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Abstract Observations performedwith a Rayleigh lidar and an AdvancedMesosphere TemperatureMapper

aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V research

aircraft on 13 July 2014 during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) measurement

program revealed a large-amplitude, multiscale gravity wave (GW) environment extending from ~20 to 90 km

on flight tracks over Mount Cook, New Zealand. Data from four successive flight tracks are employed here to

assess the characteristics and variability of the larger- and smaller-scale GWs, including their spatial scales,

amplitudes, phase speeds, and momentum fluxes. On each flight, a large-scale mountain wave (MW) having a

horizontal wavelength ~200–300 km was observed. Smaller-scale GWs over the island appeared to correlate

within the warmer phase of this large-scale MW. This analysis reveals that momentum fluxes accompanying

small-scale MWs and propagating GWs significantly exceed those of the large-scale MW and the mean values

typical for these altitudes, with maxima for the various small-scale events in the range ~20–105m2 s�2.

1. Introduction

Gravity wave (GW) momentum transport and deposition throughout the atmosphere have significant

impacts on Earth’s weather and climate. Momentum deposition causes drag on mean and larger-scale

winds, resulting in reversals of the mesospheric jets, an induced residual circulation that impacts mean

temperatures from the lower altitudes into the mesosphere and lower thermosphere (MLT), and modulations

of larger-scale motions and their mapping to higher altitudes [e.g., Holton, 1982, 1984; Garcia and

Solomon, 1985; Haynes et al., 1991; Smith, 2003; Fritts and Alexander, 2003; Kim et al., 2003; Lieberman

et al., 2010, 2013]. Many studies suggest that GWs having smaller horizontal wavelengths and higher intrin-

sic frequencies contribute significantly to the total momentum budget [e.g., Vincent and Reid, 1983; Fritts

and Vincent, 1987]. In some cases, small-scale GW momentum fluxes (MFs) are tied to specific sources such

as orography and convection [e.g., Nastrom and Fritts, 1992; Pfister et al., 1993]. In other cases, strong loca-

lized GW packets exhibit no obvious sources and more likely achieve large amplitudes and MFs due to

filtering by the larger-scale environments [e.g., Hertzog et al., 2012; Fritts et al., 2002, 2014]. Some modeling

studies show that smaller-scale GWs may be significantly influenced by multiscale GW environments

[Eckermann, 1997]. Despite many studies and valuable insights, much remains to be learned about the

multiscale interactions that influence small-scale GW behavior and the character and statistics of small-

scale GW contributions to total MFs throughout the atmosphere.

Many studies using individual instruments or instrument suites have contributed to our understanding of GWs

at larger and smaller scales. Ground-based instruments such as lidars, airglow imagers, and radars have been

used to characterize GW activity [e.g., Fritts, 1984, and references therein; Wilson et al., 1991; Collins et al.,

1996; Taylor et al., 1997; Yue et al., 2009]. Lidars allow for a vertical and temporal characterization of GWs and

profiles of buoyancy frequency and/or background winds that define the GW propagation environment.

Airglow imagers provide valuable information on GW horizontal scales, orientations, and propagation

directions that are challenging to infer from lidars and radars alone. The more recent Advanced Mesosphere
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Temperature Mappers (AMTMs) also provide temperature images at the OH layer [Pautet et al., 2014], which

prove especially valuable in quantifying small-scale GW amplitudes and MFs [e.g., Fritts et al., 2014]. Indeed,

various combinations of these instruments have contributed greatly to a broader understanding of GWs over

many years [e.g., Collins and Smith, 2004; Williams et al., 2006; Namboothiri et al., 1996; Hecht et al., 1997;

Nielsen et al., 2012; Bossert et al., 2014; Cai et al., 2014; Yuan et al., 2014; Ejiri et al., 2009; Simkhada et al., 2009]

because such combinations of instruments allow for a more complete quantification of GW environments

and parameters.

Measurements from various instruments allow for the quantification of mean and variable GWmomentum

flux within the MLT. Multiple radars from equatorial to polar latitudes have revealed typical mean zonal

momentum flux magnitudes of <u′w′> ~1–20m2 s�2 in the MLT that are anticorrelated with zonal mean

winds and with lower (higher) values at lower (higher) altitudes and latitudes [Vincent and Reid, 1983;

Fritts and Vincent, 1987; Reid et al., 1988; Tsuda et al., 1990; Wang and Fritts, 1990; Hitchman et al., 1992;

Fritts et al., 2010, 2012;Murphy and Vincent, 1993; Nakamura et al., 1993]. Global MF averages from satellites

have provided previous estimates ranging from ~1 to 8m2 s�2 in the MLT [Ern et al., 2011]. Local estimates

for short-term (~1–6 h) averages using radars are often ~30–60m2 s�2 or larger, while local estimates

employing airglow observations suggest systematic geographic conditions and occasional, very strong

events having <u’w’> magnitudes as large as ~900m2 s�2 [Fritts et al., 2014; Espy et al., 2004]. Finally,

satellite measurements have allowed for calculations of the residual-mean circulation and provided

estimates of total wave drag (assumed to be due primarily to GWs in the mesosphere) that are similar in form

to but somewhat smaller in magnitude than radar measurements at corresponding latitudes and altitudes

[Lieberman et al., 2000].

The Deep Propagating Gravity Wave Experiment (DEEPWAVE) research program was conceived to take

advantage of the synergism between multiple instruments and performed measurements addressing GW

responses to multiple sources throughout a large and active source region. For these purposes, DEEPWAVE

employed two new airborne lidars and an AMTM developed specifically for the National Science

Foundation/National Center for Atmospheric Research (NSF/NCAR) Gulfstream V (GV) research aircraft.

These measurement capabilities were augmented by a second aircraft, the German DLR Falcon having in situ

instruments and a downward viewing aerosol Doppler lidar and extensive ground-based measurements

extending from the surface to ~100 km on the New Zealand South Island and Tasmania. An overview of

the DEEPWAVE program [Fritts et al., 2015] describes the program motivations, measurement and modeling

capabilities, performance, and initial results. DEEPWAVE was performed on and over South Island, Tasmania,

and the surrounding Southern Ocean and Tasman Sea during June and July 2014, with aircraft operations

and program logistics based in Christchurch.

Research reported here addresses GW dynamics observed by the GV Rayleigh lidar, AMTM, and two IR “wing”

cameras at altitudes from ~20 to 90 km on Research Flight 22 (RF22) performed on 13 July, one of the 26 GV

research flights performed throughout DEEPWAVE. The DEEPWAVE instrumentation and data are described

in section 2. Sections 3 and 4 describe the estimates of GW parameters andmomentum fluxes. A discussion of

the results and our conclusions are provided in sections 5 and 6.

2. Research Data and Instrumentation

DEEPWAVE data employed for this study were collected with the new GV Rayleigh lidar, AMTM, and wing

cameras viewing the OH layer to either side of the GV in order to extend the cross-track imaging to

~900 km. A brief description of each measurement capability and data analysis is provided below.

2.1. GV Advanced Mesosphere Temperature Mapper

The GV AMTM is a newly developed IR imager measuring selective lines of the OH (3,1) emission. This bright

emission originates from a ~8 km full width at half maximum (FWHM) layer located at ~87 km in altitude

[Baker and Stair, 1988; She and Lowe, 1998] and is widely used as a tracer of the dynamical processes propa-

gating through the upper atmosphere. The AMTM comprises a 320 × 256 pixel IR sensor, a large-aperture

telecentric lens system, and a computer-controlled filter wheel to sequentially measure the brightness of

the P1(2) and P1(4) lines of the OH (3,1) band, as well as the atmospheric background. Combining these three

emissions, it is possible to calculate the OH (3,1) rotational temperature for each pixel of an image and “map”
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themesospheric temperature over a ~120× 80 km area [Pautet et al., 2014]. During the DEEPWAVE flights, the

exposure time for each filter was 4 s, providing a temperature measurement every ~16 s, with a typical error

of ±2 K for each individual pixel. In the months preceding the campaign, cross calibration was performed by

operating the AMTM alongside the well-proven Utah State University Na lidar. The two instruments were in

good agreement on individual nights as well as on an average basis. The accuracy relative to the lidar mea-

surements at 87 km was<1 K. In addition to the AMTM, two low-elevation (25° above the horizon) IR imagers

were operated on each side of the plane. They only measured the OH emission brightness, but their large

field of view (~40 × 30°) allowed to laterally extend the region of the MLT observed from the aircraft and to

investigate the large-scale gravity waves covering its surroundings.

2.2. GV Rayleigh Lidar

The Rayleigh lidar is a new facility instrument built at GATs Inc. for the NSF/NCAR Gulfstream V. This lidar and

the GV sodium lidar are contained in two standard GV instrument racks. The laser is a diode-pumped Nd:YLF

Photonics DS20-351 generating 5W at a 351 nm wavelength and a 1 kHz pulse repetition rate. The beam is

expanded to 20mm diameter and 0.4mrad divergence, so that it is eye safe for 0.25 s exposures when it exits

the laser windows on the top of the aircraft. The return signal is received using a 0.3m diameter f/4

Newtonian telescope. The fiber-coupled detector is a 50% quantum efficiency, low-noise photomultiplier

tube with a 0.5 nm FWHM interference filter. The returned signal profiles are recorded at 1 s temporal and

37.5m altitude resolution.

Following the normal Rayleigh procedure, an atmospheric density profile is calculated from the lidar signal

profile taking into account the geometric factors. The density is integrated down from a top starting tempera-

ture to obtain a temperature profile. For the start temperature, we used the European Centre for Medium-Range

Weather Forecasts (ECMWF) model temperature at 71 km interpolated to the aircraft time and position. This

calculation assumes that there is no aerosol scatter. Temperature results are shown from 20 to 60 km. At

40 km altitude, the temperature error is ~2 K in a 30 s, 3 km integration.

2.3. GV Sodium Lidar

The sodium lidar is a high spectral resolution system that shares the same racks, telescope, and receiver

electronics as the Rayleigh system. The transmitter is a narrowband Toptica continuous wave laser com-

posed of a 18W Raman fiber amplifier doubled to produce 10W of 589 nm light with a 10MHz line width.

The laser output light is locked to the D2a feature in the sodium Doppler-free saturation spectrum. We use

an acousto-optic amplitude modulator to produce 20 μs square pulses repeating at 1 kHz. This modulator

produces a small 80MHz frequency shift, which we account for in the analysis. This pulsed beam has a

150 km total range and 3 km range resolution.

The receiver is fiber coupled to the telescope. We use a 75% transmission 1 nm bandwidth interference filter

and a 40% quantum efficiency photomultiplier tube. This beam is synchronized with the Rayleigh beam to

avoid cross talk, and the data are recorded on the same counter board oversampled at 1 s and 37.5m resolu-

tions. For postprocessing, the counts are averaged in bins of 1 km and 3.2min (~45 km spatially) and Rayleigh

normalized at altitudes from 30 to 35 km using Mass Spectrometer Incoherent Scatter (MSIS). The mixing

ratios are calculated from sodium densities and relative background atmospheric conditions based on a scale

height calculated from the AMTM temperature and MSIS densities at 87 km.

2.4. Lauder Rayleigh Lidar

The German Aerospace Center (DLR) Rayleigh lidar at Lauder (45.0°S, 169.7°E) is a mobile mesospheric lidar sys-

tem contained in an 8 foot container. The transmitter comprises a diode-pumped Nd:YAG laser generating 12W

at 532nm wavelength and 100Hz pulse repetition rate. Backscattered light is collected using a fiber-coupled

25 inch diameter telescope mirror with a field of view (FOV) of 0.24mrad. In the receiver the light is distributed

between three detectors, a 608nm Raman channel and low and high rate 532nm channels. The timing of

detected photons is recorded at 2ns resolution. The temperature is initialized at 95 km. For the nightly average,

the count profiles are vertically averaged over a 900m resolution.

2.5. Kingston Meteor Detection Radar

An ATRAD meteor detection wind radar, capable of measuring wind speeds between heights of 70 and

110 km, operated at Kingston, Tasmania (43.0°S, 147.3°E), from 10 June 2014 through the DEEPWAVE
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measurement program. The radar consisted of a high-power pair of crossed folded dipole antennas for circu-

larly polarized all-sky transmission at the radar frequency of 55.0MHz and a Mills cross array of five crossed

Yagi receiving antennas. Transmitted power was 40 kW peak. Winds were derived at equally spaced heights

by least squares fitting a nondivergent wind field to 1 h windows of radial velocity determinations. A general

system description of this type of meteor radar is given by Holdsworth et al. [2004].

3. Determination of GW Parameters

The observed GWs were characterized using the methods and equations from Fritts et al. [2014] and Fritts and

Alexander [2003], an overview of which is provided here. The GW perturbations are assumed to have the

approximate forms given by

eu; ew; eT ;ep;eρ ∼ u′;w′; T ′
T
;
p′

ρ
;
ρ′

ρ
exp i kx þmz � ωtð Þ þ

z

2H

h i� �
(1)

Where u′, w′, Τ ′, p′, and ρ′ are horizontal and vertical velocity, temperature, pressure, and density perturba-

tions; T is the mean temperature; ρ is the mean density; ω= kc is the GW frequency; and H is the scale height.

The buoyancy frequency squared is given by

N2 ¼
g

T

dT

dz
þ
9:5K

km

� �
(2)

From the polarization relations in Fritts and Alexander [2003], the momentum flux (MF) averaged over a wave-

length of a GW can be obtained as follows:

MF ¼< u’w’ >¼
1

2
u’2

k

m

� �
¼

1

2

T ’

T

g

N

� �2
k

m

� �
(3)

The above equation calculates the vertical flux of horizontal momentum. Here k= 2π/λh is the horizontal wave

number, m= 2π/λz is the vertical wave number, and λh and λz are the horizontal and vertical wavelengths,

respectively. Equation (3) gives a low-end estimate for MF, as it uses raw temperatures and does not account

for phase averaging over the hydroxyl layer. For an ideal GW propagating through the hydroxyl layer,

the temperature perturbation, T ′, can be corrected by dividing by a correction factor, CF, as T ′corr = T ′/CF.

The correction factor, CF, for this ideal case is given in equation (4).

CF ¼
< T ’ >

T ’ zoð Þ
¼ exp

�π2z2FWHM

4 ln 2ð Þλ2z

� �
¼ exp �3:56

z2FWHM

λ2z

� �
(4)

The quantity <T ′> in equation (4) is the temperature perturbation measured by the AMTM, which is smaller

than the true T ′ amplitude due to phase averaging over the OH layer. The Sounding of the Atmosphere using

Broadband Emission Radiometry (SABER) instrument on the TIMED satellite measured the OH profile on an

overpass near South Island on 13 July that indicated an OH layer height of ~87 km and an OH layer FWHM

of ~7 km. With the GW λh and k from the AMTM, m can either be derived from lidar data (with sufficient

resolution and altitude coverage) or determined from the dispersion relation

m2 ¼
N2

c � uð Þ2
�

1

4H2
� k2 (5)

Here c is the observed phase speed of the GW and u is the local background wind. Using lidar data and the

AMTM, the MF can be calculated for observed GWs where the background conditions can be suitably

approximated. This method is used to provide MF estimates for individual GW packets in the following section.

4. Momentum Flux Estimates

4.1. Observed GW Fields

The four cross-island GV flight segments on RF22 occurred between 6:15 and 9:10UT (18:15–21:10 local time)

andwere each ~530km in length. Each flight segmentwas sufficiently long to identify approximately twowave-

lengths of a stationary, large-scaleMW seen in both the Rayleigh lidar temperatures from 20 to 60 km in altitude

and in the AMTM and IR camera OH brightness at the OH layer altitude (~87 km). The side-viewing OH
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brightness images confirm that the

phase fronts of the large-scale MW

were indeed stationary along each pass.

The slightly extended (east-west)

imaging data suggest a MW λh vary-

ing from ~200 km at the eastern side

of each flight segment to ~300 km at

the western side, with a mean of

λh ~ 240 km. Thus, we will assume the

mean value for our analysis here.

The 240kmMW observed by the

Rayleigh lidar is shown as a T ′(x,z)

zonal-vertical cross section for flight seg-

ment 4 in Figure 1. T ′(x,z) was obtained

by subtracting an averaged background

temperature for the segment. This MW

exhibits a pronounced increase in both

its amplitude and its vertical wavelength

with increasing altitude. T ′ varies from a

few kelvins at the lower altitudes to

~15K or larger at ~52 km and above. We expect amplitude growth with altitude for conservative GW propaga-

tion. At lower altitudes between ~20 and 55km, the growth with altitude is a factor of ~8–10, which is expected

for a GW with a mean scale height of H~6–7 km that is growing in amplitude without significant dissipation.

Likewise, λz increases with altitude from ~10km or less below ~30 km in altitude to ~20–30 km at the higher alti-

tudes. The changing vertical wavelength of the λh~240 kmMW is consistent with the increase in zonal wind pre-

dicted by the ECMWF model. For reference, Figure 2 shows the averaged zonal winds from ECMWF for the

duration of the flight and the minimum and maximum values throughout the ECMWF domain. The increasing

ECMWF zonal winds correlate with the increasing vertical wavelength observed in the Rayleigh lidar above

20km. Additionally, we see that there was some modulation in the vertical phase structure of the λh~240km

MW at intermediate and higher altitudes. This could have resulted from a superposition of MWs having other

scales or phase slopes, or other propagating GWs, but uncertainties grow exponentially with altitude, so it is

not possible to be confident of estimates based on Rayleigh lidar measurements approaching 60 km.

As a guide for our inferences of MW

and other GW structures seen in the

AMTM data at higher altitudes, we

note that a decreasing mean tem-

perature above the stratopause would

cause a smaller N and an increase in λz

with altitude, whereas an expected

reduction of the zonal wind would

cause a decrease in λz with altitude.

DEEPWAVE forecasts by the European

Center for Medium-Range Weather

Forecasts (ECMWF) provided for flight

planning and analysis purposes for

RF22 (not shown) agree reasonably well

with the T ′ fields obtained with the

Rayleigh lidar and suggest refraction

to somewhat smaller λz~20 km above

60 km altitudes, apparently in response

to the larger influences of weaken-

ing zonal winds above. Additionally,

Figure 1. Rayleigh lidar temperature perturbations from the fourth pass

show a vertical wavelength of ~20 km.

Figure 2. ECMWF winds averaged over the duration of the flight with the

maximum and minimum winds included for reference.
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ECMWF predicts that the particular conditions allowing the large-scale ~240 km MW to propagate to high

altitudes existed for approximately 2days, beginning on 12 July. While data from the nearby Lauder station were

unavailable during the RF22 flight, Rayleigh lidar data were available from Lauder for 12 July. We believe that

these data provide a good estimate of local temperatures between 60 and 85 km during RF22, given that

ECMWF predicts that this event extends over these 2days. Furthermore, SABER temperatures [Remsberg et al.,

2008] are available nearby at ~12:30UT on 13 July, just a few hours after the RF22 flight. These temperatures also

provide an estimate of large-scale temperature environmentwithinwhich these DEEPWAVEmeasurementswere

performed. Differences of the Lauder lidar profiles from the SABER profiles then provide indications of local

variations that may be largely due to MWs. Figure 3a shows the individual mean temperature profiles for the

two SABER profiles. Figure 3b shows the nightly average of the Lauder Rayleigh lidar temperatures with the

mean SABER temperatures. Both the lidar and SABER show a strong negative gradient in temperature between

~70 and 80 km. However, this differs in altitude between the two measurements. The lidar shows this

low-stability layer to extend from ~70 to 77 km, and SABER shows it to extend from ~77 to 82 km. Both the lidar

and SABER show a positive temperature gradient from ~80 to 90 km. The difference between these measure-

ments likely indicates local influences of the MW in the lidar data, which likely makes little contribution to the

limb-averaged SABER profiles. The weakly stable layer in the lidar profile between ~70 and 80 km suggests a

potential for sustained MW breaking at these altitudes during these times.

A rough prediction of winds for the time

period of RF22 can be obtained from

the Kingston radar over Tasmania.

While these radar winds are ~2000 km

away from the measurements over

New Zealand, they provide a reasonable

estimate of the mean winds and tidal

influences at the altitudes, latitude, and

local time of our measurement. A 6h

total wind starting at 6:00UT is shown

in Figure 4. These measurements sug-

gest a mean wind of about ~25ms�1

toward the east near 87 km at the peak

of the hydroxyl layer.

Turning to the hydroxyl layer, Figure 5

shows for reference the GV AMTM and

wing camera horizontal map of OH air-

glow brightness along and across the

Figure 3. (a) Saber temperatures from two passes on 13 July 2014 at 12:38:21 and 12:39:31 and the averaged temperature

between these passes. (b) The nightly average from the Lauder Rayleigh lidar on 12 July 2014 plotted with the averaged

SABER temperature from Figure 3a.

Figure 4. Kingston meteor radar wind 6 h mean starting at 6 UT on 13 July

2014 shows winds of 45m s
�1

toward the east at 84 km and 25m s
�1

toward the east at 87 km.
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flight track for flight segment 4. The

horizontal dimensions of this field are

~600 km east-west and ~900 km north-

south. Seen clearly are three large-scale

bright regions oriented nearly north-

south, with the stronger central feature

crossing the center of South Island.

Sodium mixing ratios computed along

this flight provide additional insights

into the evolution of the ~240 km MW

in altitude and time. Figure 6 shows

the sodium mixing ratio contours for

each pass, for which a horizontal aver-

aging of ~45 km has been employed.

While these contours do not have the

resolution to show smaller-scale GW

activity, they clearly demonstrate the

~240 km MW observed on each pass.

The contours show that the large-scale

MW has an appreciable amplitude up

to ~80 km but has largely dissipated

by ~87 km. The inferred decrease of

the ~240 km MW amplitude over this

altitude interval and the near-vertical

Na mixing ratio contours suggesting

possible MW breaking and overturning

appear to be consistent with the obser-

vation by both the Lauder lidar and

SABER of a layer of low stability located near ~70–80 km and the observation by the Kingston radar of a critical

level for MWs near 90 km altitude. Given these sodium mixing ratios, combined with the environments pre-

dicted by the Lauder Rayleigh lidar and the Kingston radar, the OH airglowmeasurements are likely responding

to the ~240 kmMW perturbations below the OH layer maximumwhere the amplitude and vertical wavelength

are largest as opposed to the regions above 85 km where the ~240 km MW has largely dissipated.

Shown in Figure 7 are the corresponding GV AMTM along-track temperature fields for all four flight segments.

These along-track field maps, also called keograms, were created using successive zenith cross sections from

the AMTM that have been stitched together to create a spatial view of the temperatures along the flight path.

Comparing the brightness and temperature fields for flight segment 4, we see that the regions of warmest tem-

peratures correspond closely to the regions of maximum brightness. The particular features of greatest interest in

this paper also occur in the brightest, and apparently warmest, and largest amplitude, phase of the ~240kmMW.

The along-track AMTM temperatures reveal the presence of smaller-scale GWs with λh~25–28 km primarily

within the bright and warm phases of the ~240 kmMWon each flight segment. For our discussion below, we will

employ the reference frame of the ~240kmMW, defining positive zonal velocities to be in the propagation direc-

tion of this MW (thus positive toward the west). We assume that the ~240km MW is propagating approximately

zonally, upward, and to the west. The following analysis yields approximate values for MF, allowing us to qualita-

tively estimate the MF influences of the observed GWs along this flight. We note that the corresponding MF cal-

culations are likely an underestimate of the actual MF values. However, these values are nonetheless important in

highlighting the influences of these observed GWs as they show the tendency for largemagnitudes in such envir-

onments even for these underestimates. Where appropriate, upper bounds on MF are estimated or ranges of MF

estimates are given based on uncertainties in observed GW amplitudes and other derived quantities.

4.2. Background Environment

The background temperature profile was estimated given the information from the Lauder Rayleigh lidar and

SABER temperature measurements. Above the nearly adiabatic layer from ~70 to 80 km, we assume a slightly

Figure 5. Imager intensities from the fourth pass of RF22 using the AMTM and

side-viewing IR cameras. These intensities show the ~240 km MW positioned

over the South Island of New Zealand and spanning ~900 km meridionally.
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positive temperature gradient above 80 km. The nightly average from the AMTM was found to be 212 K, and

that from the Lauder Rayleigh lidar at ~80 km was ~195K. SABER provides a temperature of 194 K at 80 km

and 211K at 87 km. While both of these measurements include smaller-scale fluctuations, especially localized

MWs in the Lauder lidar, we believe that a reasonable approximation to the background temperature gradient

can be inferred. Using SABER and the AMTM and lidar measurements, we infer an approximate mean

Figure 7. AMTM spatial keograms showing both the 240 km MW centered over New Zealand and several smaller-scale GWs.

Figure 6. Sodium mixing ratios from the GV sodium lidar for the four RF22 flight segments clearly show the ~240 km MW

below 85 km and strong dissipation of this MW above 85 km.
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temperature gradient from 80 to

87 km of ~2.5 K/km. This results in an

estimate of the mean buoyancy fre-

quency between ~80 km and 87 km

of N~0.023 s�1 from equation (2).

The background wind was obtained

using the Kingston radar. For the pur-

poses of this analysis, we assume that

the stationary MWs are largely observed toward the bottom side of the OH layer near 84 km, as these MWs are

likely approaching a critical level near 90 km where the mean winds approach 0ms�1. Furthermore, the

sodium mixing ratios confirm that the amplitude of the ~240 km MW decreases rapidly above 85 km. For

the smaller-scale waves, we assume that those with observable phase speeds toward the east (not MWs)

are weighted toward the center of the OH layer as they are not approaching a critical level. For this reason,

we assume the background wind at two different altitudes depending on the GW analysis, 87 km and

84 km, where the winds are ~�25 and �45m s�1 respectively as shown in Figure 4.

4.3. Large-Scale MW Characterization and MF Estimation

The temperature perturbations for the ~240 kmMWwere found by subtracting themean temperature for each

flight segment. Smaller-scale perturbations were removed from the ~240 kmGWusing a smoothing spline fit to

generate a low-pass characterization of the ~240 km MW and estimate the temperature perturbations asso-

ciated with this MW. We assume that the temperatures measured by the AMTM are largely weighted toward

the MW perturbations seen below ~85 km because of the expected strong phase averaging at higher altitudes.

These temperature perturbations are likely an underestimate of the actual temperature perturbations between

80 and 85 km due to averaging within the OH layer. However, given our lack of information about the shape of

the OH layer in the complex mixing environment accompanying breaking and dissipation at these altitudes, a

correction factormay provide an inaccurate and potentially large overestimate of the temperature perturbation.

The MF for the ~240 km MW for each pass was calculated using equation (3) and other parameters specified

above. The ~240 km MW parameters and corresponding MFs calculated from the AMTM are summarized in

Table 1. These varied from 3 to 6m2 s�2 and are similar to themean values at this altitude. As noted above, how-

ever, these values are likely a significant underestimate of the MF of the ~240 km MW where its amplitude is

larger than the estimates from the AMTM in Table 1.

The sodium mixing ratios provide an alternate means of estimating temperature perturbations of the ~240 km

MW at these altitudes. The mixing ratio yields a relative parcel displacement, and from this a temperature

perturbation can be calculated. The displacements in mixing ratio contour from ~83 km for each pass are

summarized in Table 2. Using an adiabatic lapse rate of 9.5 K/km and the background temperature gradient

of ~2.5/km, a temperature perturbation estimation can be obtained, and these estimates are also given in

Table 2. We use the winds near ~83 km, which are 55m s�1 toward the east, in order to calculate the MF

here. The MF values are summarized in Table 2. These values are larger than mean MF values and range

from 17 to 68m2 s�2, which suggest strong variation in propagation conditions of the ~240 km MW on

each pass. The difference in temperature measurements between the AMTM and sodium mixing ratio is

due to the averaging associated with the AMTM and its likely small contribution from the lower altitudes

where the ~240 km MW is large, given that the OH layer appears to be centered where we see little to

no perturbations in the sodium mixing ratios.

Assessing uncertainties in GWMF estimates is important for defining mean values and their range of variability

under various forcing and propagation conditions. Often, uncertainties in MF magnitudes are quite large due

to imprecise estimates of GW amplitudes, intrinsic frequencies, and variable environments. This is especially

the case in using airglow intensity

measurements, where the relation

between intensity and temperature

perturbations may vary by a factor

of up to ~10 [Hickey and Yu, 2005],

causing MF uncertainties of up to

~100 times for slow GW phase speeds

Table 1. 240 km MW Temperature Perturbations and Corresponding MF

Near 84 km

Pass Number <T ′> (K) MF (m
2
s
�2

)

1 8 6

2 7 5

3 6 3

4 8 6

Table 2. 240 km MW Mixing Ratio Vertical Displacements Near 83 km

Pass # dz (km) T ′ (K) MF (m
2
s
�2

)

1 2 24 68

2 1.5 18 38

3 1 12 17

4 1.5 18 38
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and up to ~10 times for higher GW

phase speeds. In particular, previous

estimates using airglow brightness

with claimed uncertainties of only

approximately tens of percent cannot

be legitimate in light of the Hickey

and Yu [2005] analysis.

Direct estimates of T ′ provided by the new AMTMs largely overcome these extreme uncertainties. However,

there remain significant uncertainties that could cause a traditional error analysis to imply that MFs remain

almost entirely uncertain. To provide more justified bounds on MFs in such cases, we note that a well-

constrained T ′ effectively defines a lower bound onMF in cases where measurements provide reasonable char-

acterization of the GW intrinsic properties. Nevertheless, this always yields an underestimate, due to the phase

averaging inherent in the AMTM T ′ estimate. Similarly, identification of GW parameters and their environments

also enables an approximate upper limit imposed by a GW saturation condition, e.g., u′max~ (c� u) [Fritts, 1984],

for which there is observational, theoretical, and modeling evidence [see Fritts and Alexander, 2003].

In our case, MWs approaching a critical level at ~90 km imply that the peak MF will occur near where u′= (c� u)

and will decrease as the critical level is approached. The resulting MF estimates at 83, 84, and 87 km are sum-

marized in Table 3. These suggest maximum MFs ranging from ~96m2 s�2 at 83 km to less than ~10m2 s�2

at 87 km. Our calculations above are within these bounds, and our data also agree with the strong dissipation

that must be occurring as the MWs approach the critical level near 90 km.

Given the strong dissipation of this MW up to 85 km, and very weak influences above, we assume for

further analysis that the ~240 km MW does not have large wind and temperature perturbations affecting

the propagation environment of small-scale GWs observed at the altitude of the AMTM. However, it should

be acknowledged that this MW most likely has an increasing influence on small-scale GW propagation at

lower altitudes where its amplitude is large.

4.4. Small-Scale GW Characterization and MF Calculations

On each flight segment of the RF22 flight, there were smaller-scale dynamics observed over the South Island.

Each of these occurred accompanying the central brighter, and warmer, phase of the ~240 kmMW, suggesting

strong influences of the ~240 kmMW structure on the character and vertical propagation of these smaller-scale

GWs and the potential influences of this ~240 km MW on the production of instabilities and secondary GWs.

AMTM vertical views of these four events with the large-scale ~240km MW background subtracted are shown

in Figure 8. In each case, the smaller-scale dynamics were aligned principally in the zonal plane and their λh
varied from ~25 to 28 km.

The dotted boxes in Figure 8 show the region of the image used for the calculation of T ′ and λh. To obtain T ′,

we average the temperature meridionally as the observed GWs are aligned in the north-south direction.

These averages use 10 pixels of the AMTM, so error due to AMTM noise is sufficiently reduced. The average

difference between the temperature maxima and minima in the boxed areas was used to determine the

approximate T ′. In order to calculate a corresponding λh, a Lomb Scargle periodogram was used on the

images in Figure 8. Our smaller-scale GW analysis is limited to the FOV of the AMTM. The images in

Figure 8 are ~45 km meridionally by ~90 km zonally, and the smaller-scale GWs analyzed in this section have

a λh< 45 km. The phase speed c for each observation was calculated by tracing phase movement across suc-

cessive images in time and compensating for the speed of the GV. From these observed phase speeds, the

intrinsic phase speed, ci= c� u, for each event was calculated using the mean horizontal wind, u, estimated

from the radar measurements. In order to account for expected uncertainties in the local mean wind, we also

calculate the MF assuming that u is larger and smaller by 15m s�1. This allows for estimates of the possible

range of MFs given the inherent uncertainties in the available horizontal wind information. Given the

differing nature of the small-scale dynamics, each pass is described separately below.

4.4.1. Pass 1

This GWwas observed to be propagating with a phase speed of ~100m s�1 toward the east. The atmospheric

conditions allow for this GW to propagate to higher altitudes, so we assume propagation through the entire

OH layer. The measured T ′ is ~7 K, the horizontal wavelength is 28 km, and for a background wind of

Table 3. Estimated Upper Bound MF Values for the ~240 km MW

Approximated From 83 to 87 km

Altitude (km) c� u (m s
�1

) λz (km) MF Limit (m
2
s
�2

)

83 55 15.2 96

84 45 12.4 52

87 25 6.8 9
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�25m s�1 at 87 km, the corresponding MF is ~105m2 s�2 which is ~10–20 times the mean at this altitude.

The MF for zonal winds of ±15m s�1 about the mean wind assumed above also yielded vertical propagation

in each case, with MF ranging from ~70 to 200m2 s�2.

4.4.2. Pass 2

This feature appears to be largely confined to the FOV of the GV AMTM and is not seen in the side-viewing

cameras, it evolves somewhat in shape over the intervals observed, and the relative motion (~�24m s�1)

appears to be the same as the mean wind (~�25m s�1). Thus, we believe these features to be instabilities

that simply advect with the mean wind at this altitude.

4.4.3. Pass 3

Similar to the first pass, this GW is propagating with an observed phase speed of 130ms�1 to the east. At

the central OH altitude of ~87km, the measured phase speed implies that the observed GW is evanescent.

However, given the significant T ′~5K, it is likely that this GW is ducted at a nearby eastwardwind or N2maximum

at a lower altitude, given the wind profile implied by the meteor radar and the N2 maximum implied by SABER

from ~82 to 85 km. The stronger eastward winds measured by the meteor radar just a few kilometers below

87km would allow this GW to be in a region of vertical propagation below the evanescent region near 87 km.

Figure 8. Overhead AMTM temperature maps of observed small-scale GWs during the four flight segments over Mount

Cook, NZ. The dashed boxes show the areas used for calculating temperature perturbations and wavelength using a

Lomb Scargle periodogram. The arrows denote the intrinsic direction of propagation of the observed GWs.

Table 4. Small-Scale Parameters for Passes 1–4 Obtained From Figure 7

Pass # <T ′> (K) c (m s
�1

) u (m s
�1

) ci (m s
�1

) λh (km) m
2
(m

�2
) λz (km)

1 7 �100 �25 �75 28 3.88E�08 31.9

2 6 �24 �25 -- 28 -- --

3 5 �135 �25 �110 28 �1.23E�08 --

4 4.4 0 �45 45 25 1.96E�07 14.2
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4.4.4. Pass 4

The GW in this case has an observed

phase speed near zero, suggesting

a smaller-scale MW that is also

approaching a critical level. It also

appears to have small-scale structure

suggesting that it may be exhibiting

instability accompanying its decreas-

ing vertical wavelength and amplitude. For this reason, we use 84 km as our analysis altitude, similar to that

of the ~240 km MW. The measured T ′~ 4.4 K and horizontal wavelength of ~25 km implies a MF~ 21m2 s�2,

thus with lower limits varying from 13 to 33m2 s�2 due to an estimated uncertainty in the background wind

of ±15m s�1. While we have assumed that this is a MW because of the approximately zero phase speed and

the small-scale structure at higher altitudes, we note the complex environment through which this GW must

propagate to reach the MLT region. This GW was observed above a region of low stability and decreasing

temperature as measured by both SABER and the Lauder lidar. This region is likely a layer in which MWs

are breaking, and the observed GW from this pass could either be a MW contributing to the breaking

dynamics and retaining a coherent structure but with smaller amplitude as observed in modeling of GW

breaking [Fritts et al., 2009] or this could be a secondary GW coincidentally having the same phase speed

as the source MWs. Of these possibilities, the former seems far more likely, as we are aware of no observations

or modeling studies suggesting secondary GWs exhibiting this behavior.

The characteristics of each observation are summarized in Table 4. The MF calculations for passes 1 and 4 are

summarized in Table 5. TheMF estimates for passes 1 and 4 are very conservative as the T ′ is not corrected for

averaging over the OH layer, which would yield a larger implied T ′ in all cases. As noted previously, the MW

breaking environment at the bottom side of the OH layer adds complexity that makes confident estimates of

the true T ′ challenging. We also performed these MF estimates for u increased and decreased by 15m s�1

relative to the estimated u in each case. The MF values computed for changes in u (and ci) by 15m s�1

approximate the extrema of the possible MF values, given the uncertainties of the local horizontal wind u

and phase speed c determinations from the AMTM. Nevertheless, we believe the central values to be more

likely and so will use these as our best conservative estimates for these events.

5. Discussion

The MFs listed in Tables 1, 2, and 5 span a wide range of magnitudes for various observed GW scales and

amplitudes. The ~240 km MW was estimated to have MFs ranging from 3 to 6m2 s�2 at ~87 km by the

AMTM and potentially MFs as large as 68m2 s�2 from the sodium mixing ratio displacement estimates at a

lower altitude where the MW amplitude is obviously much larger. This larger value is ~10 times larger than

the mean values at this altitude, and this MF spans a region extending hundreds of kilometers zonally and

meridionally. In comparison, the smaller-scale GWs observed in localized regions over South Island on flight

segments 1 and 4 had large MFs with conservative estimates for pass 4 of ~20m2 s�2 and conservative esti-

mates for pass 1 of ~100m2 s�2. Regardless of errors associated with these estimates, they may greatly

underestimate the actual MF values depending on phase averaging of the small-scale GWs over the OH layer.

Compared to the ~240 kmMW, the smaller-scale GWs that were propagating hadmuch larger MFs, and these

range from as much as ~2–20 times typical mean magnitudes of ~5–10m2 s�2 expected at these altitudes.

While we note that these calculations may have large errors associated with them, even very conservative

estimates show that the MF associated with the small-scale GWs is significant. These estimates demonstrate

the potentially important role of such small-scale GWs in the overall momentum budget of the mesosphere

and lower thermosphere.

The small-scale GWs examined here are also of interest because of the multiscale character of the environ-

ments that appeared to control where they achieved large amplitudes and MFs. During the first and third

flight segments, the GWs were observed to have eastward intrinsic phase speeds. However, the observed

small-scale GW on the third flight segment was evanescent, suggesting that this GW seen in the OH layer

was likely ducted at a nearby layer, given its large OH layer amplitude. Observations on the fourth flight seg-

ment revealed a GW with an intrinsic phase speed toward the west and an observed phase speed of zero,

Table 5. Small-Scale GWMF Calculated Without Correcting for Integration

Over the OH Layer for Passes 1 and 4

MF (m
2
s
�2

)

Pass # Altitude (km) u� 15 (m s
�1

) u (m s
�1

) u + 15 (m s
�1

)

1 87 68 105 212

4 84 33 21 13
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which was possibly a smaller-scale MW or other GW approaching a critical level. Thus, all of these GWs had

apparently very different character, despite somewhat similar large-scale environments.

The different character of the three small-scale GWs discussed above suggests potentially different sources

for these various GWs and/or different multiscale influences on their propagation into the MLT. One obvious

potential source is the same South Island orography that generated the ~240 kmMW that provided the back-

ground environment at higher altitudes. This could only be true for the small-scale GWs having c~ 0 and

ci> 0. But this is the case for the small-scale GW on flight segment 4, which has an observed c~0. The other

small-scale GWs must have different initial c and ci (and sources) given their large negative c and especially

the ci< 0 for flight segments 1 and 3.

Finally, as noted above, the small-scale GWs analyzed for the flight segments all occurred in the warm phase

of the ~240 km MW, implying a significant influence of the ~240 km MW on the small-scale GW propagation

and refraction with altitude. These cases are very similar to that observed at ALOMAR in northern Norway and

analyzed by Fritts et al. [2014]. In that case, the larger GW scales within the multiscale GW field were found to

strongly modulate the smaller-scale GW occurrence and amplitude, also leading to a very large momentum

flux estimate. Thus, our observations of similar dynamics during DEEPWAVE appear to be further evidence of

the importance of such multiscale dynamics that likely play major roles in the composition of the GW spec-

trum with altitude and the determination of the GWs that contribute most to momentum fluxes in the MLT.

6. Conclusions

The measurements described here occurred during the DEEPWAVE airborne measurement campaign that

was performed in June and July 2014 over and around New Zealand. DEEPWAVE specifically targeted deep

responses to orographic and nonorographic GW sources at lower altitudes extending to ~100 km.

GV airborne observations during DEEPWAVE Research Flight 22 on 13 July revealed a larger-scale, λh~240 km

MW extending ~600 km or more zonally and ~900 km or more meridionally. This large-scale MW yielded esti-

mated MFs of ~ 3–6m2 s�2 from AMTM altitudes and MFs of 17–68m2 s�2 at altitudes near ~83 km in the

sodium mixing ratios. Observations of localized smaller-scale GWs within the ~240 km MW field had

λh~ 25–28 km and yielded MF estimates ranging from ~20m2 s�2 to 105m2 s�2 that are larger, and in some

cases significantly larger, than mean values in the MLT. These results demonstrate the potentially significant

impacts that small horizontal-scale GWs with large λz can have at higher altitudes. They also emphasize the

likely importance of such multiscale GW dynamics and their influences on smaller-scale GW propagation and

momentum fluxes in the MLT and potentially at lower altitudes. Indeed, such multiscale dynamics may be

relatively common throughout the atmosphere and suggest the value of additional efforts to quantify these

dynamics and effects with further quantitative observations and parallel numerical modeling.
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