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Damian J. Murphy7 , Andrew J. Spargo6, and Andrew D. MacKinnon4

1Global Atmospheric Technologies and Science (GATS), Inc., Boulder, CO, USA, 2Department of Physical Sciences,

Embry-Riddle Aeronautical University, Daytona Beach, FL, USA, 3Space Science Division, U.S. Naval Research Laboratory,

Washington, DC, USA, 4School of Chemistry, University of Leeds, Leeds, UK, 5ATRAD Pty Ltd, Thebarton, South Australia,

Australia, 6School of Physical Sciences, University of Adelaide, Adelaide, South Australia, Australia, 7Department of

Environment and Energy, Australian Antarctic Division, Kingston, Tasmania, Australia

Abstract During the Deep Propagating Gravity Wave Experiment (DEEPWAVE) 13 July 2014 research flight

over the South Island of New Zealand, a multiscale spectrum of mountain waves (MWs) was observed.

High-resolutionmeasurements of sodium densities were available from ~70 to 100 km for the duration of this

flight. A comprehensive technique is presented for obtaining temperature perturbations, T0, from sodium

mixing ratios over a range of altitudes, and these T0 were used to calculate the momentum flux (MF) spectra

with respect to horizontal wavelengths, λH, for each flight segment. Spectral analysis revealed MWs with

spectral power centered at λH of ~80, 120, and 220 km. The temperature amplitudes of these MWs varied

between the four cross-mountain flight legs occurring between 6:10UT and 9:10UT. The average spectral T0

amplitudes near 80 km in altitude ranged from 7–13 K for the 220 km λH MW and 4–8 K for the smaller λH
MWs. These amplitudes decayed significantly up to 90 km, where a critical level for MWs was present. The

average MF per unit mass near 80 km in altitude ranged from ~13 to 60 m2/s2 across the varying spectra over

the duration of the research flight and decayed to ~0 by 88 km in altitude. These MFs are large

compared to zonal means and highlight the importance of MWs in the momentum budget of the

mesosphere and lower thermosphere at times when they reach these altitudes.

1. Introduction

Gravity waves (GWs) have been known for many years to play major roles in the dynamics and structure

of the atmosphere from the Earth’s surface into the mesosphere and lower thermosphere (MLT). A key role

is the transport and deposition of momentum from sources at lower altitudes to regions of dissipation at

higher altitudes. Momentum flux (MF) divergence causes flow accelerations in the direction of horizontal

GW propagation, and the cumulative effects in the MLT are decelerations and even reversals of the zonal flow

in both hemispheres and an induced residual circulation from the summer to winter hemisphere near the

mesopause (Fritts & Alexander, 2003; Garcia & Solomon, 1985; Holton, 1982, 1984). Orography is a major

source of GW generation, and orographic GWs are a key component in parameterizations used in global

circulation and climate models (Alexander et al., 2010; Kim et al., 2003). Multiple satellite observations have

demonstrated GW hot spot regions in the stratosphere over major orography, suggesting the significant role

that mountain waves (MWs) play at these higher altitudes (Eckermann & Preusse, 1999; Gong et al., 2012;

Hoffmann et al., 2013; Jiang et al., 2005; McLandress et al., 2000; Wu et al., 2006).

The Deep Propagating Gravity Wave Experiment (DEEPWAVE) observed GWs in the vicinity of an orographic

GW hot spot over the South Island of New Zealand during June–July 2014 (Fritts et al., 2016). The National

Center for Atmospheric Research/National Science Foundation (NCAR/NSF) Gulfstream V (GV) aircraft flew

25 research flights (RFs) out of Christchurch, NZ. Onboard GV instruments used during this campaign

included both Rayleigh and sodium (Na) lidars allowing for measurements of the stratosphere and MLT,

and an advanced mesospheric temperature mapper (AMTM), which provided temperatures derived

from OH airglow emissions centered near ~87 km. Additionally, flight-level data were collected by in situ

instrumentation. Through these campaign measurements, multiple MWs were observed throughout the

atmosphere, and a number of these have been analyzed to date (Bossert et al., 2015, 2017; Bramberger

BOSSERT ET AL. 9980

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE
10.1029/2018JD028319

This article is a companion to Fritts et al.

(2018) https://doi.org/10.1029/

2017JD028250.

Key Points:

• A multiscale spectrum of mountain

waves was observed during a

mesospheric mountain wave event

over New Zealand

• Temperatures of the mountain waves

were derived using sodium density

mixing ratios

• Average momentum fluxes

associated with observed mountain

waves were large compared to zonal

means

Supporting Information:

• Figure S1

• Data Set S1

• Data Set S2

• Data Set S3

• Data Set S4

• Data Set S5

• Data Set S6

• Data Set S7

Correspondence to:

K. Bossert,

k.bossert@gats-inc.com

Citation:

Bossert, K., Fritts, D. C., Heale, C. J.,

Eckermann, S. D., Plane, J. M. C., Snively,

J. B., et al. (2018). Momentum flux

spectra of a mountain wave event over

New Zealand. Journal of Geophysical

Research: Atmospheres, 123, 9980–9991.

https://doi.org/10.1029/2018JD028319

Received 17 JAN 2018

Accepted 5 JUL 2018

Accepted article online 13 JUL 2018

Published online 17 SEP 2018

©2018. American Geophysical Union.

All Rights Reserved.

http://orcid.org/0000-0002-7076-0449
http://orcid.org/0000-0002-6402-105X
http://orcid.org/0000-0003-1970-9004
http://orcid.org/0000-0002-8534-1909
http://orcid.org/0000-0003-3648-6893
http://orcid.org/0000-0002-7616-439X
http://orcid.org/0000-0002-1797-5985
http://orcid.org/0000-0003-1738-5560
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-8996
http://dx.doi.org/10.1029/2018JD028319
http://dx.doi.org/10.1029/2018JD028319
https://doi.org/10.1029/2017JD028250
https://doi.org/10.1029/2017JD028250
http://dx.doi.org/10.1029/2018JD028319
http://dx.doi.org/10.1029/2018JD028319
http://dx.doi.org/10.1029/2018JD028319
http://dx.doi.org/10.1029/2018JD028319
http://dx.doi.org/10.1029/2018JD028319
http://dx.doi.org/10.1029/2018JD028319
http://dx.doi.org/10.1029/2018JD028319
http://dx.doi.org/10.1029/2018JD028319
http://dx.doi.org/10.1029/2018JD028319
http://dx.doi.org/10.1029/2018JD028319
http://dx.doi.org/10.1029/2018JD028319
http://dx.doi.org/10.1029/2018JD028319
http://dx.doi.org/10.1029/2018JD028319
http://dx.doi.org/10.1029/2018JD028319
http://dx.doi.org/10.1029/2018JD028319
http://dx.doi.org/10.1029/2018JD028319
http://dx.doi.org/10.1029/2018JD028319
mailto:k.bossert@gats-inc.com
https://doi.org/10.1029/2018JD028319


et al., 2017; Eckermann et al., 2016; Fritts et al., 2016; Kruse et al., 2016; Pautet et al., 2016; Smith & Kruse, 2017).

This paper focuses on the multiscale MW event on 13 July 2014 observed from the GV RF, and calculations of

its changing MF spectra over a range of altitudes and spatial regions. These calculations are performed using

a presented technique for obtaining temperatures from mixing ratios associated with significant sodium

density perturbations on the lower side of the sodium layer.

2. Measurements

During the RF on 13 July 2014, the sodium lidar was run in a special high-resolution mode that provided

sodium density measurements at 1-s sampling using one frequency; however, this nonstandard single-

frequency measurement configuration prohibited the derivation of temperatures provided by the standard

two laser frequency measurements. These high-resolution measurements allowed for the observation of

small-scale secondary GWs within the sodium layer with horizontal wavelengths λH < 40 km along the flight

track (Bossert et al., 2017), as well as a λH ~ 200–240 km MW, which persisted for the entire flight duration

(Bossert et al., 2015). There were four flight passes during the RF across the South Island, and these all

traversed the highest peak, Mt. Cook. These flight passes took place between 6:10UT and 9:10UT, with

sodium lidar data acquisition beginning at 6:20UT.

The data used in this study were filtered using a boxcar moving average window over 1.8 km (6 altitude bins)

and 15 s (15 temporal bins), the latter corresponding to an along-track horizontal resolution of ~3.6 km given

a mean GV cruise speed of 240 m/s. During the second and third passes, the lidar data were affected by

intermittent problems with the laser’s locking to the sodium line. In order to use all of the data, a temporal

low-pass filter was applied to remove locking-related anomalies from the data series while retaining GW

horizontal wavelengths of λH ~ 30 km and larger. The applied filter had a passband of 100 s (~24 km along

track) and a stopband of 50 s (~12 km along track).

3. Temperature and MF Measurements and Validation

Several methods are available to infer GW-induced temperature perturbations diagnostically from observed

GW-induced sodium density perturbations. Sodium density perturbations have previously been used to

calculate temperature perturbations associated with GWs (Bossert et al., 2014; Shelton et al., 1980;

Swenson & Gardner, 1998), and sodium lidars have also been previously used to calculate MFs associated

with GWs (Acott et al., 2011; Gardner & Liu, 2007). Assuming hydrostatic GWs and purely vertical and linear

gradients in background temperatures and sodium densities, GW-induced perturbations in temperature

can be derived from sodium density perturbations using parcel-advection methods (see Eckermann et al.,

1998). The diagnostic relation relating sodium density perturbations (assuming conservation of the sodium

mixing ratio and potential temperature following air motions) is given in equation (1),

ρ
0

Na ¼
ρNa
γH

þ
∂ρNa
∂z

� �

gT
0

N2T

 !

(1)

where ρ
0

Na is the sodium density perturbation, ρNa is the background sodium density, T0 is the temperature

perturbation, T is the background temperature, γ is the ratio of specific heats, g is the gravitational accelera-

tion, N is the background buoyancy frequency in rad/s, and H is the pressure scale height.

The GW-induced T0 can also be calculated by using the observed vertical displacement of Na mixing-ratio iso-

pleths. This approach was used as an approximate calculation for T0 for the large scale ~240 km MW present

during the 13 July 2014 RF in Bossert et al. (2015), as well as the ~40 km MW observed over the Auckland

Islands the following day (Eckermann et al., 2016). In the absence of chemistry, the mixing ratio of any minor

constituent is conserved under adiabatic isobaric advection. In such cases, the observed vertical displace-

ment of isopleths of tracer mixing ratio from their undisturbed equilibrium altitudes, Δzmix, provides a direct

measurement of the GW-induced vertical displacement perturbation. The resulting temperature perturba-

tion T0 due to adiabatic expansion and compression of the air parcel during this vertical advection is given

by equation (2),

10.1029/2018JD028319Journal of Geophysical Research: Atmospheres

BOSSERT ET AL. 9981



T
0

¼ �Δzmix Γþ
dT

dz

� �

(2)

where Γ is the adiabatic lapse rate 9.5 K/km and dT
dz

is the background

temperature gradient. Table 1 gives an overview of the variables used

in equations (1) and (2) as well as those used later in this paper.

Equation (1) is more accurate for cases in which perturbations are

observed within the sodium layer with smaller parcel altitude displace-

ment. Equation (2) works better for larger amplitude waves since Δzmix

is quantified directly from observed mixing ratios. Both methods also

assume approximate hydrostatic equilibrium and adiabatic motion,

which may not always be strictly valid for large-amplitude and short-

scale GWs. For the observed GWs on 13 July, the amplitudes of the

MWs on the bottom side of the layer were large enough to significantly

perturb sodiumdensities fromthe layer. In this case, it is difficult to assess

a relative background sodium density with respect to observed sodium

density perturbations; thus, equation (1) would not be applicable.

Therefore, equation (2) is used for the subsequent temperature analysis.

3.1. Temperature Calculations From Modeled Sodium Density

A previous 2-D simulation of the observed λH ~240 km MW during the 13 July 2014 event by Heale et al.

(2017) provided GW-induced perturbations in both temperature and sodium densities. Sodium densities

from this simulation were also published and used for the investigation of arising secondary features asso-

ciated with primary MWbreaking (Bossert et al., 2017). The fields from this simulation allow for sodiummixing

ratio perturbations to be calculated and converted into temperature perturbations using equation (2), which

can then be compared and objectively validated against the directly simulated temperature perturbations

from the model. Sodium mixing ratios were derived using background densities from the Navy Global

Environmental Model (NAVGEM). The calculation for the sodium mixing ratio is given in equation (3),

RNa ¼
ρNa zð ÞT zð Þ

ρatm zoð ÞT zoð Þ exp �∫
z
zo

dz
H zð Þ

h i (3)

where ρatm is the atmospheric background density. For the purposes of mixing ratio calculations in this paper,

which use the background atmospheric density from NAVGEM reanalysis, equation (3) simplifies

to RNa = ρNa(z)/ρatm(z). From these mixing ratios, T0 was calculated using equation (2) and the background

temperature profile from NAVGEM. Figure 1 shows the modeled T0 and modeled sodium densities over a

region of the 240 km MW with breaking and associated features occurring and corresponding T0 calculated

from the mixing ratio displacements for 49 different mixing ratio isopleths. As can be seen from Figures 1a

Table 1

Variables Commonly Referred to in This Paper

Parameter Description

T0 gravity wave temperature amplitude

T mean background temperature

g gravitational acceleration

λH horizontal wavelength

ρ
0

Na

sodium density perturbation

N buoyancy frequency

ρNa mean sodium density

γ ratio of specific heats

Γ adiabatic lapse rate

R ideal gas constant

M average atmospheric molecular weight

kH = 2π/λH horizontal wavenumber

m = 2π/λz vertical wavenumber

uH
0 horizontal wind perturbation in GW propagation direction

UH horizontal wind in GW propagation direction

H = RT zð Þ/Mg pressure scale height

Figure 1. (a) The modeled T0 from Heale et al. (2017). (b) The associated sodium densities from this model. (c) The T0 calculated from the sodium mixing ratio

calculated using equations (2) and (3).
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and 1c, there is a reasonable match between the actual T0 and calculated T0. The method is only applicable to

adiabatic motions and will not provide a reliable estimate under conditions where horizontal advection is sig-

nificant and diabatic motions are dominant. Additionally, because themethod provides an average T0 over an

entire parcel displacement, when a parcel is displaced through a region of temperature fluctuations that are

smaller in vertical scale than the overall parcel displacement, these fluctuations will not be resolved. This is

apparent in the modeled data, as there is a small region of evanescence between 77 and 79 km evident in

Figure 1a, and this is not resolved in the mixing ratio calculated temperatures shown in Figure 1c. The model

comparisons in Figure 1 demonstrate that the calculation of T0 frommixing ratios as would be calculated with

sodium density measurements provides an estimate on MW T0 amplitudes spatially and vertically in the

absence of chemistry, which allows for estimates of MF when no other high-resolution direct methods of

temperature measurement are available.

3.2. Influences of Sodium Chemistry

In order to test the chemical response of the Na layer to wave-driven oscillations in temperature, pressure,

and the mixing ratios of minor constituents, we employed a full time-resolved model of Na chemistry. The

1-D model is essentially that described by Plane (2004), with recent updates to the rate coefficients of some

reactions, which were remeasured in the laboratory (Gómez-Martín et al., 2016; Gómez-Martín et al., 2017).

The 12 neutral reactions, 10 ion-molecule reactions, and 5 photochemical reactions are listed in Table 2.

Na, Na+, NaOH, and NaHCO3 are treated explicitly in the model, and the minor species (NaO, NaO2, NaO
+,

Na+.N2, and Na+.CO2) are assumed to be in chemical steady state (Plane, 2004).

Table 2

Neutral and Ionic Gas-Phase Reactions in the Sodium Model

Number Reaction Rate Coefficient
a

Neutral chemistry

R1 Na + O3→ NaO + O2 1.1 × 10
�9

exp(�116/T)

R2 NaO + O→ Na + O2 2.2 × 10
�10

(T/200)
1/2

R3 NaO + O3→ Na + 2O2 3.2 × 10
�10

(exp(�550/T)

R4 NaO + H2→ NaOH + H 4.9 × 10
�12

R5 NaO + CO→ Na + CO2 9.0 × 10
�11

R6 NaO + H2O→ NaOH + OH 5.1 × 10
�10

exp(�240/T)

R7 NaOH + H→ Na + H2O 3.9 × 10
�11

R8 NaOH + CO2 (+M)→ NaHCO3 1.2 × 10
�27

(T/200)
�4.12

R9 NaHCO3 + H→ Na + H2CO3 1.84 × 10
�13

T
0.777

exp(�1014/T)

R10 Na + O2 (+M)→ NaO2 5.0 × 10
�30

(T/200)
�1.22

R11 NaO2 + O→ NaO + O2 5.0 × 10
�10

exp(�940/T)

R12 2NaHCO3 (+M)→ dimer 8.8 × 10
�10

(T/200 K)
�0.23

Ion-molecule Chemistry

R20 Na + O2
+
→ Na

+
+ O2 2.7 × 10

�9

R21 Na + NO
+
→ Na

+
+ NO 8.0 × 10

�10

R22 Na
+
+ N2 (+M)→ Na.N2

+
4.8 × 10

�30
(T/200)

�2.2

R23 Na
+
+ CO2 (+M)→ Na.CO2

+
3.7 × 10

�29
(T/200)

�2.9

R24 Na.N2
+
+ X→ Na.X

+
+ N2 (X = CO2, H2O) 6 × 10

�10

R25 Na.N2
+
+ O→ NaO

+
+ N2 4 × 10

�10

R26 NaO
+
+ O→ Na

+
+ O2 1 × 10

�11

R27 Na.O
+
+ N2→ Na.N2

+
+ O 1 × 10

�12

R28 Na.O
+
+ O2→ Na

+
+ O3 5 × 10

�12

R29 Na.Y
+
+ e

�
→ Na + Y (Y = N2, CO2, H2O, O) 1 × 10

�6
(T/200)

�1/2

R30 Na
+
+ e

�
→ Na + hν 3.9 × 10

�12
(T/200)

�0.74

Photochemical reactions

R31 NaO + hν→ Na + O 5.5 × 10
�2

R32 NaO2 + hν→ Na + O2 1.9 × 10
�2

R33 NaOH + hν→ Na + OH 1.8 × 10
�2

R34 NaHCO3 + hν→ Na + HCO3 1.3 × 10
�4

R35 Na + hν→ Na
+
+ e

�
2 × 10

�5

a
Units: unimolecular, s

�1
; bimolecular, cm

3
· molecule

�1
· s
�1

; termolecular, cm
6
· molecule

�2
· s
�1

. Rate coefficients
are from Plane (2004), apart from R4, R5, R6, and R8 from Gómez-Martín et al. (2016), R7 from Gómez-Martín et al.
(2017), and R30, which is calculated by Badnell (2006).
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The model was run under midlatitude conditions where all the minor

atmospheric constituents, which control the Na chemistry (O3, O, H,

NO+, O2
+, and electrons), vary diurnally. A time step of 30 s was used.

One hour after sunset the wave was turned on with a period of

20 min. In order to examine the effect of wave-driven chemistry on

the underside of the layer consistent with the DEEPWAVE observations,

we considered vertical displacements frommean heights between 81.5

and 85 km down to 78 km. The upward excursions were set to be 50%

of the downward displacements due to strong constraints on the wave

amplitude approaching a critical level at ~90 km.

The model was used to determine the chemical amplification factor

(CAF) of atomic Na, defined as the Na vmr in an air parcel when it is dis-

placed by the wave and full chemistry operates, divided by the Na vmr

when chemistry is turned off and Na is treated as an inert tracer.

Figure 2 illustrates how the CAF varies over 4 hr for the wave period

of 20 min. The CAF is largest, up to 1.6, starting from a mean height

of 81.5 km. This is where the Na vmr is very small (4.8 × 10�14) at the

base of the layer, and there is a very large reservoir of NaHCO3. This

reservoir species is converted into Na via reaction R9 (Table 2), which

has a significant activation energy and thus produces Na rapidly due

to adiabatic heating of the air parcel during the downward excursion.

During the subsequent upward excursion, the CAF decreases as the

temperature falls, though the CAF does not return to 1. This is because

of nonlinear processes in the model; the third-order reactions R8, R10,

and R12; and the smaller upward wave excursion.

At higher mean altitudes, the ratio of Na to NaHCO3 increases rapidly, and so the CAF is essentially unity

starting from a mean height of 85 km (Figure 2). At a mean height of 82.5 km, where the Na vmr is

1.1 × 10�12 and thus detectable by the airborne lidar operating at high time resolution, the CAF is less

than 1.2.

3.3. Temperature Calculations From Measured Sodium Densities

Given the potential for mixing ratios to provide an estimate of GW T0, they are used here for the calculations

of T0 associated with the multiple scales of MWs observed from the GV on 13 July 2014. Although the mixing

ratios have been used previously for rough temperature estimates (Bossert et al., 2015; Eckermann et al.,

2016), the analysis presented here corrects for chemical influences on the bottom side of the layer and inves-

tigates changes in temperature perturbation estimates with altitude. Additionally, the data presented here

have been filtered using a low-pass filter instead of the long temporal boxcar averaging which was previously

applied in Bossert et al. (2015). This allows for a more precise assessment of the mixing ratio perturbations

and temperature amplitudes due to λH< 100 km. The mixing ratios calculated using equation (3) for the four

flight segments across the South Island are shown in Figure 3. For the T0 calculation, mixing ratios are calcu-

lated along 27 mixing ratio isopleths with average altitudes ranging from 79 to 89 km. The average altitude of

each isopleth is used for the altitude of the calculated T0 from equation (2). A correction factor accounting for

the CAF shown in Figure 2 is then applied to the calculated T0. Correction factors plotted over a range of

mixing ratios are shown in Figure 4. T0 amplitudes are divided by the correction factors for each mixing ratio

isopleth. Figure 5a shows the mixing ratio contours with one highlighted in red, which corresponds to an

average altitude of 81.5 km. The corresponding temperature perturbations for this contour are shown in

Figure 5b in red, and the corrected temperature perturbations accounting for the CAF are shown in black.

The calculated temperature perturbations for each mixing ratio contour during the second pass are shown in

Figure 5c. The calculated T0 from mixing ratio contours for each pass are shown in Figure 6. The background

dT /dz used in equation (2) was obtained from NAVGEM reanalysis (Eckermann et al., 2018), reinterpolated

onto a constant geometric height grid for the 13 July 2014 flight. The temperature profile was the average

of all reanalysis grid points within a circular region centered near Mt. Cook with a 600 km great circle radius,

and for times from 0600–0900 UTC. These temperatures are shown in Figure 7.

Figure 2. The chemical amplification factor (CAF) of atomic Na over 4 hr, for a

wave period of 20 min. The black line shows the CAF when the Na vmr before

the wave is 1.1 × 10
�12

, which is at 82.5 km. The wave then displaces the air

parcel down to 78 km, and up to 84.8 km (i.e., approximately 50% of the

downward displacement). The resulting oscillation of the air parcel temperature

is shown with the dashed grey line (right-hand ordinate axis). The CAFs for air

parcels starting at other altitudes between 81.5 and 85 km, and displaced down

to 78 km, are also shown in the figure.
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The T0 given in Figure 6 reveal a superposition of multiple GWs with a range of different λH. In order to esti-

mate the T0 for each specific GW present, a fast Fourier transform (FFT) is applied to the along-track data at

any given height, which provides a spectral amplitude for each transect. For each pass, data were zero-

padded to length of 4,000 km. To reduce FFT sidelobes, data for the first

and last 24 km were smoothed to a value of zero. The resulting spectral

amplitudes are given in Figure 8. The FFT for each pass reveals spectral

power centered around λH ~ 220, 120, and 80 km, with the spectral

power being most significant on the first and second passes. The λH

are consistent with observations at the flight level of the GV, and strato-

spheric lidar observations of MWs (Fritts et al., 2018), suggesting that

these observed wavelengths are likely associated with MWs. As

expected for MWs, all amplitudes for the λH ~ 220, 120, and 80 km

decay upon approach to the MW critical level near 90 km. However,

we also note that there may be contributions from GWs, which are

not MWs. For example, scales of λH < 60 km are observed during each

transect, which persist or arise near the critical level, indicating a non-

zero phase speed. Additionally, in these nonMW cases, it is difficult to

predict the associated phase speed, orientation, and thus, related MF.

As demonstrated by the FFT plots, there is variation in MW amplitudes

between each pass, and variation in the amplitudes between different

λH, which is expected as forcing conditions have variation in time, and

varying λH will have different responses to atmospheric fluctuations

during upward propagation. Additionally, differences in dissipation

can occur based on the initial amplitude of the wave and the

Figure 3. Sodium mixing ratio contours for all four passes calculated from observations using equation (3).

Figure 4. The correction factor obtained from Figure 2 and applied to the T0

calculated from sodium mixing ratio displacements.
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horizontal wavelength, as breaking is tied to multiple aspects of the GW and occurs upon approach to the

critical level (Andreassen et al., 1998). The average spectral T0 near 80 km in altitude varied from 7 to 13 K

for the 220 km λH MW between each pass and ranged from 4 to 8 K for the smaller λH MWs for each pass.

The λH and corresponding spectral average T0 shown in Figure 8 are used to calculate MF spectra, which is

discussed in the following section.

Figure 5. (a) Sodiummixing ratio contours for the second pass with a selected contour highlighted in red and the correspondingmean altitude of the contour shown

by the black dotted line. (b) The corresponding T0 derived from this contour using equation (2) in red, and the T0 corrected for chemical amplification in black.

(c) The corrected T0 derived for each contour, and the black dotted line corresponds to the altitude for the temperature perturbations given in plot (b).

Figure 6. Calculated T0 for each contour shown in Figure 2 using equation (2).
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3.4. MF Spectra Calculations

Assuming hydrostatic motions, the MF per unit mass for a given

GW can be calculated as (Bossert et al., 2015; Ern et al., 2004; Fritts

et al., 2018),

MF ¼< u
0

Hw
0

>¼<
1

2

T
0

T

g

N

 !2
kH

m

� �

> (4)

where uH
0 and w0 are the horizontal and vertical wind perturbations of

the GW, kH and m are the horizontal and vertical wavenumbers, and

braces denote the mean over the observation segment. While kH can

be obtained from the FFT and corresponding spectral temperature

amplitude calculation, m must be calculated using the dispersion rela-

tion (Fritts & Alexander, 2003),

m2 ¼
N2

c � UHð Þ2
�

1

4H2
� k2H (5)

where c is the Earth-relative phase speed assumed to be ~0 m/s for the

observed presumed MWs and UH is the background wind in the direc-

tion of the MW horizontal wavenumber vector. Winds for this calculation are obtained from the Kingston

meteor radar located on Tasmania, and these have previously been used for analysis in Bossert et al.

(2015). Given the small meridional wind magnitudes above 80 km, and the near-zonal propagation direction

Figure 7. Average NAVGEM temperatures for the duration of RF22 from 6:00 to

9:00 UTC over a 600 km radius circle centered near Mt. Cook.

Figure 8. Spectral average T0 for each pass calculated from an FFT of the T0 shown in Figure 6.
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of the MWs, the zonal winds are used in equation (5) for the calculation

of the vertical wavenumber. It is also assumed that the λH calculated

from the FFT are approximately equal to the λH of the actual GWs,

although it should be noted that there may be slight offsets in the cal-

culation due to MW orientations slightly off-axis from a zonal propaga-

tion. AMTM observations shown in Bossert et al. (2015) demonstrated a

nearly zonal orientation of the λH ~220 km MW, and other MWs gener-

ated under the same forcing conditions would be assumed to have

similar orientation. The zonal and meridional winds are shown in

Figure 9. The zonal winds imply a critical level near 90 km for stationary

MWs. These winds were previously used in Bossert et al. (2015), and an

offset time was used to account for tidal influences. It is clear that there

is a critical level given the strong decay of MWs leading to 90 km.

However, given the distance of the radar observations on Tasmania,

the winds used in these calculations provide an estimate and not an

exact value and may have associated errors. Given the MW decay in

altitude is in agreement with the altitude of the critical level measured

by the radar, the radar winds appear to provide a reasonable estimate

of background winds with regard to the critical level location. Using

equation (4) with the temperature amplitudes given in Figure 6, spec-

tral MF values are obtained over a range of altitudes. The resulting spectral MFs per unit mass are shown in

Figure 10. The MF calculations demonstrate the variation of MF between each pass, and between differing λH,

which is not unexpected given the variability, which can arise in both forcing conditions and atmospheric

Figure 9. Zonal and Meridional Kingston Meteor radar winds on 13 July 2014

averaged from 6:00 to 12:00UT used in analysis by Bossert et al. (2015).

Figure 10. Spectral MF calculated using equation (4), spectral average T0 shown in Figure 8, and NAVGEM zonal winds

given in Figure 9.
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propagation conditions over time. It is most notable that the MF quickly decays in altitude, which is

expected given the critical level near ~90 km. The first and second GV transects observed the largest MW

T0 and thus account for the largest MF contributions. The smaller λH of 80 and 120 km haveMF values of about

35–60 m2/s2 on the first and second pass near 81 km, with values significantly decreasing up to 85 km. MF

values for these λH during the third and fourth passes decrease to values of ~10–25 m2/s2 near 80 km. The

220 km λH MW had the largest MF contribution during the second pass with MF values of ~50 m2/s2 near

80 km. These values are between 10 and 25 m2/s2 near 80 km in altitude for the remaining three passes.

While horizontal scales of less than 60 km are included in these calculations, these shorter λH may have asso-

ciated ground relative phase speeds, so it is unlikely that the MF calculations associated with these GWs are

accurate given the assumed zero ground relative phase speed expected for MWs in the MF calculation.

Additionally, as mentioned previously, the winds used in these calculations may have associated errors. To

quantify potential errors, the MF was also calculated for winds ±15 m/s. These calculations are shown for

the second pass at 81 and 83 km in Figure 11 and demonstrate errors of ~25% for these potential wind devia-

tions from measurements. It should also be noted that T0 calculations have larger associated errors lower in

altitude due to the varying chemistry at lower altitudes. Additionally, these calculations are an average esti-

mate over the entire flight path, and localized MFs due to stronger phases over the mountains and directly in

the lee of the mountains likely have larger associated MFs. Regardless of this, the spectral MF calculations

show MF values that are larger than the average background MF values previously measured by radars

and satellites, which have ranged from ~1 to 20 m2/s2 (Ern et al., 2018; Fritts et al., 2010, 2012; Fritts &

Vincent, 1987; Murphy & Vincent, 1993; Nakamura et al., 1993; Reid et al., 1988; Tsuda et al., 1990; Vincent

& Reid, 1983; Wang & Fritts, 1990). This finding is qualitatively in good agreement with Hertzog et al.

(2012), who showed that MW events are particularly intermittent and strong events can carry very large

MFs. Fritts et al. (2018) measured MFs associated with multiscale GW events observed in the OH layer for

two separate events, finding maximum MF values for GW packets ranging from ~60 to 940 m2/s2. The large

MF value in that case was for a short, 10-min period GW that propagated through the OH layer within 45 min.

For the 13 July event presented here, MF values were calculated over a sustained period of GW activity over

several hours and demonstrate the spectral nature of MWs and varying MF over a range of MWs present in

the MLT over New Zealand during this flight.

4. Conclusions and Discussion

The results presented here demonstrate the significant values and variability of MF for a multiscale MW event

using a technique for estimating the MF spectra of MWs observed in the sodium density layer during the

DEEPWAVE campaign. This technique utilizes observed vertical excursions in sodium mixing ratio isopleths

to estimate T0 at a given altitude using diagnostic relations derived from parcel relations valid for adiabatic

GWs. Na chemistry is shown to have a minor effect on the estimates of T0. The average T0 for each wavenum-

ber is then used to assess the mean MF for that GW within the resolved spectrum. Importantly, this necessa-

rily underestimates the total MF when GW amplitudes vary along the flight pass, as it provides an

average value.

Figure 11. MF calculations for uH ±15 m/s calculated at 81 and 83 km show error deviations of ~25% for a corresponding

wind error of 15 m/s.
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The results using this T0 measurement technique for the 13 July 2014 DEEPWAVE flight demonstrate MFs

distributed among a broad range of λH along the flight transects. Strongest T0 and MF values were observed

centered near λH ~ 220, 120, and 80 km, which may be due to multiscale MW generation at the ground level

or due to harmonic MW generation from the primary 220 km MW. The observations demonstrate the varia-

bility of MWs, which contribute to the vertical transport of horizontal momentum over a GW hot spot. The

calculated T0 and corresponding MF for MWs within each flight pass spectrum both decrease strongly

approaching the critical level near 90 km. However, below this region, MF values are significant over a range

of MW λH, which are sustained over the period of the several-hour RF.
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