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1 Introduction

Measures of operator complexity have received considerable recent attention in studies

of information scrambling in many-body quantum systems [1–7]. One motivation is the

characterization of quantum complexity in holographic systems. In that context, it has been

proposed that the ‘size’ of an operator can be characterized by a mechanical momentum

of an effective particle in the bulk (cf. [8–11]). The bulk particle is ‘injected’ by the ‘small’

operator O on the boundary, acting on some reference state O |Ψ〉 at, say t = 0. If the

resulting state is evolved in time

e−itH O |Ψ〉 = e−itH O eitH e−itH |Ψ〉 = O−t |Ψ〉t , (1.1)

any increase of complexity can be attributed partly to the increase in complexity of the

time-evolved reference state |Ψ〉t, and partly to the increase in complexity of the operator

when evolved to the past, in what we usually refer to a ‘precursor’: O−t = e−itHO eitH . If

the increase in complexity of the reference state can be neglected or somehow subtracted,

we can define the complexity of the operator O−t in terms of the complexity of the evolved

state. The state (1.1) can be interpreted as a heavy particle state falling through the bulk.

More precisely, we may define the operator complexity in terms of the state complexity by

the subtraction

CO(t) = C [O−t|Ψ〉t]− C [|Ψ〉t] , (1.2)
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with some appropriate normalization. In practice, this definition must be supplemented

by some definite prescription for the state complexity such as, for example, the AC/VC

definitions (cf. [12–17]).

Let us suppose that the state (1.1) can be interpreted as a heavy particle falling

through the bulk. Then, the momentum/complexity duality proposal (PC duality for

short) amounts to a relation of the form

dCO
dt

= PC , (1.3)

where CO is the complexity of the operator, and PC is a suitable component of the mechan-

ical momentum of the associated particle. On general grounds, the right-hand side of (1.3)

has an inherent ambiguity, since we must specify which particular momentum component is

the relevant one, and this selects a particular coordinate system. A simple example which

illustrates this fact is obtained by regarding the free fall of a particle in a Rindler near-

horizon region as dual to operator growth in a fast scrambler. In the vicinity of a regular

horizon we can pick polar Rindler coordinates (ρ, t) which approximate the metric as

ds2 ≈ −κ2ρ2dt2 + dρ2 + ds2⊥ , (1.4)

where ds2
⊥
is a metric along the horizon which formally sits at ρ = 0, and κ is the surface

gravity. A particle with action

SP = m

∫
dt LP = −m

∫
dt

√

κ2ρ2 −
(
dρ

dt

)2

+ . . .

falling towards the horizon along any causal path follows the law ρ ≈ ρ0 exp(−κt) at late
Rindler times, and the Rindler-radial momentum satisfies

Pρ =
∂LP
∂ρ̇

∝ eκt , (1.5)

where ρ̇ ≡ dρ/dt. Since the surface gravity coincides with the fast-scrambling Lyapunov

exponent, κ = λL, the idea is to relate Pρ and operator size. In this case, both terms in (1.3)

grow exponentially in time, so that the qualitative behavior only establishes PC ∼ Pρ as

proportional to the complexity, or any of its higher time derivatives. A more precise

matching can be obtained by testing the PC duality in near-extremal Reissner-Nordstrom

horizons. In this case, there is a ‘pre-scrambling’ period corresponding to the fall through

the AdS2 throat which, upon comparison with detailed calculations of operator growth in

the SYK model [2, 10, 18], leads to (1.3).

Such notions of PC duality involve the particle fall towards the horizon, as indicated

in figure 1, and an interpretation in terms of operator size in the quantum mechanical dual

system. In systems with finite size, operator growth as such should stop at the scrambling

time, of order ts ∼ λ−1
L log Neff , where Neff is the effective number of degrees of freedom.

In the picture of bulk infall the scrambling time corresponds to the particle reaching the

stretched horizon, a timelike layer situated about one Planck length away from the horizon.
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Figure 1. Standard notions of PC duality are defined in terms of near-horizon dynamics, using

radial and time coordinates which remain outside the horizon.

An interesting question is whether it is possible to establish a different type of PC

correspondence for operator complexity that would operate at times much larger than the

scrambling time. In this regime, complexity and size are not expected to be proportional:

while operator size should saturate, an operator complexity defined as in (1.2) should grow

linearly at long times, with a slope proportional to the average energy injected in the system

by the action of the operator. This is expected in tensor-network or quantum circuit defini-

tions of complexity, but it also seems to hold in different definitions of operator complexity,

such as K-complexity (cf. [5]), which was recently shown to exhibit the characteristic linear

growth at late times (cf. [6]).

It is natural to expect that any form of operator PC correspondence that accesses the

late time linear regime would depend on kinematical properties of trajectories in the black

hole interior. If this is so, it is interesting to learn what those concrete properties would

be. In this paper we show that, adopting complexity=volume prescription (VC) as the

definition of (1.2), a PC correspondence of the form (1.3) exists at all times, for operators

that are dual to spherical shells falling on timelike trajectories. The momentum PC is that

of the shells, measured with respect to a particular radial coordinate which we specify.

More precisely, we find

dCO
dt

= PC(t) = −
∫

Σt

Nµ
Σ Tµν CνΣ , (1.6)

where Σt is a maximal-volume surface anchored at boundary time t, the basic ingredient of

the VC definition, NΣ is the unit normal to Σt and CΣ is a suitable radial vector field defined

on Σt. In this form of the PC correspondence, the shells only contribute through their

energy momentum tensor, and the ‘suitable coordinate system’ to measure the momentum

is obtained by foliating the bulk spacetime with the extremal-volume surfaces themselves.

Therefore, we expect (1.6) to have a much wider generality than the thin-shell dynamics

which was used for its derivation. The compatibility of a constant late-time complexity
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rate and a constant bulk matter momentum results form the late-time accumulation of

maximal surfaces in the black hole interior, a well-known property of the VC prescription.

The paper is organized as follows: in section 2 we describe the class of operators for

which we establish the PC duality. In section 3 we give a proof of (1.6) in this context. We

end with conclusions and three appendices containing generalizations and some technical

points.

2 Thin-shell operators and states

For a holographic CFT defined on a spherical spatial manifold Sd−1 of radius L, we consider

its gravity dual on AdSd+1, also taken to have curvature radius L. A thin shell of dust

injected from the AdS boundary can be represented in the CFT by the action of a formal

product operator

Oshell ∼
∏

DΛ∈PΛ

φΛ,DΛ
, (2.1)

where PΛ is a partition of the sphere in domains DΛ of size Λ−1, the regularization cutoff.

The operators φΛ,DΛ
can be seen as bulk operators, applied at radius of order rΛ ∼ ΛL2,

and smeared over the domain DΛ. The idea is to use φΛ,DΛ
to inject a heavy bulk particle

at radius rΛ. Although we imagine specifying the operators in bulk effective field theory,

we can always regard it as a CFT operator by a bulk-boundary reconstruction map, say

using the HKKL formulation [19].

These operators are ‘big’ in the sense of the spatial structure, but are ‘simple’ in

holographic terms, since they are constructed from operators near the boundary of AdS.

By appropriately choosing φΛ,DΛ
, we can generate a semiclassical state whose subsequent

evolution is parametrized as the collapse of the shell of particles in the bulk geometry.

In the case that the local factors φΛ,DΛ
are engineered with very massive bulk fields, or

equivalently CFT operators with very large conformal weight, we can regard the shell

as composed of classical massive particles forming a dust cloud with density σ and four-

velocity field uµ.

For the purposes of this paper, we define the operator complexity in terms of the

general prescription (1.2), where the state complexity is regarded as computed with the

VC prescription. For technical convenience, we shall take the high-temperature thermofield

double state as the reference state on the Hilbert space of two copies of the CFT, and the

shell state is injected on the Right CFT as indicated in figure 1, at times much larger than

the thermalization time T−1, where T is the Hawking temperature of the black hole.

The complexity of the shell operator is defined in terms of bulk quantities as

C [Oshell] =
d− 1

8πGL
[Vol(Σbh+shell)−Vol(Σbh)] , (2.2)

where Σ denotes the extremal codimension-one hypersurface with given asymptotic bound-

ary conditions, defined in the eternal black hole spacetime with and without the shell. The

concrete prefactor in (2.2) is chosen for convenience of normalization. From now on shall

measure bulk lengths in units of curvature radius, so that we set L = 1.
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Figure 2. Penrose diagram of the collapsing shell geometry. The shell is injected in the bulk at

late times compared with T−1, causing the initial black hole of mass M− to grow up to the bigger

mass M+. The worldvolume of the matter shell is labelled W and sets the boundary between the

two black hole spacetimes V ±.

The worldvolume of the thin shell is a codimension-one timelike manifold W which

divides the spacetime manifold in two regions: V + is a Schwarzschild-AdS solution of

mass M+ which we identify as ‘exterior’ or ‘right’ region, and V −, a similar solution of

massM− referred to as the ‘interior’ or ‘left’ region (figure 2). The ADM energy of the shell

is given by M+ −M− and is assumed to be positive. Spherical symmetry holds globally

in the full spacetime, whereas stationarity is broken at W. Both V ± have smooth Killing

vectors which are timelike in the asymptotic regions and spacelike inside event horizons.

Denoting these vectors as ξ± = ∂/∂t±, where t± are adapted coordinates, we can write a

standard form of the metric on both sides of W:

ds2± = −f±dt2± + f−1
± dr2 + r2dΩ2

d−1, (2.3)

where

f± = 1 + r2 − 16πGM±

(d− 1)VΩrd−2
, (2.4)

and VΩ = Vol(Sd−1). The shell dynamics follows from Einstein’s equations, which take the

form of junction conditions (cf. [20, 21]). Denoting the induced metric on W as

ds2W = −dτ2 +R(τ)2dΩ2
d−1 , (2.5)
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in terms of the shell’s proper time τ and its radius R(τ), continuity of the spacetime metric

across W implies the first junction condition,

f±(R)

(
dt±
dτ

)2

− 1

f±(R)

(
dR

dτ

)2

= 1 . (2.6)

The second junction condition establishes the jump of the extrinsic curvature across W
as proportional to the stress-energy on the shell’s world-volume. For a thin shell of dust

we have

Tµν = σ uµ uν δ(ℓ) , (2.7)

where uµ is the four-velocity field of the shell and σ is the surface density. The coordinate

ℓ measures proper distance away from W in the orthogonal spacelike direction, increasing

towards the exterior region; in other words, the normal unit vector NW = ∂/∂ℓ satisfies

N2
W

= 1 and uµN
µ
W

= 0. For spherically infalling dust the density σ(R) must be inversely

proportional to the shell’s volume, that is to say, the total rest mass

m = σ VΩR
d−1 (2.8)

remains constant.

The second junction condition specifies the jump in extrinsic curvature across W,
√(

dR

dτ

)2

+ f−(R)−

√(
dR

dτ

)2

+ f+(R) =
8πG

d− 1
σ R . (2.9)

The particular conditions of spherical symmetry and stationarity along V ± allow us

to write the junction conditions in terms of the Killing vectors ξ±, an expression that will

be useful later. Using that ξµ = gtµ and the explicit form of the metric (2.3) we find

(u · ξ)± = −f±
dt±
dτ

. (2.10)

Furthermore, since ξ± are orthogonal to the angular spheres, the normalization implies

gµν ξ
µ
± ξ

ν
± = (ξ±)

2 = −(u · ξ±)2 + (NW · ξ±)2 = −f± , (2.11)

an expression which determines NW · ξ± once we know u · ξ±. Using (2.10) and (2.11) we

may recast the two junction conditions as jumping rules for the Killing vectors, namely the

component normal to W is continuous

NW · ξ+
∣∣∣
W

= NW · ξ−
∣∣∣
W
, (2.12)

whereas the component tangential to W jumps like the extrinsic curvature,

(u · ξ+ − u · ξ−)
∣∣∣
W

=

√(
dR

dτ

)2

+ f−(R)−

√(
dR

dτ

)2

+ f+(R) =
8πG

d− 1
σ R . (2.13)

Equivalently, we can say that both junction conditions boil down to the jump rule:

(∆ξµ)
W

≡
(
ξµ+ − ξµ−

) ∣∣∣
W

= − 8πG

d− 1
σ Ruµ . (2.14)
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One more presentation of the shell dynamics is obtained by extracting from (2.9) the

ADM mass of the shell as a constant of motion:

Mshell =M+ −M− = m

√(
dR

dτ

)2

+ f−(R)−
4πG

(d− 1)VΩ

m2

Rd−2
. (2.15)

This can be interpreted as a kinetic contribution proportional to the shell’s rest mass m,

corrected by a gravitational self-energy term. In fact, the constancy of m suggests a natural

(1 + 1)-dimensional picture in terms of an effective particle of mass m, moving in the two-

dimensional section of the metric obtained by simply deleting the angular directions:

ds21+1 = ḡαβ dx
α dxβ = −f−(r)dt2 +

dr2

f−(r)
. (2.16)

In particular, the shell energy (2.15) can be obtained as the canonical energy from the

effective action of a free particle

Seff =

∫
dλLeff = −m

∫
dλ

√
ḡαβ

dxα

dλ

dxβ

dλ
, (2.17)

provided we can neglect the gravitational self-energy effects.

3 Proof of the PC duality

Our goal is to derive a PC duality relation by direct evaluation of the left hand side of (1.3),

with Cshell defined as in (2.2). This will allow us to identify the correct component of ‘radial

momentum’. The complexity being defined through the VC prescription, we start with a

preliminary discussion of extremal-volume surfaces in the relevant geometries.

3.1 Extremal volumes

Let a codimension-one spacelike surface Σ be defined by the embedding functions Xµ(ya),

with ya coordinates along the hypersurface. The volume functional reads

V [Σ] =

∫

Σ

ddy
√
h , (3.1)

where hab = ∂aX
µ ∂bX

ν gµν(X) is the induced metric on Σ.1 Under a generic variation

δXµ the volume varies as

δV =

∫

Σ
(e.o.m.)µ δX

µ +

∫

∂Σ
dSa ∂aXµ δX

µ , (3.2)

where

(e.o.m.)µ = − 1√
h
∂a

(√
hhab gµν ∂bX

ν
)
+

1

2
hab ∂aX

ρ ∂bX
σ ∂µgρσ (3.3)

vanishes precisely when the hypersurface Σ is extremal. In this case, the variation reduces

to a boundary term,

δV
∣∣
extremal

=

∫

∂Σ
dSa eµa δXµ , (3.4)

where we have defined the vector fields eµa = ∂aX
µ tangent to Σ.

1We use latin indices for coordinates on the hypersurface Σ and greek indices for general coordinates in

the full spacetime.

– 7 –
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Figure 3. Extremal codimension-one surface Σ of interest. Its boundary ∂Σ consists of two spheres

at infinity, located at times tL = tR = t.

For the geometry of interest here, Σ is a cylindrical manifold of topology R×Sd−1, the

boundary having two disconnected components consisting of spheres at the left and right

spatial infinities (figure 3). We shall use the same future-directed time variables on both

boundaries and take a left-right symmetric time configuration tL = tR = t, so that we can

write the following boundary conditions at the regularization surfaces r = rΛ:

δXµ
±

∣∣∣
r=rΛ

= ±δt ξµ±
∣∣∣
r=rΛ

, (3.5)

where the ± signs account for the fact that the left-side Killing vector ξ− is past-directed at

large radii. Spherical symmetry allows us to parametrize the induced metric on extremal

surfaces in the form

ds2Σ = hab dy
a dyb = dy2 + g(y) dΩ2

d−1 , (3.6)

where y is a radial coordinate running over the real line, with y = ±∞ corresponding

respectively to the left and right boundaries of Σ. In these coordinates, we can picture

eµy = ∂yX
µ as a unit-normalized, radial, spherically symmetric, right-pointing vector field.

Denoting the spheres at infinity by S±∞ we can rewrite the volume variation of extremal

surfaces (3.4) as

δV
∣∣
extremal

= δt

[∫

S+∞

eµy (ξ+)µ +

∫

S−∞

eµy (ξ−)µ

]
, (3.7)

where we have absorbed the sign assignments in (3.5) into a reversal of orientation for the

left-boundary integral. Namely, both integrals in (3.7) are now written as scalar integrals

over the boundary spheres.

– 8 –
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This expression for the volume dependence with asymptotic time is useful because the

featured integrals turn out to be Noether charges. If we view the volume functional (3.1)

as an action on a collection of fields Xµ defined over Σ, the isometries of the V ± portions

are interpreted as ‘internal symmetries’ of the this field theory, with their correspond-

ing Noether currents. The time-translation symmetries associated to ξ± induce Noether

currents of the form2

Ja = eµa ξµ , ∇aJ
a = 0 . (3.8)

In particular, the integral of the radial component Jy over any fixed-y section Sy is a

Noether charge which is conserved under transport in the y direction:

Π[Sy] =
∫

Sy

eµy ξµ , ∂yΠ[Sy] = 0 . (3.9)

3.2 Identification of the PC component

We have now the machinery in place to evaluate (2.2). The formula (3.7) implies

dV

dt
= Π+ +Π− , (3.10)

in terms of the Noether charges Π± ≡ Π[S±∞] on right and left boundaries (a similar

result was derived in [22, 23] for null shells). The normalization of the operator complexity

requires the subtraction of the same expression, evaluated on the Noether charges Π
(0)
± of

the eternal black hole geometry without infalling shell, namely

Ċ[Oshell] =
d− 1

8πG

[
Π+ −Π

(0)
+ +Π− −Π

(0)
−

]
, (3.11)

where the dot here denotes derivative with respect to asymptotic time.

Left-right symmetry of the eternal black hole geometry implies Π
(0)
+ = Π

(0)
− , whereas

we can also set Π− ≈ Π
(0)
− at the left regularization boundary because, for shells that

enter the geometry at very late times, their worldvolume W remains very far from the left

boundary. Hence, near the left regularized boundary, the extremal surface Σ is very well

approximated by that of the eternal black hole. As we remove the regularization, in the

limit rΛ → ∞, we must actually obtain Π− = Π
(0)
− . This allows us to remove all explicit

reference to the eternal black hole geometry and write

Ċ[Oshell] =
d− 1

8πG
[Π+ −Π−] . (3.12)

Furthermore, the conservation of Noether charges in either V + or V − allows us to bring

the Noether charges to both sides of the shell’s worldvolume:

Ċ[Oshell] =
d− 1

8πG
(∆Π)W =

d− 1

8πG

∫

SW

eµy (∆ξµ)W , (3.13)

2In order to prove conservation, we just use ξµ = gtµ and evaluate the equation of motion from (3.3).
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where (∆ξµ)W = (ξµ+ − ξµ−)
∣∣
W

is the jump of the Killing vectors across W and SW is the

sphere at the intersection Σ ∩ W . Using now the junction conditions in the form (2.14),

we find

Ċ[Oshell] = −
∫

SW

σ R eµy uµ . (3.14)

We can now elaborate (3.14) in various ways in order to flesh out the PC-duality interpre-

tation. First, we define a ‘complexity field’ over Σ as a rescaling of the eµy field:

CµΣ ≡ −r eµy . (3.15)

Second, we define a density of proper momentum along the shell’s worldvolume

Pµ ≡ σ uµ . (3.16)

With these definitions we can rewrite (3.13) as

Ċ[Oshell] = PC =

∫

SW

Pµ CµΣ , (3.17)

a relation which identifies the precise component of momentum which is dual to complexity

growth, namely the projection of the proper momentum along the direction of the com-

plexity vector field CµΣ. It is a particular radial component with inward orientation and

appropriate normalization.

A second presentation of this result has the virtue of hiding some of the peculiarities of

the concrete system we have considered so far. In fact, no explicit geometrical information

about the shell’s worldvolume W is needed in order to express the PC duality relation. To

see this, let us consider the expression

−
∫

Σ
Nµ

Σ Tµν CνΣ , (3.18)

where NΣ is the unit timelike normal to Σ. It measures the flux through Σ of a suitably

normalized momentum component along Σ. Upon explicit evaluation for the spherical

shell, using (2.7), we find

−
∫

dy

∫

Sy

σ (NΣ · u) (CΣ · u) δ(ℓ) . (3.19)

Furthermore, δ(ℓ) = δ(y − yW) |dℓ/dy|−1, where yW is the value of the y coordinate at the

shell’s intersection. From the definition of the W-normal we have dℓ/dy = ∂yX
µ ∂µℓ =

ey ·NW , which allows us to collapse the integral to the intersection sphere SW :

∫

SW

σ R
(NΣ · u) (ey · u)

(ey ·NW)
, (3.20)

where we have used (3.15). To further reduce this integral we notice that NΣ and ey are

orthogonal and unit normalized, as well as the pair u and NW , so that we have NΣ · u =

−NW · ey, where the minus sign accounts for the timelike character of both Nµ
Σ and uµ (cf.

– 10 –
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Figure 4. Configuration of relevant vectors at the intersection sphere SW = Σ ∩W .

figure 4 for an explanation). This simplifies (3.20) and recovers (3.14). Hence, we have

established the more intrinsic form of the PC relation:

Ċ[Oshell] = PC = −
∫

Σ
Nµ

Σ Tµν CνΣ . (3.21)

In this version, all explicit reference to the details of the bulk state gets reduced to

its stress-energy tensor. The vector fields NΣ and CΣ are defined in terms of the extremal

surface, whose detailed geometry is also determined by Tµν through the back reaction on

the geometry. Indeed, the form of (3.21) should remain valid for spherical shells with

any internal equation of state, including those corresponding to branes which change the

AdS radius of curvature across W. Furthermore, the role of the Noether charges in the

derivation of (3.17) and (3.21) makes it clear that it applies as well to spherical thin shells

collapsing in vacuum AdS and forming a one-sided black hole.

More generally, we expect that any spherical matter distribution can be approximated

by a limit of many concentric thin shells, so that (3.21) should remain valid for any mat-

ter bulk distribution with spherical symmetry. It would be interesting to have a direct

derivation of this fact, which could shed light on whether (3.21) remains true without

spherical symmetry. The generalization to one-sided collapse of thin shells with arbitrary

equations of state, but still maintaining spherical symmetry, is explained in appendix B. A

first step towards lifting the spherical symmetry requirement is presented in appendix C,

which considers a formal collapse of a rotating shell in AdS3.
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4 Late time limit and the black hole interior

One chief motivation behind this work is the elucidation of the very late time regime of

operator complexity growth in the light of the PC duality. Any definition of operator

complexity with the structure of equation (1.2) will assign a linear growth at late times.

In particular, given that state complexities are expected to grow proportionally to EΨ t,

where EΨ is a characteristic energy of the state, the subtracted definition for operator

complexity gives a slope proportional to EO t, where EO is the additional energy injected

by the operator O. Translated to our gravitational set up, we expect a late time behavior

Ċ[Oshell]
∣∣∣
late

≈M+ −M− =Mshell . (4.1)

We would like to check that our PC relation satisfies this expected asymptotic behavior.

A simple check can be performed in the limit of very large AdS black holes. This coincides

with the situation where the infalling shells have small gravitational self-energy at all times

that are relevant for the calculation.

The key point is to notice that, at late times, the extremal surfaces Σt accumulate in the

interior of the black hole, exponentially converging3 to a limiting surface Σ∞ (cf. [15, 24]).

For a shell that enters the black hole very late, this surface interpolates between the limiting

surfaces (Σ∞)± associated to the early and late black holes of mass M± (cf. figure 5). In

terms of the interior Schwarzschild radial coordinates, let r̃± denote the saturation radii,

defined by the local extremization of the ‘volume Lagrangian’ rd−1
√

|f(r)|. By explicit

calculation we find, in the limit of very large AdS black holes

r̃ d ≈ 8πGM

(d− 1)VΩ
. (4.2)

We can now make use of the ‘movability’ of the Noether charges Π± to evaluate

then away from W, but still inside the black hole interior, in a region where Σt is well-

approximated by a constant-r surface. Let us denote the angular spheres at such points

by S̃±. Then, equation (3.12) can be rewritten as

Ċ[Oshell]
∣∣∣
late

≈ d− 1

8πG

(
Π
[
S̃+

]
−Π

[
S̃−

])
. (4.3)

In computing the Noether charges, we notice that ξ± = ∂/∂t± are approximately tangent

to Σt in the saturation region. Hence, we can write eµy ≈ ξµ/
√
ξ2 and the Noether integrals

are simply

Π[S̃±] ≈
∫

S̃±

√
ξ2 = VΩ r̃

d−1
±

√
|f(r̃)

±
| ≈ VΩ r̃

d
± ≈ 8πGM±

d− 1
. (4.4)

In the last equality we have made use of (4.2) and the approximation of a large AdS black

hole. Therefore, upon subtraction we conclude the proof of (4.1).

An important observation regarding this result is the fact that the vector fields Cµ
and eµy do differ significantly in the interior saturation region, because the rescaling factor

r̃ is non trivial there, and yet this rescaling is crucial to obtain the expected long-time

3See appendix A for an quantitative discussion of this phenomenon.
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Figure 5. The saturation slice Σ∞ interpolates between the extremal surface barrier inside r̃− and

outside r̃+.

asymptotics. Therefore, the peculiar normalization (3.15) of the momentum component

along Σ is necessary for the consistency of the results.

We can obtain further insight into the rationale behind the linear complexity growth

by passing to the effective particle description. Again neglecting self-energy corrections, we

can envision the dynamics of the shell as that of a probe particle of mass m falling through

the (1+1)-dimensional metric (2.16). The PC duality relation admits the two-dimensional

representation:

Ċ[Oshell] = PC = Pα Cα , (4.5)

where Pα = muα, with α a two-dimensional index. Picking for example the standard (r, t)

coordinates, we have

PC = −r
(
∂t

∂y
Pt +

∂r

∂y
Pr

)
. (4.6)

Let us introduce an adapted coordinate for the radial ‘complexity field’ Cα = −reαy , namely

we define a rescaled radial coordinate χ such that

Cα =

(
∂

∂χ

)α
= −r eαy = −r

(
∂

∂y

)α
, (4.7)

or, equivalently
∂

∂χ
= −r ∂

∂y
. (4.8)

Using the so-defined χ coordinate, we can simplify (4.6) so that

PC = Pt
∂t

∂χ
+ Pr

∂r

∂χ
= Pχ . (4.9)

To the extent that we are only interested in describing the particle motion to the past of

the saturation surface Σ∞, we may use a time slicing given by the extremal surfaces Σt
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Figure 6. The late-time saturation of the time slicing in the interior of the black hole results in a

frozen momentum component, as required for any PC formula which should apply in a regime of

linear complexity growth.

themselves, and coordinate the spacetime in terms of (t, χ,Ω). In this frame, the complexity

momentum coincides with the χ-canonical momentum, provided we stay within the probe

approximation:

PC = Pχ =
∂Leff

∂χ̇
. (4.10)

This brings our general formalism into contact with the discussion of canonical Rindler

momentum in the introduction. However, the present treatment is capable of describing

the late-time behavior of the complexity. In particular, the use of a time slicing adapted to

the extremal surfaces leads to the phenomenon of saturation in the black-hole interior (cf.

figure 6). This freezes the value of the momentum at a constant value for asymptotically

large values of t, thereby explaining why a linear growth of complexity can be compatible

with a PC-type formula (1.3).

5 Conclusions and outlook

In this paper we have presented a bulk derivation of a particular version of the momen-

tum/complexity (PC) duality which applies to arbitrary times. By examining the VC

complexity of thin spherical shells impinging on double-sided AdS black holes, we can

explicitly identify the relevant momentum component.

The key to the construction is to measure this momentum with respect to a bulk time

foliation by the same maximal surfaces that one uses to compute VC complexity. This

allows us to express the PC relation in the form

Ċ[Ospherical] = −
∫

Σ
Nµ

Σ Tµν CνΣ , (5.1)

so that the dynamical properties of the shells only enter through the energy momentum

tensor Tµν . All other objects appearing in this formula are defined in terms of the chosen
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time foliation by maximal hypersurfaces. Although the formal relation between VC of

shells and appropriate canonical momenta has appeared before in various works (cf. for

example [13, 22, 23, 25]), the structure of (5.1) suggests that it should generalize much

beyond the context of thin shells, since all data entering the right hand side of (5.1)

actually make sense for arbitrary bulk states.

It would be interesting to find a general ab initio derivation of this relation which does

not go through the thin-shell detour (cf. [26]) The arguments presented in this paper do

apply to collapsing thin shells in the AdS vacuum.4 In this case, gravitational self-energy

cannot be neglected at the saturation surface in the resulting one-sided black hole, so that

one expects the probe approximation to be less efficient in the effective particle picture.

It would be interesting to check the complexity slope (4.1) by direct evaluation of

PC . This requires detailed control of the precise location of the intersection sphere SW in

the black-hole interior. It is also interesting to check whether a transient exists for early

times which shows a measurable Lyapunov exponent. This is a nontrivial fact, given that

our time foliation is quite different from a near-horizon Rindler system. On the other

hand, the occurrence of such a transient with exponential growth is independent of our

particular PC correspondence, which is only a rewriting of the standard VC complexity

formula. In particular, such chaotic transients were numerically identified in [23, 27] in VC

computations relevant to situations which are similar, although not identical, to the set up

studied in this paper.

One outstanding question raised by our results is the true generality of a formula

like (5.1). In particular, its validity for non-spherical situations and the elucidation of the

deeper geometrical meaning of the ‘complexity vector field’ CµΣ. Appendix C presents a

formal solution for a collapsing shell in AdS3 with rotation, where it is found that the

complexity rate still satisfies (5.1) with the same complexity field in this less symmetrical

situation.

Even more generally, it would be interesting to explore versions of the PC duality in

spacetimes without any Killing vectors. In particular, gravitational radiation corrections

to (5.1) should be accessible by perturbative methods around the solutions discussed in

this paper. Finally, it is natural to expect that (5.1) is related to the so-called ‘first law of

holographic complexity’ [28, 29] in ways that should be elucidated more precisely.
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A Late time accumulation of maximal slices

In this appendix, we show proof of the exponentially fast accumulation of maximal slices

in the black hole interior. For that matter, we will work within the benchmark case of an

eternal black hole, whose metric is given in Eddington-Finkelstein coordinates by

ds2 = −f(r) du2 + 2du dr + r2dΩ2
d−1 . (A.1)

By spherical symmetry, the maximal surface can be written as a direct product Σ =

γ × Sd−1, with γ a curve in the u − r plane. Exploiting this symmetry we can reduce

thus the problem of volume extremalization to that of a spacelike geodesic in the effective

two-dimensional spacetime

ds2γ = r2(d−1)(−f(r) du2 + 2du dr) , (A.2)

so that the effective volume functional is given by

V [Σ]V −1
Ω = V [γ] =

∫
dλ rd−1

√
−f(r) u̇2 + 2 u̇ ṙ , (A.3)

where λ is an arbitrary spacelike parameter and the dot stands for d/dλ. The Lagrangian

in (A.3) enjoys a conserved charge associated to the static Killing

Π =
∂Lγ
∂u̇

= rd−1 −f(r) + ṙ√
−f(r) + 2 ṙ

, (A.4)

where Π is guaranteed to be positive by the spacelike character of the geodesic ds2γ > 0

and we have taken the convinient gauge choice λ = u. Feeding the conserved charge into

the equations of motion for r(u) we get

ṙ = f(r) +
Π2

r2(d−1)
+

Π

rd−1

√
Π2

r2(d−1)
+ f(r) . (A.5)

Upon the imposition of reflection symmetry in our setup (tL = tR = t), the boundary

conditions can be recasted to be ṙ(ui) = 0 and r(u∞) = r∞ for ui = r∗(ri) , u∞ = t the

values of the parameter at the symmetric turning point and boundary respectively. In

terms of the turning point radius ri we can get a simple expression for Π

Π = r
(d−1)
i

√
−f(ri) . (A.6)

An implicit relation between t and ri can be obtained integrating (A.5)

∫ u∞

ui

du =

∫ r∞

ri

dr
r2(d−1)

g1/2(r)
(
Π+ g1/2(r)

) . (A.7)

where we have defined the function

g(r) = r2(d−1) f(r) − r
2(d−1)
i f(ri) , (A.8)
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which vanishes at the minimal radius ri. Breaking up the radial integral into an inner an

outer piece and substituting the boundary conditions, we can obtain an expression for the

boundary time

t =

∫ rh

ri

dr
r2(d−1)

g1/2(r)
(
Π+ g1/2(r)

) + h(rh, ri, r∞) . (A.9)

where h(rh, ri, r∞) is a finite function for all values of its parameters. As we see from the

structure of the zeros of g(r), the integral above contains a pole at r = ri. In order to

approximate the integral (A.9) we may expand g(r) to second order around ri

g(r) = α(r̃i − ri)(r − ri) +
α

2
(r − ri) + . . . . (A.10)

where α is a positive constant depending on the parameters of the black hole and r̃i is the

asymptotic limiting surface. The necessity to go up to second order in the expansion is

revealed by the vanishing of the linear term in the late time limit corresponding to ri → r̃i.

Feeding (A.10) into (A.9) and expanding the rest of the integral to zero order we get

t ≈ r
2(d−1)
i

Π

∫ rh

ri

dr
[
α(r̃i − ri)(r − ri) +

α

2
(r − ri)

]−1/2
+ finite . (A.11)

which can be solved exactly

t ≈ − r
2(d−1)
i

Π(α/2)1/2
log(ri − r̃i) + finite . (A.12)

Inverting this expression we get the desired result, i.e. the exponentially fast saturation

of maximal slices in the black hole interior

ri − r̃i ≈ b e−t/a , (A.13)

where a and b approach constant values in the late time limit.

B One-sided PC duality

In this appendix, we extend the regime of validity of the PC duality (3.21) to situations in

which there is a spherically symmetric thin shell living in the AdS vacuum. We introduce

a slightly more general formalism to manifestly show that the same PC formula holds for

any spherical thin shell irrespectively of its internal equation of state.

We start from a single holographic CFT on Sd−1 and take the CFT vacuum as the

reference state to define the operator complexity (1.2). Using the VC prescription, the

bulk definition is

C [Oshell] =
d− 1

8πG
[Vol(ΣAdS+shell)−Vol(ΣAdS)] , (B.1)

where Σ is the extremal hypersurface of interest, defined in empty AdS with and without

the shell respectively. A peculiarity of this choice of reference state is that its complexity

is constant in time, and this makes the rate of (B.1) to depend only on the extremal
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hypersurface on the spacetime with the shell. This extremal volume hypersurface Σ will be

topologically a ball anchored to the asymptotic sphere S∞ at boundary time t. A generic

infinitesimal deformation of its embedding function δXµ = δεNµ
Σ + δκa eµa will produce

the volume variation

δV [Σ]
∣∣
extremal

=

∫

Σ
∇aδκ

a =

∫

S∞

dSa δκ
a , (B.2)

as in (3.4), which in this case follows from the tracelessness of the extrinsic curvature of

Σ. In particular, for time translations of the boundary sphere, we need to take the tangent

deformation to asymptotically become (δκa)|S∞
= (∂t · ea) δt. From (B.2), the rate of

extremal volume then reads
dV

dt
=

∫

Σ
∇a ρ

a ≡ Π , (B.3)

for ρa any tangent vector that asymptotically approaches ∂t · ea.
For spherically symmetric thin shell configurations, there will be two timelike Killing

vectors ξµ± individually defined on each of the regions of spacetime V ± glued by the world-

volume W. Taking ℓ as a normal coordinate to W, we can define the Killing vector field

globally as ξµ = ξµ−Θ(−ℓ) + ξµ+Θ(ℓ), where Θ is the step function. The Killing condition

is then broken due to a possible discontinuity across W

∇(µ ξν) = (NW)(µ (∆ξ)ν) δ(ℓ) , (B.4)

where we used that ∂µΘ(ℓ) = δ(ℓ) (NW)µ , for N
µ
W

the W-normal. The global piecewise

Killing ξµ asymptotically becomes the time translation generator ∂µt , and therefore it is

possible to choose its projection to the extremal hypersurface ξa = ξ · ea to play the role

of the tangent vector in (B.3). The projection of (B.4) into Σ reads

∇(a ξb) = δ(ℓ)
(
NW · e(a

) (
∆ξ · eb)

)
+ (ξ ·NΣ)Kab , (B.5)

where Kab the extrinsic curvature of Σ. This second term breaks the Killing condition as

a consequence of the original Killing ξµ failing to be tangent to Σ. Nevertheless, for the

extremal hypersurface Σ the trace of this term vanishes, which makes this tangent vector

to be conserved away from W

∇a ρ
a = δ(ℓ) (NW · ea) hab (∆ξ · eb) . (B.6)

This tangent vector precisely agrees with the Noether current (3.8) arising from the internal

time-translation symmetry of the volume functional.

In this framework, we thus find that the rate of the operator complexity is proportional

to a localized quantity on W

Ċ [Oshell] =
d− 1

8πG

∫

Σ
δ(ℓ) (NW · ea) hab (∆ξ · eb) , (B.7)

namely the discontinuity of the stationary Killing vector field.

To evaluate the discontinuity of the Killing vector across W, let us focus on the codi-

mension two sphere of intersection SW = Σ ∩ W . We define the spacelike tangent to Σ
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which is orthogonal to SW and unit norm, denoted by eµy . Similarly, we define the timelike

tangent to W, denoted uµ, as the one orthogonal to Σ∩W and unit norm. From spherical

symmetry ξµ±|W will be orthogonal to the spheres, and an identical argument to the one

provided in section 2 determines that the only discontinuity will be tangent to W and with

value

(∆ξµ)
W

= − 8πG

d− 1
(Sρσ u

ρ uσ R) uµ , (B.8)

where Sµν is the induced energy-momentum on W, and R is the radius of SW . Substituting

in (B.7) and noting that NW · ey can be written as −NΣ ·u from the argument given in 3.2,

we get

Ċ [Oshell] =

∫

Σ
(Tµνu

µuν) r (NΣ · u) (u · ey) . (B.9)

The one-sided version of the PC duality then follows from the decomposition uµuν =

−gµν + Nµ
W
Nν

W
+ gµν

SW
, where the last term is the induced metric on SW , and from the

thin-shell condition Tµν N
ν
W

= 0. Upon the definition of the ‘complexity field’ CµΣ = −r eµy ,
we arrive at the desired formula

Ċ[Oshell] = −
∫

Σ
Nµ

Σ Tµν CνΣ . (B.10)

This derivation of the PC duality certainly clarifies that the PC formula applies to

any spherically symmetric thin shell in AdS, including branes that separate AdS patches

of different curvature radius.

C Rotating thin shell in AdS3

In this appendix we use the language developed in appendix B to begin exploring less

symmetric configurations. We consider the particular example of a rotating thin shell

that collapses in AdS3, corresponding to a stationary but not static exterior spacetime.

This solution will be treated formally in the sense that we do not insist in the physical

consistency of the shell’s energy momentum tensor. The main interest of this simple exercise

is to show that formula (B.10) continues to apply with the same complexity field CµΣ, despite
the existence of ‘shear’ components in the jumping conditions for the Killing vectors.

The outside spacetime V + consists of a rotating BTZ solution (cf. [30])

ds2+ = −f+(r) dt2+ +
dr2

f+(r)
+ r2

(
dφ+ − a

r2
dt+

)2
, (C.1)

with blackening factor

f+(r) = r2 − µ2 +
a2

r2
, (C.2)

for a = 4GJ and µ2 = 8GM the ADM angular momentum and mass, respectively. We

choose the inner spacetime V − to be pure AdS3

ds2− = −(1 + r2) dt2− +
dr2

1 + r2
+ r2 dφ2− . (C.3)
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The worldvolume of the shell W will have metric

ds2W = −dτ2 + R(τ)2 dψ2 , (C.4)

where ψ is a co-rotating angle. Demanding for the continuity of the metric across W
translates then to the set of conditions

ψ = φ− = φ+ − ω(R) t+ + θ(τ) , (C.5)

−1 = −f−(R) (ṫ−)2 +
(Ṙ)2

f−(R)
= −f+(R) (ṫ+)2 +

(Ṙ)2

f+(R)
, (C.6)

where the angular frequency of the shell is basically ω(R) = a/R2, and the function θ(τ)

accounts for the variation in the angular frequency of the shell due to its shrinking

θ̇(τ) = ω̇(R) t+ . (C.7)

The discontinuity in the extrinsic curvature on W as seen from V ± will be sourced

by the induced energy-momentum tensor of the shell Sµν . Since the interior frame is co-

rotating with the shell, the situation is the same as for the spherically symmetric collapse

in section 2, for which we already know the components of the extrinsic curvature. The

calculation from the exterior frame is a little more involved, but it can be done by using

the precise form of the outward pointing W-normal (NW)µ = ṫ+ (dr)µ − Ṙ (dt+)µ and

velocity field uµ = Ṙ ∂µr + ṫ+ ∂
µ
t+ +ω ṫ+ ∂

µ
φ+

. The second junction conditions can then be

expressed as

Sτ τ =
1

8πG

β+ − β−
R

(C.8)

Sψ ψ =
1

8πG

β̇+ − β̇−

Ṙ
(C.9)

Sτ ψ = − 1

8πG
ωR (C.10)

where β± =
√
Ṙ2 + f±(R).

Let us proceed to calculate the discontinuity in the stationary Killing vector

∆ξµ = −(∆ξ · u)uµ +
(∆ξ · ∂ψX)

R2
∂ψX

µ + (∆ξ ·NW)Nµ
W
. (C.11)

It is straightforward to evaluate all these projections, an using (C.8) and (C.10) we can

write them as

∆ξµ = − (8πGSττR) u
µ −

(
8πGSτψ

1

R

)
∂ψX

µ . (C.12)

Plugging this result in (B.7), and noting that the extremal hypersurface Σ will in this

case intersect W on a constant τ circle, we have that the angular discontinuity of the Killing

does not contribute to the rate of the complexity since (NW · ∂ψX) vanishes. Moreover,
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the contribution from the Killing discontinuity in the uµ direction has the same form as in

the spherically symmetric case, and hence we obtain the same PC duality

Ċ[Oshell] = −
∫

Σ
Nµ

Σ Tµν CνΣ , (C.13)

where the ‘complexity field’ CµΣ = −r eµy . It is tempting to conjecture that the ‘complexity

field’ CµΣ persists to be inward pointing tangent to Σ and orthogonal to Σ ∩ W for more

general situations of thin shells gluing two stationary spacetimes V ± together.
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