motion in profile. Right: The user interactively controls the direction the character jumps with a
multi-directional control pad.

Figure 7: The timeline of this animation goes from left to right. To demonstrate a motion that is impossible to achieve in the
real world, the animator altered a forward jump to a 2-meter-long backward jump.
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[PW99] POPOVIĆ Z., WITKIN A. P.: Physically based
motion transformation. In Computer Graph-
ics (SIGGRAPH 99 Proceedings) (Aug. 1999),
pp. 11–20.

[RCB98] ROSE C., COHEN M. F., BODENHEIMER B.:
Verbs and adverbs: Multidimensional motion
interpolation. IEEE Computer Graphics & Ap-
plications 18, 5 (Sept. – Oct. 1998).

[RGBC96] ROSE C., GUENTER B., BODENHEIMER B.,
COHEN M.: Efficient generation of motion
transitions using spacetime constraints. In
Computer Graphics (SIGGRAPH 96 Proceed-
ings) (1996), pp. 147–154.

[RSC01] ROSE C. F., SLOAN P.-P. J., COHEN M. F.:

Artist-directed inverse-kinematics using radial
basis function interpolation. In EG 2001 Pro-
ceedings, Chalmers A., Rhyne T.-M., (Eds.),
vol. 20(3) of Computer Graphics Forum.
Blackwell Publishing, 2001, pp. 239–250.

[SHP04] SAFONOVA A., HODGINS J., POLLARD

N.: Synthesizing physically realistic human
motion in low-dimensional, behavior-specific
spaces. In Proceedings of the 31st annual con-
ference on Computer graphics and interactive
techniques (2004), ACM Press.

[SKG03] SHIN H. J., KOVAR L., GLEICHER M.: Phys-
ical touch-up of human motions. In Pacific
Graphics 2003 (Oct. 2003).

[SP04] SULEJMANPASIC A., POPOVIĆ J.: Adap-
tation of performed ballistic motion. ACM
Transactions on Graphics (2004).

[TSK02] TAK S., SONG O.-Y., KO H.-S.: Spacetime
sweeping: An interactive dynamic constraints
solver. In Proceedings of the Computer Ani-
mation 2002 (2002).

[WH97] WILEY D. J., HAHN J. K.: Interpolation syn-
thesis of articulated figure motion. IEEE Com-
puter Graphics and Applications 17, 6 (Nov./
Dec. 1997), 39–45.

[WK88] WITKIN A., KASS M.: Spacetime constraints.
In Computer Graphics (SIGGRAPH 88 Pro-
ceedings) (1988), pp. 159–168.

[WP95] WITKIN A., POPOVIĆ Z.: Motion warping. In
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