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tum charges, and whose supergravity descriptions are parameterized by arbitrary functions

of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in high-

degree twisted sectors, and their momentum charge is carried by modes that individually

have fractional momentum. Understanding this momentum fractionation holographically

is crucial for understanding typical black-hole microstates in this system. We use solution-

generating techniques to add momentum to a multi-wound supertube and thereby construct

the first examples of asymptotically-flat superstrata. The resulting supergravity solutions

are horizonless and smooth up to well-understood orbifold singularities. Upon taking the

AdS3 decoupling limit, our solutions are dual to CFT states with momentum fractionation.

We give a precise proposal for these dual CFT states. Our construction establishes the

very nontrivial fact that large classes of CFT states with momentum fractionation can be

realized in the bulk as smooth horizonless supergravity solutions.

Keywords: Black Holes in String Theory, AdS-CFT Correspondence

ArXiv ePrint: 1601.05805

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP05(2016)064

mailto:iosif.bena@cea.fr
mailto:ejmartin@uchicago.edu
mailto:david.turton@cea.fr
mailto:warner@usc.edu
http://arxiv.org/abs/1601.05805
http://dx.doi.org/10.1007/JHEP05(2016)064


J
H
E
P
0
5
(
2
0
1
6
)
0
6
4

Contents

1 Introduction 2

2 BPS solutions in supergravity 5

2.1 The BPS equations in six dimensions 5

2.2 BPS solutions in five dimensions 8

2.3 A round supertube in flat space 9

3 Supertubes with momentum via spectral interchange 12

3.1 Spectral interchange in general 12

3.2 Spectral interchange: an example 13

3.3 The Green function and mode expansions on an R
4/Zk base 15

4 Adding momentum to the supertube 17

4.1 The first layer of equations 17

4.2 The second layer of equations 18

4.3 The complete angular momentum vector 20

4.4 Coiffuring and regularity 21

4.5 Regularity bounds and CTC’s 28

5 Dual CFT states 29

5.1 1
4 -BPS states: twisted sector ground states of the CFT 30

5.2 1
4 -BPS operators: linearized supergravity modes 33

5.3 CFT spectral flow to 1
8 -BPS states 37

5.4 CFT duals of our superstrata 39

5.5 Comparison of conserved charges 50

5.6 Comments on momentum fractionation 53

6 Discussion 54

A The BMPV black hole 57

B Reduction to five dimensions 58

B.1 Reduction 1 58

B.2 Reduction 2 59

C The lowest Style 1 modes 59

– 1 –



J
H
E
P
0
5
(
2
0
1
6
)
0
6
4

1 Introduction

String theory has been successful in counting the microstates of black holes in the regime

of parameters where stringy effects overwhelm gravitational effects at the horizon scale.

When supersymmetry is present, this counting carries over to the regime of parameters

where gravitational effects are dominant at the horizon scale, and the entropy of these

microstates reproduces the Bekenstein-Hawking entropy of the black hole [1, 2]. However,

the exploration of the implications of this achievement for resolving the information para-

dox [3] and for understanding the physics of an infalling observer [4–7] is still in its infancy.

Indeed, very little is known about the fate of the individual stringy microstates, counted in

the zero-gravity regime, as one increases the gravitational coupling and goes to the regime

in which the configuration corresponds to a classical black hole with a large event horizon.

There are several possibilities as to what this fate might be. One is that, as gravity

becomes stronger, all these microstates develop a horizon and end up looking identical

to the black hole [8–10]. Another is that some of the microstates that one constructs at

zero gravitational coupling will develop a horizon, and others will remain horizonless. A

third possibility is that none of these microstates develop a horizon, and they all grow into

horizon-sized bound states that have the same mass, charges and angular momentum as the

black hole, but have no horizon [11–18]. There are then a range of “sub-possibilities”: at

one extreme, typical black-hole microstates would not be describable in supergravity, but

will be intrinsically quantum or non-geometrical; at the other extreme, in the sector dual

to the typical microstates, one could find a basis of Hilbert space vectors that correspond

to coherent states that have a supergravity description, or at least a stringy limit thereof.

In the context of the AdS-CFT correspondence [19], one can similarly ask whether

a typical CFT microstate corresponds to a classical black hole with an event horizon, or

to some horizonless configuration. The latter might either be impossible to describe in

supergravity because of large quantum fluctuations or stringy corrections, or might be

described using a Hilbert state basis given by smooth low-curvature solutions, or might

correspond to some hybrid configuration (such as an intrinsically quantum configuration

lying in a smooth, horizonless supergravity solution).

There exist pieces of evidence that can be taken as bringing support to any of these

possible outcomes, some founded on calculations, and some based more on intuition and

conjecture. Perhaps the strongest evidence that at least some microstates become smooth

horizonless supergravity solutions at strong gravitational coupling comes from the explicit

construction of numerous families of smooth horizonless solutions that have the same

charges as black holes [20]. The largest family of solutions are parametrized by arbitrary

continuous functions of two variables [21], and come from the back-reaction of certain fam-

ilies of superstrata [22]. Superstrata are string theory bound states whose counting has

been argued to reproduce a finite fraction of the entropy of three-charge supersymmetric

black holes [23].

However, even if the existence of these large families of solutions rules out the possibility

that all the microstates one counts at zero gravity develop a horizon, it does not prove

that all microstates remain horizonless, nor does it establish whether typical horizonless
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configurations are smooth and describable in supergravity, or are instead non-geometric or

strongly-curved.

For example, it has been argued [24] that for the two-charge D1-D5 black hole, the typ-

ical states of the dual symmetric product orbifold CFT [19, 25–28] are not well-described

by the microstate geometries of [11, 29, 30] when the average harmonic of the two-charge

profile function becomes larger than
√
N1N5. The harmonics of the profile function cor-

respond to the winding of strands in the D1-D5 orbifold CFT; since typical three-charge

microstates come from adding momentum to CFT strands whose length is of order N1N5,

one might naively conclude that all typical three-charge microstate geometries would be

strongly-curved and hence not describable by supergravity.

There are also arguments that the bulk configurations dual to typical CFT states will

be non-geometrical. One such argument comes from an analysis of the possible supertube

transitions that can occur in three-charge systems, which indicate that the configurations

resulting from these transitions will be generically non-geometric [31, 32]. It has also been

suggested that the states that carry fractionated momentum modes, which are the typical

states that contribute in the entropy counting, will involve multi-valued wavefunctions [21].

Furthermore, there are also conjectures that when tracking microstates of the D1-D5-P

system to the regime of parameters where gravity becomes important, only very few states

will give rise to horizonless geometries, while most states will correspond to a black hole

with a horizon [33]. According to this perspective, the more typical the state, the larger

the likelihood that its bulk dual will not be a horizonless solution, but will be a solution

with a horizon.

The purpose of this paper is to provide evidence that these alternative scenarios are

not realized, by showing that highly-nontrivial CFT states whose momentum is carried by

fractionated carriers are dual to smooth horizonless supergravity solutions (with localized

orbifold singularities). We construct these solutions using a combination of two solution-

generating techniques: Spectral interchange (also known as spectral inversion) and adding

charge density oscillations to a supertube. Spectral interchange is a transformation of the

D1-D5(-P) BPS solutions that interchanges the null coordinate along the D1 and D5 branes,

v = t+ y, with the Gibbons-Hawking fiber of the transverse space [34, 35]. Modifying the

charge density distribution along the supertube source profile has been studied, for example,

in [29, 36, 37].

In this paper we show that by combining these techniques one can add y-momentum

to a seed solution with D1 and D5 charges, as follows: first perform a spectral inversion,

then use a charge density oscillation to introduce ψ-dependence and associated angular

momentum, then spectrally invert back to the original frame to obtain a new solution car-

rying v-dependence and momentum. The ψ-dependent solutions in the spectrally inverted

frame can be generated by integrating the Green functions against the modified charge and

angular momentum densities along the supertube.

For our explicit construction, we apply this combination of techniques to a simple seed

solution — a multiwound circular D1-D5 supertube. The multiwinding of the seed solution

is what will allow us to study the physics of momentum fractionation. While in principle

the Green function/spectral interchange method can be used to construct new general
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classes of superstrata, a particular class of examples is amenable to a direct analysis of the

equations governing all supersymmetric solutions of six-dimensional supergravity [38–41].

These equations determine the various potentials that enter in the supergravity solution,

and are arranged in stages or layers, where the potentials to be solved for one layer satisfy

linear equations sourced by the potentials determined in previous layers [40].

Our solutions are regular up to the usual orbifold singularity at the location of the

multiwound supertube. We arrange the regularity of our supergravity solutions by imposing

constraints on Fourier modes and coefficients; this procedure is known as coiffuring [42–44].

We find two classes of regular solutions, corresponding to two “Styles” of coiffuring. We

analyze the conserved charges and other properties of the solutions.

Our construction also yields the first examples of asymptotically-flat superstrata; in a

particular limit our solutions contain the generalization to asymptotically-flat space of one

class of the asymptotically-AdS superstrata constructed in [21].

Upon taking the decoupling limit, we obtain solutions that are asymptotically AdS3×
S3 × M (where M is either T

4 or K3) and we investigate the corresponding dual CFT

description. We do this by assembling a variety of clues. We observe that the relation

between the y-momentum and the angular momenta of the solutions suggest that the

dual CFT states involve repeated applications of fractionally moded SU(2) R-symmetry

generators, and also that they can be generated by fractional spectral flow [45, 46] applied

to a subset of strands of certain two-charge seed states.

We then study the vevs of 1
4 -BPS operators and find that they have the right properties

to reproduce the vevs of the supergravity fields at the linearized level, using the technology

of [30, 47–49]. We find however that the supergravity regularity constraints are not visible

at this order. Finally, by analyzing the possible two-charge seed solutions, we determine

the precise proposal for the CFT states dual to both styles of coiffuring in supergravity.

Prior to the present work, there were only two classes of supergravity solutions, one

BPS and one non-BPS [50–52], which had been shown to be dual to CFT states involving

momentum fractionation [53, 54].1 These states came from fractional spectral flow applied

to all strands of certain two-charge states, and hence are very special. One way to see this

is that the AdS region of their dual bulk solutions can be obtained from global AdS3×S3 by

a coordinate transformation.2 In contrast, our technology produces supergravity solutions

that are much more general, and cannot be written in this way.

The remainder of this paper is structured as follows. In section 2, we review the

class of five- and six-dimensional supergravity solutions of interest, the BPS equations

they satisfy, and the multiwound circular D1-D5 supertube. In section 3, we apply the

sequence of solution-generating techniques to add momentum to the seed solution. We

perform a direct analysis of the BPS equations in section 4, and find two classes of regular

1There is a sense in which states obtained by the action of integer-moded generators acting on multi-

wound strands can be argued to involve momentum fractionation, however this fractionation is somewhat

trivial and does not correspond to degrees of freedom deep inside a throat [55–57]. Thus, by “CFT states

involving momentum fractionation” we mean states which cannot be written in terms of integer-moded

generators acting on R-R ground states.
2The same is true of the three-charge solutions obtained by integer spectral flow [58–60].
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solutions via coiffuring. In section 5, we first review the 1
4 -BPS states in the CFT, the

1
4 -BPS operators that are dual to linearized supergravity field modes, and spectral flow.

We then develop the precise proposal for the CFT states dual to our supergravity solutions.

Section 6 summarizes our results and discusses open questions.

2 BPS solutions in supergravity

We work in type IIB string theory on R
4,1 × S

1 ×M where M is T4 or K3. We take the

size of M to be microscopic and the S1 to be macroscopic. The S1 is parameterized by the

coordinate y which we take to have radius Ry,

y ∼ y + 2πRy . (2.1)

We reduce on M and work in the supergravity limit. The six-dimensional truncation of

interest is an N = 1 supergravity coupled to two (anti-self-dual) tensor multiplets. This

is the theory in which the first superstrata were constructed [21]; the theory contains all

the fields expected from D1-D5-P string emission calculations [61]. The BPS system of

equations describing all 1/8-BPS D1-D5-P solutions of this theory has been found in [41],

and is a generalization of the system discussed in [38, 39] and greatly simplified in [40].

2.1 The BPS equations in six dimensions

To exploit the structure of the six-dimensional BPS equations, we work with null coordi-

nates u and v, defined by:

u ≡ 1√
2
(t− y) , v ≡ 1√

2
(t+ y) . (2.2)

The periodicity of the y circle induces an identification on u and v. It will be convenient

to parameterize this as follows:

(u, v) ∼ (u, v) + (−4πR, 4πR) , R ≡ Ry

2
√
2
. (2.3)

For supersymmetric solutions, the metric is required to have the local form:

ds26 = − 2√
P

(dv + β)

(
du+ ω +

1

2
F (dv + β)

)
+
√
P ds24(B) , (2.4)

Note that we can always shift F by a constant, c, by sending u→ u− 1
2cv and ω → ω− 1

2cβ.

Given our choice of t and y coordinates in (2.2), to obtain our desired asymptotics we require

that F vanishes at infinity throughout this paper.

Introducing the quantities Z3 and k via3

Z3 = 1− F
2
, k =

ω + β√
2

, (2.5)

3Note that in our conventions F is always negative.
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one can write the metric in the form

ds26 = − 1

Z3

√
P

(dt+ k)2 +
Z3√
P

[
dy +

(
1− Z−1

3

)
(dt+ k) +

β − ω√
2

]2
+
√
P ds24(B) . (2.6)

This form of the metric is useful in the analysis of closed time-like curves (CTC’s). In

particular, if there are closed curves whose length in the metric ds24(B) vanishes, then it is

essential that the remaining part of the metric does not make these curves time-like. The

relevant condition is manifest from (2.6): the danger arises if one chooses a curve along

which dy is related to the other angles such that the second square vanishes.4 We thus

require that for any such curve, in the limit where the length of the curve in ds24(B) tends
to zero, the one-form k acting on the tangent vector to the curve must also tend to zero

(appropriately quickly).

The four-dimensional base, B, has a metric, ds24, and is required to be an “almost

hyper-Kähler” manifold [38]. However we are going to simplify things by assuming that

the base has a Gibbons-Hawking metric:

ds24 = V −1
(
dψ +A)2 + V d~y · d~y , (2.7)

where the periodicity of ψ will be given below in (2.40) and where, on the flat R3 defined

by the coordinates ~y, one has:

∇2V = 0 , ~∇× ~A = ~∇V . (2.8)

We take V to have the form

V = h+
N∑

j=1

qj

|~y − ~y(j)| , (2.9)

for some fixed points, ~y(j) ∈ R
3, some charges, qj ∈ Z, and some constant h.

We will also require that the one-form, β, is v-independent and then the BPS equations

require that β has self-dual field strength:

Θ3 ≡ dβ = ∗4dβ , (2.10)

where ∗4 denotes the four-dimensional Hodge dual in the Gibbons-Hawking metric. We

will also assume that β is ψ-independent and solve the self-duality by taking

β =
K3

V
(dψ +A) + ~σ(3) · ~dy , (2.11)

where K3 is harmonic on R
3 and

~∇× ~σ(3) = −~∇K3 . (2.12)

4To see this, let us suppose that such curves are timelike, and let C1 be such a curve. C1 itself is not

necessarily closed; denote the y values at the start and end of the curve by y1 and y2. If y2 is not equal

to y1 (modulo 2πRy), consider y2 as the starting point of a new curve C2, similarly defined so that dy is

related to the other angles such that the second square vanishes. By iterating, one obtains a sequence of

timelike-related points along the y direction, with fixed values of the other coordinates. Since y is periodic,

by iterating this procedure one either obtains a CTC or comes arbitrarily close to obtaining a CTC, meaning

that the spacetime has ‘almost-closed’ timelike curves and so fails to be ‘strongly causal’ as defined in [62].
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The supergravity theory has three tensor gauge fields (one is in the graviton multiplet)

and two scalars (one in each tensor multiplet). The scalars may be thought of as the

dilaton, Φ, and axion, C0, of the IIB theory. The tensor fields of BPS solutions may be

described in terms of three potential functions, Z1, Z2, Z4 and three sets of two-forms, Θ1,

Θ2, Θ4, on the base B.
The BPS condition then requires a suitable generalization of the “floating brane

Ansatz” [63] in which the metric warp factor and scalars are expressed in terms of the

potentials:

P = Z1 Z2 − Z2
4 , e2Φ =

Z2
1

P , C0 =
Z4

Z1
. (2.13)

Since we are allowing the scalars and tensor gauge fields (but not β or ds24) to depend upon

v, the BPS equations impose the following linear differential equations on the potentials

and the two-forms (ZI ,ΘI):
5

∗4 DŻ1 = DΘ2 , D ∗4 DZ1 = −Θ2 ∧ dβ , Θ2 = ∗4Θ2 , (2.14)

∗4 DŻ2 = DΘ1 , D ∗4 DZ2 = −Θ1 ∧ dβ , Θ1 = ∗4Θ1 , (2.15)

∗4 DŻ4 = DΘ4 , D ∗4 DZ4 = −Θ4 ∧ dβ , Θ4 = ∗4Θ4 . (2.16)

where the dot denotes ∂
∂v , D is defined by

D ≡ d̃− β ∧ ∂

∂v
, (2.17)

and d̃ denotes the exterior differential on the spatial base B.
In (2.14)–(2.16), the first equation in each set involves four component equations, while

the second equation in each set is essentially an integrability condition for the first equation.

The self-duality condition reduces each ΘI to three independent components and adding

in the corresponding ZJ yields four independent functional components upon which there

are four constraints.

If we separate the ZI into their v-independent (zero-mode) and v-dependent parts,

ZI = Z
(0)
I + Z

(v)
I , then the v-dependent parts Z

(v)
I satisfy simpler equations, as follows. It

is convenient to define two-forms ξI via:

ΘI ≡ ∂vξI , I = 1, 2, 4 . (2.18)

Then for the v-dependent parts, one can simplify the BPS equations (2.14)–(2.16) by

integrating, as follows:

∗4 DZ(v)
1 = Dξ2 , ∗4DZ(v)

2 = Dξ1 , ∗4DZ(v)
4 = Dξ4 . (2.19)

5We define the d-dimensional Hodge star ∗d acting on a p-form to be

∗d (dx
m1 ∧ · · · ∧ dxmp) =

1

(d− p)!
dxn1 ∧ · · · ∧ dxnd−p ǫn1...nd−p

m1...mp ,

where we use the orientation ǫ+−1234 ≡ ǫvu1234 = ǫ1234 = 1. These are the conventions used in [38] and

note that they differ from the typical conventions for the Hodge dual.
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The final set of BPS equations are linear differential equations for ω and F :

Dω + ∗4Dω = Z1Θ1 + Z2Θ2 −FΘ3 − 2Z4Θ4 , (2.20)

and a second-order constraint that follows from the vv component of Einstein’s equations,6

∗4D ∗4
(
ω̇ + 1

2 DF
)
= Ż1Ż2 + Z1Z̈2 + Z2Z̈1 − (Ż4)

2 − 2Z4Z̈4 − 1
2 ∗4

(
Θ1 ∧Θ2 −Θ4 ∧Θ4

)

= ∂2v(Z1Z2 − Z2
4 )− (Ż1Ż2 − (Ż4)

2)− 1
2 ∗4

(
Θ1 ∧Θ2 −Θ4 ∧Θ4

)
.

(2.21)

2.2 BPS solutions in five dimensions

We now recall how v-independent solutions reduce to five-dimensions and our discussion will

closely follow that of [37]. We will assume that the magnetic 2-forms, Θ(I), are independent

of the GH fiber coordinate, ψ. This means that one may use the same class of solutions as

in (2.11) by introducing more harmonic functions, KI , on R
3 and taking

Θ(I) = dB(I) , (2.22)

with

B(I) = V −1KI (dψ +A) + ~σ(I) · d~y , ~∇× ~σ(I) ≡ −~∇KI . (2.23)

The sources in BPS equations for ZI (I = 1, 2, 3, 4) are independent of v and ψ and so

the inhomogeneous solutions for the functions ZI follow the standard form:

ZI =
1
2 CIJKV

−1KJKK + LI , (2.24)

where CIJK are the usual (completely symmetric) structure constants for supergravity

coupled to vector multiplets. The particular theory that we use can be written in this form

if one sends Z4 → −Z4 and takes

C123 = 1 , C344 = −2 , (2.25)

with other (non-cyclically related) components equal to zero.

The functions LI in (2.24) are required to be harmonic on the GH base, B, and can

be allowed to depend upon all the coordinates, including ψ. Thus we have

∇2
(4)LI = 0 . (2.26)

One can then make a simple Ansatz for the angular momentum, one-form ω:

ω = µ(dψ +A) + ~̟ · d~y . (2.27)

If one introduces the covariant derivative

~D ≡ ~∇− ~A∂ψ , (2.28)

6This simplified form is equivalent to (2.9b) of [64].
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then the last BPS equation can be written as:

(µ~DV − V ~Dµ) + ~D × ~̟ + V ∂ψ ~̟ = −V
3∑

I=1

ZI ~∇
(
V −1KI

)
. (2.29)

The BPS equations have a gauge invariance: ω → ω + df and this reduces to:

µ→ µ+ ∂ψf , ~̟ → ~̟ + ~Df , (2.30)

The Lorentz gauge-fixing condition, d ⋆4 ω = 0, reduces to

V 2 ∂ψµ+ ~D · ~̟ = 0 , (2.31)

and we will impose this gauge choice.

Taking the covariant divergence, using ~D, of (2.29) and using the Lorentz gauge choice,

one obtains:

V
2 ∇2

(4)µ = ~D ·
(
V

3∑

I=1

ZI ~D
(
V −1KI

))
. (2.32)

It is useful to note that the four-dimensional Laplacian may be written as:

∇2
(4)F = V −1

[
V 2 ∂2ψF + ~D · ~DF

]
. (2.33)

The equation for µ is solved by taking:

µ = 1
6 V

−2CIJKK
IKJKK + 1

2 V
−1KILI +M , (2.34)

where, once again, M is a harmonic function on B.
Finally, we can use this solution back in (2.29) to simplify the right-hand side and

obtain:
~D × ~̟ + V ∂ψ ~̟ = V ~DM −M ~DV +

1

2

(
KI ~DLI − LI ~DK

I
)
. (2.35)

Once again one sees the emergence of the familiar symplectic form on the right-hand side

of this equation. One can also verify that the covariant divergence (using ~D) generates an

identity that is trivially satisfied as a consequence of ~∇V = ~∇× ~A, (2.31), (2.34) and

∇2
(4)LI = ∇2

(4)M = 0 . (2.36)

An explicit, closed form for all the components of ~̟ was not given in [37], but for our

solutions we will be able to construct them.

2.3 A round supertube in flat space

The simplest supertube Ansatz is to take the base, B, to be flat R
4 and set Θ3 and β

to be that of a simple magnetic monopole. There are two convenient ways to formulate

this. First, one can take β given by (2.11) and write R
4 in Gibbons-Hawking form using

spherical polar coordinates (ρ−, ϑ−, φ):

ds24 = V −1 (dψ +A)2 + V (dρ2− + ρ2− dϑ
2
− + ρ2− sin2 ϑ− dφ

2) , (2.37)

– 9 –



J
H
E
P
0
5
(
2
0
1
6
)
0
6
4

where in terms of the three-dimensional Cartesian coordinates y1, y2, y3 we have

V =
1

ρ−
, K3 =

kR

ρ+
, ρ± ≡

√
y21 + y22 + (y3 ∓ 1

2ℓ)
2 , (2.38)

where the dipole moment k is an integer. One then has:

A =
(y3 +

1
2ℓ)

ρ−
dφ , σ = −kR (y3 − 1

2ℓ)

ρ+
dφ . (2.39)

The periodicity identifications on ψ and φ are as usual

ψ ∼ ψ + 4π , (ψ, φ) ∼ (ψ, φ) + (2π,−2π) . (2.40)

One can then follow through with the construction outlined in section 2.2. However, we

subsequently want to make heavy use of the results and formalism employed in [21] and

so we will use this as an opportunity to introduce the geometry and flux components that

make up the second convenient description of supertubes.

One starts by describing the base manifold in terms of spherical bipolar coordinates,

defined by7

4 ρ+ = Σ ≡ (r2 + a2 cos2 θ) , 4 ρ− = Λ ≡ (r2 + a2 sin2 θ) , (2.41)

cos
ϑ−
2

=
(r2 + a2)1/2

Λ1/2
sin θ , sin

ϑ−
2

=
r cos θ

Λ1/2
, (2.42)

ψ = ϕ1 + ϕ2 , φ = ϕ1 − ϕ2 , ℓ ≡ 1
4 a

2 . (2.43)

The metric becomes:

ds24 = Σ

(
dr2

(r2 + a2)
+ dθ2

)
+ (r2 + a2) sin2 θ dϕ2

1 + r2 cos2 θ dϕ2
2 , (2.44)

and we choose the natural system of frames

e1 =
Σ1/2

(r2+a2)1/2
dr , e2 = Σ1/2 dθ , e3 = (r2+a2)1/2 sin θ dϕ1 , e4 = r cos θ dϕ2 . (2.45)

Following [21], it is convenient to introduce the self-dual two-forms Ω(1), Ω(2) and Ω(3):

Ω(1) ≡ dr ∧ dθ
(r2 + a2) cos θ

+
r sin θ

Σ
dϕ1 ∧ dϕ2 =

1

Σ (r2 + a2)
1

2 cos θ
(e1 ∧ e2 + e3 ∧ e4) ,

Ω(2) ≡ r

r2 + a2
dr ∧ dϕ2 + tan θ dθ ∧ dϕ1 =

1

Σ
1

2 (r2 + a2)
1

2 cos θ
(e1 ∧ e4 + e2 ∧ e3) ,

Ω(3) ≡ dr ∧ dϕ1

r
− cot θ dθ ∧ dϕ2 =

1

Σ
1

2 r sin θ
(e1 ∧ e3 − e2 ∧ e4) ,

(2.46)

and note that

∗4(Ω(1) ∧ Ω(1)) =
2

(r2 + a2)Σ2 cos2 θ
, ∗4(Ω(2) ∧ Ω(2)) =

2

(r2 + a2)Σ cos2 θ
,

∗4(Ω(3) ∧ Ω(3)) =
2

r2Σsin2 θ
, Ω(i) ∧ Ω(j) = 0, i 6= j.

(2.47)

7Our spherical bipolar angles ϕ1 and ϕ2 are related to those of [21] by ϕhere
1 = φthere, ϕhere

2 = ψthere.
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The vector field β corresponding to the harmonic functions in (2.38) is

β̂ =
2 kRa2

Σ
(sin2 θ dϕ1 − cos2 θ dϕ2) + kR (dϕ1 + dϕ2) . (2.48)

To obtain flat asymptotics, we see from (2.6) that β and ω must vanish at infinity. We

thus make a coordinate transformation to gauge away the constant part of β̂, obtaining

β ≡ β1 dϕ1 + β2 dϕ2 =
2 kRa2

Σ
(sin2 θ dϕ1 − cos2 θ dϕ2) . (2.49)

The two-form Θ3 = dβ is given by

Θ3 = dβ =
4 kRa2

Σ2
((r2 + a2) cos2 θΩ(2) − r2 sin2 θΩ(3)) . (2.50)

The basic, round v-independent asymptotically-flat supertube solution is then given by:

Z1 = 1 +
Q1

Σ
, Z2 = 1 +

Q2

Σ
, F = 0 , Z4 = 0 ,

Θ3 = dβ , ΘI = 0 , I = 1, 2, 4

ω ≡ ω1 dϕ1 + ω2 dϕ2 =

(
c1 +

J (r2 + a2)

a2Σ

)
dϕ1 +

(
c2 −

J r2

a2Σ

)
dϕ2 , (2.51)

where c1 and c2 are constants to be determined via regularity and asymptotics. The

constants Q1, Q2 and J are harmonic sources that encode charges and angular momentum.

At the center of space (r = 0, θ = 0) the size of the ϕ1-circle and of the ϕ2-circle

collapse to zero size as measured in the spatial base metric, ds24, in (2.4). Moreover, P goes

to a constant at the center of space. It is evident from this and the discussion around (2.6)

that to avoid closed time-like curves at the center of space one must have ω + β = 0 at

r = 0, θ = 0. This implies:

c1 = − J

a2
, c2 = 2kR . (2.52)

In addition, ω must also fall off when r → ∞ and hence we require

J = 2 kRa2 . (2.53)

Thus ω is given by

ω =
2 kRa2

Σ
(sin2 θ dϕ1 + cos2 θ dϕ2) . (2.54)

Finally there is the regularity of the metric near the supertube, which means that as

one approaches Σ = 0, or r = 0, θ = π
2 , the metric must remain smooth. One can easily

check that the only potentially singular parts of the metric are the dϕ2
1 terms and these

are proportional to:

− 2√
P
β1 ω1 +

√
P a2 dϕ2

1 (2.55)

The vanishing of the singularity at Σ = 0 requires

J =
Q1Q2

4kR
⇒ a2 =

Q1Q2

k2R2
y

. (2.56)
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Thus supertube regularity determines the radius, a, and the angular momentum, J , in

terms of the charges Q1, Q2 and the dipole charge k. We thus recover the supertube

metric of [65, 66] and its Gibbons-Hawking description [67].

Having made these choices, the ψ-fiber limits to a fixed size as one approaches the

supertube while the remaining part of the spatial metric limits to (in spherical polar coor-

dinates (ρ+, ϑ+, φ) centered around the supertube):

d̃s
2

4 =

√
Q1Q2

4 ℓ

[
16 ℓ

Q1Q2
ρ+

(
dy+ 1√

2
(σ−̟)

)2
+

1

ρ+
(dρ2++ρ

2
+ dϑ

2
++ρ

2
+ sin2 ϑ+ dφ

2)

]
. (2.57)

Setting ρ+ = 1
4r

2
+ and using (2.43) and (2.56) one obtains:

d̃s
2

4 =

√
Q1Q2

4 ℓ

[
dr2+ + 1

4 r
2
+

(
dϑ2+ + sin2 ϑ+ dφ

2 + 1
k2

[
1√
2R

(
dy + 1√

2
(σ −̟)

)]2)]
. (2.58)

Since Ry = 2
√
2R, one has y ∼ y + 4π

√
2R and so the coordinate y√

2R
has period 4π,

which means that the metric in (2.58) represents the standard Zk orbifold of R4.

3 Supertubes with momentum via spectral interchange

The original D1-D5 supertube solution [11, 29] was defined in terms of an arbitrary profile

function, ~F (v̂), in R
4. While this manifestly describes the shape of the supertube, the

supertube solution is not invariant under reparameterizations of v̂, indeed, reparameteri-

zations encode the choice of the charge-density functions. Put differently, the supertube

can be given two charge densities, ̺1 and ̺2, and an angular momentum density, ˆ̺. How-

ever, supertube regularity and the absence of closed time-like curves (CTC’s) places two

functional constraints (local analogues of (2.56)) on these densities leaving a free choice of

one function. This function encodes the degrees of freedom represented by the choice of

reparameterization in the original formulation.

Spectral interchange can then be combined with the addition of such a charge-density

fluctuation so as to generate a third (momentum) charge.

3.1 Spectral interchange in general

The idea behind spectral interchange is extremely simple. When the base space, B, has a
Gibbons-Hawking form then the entire solution can be written as a torus fibration over a flat

R
3. The torus is, of course, described by (v, ψ) and one can act on this torus with elements

of GL(2,Z).8 Since these transformations are generated by simple changes of coordinate,

they must map BPS solutions to BPS solutions. Some elements of this transformation

group generate what are known as gauge transformations [68] and generalized spectral

flows [34], that mix K3 and V . Of relevance later will be the gauge transformations:

KI → KI + αIV

LI → LI − CIJK α
JKK − 1

2 CIJK α
JαKV

M → M − 1
2 α

ILI +
1
12 CIJK

(
V αIαJαK + 3αIαJKK

)
. (3.1)

8Technically, one should restrict to the global diffeomorphisms, SL(2,Z), but if one allows orbifolds it is

sometimes convenient to use GL(2,Z).
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Such transformations are pure gauge in that, while they reshuffle the potentials, while

leaving the physical properties of the solution invariant.

Spectral interchange is a subset of the generalized spectral flow transformations [34],

and is simply the modular inversion that interchanges v and ψ on the torus [35]. It

corresponds to a global diffeomorphism on the fibers:

v → −ψ , ψ → −v ; ⇔ V ↔ K3 , A→ −ξ , ξ → −A . (3.2)

This mapping also interchanges all the harmonic functions that make up the BPS solutions

outlined in the previous section, as we now describe.

To make the mapping more precise, we must normalize the torus angles that we in-

terchange. The periodicity of the y circle (2.1) induces an identification on u and v. As

described in (2.3) above, we parameterize this as

(u, v) ∼ (u, v) + (−4πR, 4πR) . (3.3)

Recalling the periodicity identifications on ψ and φ given in (2.40), we see that the relevant

lengths are 4πR for v and 4π for ψ. Thus the spectral interchange is more precisely

written as:

v

R
→ −ψ , ψ → − v

R
. (3.4)

Setting Z4 = 0 and Θ(4) = 0, spectral interchange implies that the following must also

give a BPS solution:

Ṽ =
K3

R
, K̃3 = RV , K̃1 =

L2

R
, K̃2 =

L1

R
,

L̃1 = RK2 , L̃2 = RK1 , L̃3 = −2M

R
, M̃ = −1

2 RL3 (3.5)

where any ψ-dependence is converted to v-dependence in accordance with (3.4). Observe,

in particular, that if the LI have some non-trivial ψ-dependence, then K̃1, K̃2 and L̃3 and

hence F̃ inherit a non-trivial v-dependence. Thus the new solution involves a momentum

wave and carries a momentum charge. We now implement this general idea in a specific

explicit construction.

3.2 Spectral interchange: an example

Our goal it to obtain a supertube with a magnetic dipole, k, and generic momentum

densities and we will do this via spectral interchange.

Performing spectral interchange on the round k-wound supertube (2.51), combined

with a gauge transformation with parameters

α1 = − Q̄2

kR
, α2 = − Q̄1

kR
, α3 = 0 , Q̄i ≡

Qi
4
, i = 1, 2 , (3.6)
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results in a solution specified by the harmonic functions

V =
k

ρ+
, K1 = K2 =

1

R
, K3 =

R

ρ−
, (3.7)

L1 =
Q̄1

k

1

ρ−
, L2 =

Q̄2

k

1

ρ−
, L3 =

(
k +

Q̄1 + Q̄2

kR2

)
, (3.8)

M = −1

2
R+

1

2

Q̄1Q̄2

k2R

1

ρ−
. (3.9)

This solution describes a supertube that is singly-wound, in a base space which is R4/Zk.

The spectral interchange has thus had the effect of exchanging the original Zk orbifold

at the location of the supertube for a Zk orbifold at the center of space, and the original

smooth center of space has become the location of a singly-wound supertube.

On this supertube in the spectrally-inverted frame, we introduce charge densities as

studied in [37],

V =
k

ρ+
, K1 = K2 =

1

R
, K3 =

R

ρ−
, (3.10)

L1 =
Q̄1

k
λ1(ψ, ~y) , L2 =

Q̄2

k
λ2(ψ, ~y) , L3 =

(
k +

Q̄1 + Q̄2

kR2

)
, (3.11)

M = −1

2
R+

1

2

Q̄1Q̄2

k2R
j(ψ, ~y) , (3.12)

where the λA and j are harmonic functions on R
4 written as a Gibbons-Hawking space,

and are sourced by normalized densities ̺1, ̺2, and ˆ̺ localized at the supertube location

~y = ~y−, that is ρ− = 0 or (y1 = 0, y2 = 0, y3 = − ℓ
2):

λA(ψ, ~y) = 4π

∫
d3y′

∫ 4π

0
dψ′ Ĝ(ψ, ~y; ψ′, ~y ′) ̺A(ψ

′ − kφ′)δ3(~y ′ − ~y−) ,

j(ψ, ~y) = 4π

∫
d3y′

∫ 4π

0
dψ′ Ĝ(ψ, ~y; ψ′, ~y ′) ˆ̺(ψ′ − kφ′)δ3(~y ′ − ~y−) . (3.13)

The dependence of the densities on the combination of angles ψ − kφ will become clear

when we use the Green function on R
4/Zk in the next subsection to construct explicit

solutions. For now, we keep the discussion general to explain our overall strategy.

We now transform back to the original supertube frame, first performing the inverse

gauge transformation to (3.6) and then performing spectral inversion. This results in the

new BPS solution:

V =
1

ρ−
, K1 =

Q̄2

kR

(
λ2

(
− v

R
, ~y
)
− 1

ρ−

)
, K2 =

Q̄1

kR

(
λ1

(
− v

R
, ~y
)
− 1

ρ−

)
, (3.14)

K3 =
kR

ρ+
, L1 = 1 +

Q̄1

ρ+
, L2 = 1 +

Q̄2

ρ+
, (3.15)

L3 = 1− Q̄1Q̄2

(kR)2

(
j
(
− v

R
, ~y
)
− λ1

(
− v

R
, ~y
)
− λ2

(
− v

R
, ~y
)
+

1

ρ−

)
, (3.16)

M = −kR
2

+
1

2

Q̄1Q̄2

kR

1

ρ+
. (3.17)
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The form of V means that the base, B, has returned to flat R4. There is a supertube

with a dipole charge k (corresponding to a pole in K3), and charges Q̄A located at ρ+ = 0.

In addition, the harmonic functions λA and j describe a momentum wave along the v

direction that is sourced at ρ− = 0. We have therefore succeeded in adding momentum to

a standard two charge supertube solution.

Spectral interchange is simply a global diffeomorphism and so regularity conditions

can be imposed on the supertube in the spectral-inverted frame. Before we do this, one

should note that in the original seed solution (3.10)–(3.12), the parameters, Q̄A, could be

absorbed into the normalization of the charge densities, ̺A and ˆ̺. We are therefore free

to adjust them in some convenient manner and we choose to impose the constraint:

ℓ =
Q̄1Q̄2

(kR)2
. (3.18)

As we will see, this choice will mean that one of the supertube regularity conditions is

automatically satisfied for ̺A = ˆ̺ = 1.

Supertube regularity with varying charge density was extensively studied in [37] (fol-

lowing [36]) where it was shown that the supertube (3.10)–(3.12) is regular if one imposes

the following functional constraints at each point of the GH fiber:

lim
ρ−→0

ρ−
[
V µ− Z3K

3
]
= 0 , (3.19)

lim
ρ−→0

ρ2−
[
V Z1Z2 − Z3(K

3)2
]
= 0 . (3.20)

Using (3.18), the first equation can be reduced to

kR (ˆ̺− 1) +
1

kR

[
Q̄1 (̺1 − 1) + Q̄2 (̺2 − 1)

]
= 0 , (3.21)

where ̺A and ˆ̺ are defined in (3.13). The second regularity condition (3.20), when com-

bined with (3.21) reduces to a simple, local constraint on the charge densities [37],

ˆ̺ = ̺1 ̺2 . (3.22)

The regularity conditions (3.21) and (3.22) can be thought of as “coiffuring” the charge

densities so as to achieve regularity. One should note that while one can certainly sat-

isfy (3.21) using finite sets of Fourier modes, the charge density condition, (3.22), generi-

cally requires one of the Fourier series to be infinite. As we will see below, coiffuring and the

holographic interpretation of the modes is somewhat simpler if one switches on (Z4,Θ4).

One could repeat the foregoing analysis by introducing an additional charge density ̺4,

however for ease of presentation we will continue without introducing ̺4 explicitly, and

introduce (Z4,Θ4) in section 4.

3.3 The Green function and mode expansions on an R
4/Zk base

To construct explicit solutions of the form (3.10)–(3.12), we need the scalar Green function

for a GH base space with V = k
ρ+

and with a source located at ρ− = 0. It is straightforward
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to obtain this via a coordinate transformation of the standard flat R4 Green function, or one

can use the general result of Page [69]. One finds that the Green function for the response

at the point (ψ, ~y) caused by a source at the point (ψ′, ~y ′ = ~y−) defined by ρ− = 0 is:

Ĝ(ψ, ~y;ψ′, ~y ′) =
1

16π2ρ−

sinh
[
k
2 log

ρ++ℓ+ρ−
ρ++ℓ−ρ−

]

cosh
[
k
2 log

ρ++ℓ+ρ−
ρ++ℓ−ρ−

]
− cos

[
1
2(ψ − ψ′)− k

2 (φ− φ′)
] . (3.23)

Note that this function depends upon the combination of angular coordinates:

ψ − kφ . (3.24)

This should not be surprising because the GH fiber is defined by (dψ+A) and, at ρ− = 0,

this becomes (dψ − kdφ). Thus the charge density functions and solutions will depend

upon precisely this mixture of angles, explaining the form of eq. (3.13). If one expands the

charge densities into Fourier modes,

̺A(ψ − kφ) =
∑

n

bA,n e
in
2
(ψ−kφ) , (3.25)

then the solutions are elementary to obtain from the Green function using contour inte-

gration (see for example [43]):

λA(ψ, ~y) =
∑

n

bA,n
ρ−

[(
ρ+ − ρ− + ℓ

ρ+ + ρ− + ℓ

) k
2

e
i
2
(ψ−kφ)

]n
≡

∑

n

bA,n
ρ−

F̂n (3.26)

where F̂n is defined through the above equation. Similarly, for j we have

ˆ̺(ψ − kφ) =
∑

n

b̂n e
in
2
(ψ−kφ) , j(ψ, ~ρ−) =

∑

n

b̂n
ρ−

F̂n . (3.27)

Note that in the limit ρ− → 0 these reduce to the following simple forms:

λA(ψ, ~y) →
∑

n

bA,n
ρ−

ei
n
2
(ψ−kφ) =

̺A(ψ − kφ)

ρ−
, j(ψ, ~y) → ˆ̺(ψ − kφ)

ρ−
. (3.28)

Introducing spherical polar coordinates (ρ, ϑ, φ) centered at the origin (halfway between

the supertube and the GH center), we observe that for ρ≫ ℓ,

ρ± ≃ ρ

(
1 ∓ ℓ

2 ρ
cosϑ

)
. (3.29)

This means that F̂n falls off as ρ−
kn
2 at large ρ:

F̂n ∼
(
ℓ(1− cosϑ)

2 ρ

) kn
2

e
in
2
(ψ−kφ) (3.30)

and so higher orbifolds lead to more rapid fall-off at infinity.
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When we come to imposing regularity constraints, we will find it useful to introduce

non-zero (Z4,Θ4). In principle one could repeat the above analysis with an additional

density profile function ̺4 and analyze the modified supertube regularity conditions in the

spectral inverted frame. Rather than pursue this route, we will find it more convenient to

perform a direct analysis of the BPS equations using the techniques of [21] to construct our

explicit solutions. This will lead to the complete solution in a manner that is well-adapted

to coiffuring and holography.

4 Adding momentum to the supertube

As we have seen, adding momentum to a supertube naturally leads us to consider v-

dependent fluctuations. We now do this by generalizing the circular supertube seed solution

described in section 2.3. In this way we will also obtain the complete solution including all

components of the angular-momentum vector.

A natural way to construct v-dependent solutions is to introduce fluctuating charge-

density sources along the v-fiber above the center of space, r = 0, θ = 0 or ρ− = 0, as

described in [35]. Indeed, the ψ-fiber pinches off at the center of space while the v-fiber

remains finite:

(dv + β) → (dv − 2kR dϕ2) . (4.1)

This means that a single-valued source introduced along the v-fiber must have a Fourier

expansion with the following dependence:

e−ip(
v
2R

−kϕ2) , p ∈ Z . (4.2)

We will therefore seek solutions based upon these Fourier modes. Thus we define the phase:

ζ =
v

2R
− kϕ2 . (4.3)

4.1 The first layer of equations

Based upon the form of eqs. (3.17), (3.26) and (3.27) and the results of [21, 35, 64, 70] it

is not hard to infer a solution to the first layer of BPS equations. Define

∆ ≡ a cos θ

(r2 + a2)
1

2

, (4.4)

then a somewhat lengthy computation shows that the following fields satisfy the first layer

of equations (2.14)–(2.16) for some complex Fourier coefficients, b1 and b2:

ZA = 1 +
QA
Σ

(
1 + ∆kn (bA e

−inζ + b̄A e
inζ)

)
, A = 1, 2 , (4.5)

Θ1 = −nQ2

2R
∆kn

[
b2 e

−inζ (Ω(2) + ir sin θΩ(1)) + b̄2 e
inζ (Ω(2) − ir sin θΩ(1))

]
, (4.6)

Θ2 = −nQ1

2R
∆kn

[
b1 e

−inζ (Ω(2) + ir sin θΩ(1)) + b̄1 e
inζ (Ω(2) − ir sin θΩ(1))

]
, (4.7)
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To these fields one can add a completely independent, purely oscillating set of modes

for (Z4,Θ4):

Z4 =
∆kp

Σ
(b4 e

−ipζ + b̄4 e
ipζ) , (4.8)

Θ4 = − p

2R
∆kp

[
b4 e

−ipζ (Ω(2) + ir sin θΩ(1)) + b̄4 e
ipζ (Ω(2) − ir sin θΩ(1))

]
. (4.9)

Regularity of the metric and dilaton factors mean that one should have ZA > 0 for A = 1, 2.

This means that the terms in the parentheses in (4.5) must be strictly positive and since

|∆| < 1 away from the source, one can certainly guarantee ZA > 0 by taking:

|bA| ≤ 1

2
, A = 1, 2 . (4.10)

One may be able to improve this bound slightly, but the important point is that |bA| will
always be bounded by a number of order 1.

4.2 The second layer of equations

Consider a single mode of ω and F :

ω = e−iqζ(ω̂rdr + ω̂θdθ + ω̂1dϕ1 + ω̂2dϕ2) , F = −W e−iqζ (4.11)

then the differential operators in (2.20) and (2.21) may be written as:

Dω + ∗4Dω + F Θ3

≡ e−iqζ
[
(r2 + a2) cos θΩ(1) L(q)

1 + r sin θΩ(3) L(q)
3 +

(r2 + a2)

r
cos θΩ(2) L(q)

2

]
, (4.12)

∗4 D ∗4
(
DF − 2 ω̇

)
≡ e−iqζ

[
L̂(q)W − i q

R
L(q)
0

]
, (4.13)

where we define

L(q)
0 ≡ 1

Σ

[
1

r
∂r(r (r

2 + a2) ω̂r) +
1

sin θ cos θ
∂θ(sin θ cos θ ω̂θ) +

i kq a2

(r2+a2)
ω̂1 +

i kq

cos2 θ
ω̂2

]
,

(4.14)

L(q)
1 ≡ (∂rω̂θ − ∂θω̂r)−

i kq

r(r2+a2) sin θ cos θ
(r2ω̂1 − a2 sin2 θ ω̂2) , (4.15)

L(q)
2 ≡ 1

cos θ
∂rω̂2 +

r

(r2+a2) sin θ
∂θω̂1 −

i kq r2

Σcos θ
ω̂r −

i kqa2r sin θ

Σ(r2+a2)
ω̂θ −

4kRa2r cos θ

Σ2
W ,

(4.16)

L(q)
3 ≡ 1

sin θ
∂rω̂1 −

1

r cos θ
∂θω̂2 −

i kq

Σcos θ
(a2 sin θ cos θ ω̂r − r ω̂θ) +

4kRa2r sin θ

Σ2
W ,

(4.17)

L̂(q)W ≡ 1

Σ

[
1

r
∂r(r(r

2+a2)∂rW ) +
1

sin θ cos θ
∂θ(sin θ cos θ ∂θW )− k2q2(r2+a2 sin2 θ)

(r2 + a2) cos2 θ
W

]
.

(4.18)

Using the solutions in (4.5)–(4.9), the source terms in (2.20) and (2.21) give rise, a

priori, to four non-trivial kinds of source terms:
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1(a). Terms arising from products of modes with same phase. These depend upon e±2inζ

and have singularities involving Σ−2.

1(b). Terms arising from the product of a mode and a QA

Σ term. These depend upon e±inζ

and have singularities involving Σ−2.

2. Terms arising from the product of a mode and the constant (1) in ZA. These depend

upon e±inζ and have singularities involving Σ−1.

3. Terms arising from product of modes with the opposite phase. These are independent

of ζ and have singularities involving Σ−2.

However, the sources of types 1(a) and 1(b) are not really distinct in that the solution is

the same but simply with a different mode number. We therefore break down the sources

into types 1,2 and 3 and write the particular equations that need to be solved and find the

particular solutions.

These systems of equations are:

Source 1:

L(q)
1 =− i q

2R

∆kq r sin θ

Σ(r2 + a2) cos θ
, L(q)

3 = 0 ,

L(q)
2 =− q

2R

∆kq r

Σ(r2 + a2) cos θ
, L̂(q)W − i q

R
L(q)
0 =

q2

2R2

∆kq

Σ2
,

(4.19)

Source 2:

L(q)
1 =− i q

2R

∆kq r sin θ

(r2 + a2) cos θ
, L(q)

3 = 0 ,

L(q)
2 =− q

2R

∆kq r

(r2 + a2) cos θ
, L̂(q)W − i q

R
L(q)
0 =

q2

2R2

∆kq

Σ
,

(4.20)

Source 3:

L(q=0)
1 = 0 , L(q=0)

3 = 0 ,

L(q=0)
2 =− m

R

∆2mk r

Σ(r2 + a2) cos θ
, L̂(q=0)W =

m2

R2

∆2km

Σ(r2 + a2) cos2 θ
,

(4.21)

These equations have a gauge invariance associated with changing the u-coordinate:

u→ u+ f(xi, v) , ω → ω − df + β ∂vf , F → F − 2 ∂vf . (4.22)

In terms of the qth mode this becomes

(ω̂r, ω̂θ, ω̂1, ω̂2;W ) → (ω̂r, ω̂θ, ω̂1, ω̂2;W ) +

(
∂rh, ∂θh,

i kq a2 sin2 θ

Σ
h,
i kq r2

Σ
h;
i q

R
h

)
,

(4.23)

for an arbitrary function h(xi) on the base, B. In particular, for q 6= 0 one can choose a

gauge with W = 0.

It is relatively easy to find the explicit solutions for each of these sources:
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Solution for Source 1:

(ω̂r, ω̂θ, ω̂1, ω̂2;W ) =
∆kq

4 kR

(
− i

r(r2 + a2)
, 0,

sin2 θ

Σ
,
cos2 θ

Σ
; 0

)
, (4.24)

Solution for Source 2:

(ω̂r, ω̂θ, ω̂1, ω̂2;W ) =
∆kq

4 kR

(
− i

r
, i tan θ, 0, 1; 0

)
, (4.25)

Solution for Source 3:

ω̂r = ω̂θ = 0 , W = − 1

4 k2R2

1

(r2 + a2 sin2 θ)

(
1−∆2km

)
, (4.26)

ω̂1 =
1

2 kR

(r2 + a2)

Σ

((
∆2km − 1

)
sin2 θ

(r2 + a2 sin2 θ)
+

1

a2

)
+
Ĵ

a2
(r2 + a2)

Σ
+ ĉ1 , (4.27)

ω̂2 =
1

2 kR

r2

Σ

((
∆2km − 1

)
cos2 θ

(r2 + a2 sin2 θ)
− 1

a2

)
− Ĵ

a2
r2

Σ
+ ĉ2 , (4.28)

where Ĵ , ĉ1 and ĉ2 are constants to be determined.

4.3 The complete angular momentum vector

Writing the components of ω so as to include all the phases:

ω = (ωrdr + ωθdθ + ω1dϕ1 + ω2dϕ2) , (4.29)

putting together all the source terms and, for the moment setting b4 = 0, we find:

ωr =− iQ1Q2

4 kR

∆2kn

r(r2 + a2)

(
b1b2 e

−2inζ − b̄1b̄2 e
2inζ

)

− i

4 kR

∆kn

r(r2 + a2)

[(
(b1 + b2)Q1Q2 + (r2 + a2)(b1Q1 + b2Q2)

)
e−inζ

−
(
(b̄1 + b̄2)Q1Q2 + (r2 + a2)(b̄1Q1 + b̄2Q2)

)
einζ

]
(4.30)

ωθ =
i∆kn

4 kR
tan θ

(
(b1Q1 + b2Q2)e

−inζ − (b̄1Q1 + b̄2Q2)e
inζ

)
, (4.31)

ω1 =
Q1Q2

4 kR

∆2kn sin2 θ

Σ

(
b1b2 e

−2inζ + b̄1b̄2 e
2inζ

)
(4.32)

+
Q1Q2

4 kR

∆kn sin2 θ

Σ

(
(b1 + b2) e

−inζ + (b̄1 + b̄2) e
inζ

)

+
Q1Q2

2 kR
(b1b̄2 + b2b̄1)

(r2 + a2)

Σ

((
∆2kn − 1

)
sin2 θ

(r2 + a2 sin2 θ)
+

1

a2

)
+
J

a2
(r2 + a2)

Σ
+ c1 ,
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ω2 =
Q1Q2

4 kR

∆2kn cos2 θ

Σ

(
b1b2 e

−2inζ + b̄1b̄2 e
2inζ

)

+
Q1Q2

4 kR

∆kn cos2 θ

Σ

(
(b1 + b2) e

−inζ + (b̄1 + b̄2) e
inζ

)

+
∆kn

4 kR

(
(b1Q1 + b2Q2) e

−inζ + (b̄1Q1 + b̄2Q2) e
inζ

)

+
Q1Q2

2 kR
(b1b̄2 + b2b̄1)

r2

Σ

((
∆2kn − 1

)
cos2 θ

(r2 + a2 sin2 θ)
− 1

a2

)
− J

a2
r2

Σ
+ c2 , (4.33)

F =
Q1Q2

4 k2R2
(b1b̄2 + b2b̄1)

1

(r2 + a2 sin2 θ)

(
1−∆2kn

)
, (4.34)

where J , c1 and c2 are constants to be determined. Note that F vanishes at infinity.

The solutions for (Z4,Θ4) will be allowed to have different moding from (ZA,ΘB),

where {A,B} = {1, 2}. Using (4.8) and (4.9) and the solutions for “Source 3,” we find

ωr =
i

4 kR

∆2kp

r(r2 + a2)

(
b24 e

−2ipζ − b̄24 e
2ipζ

)
, ωθ = 0 , (4.35)

ω1 =− 1

4 kR

∆2kp sin2 θ

Σ

(
b24 e

−2inζ + b̄24 e
2inζ

)
− |b4|2

kR

(r2+a2)

Σ

((
∆2kn−1

)
sin2 θ

(r2+a2 sin2 θ)
+

1

a2

)
,

(4.36)

ω2 =− 1

4 kR

∆2kp cos2 θ

Σ

(
b24 e

−2ipζ + b̄24 e
2ipζ

)
− |b4|2

kR

r2

Σ

((
∆2kp − 1

)
cos2 θ

(r2 + a2 sin2 θ)
− 1

a2

)
,

(4.37)

F =− |b4|2
2 k2R2

1

(r2 + a2 sin2 θ)

(
1−∆2kp

)
. (4.38)

One should note that these solutions are singular: ωr diverges at r = 0. We therefore

need to smooth these solutions out by adjusting the Fourier coefficients appropriately.

4.4 Coiffuring and regularity

As we have discussed in section 3.1, the core of this solution can be obtained via spectral

interchange [35]. Moreover, supertube regularity requires that the charge density functions

satisfy (3.21) and (3.22). The important point here this the (3.22) may be viewed as the

continuum analog of (2.56) and, as such, determines ˆ̺ in terms of ̺1 and ̺2 This can easily

be implemented explicitly in a finite Fourier expansion. On the other hand (3.21) and (3.22)

together mean that one cannot have a regular solution that involves finite Fourier series for

both ̺1 and ̺2: regularity with only two fluctuating charge densities means (at least) one

of the two Fourier series must be infinite. Since the solution in this paper is the spectral

interchange of such a charge density fluctuation, the conclusion will be exactly the same.

In [21], regularity was achieved in a different manner: if one introduces one more charge

species one cancels the singular terms between the species in a process that is known

as “coiffuring” [42–44]. In the discussion above, the addition of the additional species

is represented by a new charge density, ̺4, and replaces the ̺1̺2 terms by ̺1̺2 − ̺24;

one can cancel the problematic quadratic terms and achieve regularity by simple linear
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constraints on Fourier coefficients and this can be implemented in a finite Fourier series.

Thus coiffuring simply represents a very convenient way to solve the standard supertube

regularity conditions using finite Fourier expansions.

At a practical level, our problem is simply to cancel all the 1
r singularities in ωr and

there are two natural ways to achieve this.

Coiffuring: Style 1. The first is to give (Z4,Θ4) the same mode-dependence as the

(ZA,ΘB). That is, to take p = n in eqs. (4.5)–(4.9) and then combine the corresponding

contributions to ω and F .

The singular terms that depend on e±2inζ are then cancelled by setting

b24 = Q1Q2 b1b2 . (4.39)

There are still singular terms that depend upon e±inζ and these can be cancelled (at r = 0)

by setting

(b1 + b2)Q1Q2 + a2 (b1Q1 + b2Q2) = 0 . (4.40)

Eliminating b1 and b2 in terms of b4 gives

b1 =
i b4
Q1

√
Q1 + a2

Q2 + a2
, b2 = − i b4

Q2

√
Q2 + a2

Q1 + a2
. (4.41)

The solution for F and ω then reduces to:

ωr =− i

4 kR

r∆kn

(r2 + a2)

[
(b1Q1 + b2Q2)e

−inζ − (b̄1Q1 + b̄2Q2)e
inζ

]
(4.42)

ωθ =
i∆kn

4 kR
tan θ

[
(b1Q1 + b2Q2)e

−inζ − (b̄1Q1 + b̄2Q2)e
inζ

]
, (4.43)

ω1 =− a2

4 kR

∆kn sin2 θ

Σ

[
(b1Q1 + b2Q2) e

−inζ + (b̄1Q1 + b̄2Q2) e
inζ

]

− 2 |b4|2
kR

(r2 + a2)

Σ

((
∆2kn − 1

)
sin2 θ

(r2 + a2 sin2 θ)
+

1

a2

)
+
J

a2
(r2 + a2)

Σ
+ c1 , (4.44)

ω2 =
r2

4 kR

∆kn

Σ

(
(b1Q1 + b2Q2) e

−inζ + (b̄1Q1 + b̄2Q2) e
inζ

)

− 2 |b4|2
kR

r2

Σ

((
∆2kn − 1

)
cos2 θ

(r2 + a2 sin2 θ)
− 1

a2

)
− J

a2
r2

Σ
+ c2 , (4.45)

F =− |b4|2
k2R2

1

(r2 + a2 sin2 θ)

(
1−∆2kn

)
, (4.46)

where J , c1 and c2 are constants to be determined.

One can, of course, do gauge transformations of the form (4.23) and set ωr or ωθ
to zero.

– 22 –



J
H
E
P
0
5
(
2
0
1
6
)
0
6
4

It is amusing to note that if we choose Q1 = Q2 then (4.41) implies b1 = −b2 and every

oscillating term cancels from our expression for ω:

ωr = ωθ = 0 , (4.47)

ω1 =− 2 |b4|2
kR

(r2 + a2)

Σ

((
∆2kn − 1

)
sin2 θ

(r2 + a2 sin2 θ)
+

1

a2

)
+
J

a2
(r2 + a2)

Σ
+ c1 , (4.48)

ω2 =− 2 |b4|2
kR

r2

Σ

((
∆2kn − 1

)
cos2 θ

(r2 + a2 sin2 θ)
− 1

a2

)
− J

a2
r2

Σ
+ c2 , (4.49)

This is analogous to the completely coiffured black rings and microstate geometries dis-

cussed in [43, 44].

Returning to the more general Style 1 coiffuring (with independent Q1 and Q2), we

wish to examine the necessary conditions to avoid closed time-like curves.9 As in section 2.3

we require that ω vanish at infinity and, as r → ∞, one finds that β vanishes and

ω + β →
(
J

a2
− 2 |b4|2
kRa2

+ c1

)
dϕ1 −

(
J

a2
− 2 |b4|2
kRa2

− c2

)
dϕ2 . (4.50)

At the center of space, r = 0, θ = 0, the ϕ1 and ϕ2 circles pinch off in the base metric

ds24(B). At r = 0, θ = 0 one finds:

ω + β →
(
J

a2
− 2 |b4|2
kRa2

+ c1

)
dϕ1 +

(
c2 − 2kR

)
dϕ2 (4.51)

which for the absence of CTC’s must vanish. Thus we require that:

c1 = −2 kR , c2 = 2 kR , J =
2 |b4|2
kR

+ 2 kRa2 . (4.52)

As noted earlier, regularity of the metric near the supertube means that as one ap-

proaches Σ = 0, or r = 0, θ = π
2 , the metric must remain smooth. The only potentially

singular terms are proportional to dϕ2
1 but compared to simple supertube of section 2.3, F

is now finite as one approaches the supertube and so (2.55) generalizes to:

− 2√
P
β1

(
ω1 +

1
2 F β1

)
+

√
P a2 dϕ2

1 (4.53)

Collecting the singular terms terms and requiring that they vanish leads to a simple gen-

eralization of (2.56):

J =
1

4kR

[
Q1Q2 + 4 |b4|2

]
, (4.54)

and combined with (4.52) we obtain

a2 =
1

8 k2R2

[
Q1Q2 − 4 |b4|2

]
, (4.55)

which determines the radius of the supertube in terms of its electric charges.

9Following standard practice, we show that there are no CTC’s near the supertube and no CTC’s at

infinity. This is usually sufficient to guarantee the absence of CTC’s globally.
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Of particular significance is that, at infinity, one has

− F
2

∼ |b4|2
2k2R2

1

r2
∼ QP

r2
, (4.56)

which implies that the supertube now carries a momentum charge of

QP =
|b4|2
2k2R2

. (4.57)

Note also that (4.55) implies the following bounds:

|b4|2 <
Q1Q2

4
⇒ QP <

Q1Q2

8 k2R2
=
Q1Q2

k2R2
y

. (4.58)

More generally, it is instructive to rewrite (4.54) and (4.55) in terms of the momentum

charge:

J = 2 kR (a2 + 2QP ) , a2 =
Q1Q2

8 k2R2
−QP . (4.59)

For future reference, it is convenient to extract the components of ω1 and ω2 that do

not contain powers of ∆:

ω̂1 ≡− 2 |b4|2
kR

(r2 + a2)

Σ

(
− sin2 θ

(r2 + a2 sin2 θ)
+

1

a2

)
+
J

a2
(r2 + a2)

Σ
+ c1 , (4.60)

ω̂2 ≡− 2 |b4|2
kR

r2

Σ

(
− cos2 θ

(r2 + a2 sin2 θ)
− 1

a2

)
− J

a2
r2

Σ
+ c2 . (4.61)

The terms involving powers of ∆ represent higher multipoles arising from the oscillations

and, when kn is sufficiently large, these are highly suppressed in the regions r ≫ a. Thus

the ω̂i are the ‘higher-multipole-free’ components of the angular momentum. Substitut-

ing (4.52) into (4.60) and (4.61) yields

ω̂1 ≡
2 |b4|2
kR

a2 sin2 θ cos2 θ

Σ (r2 + a2 sin2 θ)
+
J

Σ
sin2 θ , ω̂2 ≡ −2 |b4|2

kR

a2 sin2 θ cos2 θ

Σ (r2 + a2 sin2 θ)
+
J

Σ
cos2 θ .

(4.62)

Note that the first terms in these expressions vanish as r−4 when r → ∞ and hence for

sufficiently large kn, the asymptotic structure of ω is determined entirely by J :

ω̂ ∼ J

r2
(sin2 θdϕ1 + cos2 θdϕ2) . (4.63)

Recall from (2.49) that one has:

β ∼ 2 kRa2

r2
(sin2 θdϕ1 − cos2 θdϕ2) . (4.64)

It therefore follows that this configuration has angular momenta (here we switch back to

the physical y radius Ry = 2
√
2R for later use)

J1 =
1√
2
(J + 2 kRa2) =

Q1Q2

kRy
, J2 =

1√
2
(J − 2 kRa2) = kRyQP . (4.65)
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and J should be identified with

JL ≡ 1

2
(J1 + J2) =

J√
2
=

1

2

Q1Q2

kRy
+

1

2
kRyQP . (4.66)

Also note that

JR ≡ 1

2
(J1 − J2) =

√
2 kRa2 =

1

2

Q1Q2

kRy
− 1

2
kRyQP . (4.67)

For later use, we record that in terms of b4, the angular momenta are

JL =
1

2

Q1Q2

kRy
+

2|b4|2
kRy

, JR =
1

2

Q1Q2

kRy
− 2|b4|2

kRy
. (4.68)

We observe that, compared to the angular momenta of the original supertube solution in

section 2.3, J1 is unchanged, JL has increased and JR has decreased. We will interpret this

in the CFT shortly.

Supersymmetric BMPV black holes [71] with macroscopic horizons exist in the regime

of parameters

Q1Q2QP − J2
L > 0 , JR = 0 . (4.69)

Indeed, see appendix A and, specifically (A.6), where we have given the metric of the

BMPV black hole in our conventions.

It is useful to parameterize the momentum charge via:

QP = cp
Q1Q2

k2R2
y

, 0 ≤ cp < 1 , (4.70)

where the upper bound on cp is a rewriting of (4.58). Then using (4.66) we find

Q1Q2QP − J2
L = −(1− cp)

2

4

(
Q1Q2

kRy

)2

(4.71)

and so, in terms of the quantum numbers of a BMPV black hole, this geometry is “over-

spinning” and becomes extremal in the scaling limit:

QP → Q1Q2

k2R2
y

⇒ a2 → 0 . (4.72)

To understand why our solutions are overspinning, note that the original supertube of

section 2.3 is overspinning (cP = 0) and as we add momentum QP , (4.59) shows that

we must also add a corresponding amount of angular momentum, and that a is adjusted

according to (4.59) such that we obtain (4.69).

Coiffuring: Style 2. For our second style of coiffuring, we employ the coiffuring tech-

nique used in [21]. We will see in due course that the holographic dictionary is somewhat

simpler for these solutions. The first step is to set b2 = 0 and take n = 2p in eqs. (4.5)–(4.9).

The leading r−1 singularities are cancelled by taking:

Q1(Q2 + a2)b1 = b24 , (4.73)

which fixes the Fourier coefficient b1 in terms of b4.
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This leads to the solution:

ωr =− iQ1

4 kR

∆2kp r

(r2 + a2)

[
b1e

−2ipζ − b̄1e
2ipζ

]
, ωθ =

iQ1∆
2kp

4 kR
tan θ

(
b1e

−2ipζ − b̄1e
2ipζ

)
,

(4.74)

ω1 =− Q1 a
2

4 kR

∆2kp sin2 θ

Σ

(
b1 e

−2ipζ + b̄1 e
2ipζ

)
− |b4|2

kR

(r2 + a2)

Σ

((
∆2kp − 1

)
sin2 θ

(r2 + a2 sin2 θ)
+

1

a2

)

+
J

a2
(r2 + a2)

Σ
+ c1 , (4.75)

ω2 =
Q1

4 kR

∆2kp r2 cos2 θ

Σ

(
b1 e

−2ipζ + b̄1 e
2ipζ

)
− |b4|2

kR

r2

Σ

((
∆2kp − 1

)
cos2 θ

(r2 + a2 sin2 θ)
− 1

a2

)

− J

a2
r2

Σ
+ c2 , (4.76)

F =− |b4|2
2 k2R2

1

(r2 + a2 sin2 θ)

(
1−∆2kp

)
. (4.77)

The analysis of the absence of CTC’s proceeds exactly as before, giving:

c1 = −2 kR , c2 = 2 kR , J =
|b4|2
kR

+ 2 kRa2 . (4.78)

Regularity at the supertube once again requires (4.53) to be finite at Σ = 0. This yields

J =
1

4kR

[
Q1Q2 + 2 |b4|2

]
, (4.79)

and combined with (4.78) we obtain

a2 =
1

8 k2R2

[
Q1Q2 − 2 |b4|2

]
, (4.80)

which, again, determines the radius of the supertube in terms of its electric charges.

At infinity we now have

− F
2

∼ |b4|2
4 k2R2

1

r2
, (4.81)

which implies that the supertube now carries a momentum charge of

QP =
|b4|2
4 k2R2

. (4.82)

Since we have set b2 = 0 we have, in a sense, half as many oscillations and this leads

to halving of various quantities in this style of coiffuring.

As before, the positivity of (4.80) places a bound on |b4| which, in turn, results in the

same bound on the momentum charge:

|b4|2 ≤ Q1Q2

2
⇒ QP ≤ Q1Q2

8 k2R2
=
Q1Q2

k2R2
y

. (4.83)

More generally, when (4.79) and (4.80) are rewritten in terms of the momentum charge we

obtain exactly the same conditions as in (4.59):

J = 2 kR (a2 + 2QP ) , a2 =
Q1Q2

8 k2R2
−QP . (4.84)
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Furthermore, in terms of QP and J , the ‘higher-multipole-free’ components of the angular

momentum are identical to those of (4.62):

ω̂1 ≡
4 kRa2QP sin2 θ cos2 θ

Σ (r2 + a2 sin2 θ)
+
J

Σ
sin2 θ , ω̂2 ≡ −4 kRa2QP sin2 θ cos2 θ

Σ (r2 + a2 sin2 θ)
+
J

Σ
cos2 θ .

(4.85)

Thus the discussion of the asymptotic angular momenta is the same as in section 4.4, and

we again have

JL =
1

2

Q1Q2

kRy
+

1

2
kRyQP , JR =

1

2

Q1Q2

kRy
− 1

2
kRyQP . (4.86)

The difference between Style 1 and Style 2 comes when we express the angular momenta

in terms of the respective coefficients of the oscillating terms. For Style 2, we obtain

JL =
1

2

Q1Q2

kRy
+

|b4|2
kRy

, JR =
1

2

Q1Q2

kRy
− |b4|2
kRy

. (4.87)

In the limit of k = 1, and taking b4 to be real, our Style 2 solution is the extension to

asymptotically flat space of a particular subset10 of the solutions constructed in [21].

The lowest harmonics. Recalling the form of ∆ in (4.4),

∆ ≡ a cos θ

(r2 + a2)
1

2

, (4.88)

we see that for low values of k, n and p, the powers of ∆ do not fall off strongly at infinity

and do not vanish very strongly at the ring (r = 0, θ = π
2 ). This can potentially lead

to apparently singular behavior at the ring and unusual asymptotics at infinity. We now

examine this more carefully.

First, note that for kn = 1 there is an additional singularity at r = 0, θ = π
2 in the

first term of ω1 in (4.44), and ωθ and ω2 both contain terms that oscillate and fall off as

as r−1. However these terms are absent when Q1 = Q2, and also in the decoupling limit,

since they arise from the solution to Source 2 as described in section 4.2. Therefore there

is a good asymptotically AdS solution for kn = 1.

Restricting attention now to kn ≥ 2, in “Style 1” one sees that ωθ and ω2 both contain

terms that oscillate and fall off as as r−kn, while ωr falls off as r−(kn+1)dr. Similarly, in

“Style 2”, one sees that ωθ and ω2 both contain terms that oscillate and fall off as as

r−2kp, while ωr falls off as r−(2kp+1)dr. Since we normally expect the angular momentum

to appear as the leading term and fall off as r−2 at infinity, the r−2 terms may, at first,

seem anomalous.

However, these oscillating terms do not present a problem. The most direct way to

see this is to observe that they oscillate around the compactified y-circle and so average

to zero in any measurement of asymptotic charge at infinity in the non-compact space.

Such terms have also been encountered in other holographic solutions. Indeed, oscillating

10This subset of the solutions in [21] is given by taking a single mode of that construction and setting

m = k in the notation of that paper.
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terms that fall off as r−2 were encountered in [55–57] and [64] (see eq. (5.21g)) where they

arose through the action of the underlying global chiral algebra. Consequently, angular

momentum modes that oscillate along y and fall off as r−2 in flat space represent physical

solutions, and upon taking the decoupling limit, the corresponding asymptotically-AdS

solutions are dual to well-defined CFT states.

4.5 Regularity bounds and CTC’s

As we have seen, there is a bound on the Fourier coefficients, |b4|, that resulted in a bound

on the momentum charge that was independent of the coiffuring style:

QP ≤ Q1Q2

4 k2R2
. (4.89)

In addition, the coiffuring conditions relate |b4| to the |bA| via (4.39) or (4.73) so that

we have:

|b1b2| =
|b4|2
Q1Q2

≤ 1

4
or |b1| =

|b4|2
Q1(Q2 + a2)

<
1

2
, (4.90)

depending upon the coiffuring style. These conditions are completely consistent with the

bounds that we obtained earlier, (4.10), based upon the regularity of the ZA.

One can also examine the possibility of CTC’s in the ‘intermediate region’ where

a2 ≪ r2 ≪ QX for all charges, Q1, Q2 and QP . We also assume kn or kp is sufficiently

large that we can drop such powers of ∆ everywhere and, in particular, work with the

‘higher-multipole-free’ components, ω̂i, of the angular momentum. In this intermediate

region we have ZI ∼ QI

r2
and the configuration looks like a BMPV black hole. Moreover,

this region also contains the scaling limit (4.72).

Since |F| ≫ 1 in the intermediate region, it is more natural to complete the squares

in the metric (2.4) by writing

ds26 =
1

F
√
P

(
du+ ω)2 − F√

P
(
dv + β + F−1(du+ ω)

)2
+

√
P ds24(B) , (4.91)

If one considers displacements only in the (v, ϕ1, ϕ2) directions and chooses dv so that the

middle term in (4.91) vanishes then the absence of closed timelike curves (CTC’s) requires:

− ω2 −F P
(
(r2 + a2) sin2 θ dϕ2

1 + r2 cos2 θ dϕ2
2

)
≥ 0 . (4.92)

Dropping all powers of ∆k we can replace ω by ω̂. We will retain the 1’s in the ZA’s,

relabelling them by ε0 so as to keep track of them. The absence of a negative eigenvalue

in this two dimensional metric results in an inequality on the determinant that may be

simplified to:

(Q1 + ε0Σ)(Q2 + ε0Σ)QP − J2 ≥ 4 k2R2a8 sin2 θ cos2 θ

r2(r2 + a2)
, (4.93)

where ε0 = 1. Using (4.69) this identity simplifies to

ε0 (Q1 +Q2 + ε0Σ)QP ≥ a4 (r2 + a2 sin2 θ)

r2(r2 + a2)
, (4.94)
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which is generically satisfied in the intermediate region. Thus we have solutions without

CTC’s11 but that have the charges of overspinning BMPV black holes.

5 Dual CFT states

The spacetime CFT dual to gravity on AdS3 × S
3 ×M is a non-linear sigma model on the

moduli space of instantons on M = T
4 or K3 [19, 25, 26]. As is usual in AdS/CFT duality,

the CFT is strongly coupled where gravity is weakly coupled, and vice versa. There is a

locus in the moduli space where the target space of the CFT is the symmetric orbifold

MN/SN [27, 28] (see also the review [72]), and since the BPS spectrum does not change

in the passage from weak to strong coupling, one can hope to identify the CFT states

in the orbifold theory which, when transported across moduli space to the regime where

supergravity is weakly coupled, are dual to our geometries.

In the orbifold theory, the duals to black-hole states are the twisted sectors of the

orbifold containing long cycles that permute many copies of M. Most of the entropy

comes from oscillator excitations with fractional moding, and it has proven challenging

to construct solutions that map to CFT states involving such fractional oscillators (for

some previous examples, see [53, 54]). A major motivation for our construction is that it

provides a large class of supergravity solutions whose CFT duals involve fractionally-moded

oscillators.

In this section we begin with a review of the structure of the symmetric product orbifold

CFT — covering both the structure of its supersymmetric ground states (in section 5.1),

and the relation between BPS operators in the CFT and linearized mode operators in

supergravity (in section 5.2).

Previous studies have considered spectral flow as a means of introducing momentum

charge to the system starting from a two-charge seed solution [58–60]. In CFT states where

all strands have windings which have a common divisor greater than one, there is the

possibility to perform fractional spectral flow [45, 46] which can be used to generate three-

charge solutions [53, 54]. After a brief review of spectral flow in section 5.3, a proposal is

made in section 5.4 for the CFT states dual to our geometries, built from fractional spectral

flow on a subset of strands of a suitable two-charge BPS seed state. These candidate dual

states are shown to carry the appropriate conserved quantum numbers, and reproduce at

leading order the selection rules on the vevs of CFT operators dual to supergravity modes.

The precise content of the dual CFT states is then specified at the fully non-linear level by

finding the CFT states dual to a two-charge supertube profile that yield the CFT states

we construct by fractional spectral flow.

For the purpose of comparison, it will be somewhat more convenient to work in the

F1-NS5 duality frame, where the background fields are all from the NS sector. NS-R parity

is then manifest (it is simply fermion parity in the CFT), and is an additional tool which

can be used to characterize states and operators.

11Strictly speaking we have only shown that there are no CTC’s near the supertube, in the intermediate

region and at infinity. Again, this should be sufficient to guarantee the absence of CTC’s globally.
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5.1 1
4-BPS states: twisted sector ground states of the CFT

The vast majority of the 1
4 -BPS states of the symmetric orbifold (M)N/SN CFT are the

twisted sector ground states under the symmetric group. There is an independent twisted

sector for each conjugacy class in the orbifold group. In the symmetric group, one may

write elements of the group as words consisting of products of (non-overlapping) cyclic

permutations of the copies of M. The conjugacy class of a word is characterized simply

by the lengths of all the cycles in the word. Thus the conjugacy class is specified by the

number nκ of cycles of length κ, κ ∈ {1, . . . N}, and the total length (including cycles of

length one) is
∑

i ni = N .

We will mostly focus on T
4, and comment on the modifications that result when K3

is realized as T
4/Z2, though, of course, the Ramond ground state structure is the same

anywhere on the K3 moduli space. The sigma model on the ℓth copy of M has bosonic

fields X
(ℓ)

AȦ
and fermions χ

(ℓ)
Aα, χ̄

(ℓ)
Aα̇. These carry labels under a variety of SU(2) symmetries:

• The doublets α, α̇ of the left and right (SU(2)× SU(2))R R-symmetry.

• The doublet Ȧ under a custodial SU(2)C which is a global symmetry of the N = (4, 4)

superalgebra. The supercurrents carry spin one-half under SU(2)C as well as under

the R-symmetry.

• The doublet A under an auxiliary SU(2)A. This SU(2)A is a symmetry for M = T
4,

but is broken by the holonomy of the connection for M = K3.

In a given twisted sector cycle, the bosons X
(ℓ)

AȦ
and fermions χ

(ℓ)
Aα, χ̄

(ℓ)
Aα̇ of the individual

T
4 CFTs are cyclically permuted:

X(ℓ)(e2πiz) = X(ℓ+1)(z) , ℓ = 0, . . . , κ− 1 , (5.1)

where X(κ) ≡ X(0); similarly for the fermions χ(ℓ), χ̄(ℓ). The twist operator for such a cyclic

orbifold is most conveniently expressed in terms of fields that diagonalize the twist action.

Define the “clock” fields that are discrete Fourier transforms of these “shift” fields

X(ν) =
κ−1∑

ℓ=0

exp
[
2πi

νℓ

κ

]
X(ℓ) , ν = 0, . . . , κ− 1 , (5.2)

and similarly for the fermions χ(ν), χ̄(ν). The clock fields diagonalize the cyclic permutation

X(ν)(e2πiz) = e2πiν/κX(ν)(z) . (5.3)

A twist operator that implements these boundary conditions is the tensor product of stan-

dard Zκ orbifold twist operators σ(ν/κ) for each clock sector.12 These have dimension

hν,b = ν(κ − ν)/κ2 for the bosonic twist operators, and hν,NS = (ν/κ)2 for NS sector

12The full orbifold is of course non-abelian, but for the purpose of describing the spectrum, one can use

abelian orbifold terminology.
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fermion twist operators, or hν,R = (ν/κ − 1/2)2 for the R sector fermion twists. Taking

the product over all the clock sectors yields the full twist operator for the cycle

Σ(κ) =
κ−1∏

ν=0

σ(ν/κ) , hΣ =

{
(κ− 1)/2 , NS ;

κ/4 , R .
(5.4)

These NS sector twist ground state operators are spin (κ − 1)/2 under both left- and

right-moving SU(2)R R-symmetries, as may be seen by bosonizing the clock fermions and

building the fermion twist operators as exponentials. Thus, these operators, and the states

that they create from the NS sector vacuum, are 1
4 -BPS, breaking half the supersymmetries

of each chirality. Additional BPS operators are obtained by combining the lowest-dimension

twist operator with the center-of-mass (ν = 0) fermion field. Similarly, the κ-cycle R sector

ground state operators preserve one quarter of the Ramond supersymmetries.

The monodromy (5.2) results in fractional mode expansions for the X(ν)

∂zX
(ν)(z) =

∑

m∈Z
x
(ν)
m+ν/κ z

−m−ν/κ−1

χ
(ν)(z) =

∑

m∈Z
X (ν)
m+ν/κ z

−m−ν/κ , (5.5)

together with the oscillator commutation relations

[x
(ν)
m+ν/κ,x

(κ−ν)
−m′−ν/κ] = α′(m+ ν/κ)δmm′

[X (ν)
m+ν/κ,X

(κ−ν)
−m′−ν/κ] = α′(m+ ν/κ)δmm′ , (5.6)

where to reduce clutter the tangent space indices on the modes and fields have been sup-

pressed in these expressions.

At this point, one can assemble all the different clock sector modes into a single set

of “untwisted” (integer moded) T4 scalar fields X̂AȦ and fermions χ̂Aα, χ̂Aα̇ living on the

κ-fold cover of the cylinder. In order that the oscillator commutation relations remain

canonical, one must rescale the effective string tension α′ by a factor of κ, to α̂′ = α′/κ;

the fractionated oscillator mode energies are also κ times smaller than the energies of the

the untwisted oscillator modes.

The covering-space picture makes it clear that the R ground states carry spinor quan-

tum numbers in the target space, since the structure is the same as the worldsheet theory

of free perturbative strings. We can label the Ramond ground states for T4 as

|αα̇〉 , |AB〉 , |αB〉 , |Aα̇〉 ; (5.7)

for T4/Z2 the fixed points provide sixteen more. One moves around in the space of ground

states by the action of the zero modes of the fermions χ̂Aα, χ̂Bα̇, which act as gamma

matrices. We will focus on two ground states in particular — the highest weight state

|++〉 of the spin-1/2 multiplet, and the “singlet” combination of the auxiliary SU(2)A
bispinor

|00〉 ≡ ǫAB|AB〉 . (5.8)
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The covering space picture also leads to a somewhat more geometrical picture of the
1
4 -BPS states in the Ramond sector. The conformal dimension of the ground state in the

twisted sector is determined by the covering space transformation z → zκ, for which the

Schwarzian derivative contribution to the stress tensor leads to

h
(κ)
0 =

κ

4
− 1

4κ
. (5.9)

One can then apply any operator O of the M = T
4 (or K3) SCFT to this ground state;

recalling that energies of the covering space theory are reduced by a factor of κ leads to

the spectrum

h
(κ)
O = h

(κ)
0 +

hO
κ

. (5.10)

The Ramond ground states of M are in one-to-one correspondence with the cohomol-

ogy of M;13 for instance, for M = T
4 the special spin-1/2 multiplet |αα̇〉 is associated to

the (0, 0), (0, 2), (2, 0) and (2, 2) cohomology, while the j = 0 states |AB〉 are associated to

the (1, 1) cohomology. Thus, in the κ-cycle twisted Ramond sector for T4, the supersym-

metric ground states with h = κ/4 consist of one (j, j̄) = (1/2, 1/2) multiplet and a quartet

of singlets. In addition there are representations (1/2, 0) and (0, 1/2) which correspond to

the odd cohomology. The action of the fermion zero modes of χ, χ̄ moves one among these

various representations. A similar story holds for M = K3. If we realize K3 as a T
4/Z2

orbifold, we obtain 16 additional singlets from the 2-cohomology associated to the 16 fixed

points of the orbifold, however there is no odd cohomology and so no (1/2, 0) or (0, 1/2)

representations.

Under spectral flow, the operators that create these Ramond ground states from the

vacuum transform into BPS short multiplet operators in the NS sector. We will discuss

spectral flow in more detail below; here we simply wish to note that spectral flow generates

from any operator with quantum numbers (L0, J3) = (h, j) a related set of flowed operators

with quantum numbers

L0 = h+ 2 j s+
c

6
s2 , J3 = j +

c

6
s , s ∈ 1

2
Z . (5.11)

If the initial operator is in the R (NS) sector, then spectral flow by integer amounts leads

to another R (NS) operator, while spectral flow by odd half-integer amounts leads to NS

(R) operators.

Finally, the twist operator for the full word conjugacy class in the symmetric group

is given by the product of the twist operators for the n-component cycles in the word, for

instance

Σ =

n∏

i=1

Σ
(κi)
i , hΣ =

{
(N − n)/2 , NS ;

N/4 , R ,
(5.12)

where we have used the fact that the sum of all the κi is N . In the NS sector, only if all

the polarizations αi, α̇i are aligned is the state BPS, since only then does the R-charge

13Since topologically twisting the supersymmetry of the sigma model relates the cohomology of the

supersymmetry charges to the cohomology of a Dolbeault-type operator on the target space.
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equal (plus or minus) the scaling dimension. In the R sector, any choice of polarizations

will do, and one obtains a large degeneracy of BPS ground states carrying any S
3 angular

momentum in the tensor product (12)
⊗n. Note also that all the Ramond ground states

are at zero energy once we include the Casimir energy E0 = −c/24 = −N/4 for the CFT

on a cylindrical geometry. The geometries constructed in sections 2–4 are dual to CFT

states in the Ramond sector, so henceforth we specialize to this sector. On the other hand,

linearized excitations are NS sector operators, and so we will be interested in these NS

operators when probing a CFT state to see what vevs of the supergravity fields are turned

on in the supergravity background dual to this CFT state.

5.2 1
4-BPS operators: linearized supergravity modes

The spectrum of linearized supergravity on AdS3 × S
3 and its relation to the symmetric

product was worked out in [73, 74] (see also [75, 76]). The bosonic spectrum consists of

• T
4: the graviton, 5 self-dual (SD) plus 5 ASD tensors, 16 vectors, and 25 scalars;

• K3: the graviton, 5 SD plus 21 ASD tensors, and 105 scalars.

All these fields lie in short multiplets of the N = (4, 4) superconformal algebra. The R-

charge of these multiplets is a combination of the spatial momentum on S
3 and the tensor

structure of the fields. The left-moving R-charge content of an NS sector short multiplet

consists of
state j j′ h

|Ψ〉 n/2 0 n/2

G− 1

2

|Ψ〉 (n− 1)/2 1/2 (n+ 1)/2

(G− 1

2

)2|Ψ〉 (n− 2)/2 0 (n+ 2)/2

(5.13)

where j is the spin under the SU(2)R R-symmetry, and j′ is the spin under the global

(custodial) SU(2)C of the N = 4 algebra; similarly for the right-moving structure. Short

multiplets may also carry an additional auxiliary SU(2)A quantum number A,B associated

to the fermions χαA, χ̄α̇A for T
4. For K3, this is the SU(2) for which the connection has

holonomy, and so is not generically a good quantum number, however it is an “accidental”

symmetry for untwisted states of the T
4/Z2 orbifold locus and we can continue to use this

labelling.

Consider the highest weight component of a short multiplet operator

O(κ)
m,m̄ = O(α1...αm),(α̇1...α̇m̄) (5.14)

of R-charge spins (2j + 1, 2j̄ + 1) = (m, m̄). Its single descendants are thus

OȦḂ
(α2...αm),(α̇2...α̇m̄) = Gα1Ȧ

− 1

2

Ḡα̇1Ḃ

− 1

2

O(α1...αm),(α̇1...α̇m̄) , (5.15)

where Ȧ, Ḃ are custodial SU(2)C indices (not to be confused with the auxiliary SU(2)A
labels A,B for the ground states in equation (5.7)); the double descendants are

O(α3...αm),(α̇3...α̇m̄) =
(
ǫȦḂG

α1Ȧ
− 1

2

Gα2Ḃ
− 1

2

)(
ǫȦ′Ḃ′Ḡ

α̇1Ȧ′

− 1

2

Ḡα̇2Ḃ′

− 1

2

)
O(α1...αm),(α̇1...α̇m̄) . (5.16)
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One also has the helicity (m − m̄ ± 2)/2 fields one gets by taking the double-descendant

only on one side.14 These comprise the bosonic content of the supermultiplet.15

According to [73, 74], the spectrum of N =(4, 4) short multiplets for type IIB super-

gravity on AdS3 × S
3 ×K3 is

⊕m≥1

[
(m,m+ 2)S + (m+ 2,m)S + (m+ 2,m+ 2)S

]
+ nT

[
⊕m≥2 (m,m)S

]
, (5.17)

where m is the dimension of the SU(2)R representation. These supermultiplets expand

into a set of S3 harmonics (ignoring special restrictions at low angular momentum)

⊕m

(
(m,m± 4) + 4(m,m± 3) + (nT + 7)(m,m± 2)

+ (4nT + 8)(m,m± 1) + (6nT + 8)(m,m)
)
. (5.18)

The number of ASD tensors nT = 21 is dictated by anomaly cancellation. These quantum

numbers result from the product of spherical harmonics on the S3 with the representations

of the SO(4)L little group

(3,3) + 4(2,3) + 5(1,3) + nT (3,1) + 4nT (2,1) + 5nT (1,1) . (5.19)

Similarly, the spectrum of short multiplets for AdS3 × S
3 × T

4 is [72, 73]

⊕m≥1

[
(m,m+ 2)S + (m+ 2,m)S + (m+ 2,m+ 2)S

]

+ 5
[
⊕m≥2 (m,m)S

]
+ 4⊕m≥2

[
(m,m+ 1)S + (m+ 1,m)S

]
. (5.20)

There is a one-to-one correspondence between single-particle supergravity modes and

κ-cycle Ramond ground states, by starting with the operators associated to the latter and

performing a single unit of spectral flow to the NS sector. The operators associated to a

single cycle of the symmetric group correspond to the single-particle modes in supergravity.

The cycle winds together κ copies of M, and thus has central charge c = 6κ. Under the

spectral flow operation (5.11), the j = 1/2 Ramond operators flow to one h = j = (κ−1)/2

NS operator (from the j3 = −1/2 polarization), and one h = j = (κ + 1)/2 NS operator

(from the j3 = +1/2 polarization).16 Similarly, the j = 0 operators flow to h = j = κ/2

operators.

The special spin-1/2 multiplet thus yields SU(2)R representations m = κ, κ + 2 after

spectral flow, while the spin-0 multiplets yield representation m = κ+1 after spectral flow.

14Note that the action of G
−

1

2

lowers the SU(2) spin while raising the SL(2) spin, so that the six-

dimensional helicity stays constant; similarly for Ḡ
−

1

2

. Thus the short multiplets with m − m̄ = ±2,

whose highest weight has spin one in both SU(2) and SL(2), contain the six-dimensional spin-two graviton

polarizations.
15The lowest BPS operator in the short multiplet (k, k)S has special properties at low k. For k = 1 this

operator is the identity operator, and the higher components of the superfield are absent. For k = 2, the

lowest component has dimension h = h̄ = 1/2, and the double-descendant is null. Not until k = 3 is there

a non-trivial double-descendant operator.
16Note that the latter operator can also be obtained from the former by tensoring with the center-of-mass

current J+ of the κ-cycle. By κ-cycle currents, or center-of-mass currents, we mean the total SU(2) currents

built of the copies of T4 being sewn together in a particular cycle of length κ in a symmetric group word,

rather than the total R-currents of the entire theory.
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Combining left- and right-movers yields the spectra (5.17), (5.20). Note that for K3, the

Ramond operators have the same fermion parity on left and right, while for T
4, the left

and right fermion parity can be chosen independently since one can act with fermion zero

modes on left and right independently; this is the origin of the short multiplets (m,m± 1)S
which comprise the harmonic expansion of the vector supermultiplets.

The special spin (1/2, 1/2) Ramond ground states are universal, and upon spectral flow

to the NS sector are associated to the six-dimensional graviton, dilaton and NS B-field.

Their harmonics on the spatial S3 organize themselves into N =(4, 4) short multiplets

(κ, κ)S + (κ, κ+2)S + (κ+2, κ)S + (κ+2, κ+2)S (5.21)

comprising the lowest spin chiral primary O(κ)
m,m of the κ-cycle, which has m = κ, together

with the three additional chiral primaries built by tensoring with the κ-cycle currents J+

and/or J̄+ on O(κ)
κ,κ. The bosonic content of these multiplets consists of two six-dimensional

supergravity supermultiplets. The first, the graviton supermultiplet, contains the graviton

plus the self-dual part of the B-field, as well as four more self-dual, six-dimensional, two-

form tensor fields from the RR sector. The second, a six-dimensional tensor multiplet,

contains the ASD six-dimensional polarizations of the NS B-field, as well as the dilaton

and four six-dimensional scalars made from the triplet of RR fields C+
2 (the RR tensor

which is self-dual on T
4) together with the self-dual combination v4C0 + C4 of the RR

scalar and T
4 four-form. The zero modes of these latter four scalars are moduli in the F1-

NS5 duality frame. The m = m̄ CFT primaries map to linear combinations of supergravity

field modes that diagonalize the linearized field equations.17 In general, there are also non-

linear corrections to the map between CFT operators and supergravity field modes; in a

typical correlator, these corrections are suppressed by powers of the gravitational coupling,

but in so-called extremal correlators (where the conformal dimension of one operator is the

sum of all the others) these non-linearities can contribute at leading order.

The highest weight, together with the double descendants of the quartet of su-

perfields (5.21), yield the harmonic expansion of the six-dimensional graviton, the six-

dimensional NS B-field, and the six-dimensional dilaton. The quantum numbers (h, h̄, j, j̄)

are the resolution of the product of the spatial harmonic and the tensor structure onto states

of definite total spin in both SL(2) and SU(2). The graviton gMN and B-field BMN can

have their tensor polarizations either along AdS3, M,N = µ, ν, or along S
3, M,N = a, b.

Of the two indices, one transforms under the left SL(2)× SU(2), and the other transforms

under the right SL(2)×SU(2). An analysis of [76] shows that the physical combinations of

tensor polarization and SL(2)×SU(2) spatial harmonic (h, j) = (λ, ℓ) are those whose total

SL(2)×SU(2) quantum numbers are (h, j) = (λ±1, ℓ) or (λ, ℓ±1). One can thus trace the

six-dimensional polarizations through the field transformation and resolution onto compo-

nents of definite total spin, in order to match supergravity fields with CFT operators at the

linearized level. As discussed above, beyond the leading order in the small field expansion,

the map between CFT operators and supergravity modes is non-linear.

The single descendants have the opposite NSR parity, and comprise a quartet of tensor

harmonics; this custodial SU(2)C bi-doublet can be decomposed into a scalar and self-dual

17See [49] for a discussion of subtleties in this map.
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tensor on T
4/K3, and thus one obtains the self-dual six-dimensional polarizations of C2,

as well as C4 having two legs in six-dimensional and two legs along T
4/K3. Note that

for κ = 2, one finds the four RR moduli of the background; a null vector truncates the

representation from above, so that these components are in fact the highest components

of the superfield — a multiplet with h = j = 1/2 is an ultrashort multiplet, and thus

perturbing by the single-descendant operators preserves N =(4, 4) supersymmetry.

The remaining quartet O(κ)
AB of spin j = j̄ = κ/2 superfields (which have m = m̄ =

κ+1), comprise four additional tensor multiplets containing 4 ASD tensors and 20 scalars.

The four tensors appear in the lowest and highest components plus the helicity ±1 one-sided

double-descendants, and are the ASD parts of the RR tensors whose opposite chiralities

are in the gravity supermultiplets (5.21). These components also include the harmonics of

four RR fixed scalars (the ASD combinations of C0, C4 and C2 with polarization entirely

on T
4/K3). The single-descendants comprise 16 NS sector scalars — the polarizations of

the graviton and B-field along T
4/K3. For κ = 1, one has the 16 NS sector moduli of T4

(again these are ultrashort multiplets, so the single-descendant is the highest component).

The spectrum is then completed either with the (m,m± 1)S vector multiplets for T4; or

16 more (κ, κ)S tensor multiplets for K3 = T
4/Z2, with similar content.

We summarize the short multiplet content of the κ-cycle sector of the gravity sec-

tor supermultiplets in the following table, where (m, m̄) ∈ {(κ, κ), (κ, κ+2), (κ+2, κ),

(κ+ 2, κ+ 2)}:

multiplet (2j + 1, 2j̄ + 1) SU(2)A sugra field

O(κ)
m,m̄ (m, m̄) 1 G,B,Φ

(G− 1

2

)2O(κ)
m,m̄ (m− 2, m̄) 1 G,B,Φ

(Ḡ− 1

2

)2O(κ)
m,m̄ (m, m̄− 2) 1 G,B,Φ

(G− 1

2

)2(Ḡ− 1

2

)2O(κ)
m,m̄ (m− 2, m̄− 2) 1 G,B,Φ

GȦ− 1

2

ḠḂ− 1

2

O(κ)
m,m̄ (m− 1, m̄− 1) 1⊕ 3 C+

2 , C
+
4 , C0

(5.22)

The RR six-dimensional tensor fields together with the six-dimensional tensor B field com-

prise the five self-dual tensors in the six-dimensional N = (2, 0) graviton supermultiplet.

The remaining six-dimensional tensor supermultiplets contain the torus moduli fields,

and consist of:

multiplet (2j + 1, 2j̄ + 1) SU(2)A sugra field

O(κ)AB
κ+1,κ+1 (κ+ 1, κ+ 1) 1 C0, C

−
2 , C

−
4 tensors/scalars

(G− 1

2

)2O(κ)AB
κ+1,κ+1 (κ− 1, κ+ 1) 1 C−

2 , C
−
4 tensors

(Ḡ− 1

2

)2O(κ)AB
κ+1,κ+1 (κ+ 1, κ− 1) 1 C−

2 , C
−
4 tensors

(G− 1

2

)2(Ḡ− 1

2

)2O(κ)AB
κ+1,κ+1 (κ− 1, κ− 1) 1 C0, C

−
2 , C

−
4 tensors/scalars

GȦ− 1

2

ḠḂ− 1

2

O(κ)AB
κ+1,κ+1 (κ, κ) 1⊕ 3 G,B moduli

(5.23)
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These four multiplets contain six-dimensional ASD RR tensors. In all of the tables, the

plus/minus superscript on tensors indicates their six-dimensional chirality. The additional

16 ASD tensor supermultiplets of the K3 theory arising from the fixed points of T4/Z2 are

similar in content to the above table. It is straightforward to work out the vector multiplets,

which only contain transverse vector polarizations and their fermionic superpartners.

Given the foregoing collection of SL(2, R)× SU(2) highest weights organized into N =

(4, 4) multiplets, the action of the lowering operators J−, J̄− of SU(2)L×SU(2)R and raising

operators L−1, L̄−1 of SL(2, R)L × SL(2, R)R fills out a complete basis of six-dimensional

spatial harmonics of the supergravity fields.

5.3 CFT spectral flow to 1
8-BPS states

We need one more ingredient to specify the class of CFT states dual to the supergravity

geometries above. Spectral flow is a coherent deformation of the charge in a CFT with a

U(1) current. Any primary field O in such a theory can be written

O = ei
√
2αHΦ (5.24)

where the U(1) current is bosonized as J = i∂H, and Φ is a U(1) singlet operator. Spec-

tral flow is then the deformation along α, which leads to a family of operators/states of

dimension and charge

h = hΦ + κα2 , q =
√
2κα (5.25)

where the normalization of the current is

J(z)J(w) ∼ κ

(z − w)2
, (5.26)

For an N =(4, 4) SCFT, the normalization of the SU(2) R-current J3 is set by the algebra,

κ = c/6, and the SU(2) spin of operators (5.24) is j3 = ακ.

One can decompose the 1/4-BPS twist operators under spectral flow as follows. Con-

sider the NS sector twist field for a cyclic permutation of order κ, with quantum numbers

c = 6κ , h = j3 =
(κ− 1)

2
. (5.27)

One can determine the dimension of the operator Φ via a spectral flow by an amount

α = −(κ− 1)/2κ that strips off the j3 charge; in this way one finds

hΦ =
κ

4
− 1

4κ
, (5.28)

the dimension (5.9) of the operator that implements the covering transformation z → zκ.

Spectral flow to the R sector shifts the j3 charge by κ/2, from j3 = (κ−1)/2 to j3 = −1/2.

The U(1) charge exponential now carries dimension 1/(4κ), resulting in the Ramond-sector

twist operator dimension κ/4, equation (5.12). Similarly, on T
4 one may regard the R-

symmetry singlet states |AB〉 as the result of acting on the state |Φ, α=0〉 by a spectral

flow to spin 1/2 in the auxiliary SU(2)A (for T4/Z2, there are 16 additional states coming

from the fixed points).
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One can now obtain new R-sector states from the cyclic twist ground states |αα̇〉 and
|AB〉 via spectral flow by an amount s/κ, s ∈ Z. This operation is fractional spectral flow

on the κ-cycle, but integer spectral flow on the covering space; it results in a series of
1
8 -BPS states, for example

|++〉κ,s , hκ,s =
κ2 − 1

4κ
+

(s+ 1/2)2

κ
, j3κ,s = s+

1

2

|00〉κ,s , hκ,s =
κ

4
+
s2

κ
, j3κ,s = s , (5.29)

and corresponding operators. For a general conjugacy class in the symmetric group, one

has the choice of independent spectral flow on each component cycle.

States that survive the symmetric group quotient have h− h̄ ∈ Z for each cycle. In the

twisted sectors, a cycle of length κ has a Zκ projection on its Hilbert space18 that assigns

charge ν/κ to the νth clock sector, and neutrality under this projection guarantees that

states have integer momentum, cycle by cycle. To satisfy this requirement, one must have

s2/κ ∈ Z for the |00〉 state, or s(s+ 1)/κ ∈ Z for the |++〉 state.
The generic state in this construction is obtained by taking tensor products of |αα̇〉κ,s

and |AB〉κ,s chosen independently for each cycle; these states are built from fractional

spectral flow under the J3 pertaining to that cycle only, and are subject to the integer

momentum constraint on each cycle (and the Z2 quotient for K3 = T
4/Z2). Note that the

U(1) currents that we are using to spectral flow are not present in the CFT away from the

orbifold locus, apart from the overall U(1). Nevertheless, at the orbifold locus they serve

to generate states for us that are protected by the BPS property as we move away from

the orbifold locus in moduli space, and so we can continue to characterize them through

the use of this special property of the orbifold theory.

The states spectrally flowed under J3 have an equivalent description in terms of de-

scendant states in the SU(2) current algebra; for example

|00〉κ,s = (J+
−s/κ)

s |00〉κ . (5.30)

This relation is straightforward to see in the covering space description, where this state can

be thought of in terms of the raising operator (J+
−s)

s acting on the current algebra vacuum

(recall the moding is rescaled by a factor κ on the covering space). The covering space

SU(2) current algebra has level one, and is entirely accounted for through bosonization.

The operator (J+
−s)

s is a Virasoro highest weight operator of spin s and dimension s2, and

therefore must be an exponential exp[i
√
2 sĤ] of the boson J3 = i∂Ĥ on the covering space,

hence (5.30) indeed implements a spectral flow transformation.

Finally, in the T
4 SCFT, spectral flow has a third interpretation in terms of shifting

the Fermi sea of the χ̂Aα, by populating all the modes in the Hilbert space up to and

including level s/κ. It is straightforward to check that this leads to the shifts (5.25) in

energy and charge.

18In the g-twisted sector, one has a projection by the action of all group elements h that commute with

g, hgh−1 = g. This includes g itself, whose action imparts a phase to the fractional modes.
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5.4 CFT duals of our superstrata

We now combine the ingredients discussed above to develop our proposal for the CFT duals

of our superstrata. We observed below eq. (4.87) that our Style 2 solution, in the limit

of k = 1, is the extension to asymptotically flat space of a particular subset of solutions

constructed in [21]. The proposed dual CFT states [21, 77] can be written in terms of

spectral flow on chiral primary states. This suggests we look to similar states for candidate

CFT duals of our solutions. The fact that the wavenumber in v is a fraction 1/k of the

wavenumber in ψ suggests that we consider “fractional spectral flow” states of the sort

described above.

The orbifold projection on cycles of length κ enforces integer momenta on each strand.

Consider spectral flow on Ramond sector |00〉κ cycles. Integer h − h̄ means that α2κ ∈ Z

in eq. (5.29). One also wants j3 = k(h − h̄) so that the state corresponds to a supergrav-

ity solution whose fields have a phase dependence which is a multiple of ζ = v
2R − kϕ2

(eq. (4.3)). Equation (5.25) then requires ακ = kα2κ; thus α = 1/k. Therefore κ should

be a multiple of k2 in order for h − h̄ ∈ Z, i.e. κ = k2p̂ for some integer p̂. Then α = s/κ

gives s = kp̂. Thus, one component of the candidate CFT dual for Style 2 coiffuring is

fractional spectral flow by an amount α = 1/k on cycles |00〉k2p̂ of length k2p̂.

A second candidate component of the CFT dual arises from spectral flow on Ramond

sector cycles |++〉κ′ . Applying the same logic as above, one finds the criteria of integer

h − h̄ and spectral flow yielding j3 − j̄3 = k(h − h̄) result in a spectral flow by amount

s′ = kn̂, and cycle length κ′ = k(kn̂+ 1), for some n̂ ∈ Z.

Finally, a third candidate component of the CFT dual uses spectral flow on Ramond

sector cycles |−−〉κ′′ . Once again the spectral flow amount is s′′ = km̂, and the cycle length

is κ′′ = k(km̂− 1) for some m̂ ∈ Z.

The cycles excited by fractional spectral flow can also be expressed in terms of the

action of J+
−1/k, and we will find it convenient to do this. For |00〉 strands this follows from

equation (5.30), and similarly for |±±〉 strands using the strand lengths and amounts of

spectral flow above. In addition, the supergravity solution is built on a “ground state”

which is a supertube of radius a and angular momentum Q1Q2/4kR, whose CFT dual

consists of length k cycles |++〉k whose number is proportional to a2.

A state which combines these supertube strands with the above longer cycles excited

via fractional spectral flow has the form

(
|++〉k

)n1 ∏

m̂,n̂,p̂

(
(J+

−1/k)
kp̂|00〉

k2p̂

)n2,p̂
(
(J+

−1/k)
kn̂|++〉k(kn̂+1)

)n3,n̂
(
(J+

−1/k)
km̂|−−〉k(km̂−1)

)n4,m̂

(5.31)

with appropriate conditions on the strand numbers so that the state carries the same

quantum numbers as the supergravity solution, eqs. (4.5)–(4.9). Of course, one can write

the above tensor product with a single index p̂, but we will temporarily carry along m̂ and

n̂ to emphasize the differences between the strands. Ultimately, our proposed dual CFT

states will be coherent states built from superpositions of the states (5.31), as discussed

in [47, 48, 77]. The first check that we have the right class of states is to show that the

appropriate supergravity field modes are turned on under a small deformation away from
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the parent supertube solution (i.e. when the total number of copies taken up by the excited

strands is small compared to the total number of copies taken up by the unexcited base

supertube strands).

Expectation values of supergravity mode operators. One can regard the cyclic

twist components |00〉k2p̂ or |++〉k(kn̂+1) or |−−〉k(km̂−1) as excitations above the supertube

“ground state”. Supergravity field modes turned on by the coiffuring procedure are as-

sociated to operators in the CFT having expectation values in the coherent states built

from the states (5.31). These operators will include those that have a matrix element that

annihilates one of the long cycles, and converts it into multiple copies of |++〉k. Indeed,

the order kp̂ anti-cyclic permutation

(
kp̂k, (kp̂−1)k, (kp̂−2)k, . . . , k

)
(5.32)

acting on the cycle (
1, 2, 3, 4, . . . , k2p̂

)
(5.33)

results in the tensor product of kp̂ cycles of length k

(
1, . . . , k

) (
k+1, . . . , 2k

) (
2k+1, . . . , 3k

)
· · ·

(
(kp̂−1)k+1, . . . , kp̂k

)
, (5.34)

and similarly an anticyclic permutation of length kn̂+1 can convert a cycle of length k(kn̂+1)

into kn̂+1 cycles of length k, and an anticyclic permutation of length km̂−1 can convert

a cycle of length k(km̂−1) into km̂−1 cycles of length k.

The operators that mediate the appropriate matrix elements for the state (5.31) must

also soak up the currents that spectrally flow the state from the 1/4-BPS ground state

in this twist sector. Each k2p̂-cycle in this state carries (J3, J̄3) charges (kp̂, 0), while the

final state has kp̂ extra cycles |++〉k, with charges (kp̂/2, kp̂/2), and so the operator that

effects the transition must have charge (−kp̂/2, kp̂/2). Similarly, each k(kn̂+1)-cycle has

(J3, J̄3) = (kn̂ + 1
2 ,

1
2), while the final state has charge (12(kn̂+1), 12(kn̂+1)), and so the

operator that mediates the transition must have charge (−kn̂/2, kn̂/2); and each k(km̂−1)-
cycle has (J3, J̄3) = (km̂− 1

2 ,−1
2), while the final state has charge (12(km̂−1), 12(km̂−1)),

and so the operator that mediates the transition must have charge (−km̂/2, km̂/2).
The BPS twist operator whose conjugacy class contains the kp̂-cycle (5.32) and which

also has these SU(2)R quantum numbers, and obeys selection rules of the auxiliary SU(2)A,

is the NS sector operator

ǫAB (J−
0 )kp̂O(kp̂)AB

kp̂+1,kp̂+1 . (5.35)

This component operator has (J3, J̄3) = (−kp̂/2, kp̂/2) and so carries the appropriate R-

charges to implement the matrix element that sends (n1, n2, n3, n4) to (n1+kp̂, n2−1, n3, n4).
Similarly, the NS sector operator

(J−
0 )kn̂O(kn̂+1)

kn̂+1,kn̂+1 (5.36)

has (J3, J̄3) = (−kn̂/2, kn̂/2) and so carries the appropriate quantum numbers to mediate

the transition (n1, n2, n3) → (n1+kn̂+1, n2, n3−1, n4); and the operator

(J−
0 )km̂O(km̂−1)

km̂+1,km̂+1 (5.37)
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has the SU(2)R quantum numbers (J3, J̄3) = (−km̂/2, km̂/2) and mediates the transition

(n1, n2, n3, n4) → (n1+km̂−1, n2, n3, n4−1).19

Ward identities for the conformal group SL(2, R) × SL(2, R) guarantee a dependence

exp[ip̂v/2R] for the matrix elements mediated by the operator (5.35). The SU(2)× SU(2)

R-symmetry quantum numbers of this operator ensures that the matrix elements have the

angular dependence

exp
[
ikp̂ ϕ2/2

]
coskp̂ θ (5.38)

on S
3. This angular dependence equates to the fact that the operator (5.35) is a twisted

chiral operator (SU(2)R lowest weight on the left and highest weight on the right). Simi-

larly, the operators (5.36) and (5.37) are twisted chiral operators that mediate analogous

matrix elements, whose coordinate dependences are the same apart from the substitution

p̂→ n̂ and p̂→ m̂, respectively. The leading asymptotic power of r in the matrix element

is also dictated by the scale dimension of the operator, and a matching power of akp̂ in the

quantity ∆kp̂ comes from the number of supertube k-cycles created when a cycle of length

k2p̂ is annihilated.

The general solution of type IIB supergravity compactified on T
4 × S

1 that preserves

the same supercharges as the F1-NS5-P system and is invariant under rotations of T4 has

the form

ds210 = −2Z2

P
(
dv + β

) [
du+ ω +

F
2

(
dv + β

)]
+ Z2 ds

2
4 + dŝ24 , (5.39a)

e2Φ =
Z2
2

P , (5.39b)

B2 = −Z2

P (du+ ω) ∧ (dv + β) , (5.39c)

B6 = v̂ol4 ∧
[
−Z1

P (du+ ω) ∧ (dv + β)

]
+ . . .

C0 =
Z4

Z2
, (5.39d)

C2 =
Z4

P (du+ ω) ∧ (dv + β) + . . . , (5.39e)

C4 =
Z4

Z2
v̂ol4 + . . . , (5.39f)

(5.39g)

with

P ≡ Z1 Z2 − Z2
4 . (5.40)

Here ds210 is the ten-dimensional string-frame metric, ds24 is the metric on the space trans-

verse to the branes, Φ is the dilaton, Bp and Cp are the NS-NS and RR gauge forms. (It

is useful to also list B6, the 6-form dual to B2, to make explicit the appearance of Z1

19The operator (5.35) is the spectral flow to the NS sector of the Ramond operator corresponding to

the state |00〉kp̂ (flowed in opposite directions on left and right), while the operator (5.36) is the spectral

flow to the NS sector of the Ramond operator corresponding to the state |−−〉kp̂+1, and the operator (5.37)

corresponds to the NS to R flow of the state |++〉km̂−1.
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and Z2 as the magnetic and electric components of the NS B-field.) The flat metric on

T
4 is denoted by dŝ24 and the corresponding volume form by v̂ol4. For further discussion,

see [21, 41, 47, 48, 77].

In the supergravity solution (5.39), the harmonic function Z4 appears in the RR scalars

C0 and C4 as well as in the six-dimensional C2 tensor field in the F1-NS5 frame, and carries

the quantum numbers leading to the angular dependence (5.38). The operator (5.35)

corresponds (in the F1-NS5 duality frame) to the scalar C0v4−C4 and the six-dimensional

tensor C−
2 , according to (5.23), and its matrix elements carry the appropriate angular

dependence. Thus for both coiffuring styles, we expect that there should be a vev of

this operator proportional to b4. When one builds coherent states out of the building

blocks (5.31), one determines the average number of of strands n̄2 such that it reproduces

this vev [47, 48, 77].

The harmonic functions Z1,2 appear in the electric and magnetic components of the

six-dimensional NS B-field and the dilaton in this duality frame, with angular dependence

of the form (5.38), where p̂ = n = p for Style 1 and p̂ = n = 2p for Style 2. The opera-

tors (5.36), (5.37) correspond to the supermultiplet (5.22) containing the six-dimensional

NS B-field and the dilaton. Their matrix elements also have angular dependence of the

form (5.38), with the same replacements for the two coiffuring styles, and imply the corre-

sponding vevs for the dual CFT coherent states.

Thus we have all the ingredients to reproduce the coiffured supergravity solutions of

section 4 from the CFT, and it is natural to anticipate that the average numbers of excited

|00〉k2p̂ strands n̄2,p̂ will be related to the coefficient b4, and average number of excited

|++〉k2n̂+k and |−−〉k2m̂−k strands n̄3,n̂, n̄4,m̂ will be related to the coefficients b1, b2. This

is indeed what we will find.

The coiffuring construction imposes relations on the mode amplitudes and frequencies

in order that the supergravity solution is regular at r = 0. These restrictions are not

apparent in the CFT states in the linearized analysis, which, a priori, allows independent

values for the cycle length quantum numbers (p̂, n̂, m̂) and the corresponding amplitudes

(n2,p̂, n3,n̂, n4,m̂).

For coiffuring Style 1 in supergravity, one has n = p and the amplitude rela-

tions (4.39)–(4.40); for Style 2, one has n = 2p together with the amplitude restrictions

b2 = 0 and (4.73). For Style 2, at leading order there is no amplitude for b1 (since b1 ∼ b24)

and b2 = 0, hence there is no linearized vev for the NS B-field; this suggests that Style 2

corresponds to a state with n3,n̂ = n4,m̂ = 0 in the CFT. The vev of the B-field at second

order in b4 could be accounted for by the non-linearities in the CFT-supergravity mode

map, and indeed we will show this to be true in the next subsection.

For Style 1, an amplitude at leading order in b4 is present for all of the m = n = p

modes of the NS B-field, but in the CFT it seems that the amplitude of the corresponding

vevs can be independently varied — at this point there appears to be no restriction on

the relative numbers (n2,p̂, n3,n̂, n4,m̂) of the different kinds of strands at leading order.

Again, to understand these restrictions, it is necessary to understand the relation between

supergravity modes and CFT fields at the non-linear level.
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Instead of trying to carry through the somewhat daunting task of determining the

non-linear corrections to the supergravity-CFT map, we will instead proceed somewhat

differently, and determine what strands are present in the CFT (and in what amounts) by

an analysis of the two-charge solutions on which the coiffured solutions are based.

Information from two-charge solutions. Our proposed dual CFT states involve frac-

tional spectral flow on a two-charge 1
4 -BPS state, and spectral flow does not change

the strand content of a BPS state. Therefore, we can determine the amounts of the

various types of strands present (at the fully non-linear level) in both styles of coiffur-

ing, by studying the known map between CFT and supergravity for the two-charge sys-

tem [11, 30, 47, 48, 78].

The harmonic functions determining the geometry of a circular F1-NS5 supertube in

the decoupling limit are

Z2 =
Q2

L

∫ L

0

1

|xi − gi(v̂)|2
dv̂ , Z4 = −Q2

L

∫ L

0

ġ5(v̂)

|xi − gi(v̂)|2
dv̂ , (5.41a)

Z1 =
Q2

L

∫ L

0

|ġi(v̂)|2 + |ġ5(v̂)|2
|xi − gi(v̂)|2

dv̂ , (5.41b)

A = −Q2

L

∫ L

0

ġj(v̂) dx
j

|xi − gi(v̂)|2
dv̂ , dB = − ∗4 dA , ds24 = dxidxi , (5.41c)

β =
−A+B√

2
, ω =

−A−B√
2

, F = 0 , (5.41d)

where the dot on the profile functions indicates a derivative with respect to v̂ and ∗4 is the

dual with respect to the flat transverse R
4 parametrized by xi.

The onebrane charge is given by

Q1 =
Q2

L

∫ L

0

(
|ġi(v̂)|2 + |ġ5(v̂)|2

)
dv̂ . (5.42)

The quantities Q1, Q2 are related to quantized onebrane and fivebrane numbers n1, n5 by

Q1 =
(2π)4 n1 g

2
s α

′3

V4
, Q2 = n5 α

′ , (5.43)

where V4 is the coordinate volume of T4.

The circular supertube profile is is given by

g1 + ig2 = a exp[2πikv̂/L] . (5.44)

It will prove convenient to denote x = x1 + ix2, y = x3 + ix4, and parametrize the profile

by ξ ≡ 2πkv̂/L. Since the supertubes of interest run around the same profile k times,

the integral is simply k times the integral over the range ξ ∈ (0, 2π). The further change

of variables z = eiξ, and the use of z̄ = 1/z for an integral along the unit circle in z,

converts the integrals into contour integrals for which we can use the method of residues,

for example

Z2 =
Q2

2πi

∮
dz

z

1

(x− az)(x̄− a/z) + yȳ
. (5.45)
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The poles in the integrand are located at

z± =
w̃ ±

√
w̃2 − 4xx̄a2

2x̄a
, (5.46)

where w̃ = xx̄+ yȳ + a2, and so

Z2 =
Q2√

w̃2 − 4xx̄a2
. (5.47)

Converting from Cartesian coordinates to spherical bipolar ones

x = r̃ sin θ̃eiϕ1 , y = r̃ cos θ̃eiϕ2

r̃ =
√
r2 + a2 sin2 θ , cos θ̃ =

r cos θ√
r2 + a2 sin2 θ

(5.48)

leads to the correct form of Z2 in the decoupling limit,

Z2 =
Q2

r2 + a2 cos2 θ
=
Q2

Σ
. (5.49)

Next, we introduce ν = kp for convenience and we add a g5 term to the profile function,

g5(v̂) = − 2b4
νkRy

sin

(
2πk

L
ν v̂

)
=

−b4
iνkRy

(zν − z−ν) , (5.50)

where b4 is real, and corresponds to the magnitude of the quantity b4 in the supergrav-

ity (4.8). The quantity that corresponds to the phase of the supergravity b4 is a shift in v̂

in (5.50). In what follows, for both Style 1 and Style 2, we will take b4 to be real, both for

convenience and for ease of comparison to [21]. This g5 term in the profile function gives

rise to the following contour integral expression for the harmonic function Z4:

Z4 = b4
1

2πi

∮
dz

z

zν + z−ν

(x− az)(x̄− a/z) + yȳ
. (5.51)

The zν term yields the result

b4
zν−

(−ax̄)(z− − z+)
. (5.52)

The denominator gives again the factor of Σ; furthermore, one has

z−
z+

=
a2 sin2 θ

r2 + a2
, z+z− = e2iϕ1 . (5.53)

One can then rewrite zν− as

zν− =

(
z−
z+

)ν/2
(z+z−)

ν/2 =
(a2 sin2 θ
r2 + a2

)ν/2
eiνϕ1 . (5.54)

The harmonic function depends on the combination sin θ eiϕ1 rather than cos θ eiϕ2 be-

cause the linearized supergravity modes getting a vev correspond to chiral rather than
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twisted-chiral operators in the CFT. The fractional spectral flow operation converts one to

the other.

One is looking to match the structure in [21] equation (3.11c) which is

(
a2 sin2 θ

r2 + a2

)ν/2
cos νϕ1

Σ
=

(z−/z+)ν/2
(
(z+z−)ν/2 + (z+z−)−ν/2

)

2(−ax̄)(z− − z+)
; (5.55)

this is exactly what is found once the contribution from the z−ν term in (5.51) is added.

So the seed Z4 is

Z4 = 2b4

(
a2 sin2 θ

r2 + a2

)ν/2
cos νϕ1

Σ
. (5.56)

Style 2. For coiffuring Style 2, the harmonic function Z1 exhibited in [21] equation (3.11a)

for the corresponding two-charge seed solution, translated into our conventions is

Z1 =
Q1

Σ
+

2b24
Q2

(
a2 sin2 θ

r2 + a2

)ν
cos 2νϕ1

Σ
(5.57)

which follows from equation (5.41b). Thus we see that Style 2 coiffuring is the result solely

of exciting |00〉 strands of length κ = kν = k2p; the strength b1 ∝ b24 of the vev is entirely

accounted for by non-linear effects of the |00〉 strands, and so no additional contribution

corresponding to nonzero n3,n̂, n4,m̂ is necessary. The corresponding two-charge solution is

precisely as in [21], and the spectral flow that adds the third charge simply turns vevs from

chiral to twisted-chiral — under fractional spectral flow, the factor sinν θ eiνϕ1 turns into

cosν θ eiνϕ2 , which is what we see in the coiffured harmonic functions of section 4 above.

Style 1. It remains to match Style 1 to a set of supertube strands in a two-charge solution

prior to spectral flow and coiffuring. We expect to at least have strands of length k(kp+ c)

for c = {−1, 0,+1}, since vevs for the operators (5.35)–(5.37) must appear at linear order in

b4. The c = ±1 strands correspond to |±±〉 cycles and so in general will affect the location

of the supertube profile in the transverse R
4. Introducing |++〉k(kp+1) and |−−〉k(kp−1)

strands, the deformation profile becomes

g1 + ig2 = az + b−z
−(kp−1) + b+z

kp+1 = z
(
a+ b−z

−ν + b+z
ν
)
, (5.58)

where ν = kp and z = exp(2πikv̂/L).

For small amplitude deformation b± ≪ a, there are no new poles inside the contour of

integration, and the pole in the integrand will still be close to z−. We can map the profile

back to a unit-velocity circular profile (i.e. g1 + ig2 = aeiw) via a single-valued conformal

map, at the cost of a Jacobian for the transformation. In general this leads to an infinite

series in the expressions for Z1 and Z2 if there are only one or two lengths of strand in the

profile g1 + ig2; since we wish to engineer a finite Fourier series for Z1 and Z2, the dual

CFT state will have a series of strand lengths involving all possible multiples of p.

Working firstly to leading order in b±, consider the profile

(g1 + ig2)(v̂) = a exp
[
iw

(
ξ(v̂)

)]
, ξ(v̂) =

2πkv̂

L
, w(ξ) = ξ − b

ν
cos νξ + . . . (5.59)
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where we set b+ = b− ≡ −iab/2ν in order that the map is a proper element of Diff(S1).

Here again ξ serves as a rescaled periodic coordinate which ranges over [0, 2πk). The

motivation for considering such a profile comes from coiffuring — the idea is that coordinate

transformations on the supertube worldvolume apply a density perturbation to the round

supertube without perturbing its location in space. The fivebrane and onebrane charge

densities will no longer be constant along the supertube. Expanding this profile out to

leading order in b reproduces (5.58). Such a change of variable has no effect on Z4 (which

is reparametrization invariant) but it will change Z1 and Z2. The integration measure picks

up a factor

dv̂ → dw
(dw
dv̂

)−1
,

dw

dv̂
=
dw

dξ

dξ

dv̂
(5.60)

where we have expanded the Jacobian factor to clarify that w means w
(
ξ(v̂)

)
as above.

Similarly the “energy densities” in the numerator of Z1 in (5.41) pick up a factor

|(ġ1 + iġ2)(v̂)|2 + |ġ5(v̂)|2 →
(dw
dv̂

)2(
|(g′1 + ig′2)(w)|2 + |g′5(w)|2

)
(5.61)

where primes denote derivatives with respect to the argument. Again evaluating the factors

of (dw/dv̂) to leading order in b one finds that in the new integration variable w, the

integrand of Z2 is modified by a factor of 1 − b sin νw in (5.41a), while the integrand of

Z1 gets a factor of 1 + b sin νw (in addition to the corresponding factors of 2πk/L). We

then find the same sort of integral we encountered in (5.41b), with the same result. Our

primitive approximations give b1 = −b2, which is appropriate for a2 ≪ Q1, Q2; the latter

is a consequence of the decoupling limit.

In principle one can proceed order-by-order in a series expansion in bI , (I = 1, 2, 4),

working out the non-linear map between the v̂ coordinate frame in which the strand content

is specified, and the w coordinate frame in which the supertube profile is a constant velocity

parametrization of a circle. However, ultimately we are interested in the harmonic functions

ZI having a single non-trivial Fourier coefficient. In Style 1, the perturbation to Z2 looks

like (5.51) with ν = kp and a coefficient b2; and Z4 is the same but with a coefficient b4.

These simple forms suggest that the more straightforward route is to work directly in the

w coordinate frame and only implicitly specify the coordinate map via its inverse,

v̂(ξ) =
L

2πk
ξ , ξ(w) = w +

b

ν
cos νw . (5.62)

Plugging this into (5.41a) gives exactly the right result for Z2 and Z4 in Style 1, using

(g1 + ig2)(v̂) = a exp
[
iw

(
ξ(v̂)

)]
, g5(v̂) = − 2b4

νkRy
sin

[
ν w

(
ξ(v̂)

)]
. (5.63)

We have now used up almost all our freedom to specify the state; all that remains are the

amplitudes b, b4. The integral for Z1 is

Z1 =
k2R2

y

2πQ2

∫ 2π

0
dw

(dw
dξ

)−1
(
|(g′1 + ig′2)(w)|2 + |g′5(w)|2

)
(dw/dξ)2

|x− (g′1 + ig′2)(w)|2 + |y|2

=
k2R2

y

2πQ2

∫ 2π

0
dw

a2 + (2b4/kRy)
2 cos2 νw

1− b sin νw

1

|x− aeiw|2 + |y|2 (5.64)
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where we have used the relation

L =
2πQ2

Ry
. (5.65)

Let us choose

b2 =
(2b4/kRy)

2

(2b4/kRy)2 + a2
=

4b24
Q1Q2

, (5.66)

where the second equality is the analog of the gravity regularity condition (4.55). Then

the factor in the integrand becomes

a2 + (2b4/kRy)
2 cos2 νw

1− b sin νw
= (a2+(2b4/kRy)

2)
(
1+ b sin νw

)
=
Q1Q2

k2R2
y

(
1+ b sin νw

)
, (5.67)

where the last equality comes from evaluating the expression (5.42). All harmonic functions

have only terms that are constant or a single S3 harmonic of the form (5.54), withm = n = p

and b1 = −b2 = ib4/
√
Q1Q2. These results agree precisely with the decoupling limit

a2 ≪ Q1, Q2 of the amplitude relations (4.41) of Style 1 coiffuring in supergravity.

For these two-charge solutions, the mode amplitude restrictions do not come from

requiring regularity of the supergravity solution — all the two-charge solutions are non-

singular. Rather, the restriction comes from the somewhat arbitrary requirement that the

harmonic functions contain only a single Fourier mode rather than a combination of modes

of different wavenumbers.

It is worth reiterating that the map between supergravity and CFT takes place in the

v̂ coordinate frame, which is only implicitly specified above through the relation (5.62). In

the v̂ coordinates the solution is very complicated and has in principle all values of m̂, n̂, p̂

turned on. The non-zero values of m̂, n̂ are given by the non-zero Fourier coefficients of

(g1 + ig2)(v̂) = a exp[iw(ξ(v̂))],

cn =

∫ 2π

0

dξ

2π
e−inξ eiw(ξ) =

∫ 2π

0

dw

2π

dξ

dw
e−inξ(w)+iw (5.68)

and are predominantly concentrated on the lowest modes. Expanding in b,

cn =

∫ 2π

0

dw

2π

(
1 + b cos(νw)

)
ei(1−n)w

∞∑

ℓ=0

1

ℓ!

(−inb cos νw
ν

)ℓ
(5.69)

one sees that the only nonzero Fourier coefficients occur for n = 1 + qν, q ∈ Z, generaliz-

ing (5.58). Of these non-zero Fourier coefficients, the positive values of n give the non-zero

values of m̂, and the negative values of n give the non-zero values of n̂. Thus we see that

m̂ and n̂ must be multiples of p, the mode number of the supergravity solution. Similarly,

the non-zero values of p̂ are all multiples of p.

In addition, reality of the conformal map implies c1+qν = c∗1−qν , which in turn means

that for each q, the average numbers of |++〉k(qkp+1) and |−−〉k(qkp−1) strands are equal.

Finally, note that in the quantum theory, there is a maximum mode number N = N1N5

and so one cannot precisely generate Style 1 because the Fourier expansion is necessarily

finite; the result will differ at the 1/N level.
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For kp = 1, this family of states has a somewhat degenerate limit, since the length

of the |−−〉k(kp−1) strands is zero. This simply means that this particular strand type is

absent for kp = 1, while the other strands remain as described above. In particular, the

average numbers of |++〉k(qkp+1) and |−−〉k(qkp−1) strands are equal for q ≥ 2.

Summary of proposed dual CFT states. In both Style 1 and Style 2, we start with

a two-charge seed solution, determined by a profile function. The general dictionary for

two-charge states is discussed in [30, 47, 48, 77]. We now describe how it applies to our two-

charge seed states. Given a profile function, the non-zero Fourier coefficients specify the

types of strands involved in the dual CFT state, and the values of the Fourier coefficients

control the coefficients of the individual terms in the coherent state superposition.

Style 2

As shown in the previous subsection, the Style 2 seed solution is determined by the

profile function (5.44), (5.50):

(g1 + ig2)(v̂) = a exp

(
i
2πk

L
v̂

)
, g5(v̂) = − 2b4

νkRy
sin

(
2πk

L
ν v̂

)
. (5.70)

Since both g1 + ig2 and g5 have only a single Fourier mode, the dual CFT state contains

just two types of strands,

|++〉k , |00〉
k2p

, (5.71)

where the excited strands are only of one type, given by p̂ = p.

To form the coherent state, one considers all partitions of the N1N5 copies of the CFT

into strands of the two above types. Then one forms a sum in which the coefficients of these

different partitions are controlled in a specific way by the two non-zero Fourier coefficients

of the profile function (5.70) (for more details, see in particular the discussion in [77]).

Given this seed two-charge state, we excite all strands except for the |++〉k strands in

the way described in section 5.4, so that the resulting three-charge state is composed only

of strands of type

|++〉k , (J+
−1/k)

kp|00〉
k2p

. (5.72)

The coefficients in the coherent state sum remain as in the two-charge seed solution.

Style 1

For Style 1, the seed solution is given by the profile function

(g1 + ig2)(v̂) = a exp
[
iw

(
ξ(v̂)

)]
, g5(v̂) = − 2b4

νkRy
sin

[
ν w

(
ξ(v̂)

)]
(5.73)

where from (5.62) we specify the map implicitly through its inverse,

v̂(ξ) =
L

2πk
ξ , ξ(w) = w +

b

ν
cos νw . (5.74)
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Since both g1+ ig2 and g5 have an infinite Fourier series, the types of CFT strands present

are those of type

|++〉k , |00〉
k2p̂

, |++〉k(kn̂+1) , |−−〉k(km̂−1) , (5.75)

where m̂, n̂, p̂ can be any independent multiples of p, compatible with the total number

of strands being N1N5. The coherent state has many more ingredients, however the coeffi-

cients in the superposition are again fully specified by the Fourier coefficients of the profile

function (5.73). Therefore all the coefficients are determined by the parameter b4 (since b4
fixes b and a).

Given this seed two-charge state, we again excite all strands except for the |++〉k
strands in the way described in section 5.4, so that the resulting three-charge state is

composed only of strands of type

|++〉k , (J+
−1/k)

kp̂|00〉
k2p̂

, (J+
−1/k)

kn̂|++〉k(kn̂+1) , (J+
−1/k)

km̂|−−〉k(km̂−1) , (5.76)

where again the values of m̂, n̂, p̂ are independent multiples of p, compatible with the total

number of strands being N1N5, and the coefficients in the coherent state sum remain as in

the two-charge seed solution.

Finally, note that, at the level of counting free parameters in the solutions, we expect

there to be good agreement more generally between coiffured deformations of circular

supertubes on the supergravity side, and fractional spectral flows of circular two-charge

seed solutions on the CFT side. On the CFT side, one has two functional degrees of

freedom — the specification of the profile of the |00〉 strands embodied in the function g5,

and the diffeomorphism w(ξ) that changes the parametrization of the round supertube. On

the supergravity side, the diffeomorphism w(ξ) corresponds to the charge densities ̺1 and

̺4 discussed in section 3.2, and the profile of the |00〉 strands corresponds to the function

Z4. In section 3.2 we saw that in the absence of Z4 there are three functions and two

functional constraints, leaving one functional degree of freedom; adding in Z4 gives two

functional degrees of freedom, which agrees with the CFT.

There are interesting parallels between the supergravity construction of section 3 and

the appearance of density fluctuations in the CFT. However the relationship is not direct.

In the CFT, the density profile appears in the two-charge seed solutions before applying

fractional spectral flow; on the gravity side, the density perturbations were introduced in

a spectrally inverted frame, and then a second spectral inversion was applied to transform

back to the original frame. The density fluctuations were thus applied to a supertube that

does not have a simple, direct relationship to the original D1-D5 CFT. There is also the

technical distinction in that the construction of section 3 initially involves three apparently

independent charge density functions that must then satisfy the constraints of supertube

regularity (3.19) and (3.20), leaving only one independent density function. In this section,

the density fluctuation is introduced via a combination of the g5 profile and (in Style

1) a conformal map of the round supertube profile, which, via the Lunin-Mathur map,

automatically maintains the supertube regularity conditions. It would be very interesting

to investigate this relationship in more detail.
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5.5 Comparison of conserved charges

We now compare the angular momenta J3, J̄3 and the momentum charge QP , and demon-

strate the agreement between our supergravity solutions and our proposed dual CFT states.

For ease of comparison to the supergravity discussion in section 4.4, we revert to the D1-D5

duality frame.

The discussion that follows requires a certain amount of notation to write the charges

explicitly, however the reasons that underlie the agreement can be stated simply.

Firstly, all our momentum excitations can be expressed in terms of the action of powers

of J+
− 1

k

. Secondly, for each p̂ the average numbers of the strands of length k2p̂ + k and

k2p̂ − k are equal, because of their origin as the (real-valued) two-charge density profile.

Therefore adding momentum p̂ requires, on average, k2p̂ strands of the CFT. This fact

leads to the relation between the angular momenta J3, J̄3 and the momentum charge QP
observed in the supergravity, as we now show explicitly.

Style 2. For Style 2, we have a coherent state which is a sum of terms of the form

(
|++〉k

)n1
(
(J+

−1/k)
kp|00〉

k2p

)n2

, (5.77)

where the sum runs over all n2 such that

kn1 + (k2p)n2 = N1N5 , (5.78)

weighted with coefficients as described in the previous subsection.

For Style 2 coiffuring, from (4.82) and (4.86) we have on the gravity side

QP =
2|b4|2
k2R2

y

, JR =
1

2

Q1Q2

kRy
− 1

2
kRyQP , JL = JR + kRyQP . (5.79)

In the CFT, the expectation value of the momentum L0 − L̄0 in the Style 2 state is

Np = p n̄2 . (5.80)

The total number of strands is N1N5; this determines n̄1 in terms of n̄2 (or Np) as

n̄1 =
N1N5

k
− kNp . (5.81)

Then the CFT ̄3 is

̄3 =
n̄1
2

=
1

2

N1N5

k
− k

2
Np . (5.82)

We convert the supergravity charges to quantized charges using

Q1 =
gsN1α

′3

V
, Q5 = gsN5α

′ , QP =
g2sNPα

′4

R2
yV

,
π

4G(5)
=
V Ry
g2sα

′4 (5.83)

which lead to the useful relations

π

4G(5)

Q1Q5

Ry
= N1N5 ,

π

4G(5)
RyQP = NP . (5.84)
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Thus we obtain

̄3grav =
π

4G(5)
JR =

1

2

N1N5

k
− k

2
Np (5.85)

which agrees with the CFT. Next, the CFT j3 is

j3 =
n̄1
2

+ (kp)n̄2 = ̄3 + kNp . (5.86)

Comparing to the gravity solution we have

j3grav =
π

4G(5)
JL = ̄3grav + kNp (5.87)

which is also in agreement. Then by comparing the momentum charge we obtain the map

between |b4|2 and n̄2:

NP =
π

4G(5)
RyQP ⇒ p n̄2 =

( π

4G(5)

) 2|b4|2
k2Ry

. (5.88)

Style 1. For Style 1, we first consider kp > 1. As described above, the ingredients in the

coherent state sum are

(
|++〉k

)n1 ∏

p̂∈pZ

(
(J+

−1/k)
kp̂|00〉

k2p̂

)n2,p̂
(
(J+

−1/k)
kp̂|++〉k(kp̂+1)

)n3,p̂
(
(J+

−1/k)
kp̂|−−〉k(kp̂−1)

)n4,p̂

(5.89)

For Style 1 coiffuring, from (4.57), (4.66) and (4.67) we have on the gravity side

QP =
4|b4|2
k2R2

y

, JR =
1

2

Q1Q2

kRy
− 1

2
kRyQP , JL = JR + kRyQP . (5.90)

In the CFT, each individual element in the coherent state sum has momentum eigenvalue

∑

p̂∈pZ
p̂ (n2,p̂ + n3,p̂ + n4,p̂) (5.91)

and so the expectation value of L0 − L̄0 again involves the average numbers of strands,

Np =
∑

p̂∈pZ
p̂ (n̄2,p̂ + n̄3,p̂ + n̄4,p̂) . (5.92)

Since the total number of strands is N1N5, we have

kn̄1 +
∑

p̂∈pZ

[
(k2p̂)n̄2,p̂ + (k2p̂+ k)n̄3,p̂ + (k2p̂− k)n̄4,p̂

]
= N1N5 . (5.93)

Because the density profile function w(ξ) is real, we have the relation on the average

numbers

n̄3,p̂ = n̄4,p̂ for all p̂ . (5.94)
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Therefore we have

kn̄1 +
∑

p̂∈pZ
(k2p̂) (n̄2,p̂ + n̄3,p̂ + n̄4,p̂) = N1N5 (5.95)

and so, as for the Style 2 states, n̄1 is given by

n̄1 =
N1N5

k
− kNp . (5.96)

Next, the CFT ̄3 is

̄3 =
1

2


n̄1 +

∑

p̂∈pZ
(n̄3,p̂ − n̄4,p̂)


 =

n̄1
2

=
1

2

N1N5

k
− k

2
Np . (5.97)

The gravity ̄3 is

̄3grav =
1

2

N1N5

k
− k

2
Np , (5.98)

so we find perfect agreement.

The CFT j3 is

j3 =
1

2


n̄1 +

∑

p̂∈pZ
(n̄3,p̂ − n̄4,p̂)


+

∑

p̂∈pZ
(kp̂) (n̄2,p̂ + n̄3,p̂ + n̄4,p̂) = ̄3 + kNp . (5.99)

Comparing to the gravity we have

j3grav =
π

4G(5)
JL = ̄3grav + kNp (5.100)

and so we again find perfect agreement.

Finally, by comparing the momentum charge we obtain the map between |b4|2 and the

average numbers of excited CFT strands,

NP =
π

4G(5)
RyQP ⇒

∑

p̂∈pZ
p̂ (n̄2,p̂ + n̄3,p̂ + n̄4,p̂) =

( π

4G(5)

) 4|b4|2
k2Ry

. (5.101)

For kp = 1, the analysis contains minor differences, however the expressions for j3 and

̄3 in terms of N1, N5, NP are the same as those given in (5.98) and (5.100), as we show in

appendix C. Thus the conserved charges agree for all values of k and p.

Therefore we find exact agreement of conserved charges between gravity and CFT,

providing supporting evidence for our proposal. It would be interesting to scrutinize our

proposal further with the tools of precision holography [30, 47–49, 77].
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5.6 Comments on momentum fractionation

The fractional spectral flow that we perform results in filled Fermi seas on the excited

strands. One way to see this is to observe that the SU(2)R current algebra has the identity

(J+
−1/k)

kp̂ |00〉
k2p̂

= J+

− 2kp̂−1

k2p̂

· · · J+
− 5

k2p̂

J+
− 3

k2p̂

J+
− 1

k2p̂

|00〉
k2p̂

. (5.102)

Similar expressions apply for the |++〉 and |−−〉 strands.
So the CFT state can be written in different ways, and in one way of looking at our

states, we excite modes with the lowest possible energy compatible with the constraint

of integer momentum per strand. Saying this another way, spectral flow creates a state

with the lowest possible energy for a given angular momentum, or equivalently maximal

angular momentum for a given energy, so that there is no available free energy for thermal

excitations of the state.

As one backs away from maximal angular momentum, one has the freedom to excite

different modes, and the entropy increases. For instance, if we change one of the current

raising operators on the right-hand side of (5.102) from a J+ to a J3, the angular momen-

tum is decreased by one unit but the energy and momentum remain the same; and there

are kp distinct ways to do this. Decrease the angular momentum by one more unit, and

we can either have one J− or two J3 with the rest remaining J+, and there are of order

(kp)2 choices; and so on.

Such a deformation away from maximal spin preserves the BPS property of the CFT

state. It is interesting to ask what the gravitational description of such excitations will

be, and whether they will match those of the CFT. If we change the lowest modes with

energy/momentum of order 1/k2p, we would expect to have made a change in the geometry

in the places with the deepest red-shift. Note that such BPS deformations are not available

in the two-charge seed on which the three-charge coiffured solution is based.

Since the CFT state has strands of length of order k2p, there are also non-BPS ex-

citations that have zero momentum and angular momentum, and energy of order 1/k2p.

Such excitations are also present in the two-charge seed states. In the supergravity, the

non-BPS excitations are described at the linearized level by solving wave equations in the

superstratum geometry.

The supergravity solutions do not appear to have excitations at the scale 1/k2p sug-

gested by the CFT, however; in general, there seems to be a mismatch between the gap in

supergravity and in the CFT. The two-charge seed for Style 2 coiffuring is quite similar to

a class of two-charge solutions studied in [29], for which the gap was estimated to be a/b

(with a related to the number of |++〉 strands, b the number of T4 strands including |00〉
strands). In the CFT, the gap depends only on the length κ of the strands and is indepen-

dent of the relative amounts a and b of the different kinds of strands. A preliminary study

of the foregoing three-charge geometries indicates that, similar to the examples of [29], the

red-shift depends on the amplitudes a and b, and that the deepest red-shifts are not kp

times deeper than those of the parent k-wound supertube.

In general, one can arrange that the throat in supergravity is deeper and results in

a smaller gap than in the orbifold CFT (e.g. supergravity duals to CFT states discussed
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in [29] having only short cycles but low total angular momentum), and in yet other examples

the throat in supergravity is shallower and results in a larger gap than in the orbifold CFT

(e.g. the coiffured geometries discussed in this paper when b is finite but much less than a).

It would be useful to understand better the cause of this discrepancy.

The two-charge seed geometries of section 5.4 offer a qualitative explanation of the

gap in supergravity. The dual of the F1-P source in the Lunin-Mathur construction of

two-charge geometries [79] is a D1-D5 supertube smeared over the compact directions —

the circle parametrized by y and the compactification manifold M [11, 29, 30, 78]. When

segments of the unsmeared source approach one another, a throat opens and deepens in the

geometry. This property explains why the profile (5.44) results in a red-shift of order k —

the supertube source traces the same profile in the transverse space k times in the course

of the supertube winding the y circle, and is k times more compact (in R
4 coordinates);

as a consequence, the harmonic functions are k times bigger at their maximum, and the

throat is k times deeper.

For a small perturbation of this profile, it may be that the oscillations of the profile

are kp times faster than the k-fold spiral of the supertube, but this is a small perturbative

wiggle and does not make the profile kp times more bunched together, and hence the

deepest parts of the throat do not exhibit a red-shift kp times deeper. However, as one

shifts more of the strands from |++〉 type to |00〉 type, the angular momentum is reduced,

the source becomes more compact, and the throat deepens.

It remains a puzzle why there is such a mismatch between the behavior of supergravity

and that of the CFT for such a coarse property of the geometry. The gap to non-BPS

excitations is of course not a robust property of the system, and could change dramatically

as one passes from the regime where the CFT is weakly coupled to the regime where it is

strongly coupled and gravity is a good approximation. Nevertheless, there are examples

(see for instance [53]) where the gap can be matched on both sides of the duality. The

presence or absence of strands polarized in the T
4 directions appears to be an ingredient

which influences whether this quantity agrees between gravity and CFT; it would be useful

to understand fully when this comparison does and does not work.

6 Discussion

This work has expanded the construction of superstrata to include momentum-carrying

modes in deep AdS3 throats, in which the red-shift at the bottom of the throat is k times

that of a singly-wound supertube. Our construction started from a k-wound circular super-

tube geometry. We performed spectral inversion on this solution, then altered its angular

momentum by adding charge density fluctuations along the supertube with a wavenumber

kp for some integer p, without deforming the shape of the supertube. We then brought the

solution back to the original frame, where these fluctuations became momentum-carrying

excitations.

Our construction also produced the first examples of asymptotically-flat superstrata.

We built two classes of solutions, corresponding to two different ways of arranging the
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Fourier coefficients in order to obtain smooth solutions (with the usual Zk orbifold singu-

larities at the location of the supertube).

Taking the decoupling limit to obtain the corresponding asymptotically-AdS solutions,

we derived a proposal for the dual CFT states, for both classes of solutions. The starting

supertube is built from a macroscopic ensemble of cycles of length k in the twisted sector of

the symmetric orbifold CFT. The angular excitations in the CFT description are coherent

fractional spectral flows on additional cycles of the twisted sector state, whose length is of

order k2p. This fractional spectral flow can also be thought of either as acting of order kp

times with the fractionally-moded raising operator J+
−1/k, or as raising the Fermi seas on

these cycles by filling all the fermion modes with positiveR-charge up to a level of order 1/k.

In our states, the fractionally-moded quanta in the CFT correspond to perfectly regu-

lar, local excitations in the supergravity theory and not to non-geometric or multi-valued

perturbations. The bulk reflection of the fractional momentum carriers is rather the red-

shift of the perturbations down the supertube throat.

A small puzzle that remains is the apparent mismatch in the excitation gap of orbifold

CFT states and supergravity geometries discussed in section 5.6. A very similar mismatch

was previously noted for certain two-charge solutions [29]. In the CFT, the gap is de-

termined by the length of the longest cycles in the twisted sector ground state. In the

geometry, the depth of the throat depends on other quantities, such as the relative pro-

portions of the different strands. The supergravity gap can be larger or smaller than the

orbifold CFT gap. The gap to non-BPS excitations is not protected in general, so this

is not a serious problem for the holographic duality. However there are examples (see for

instance [53]) where the gap matches between gravity and CFT. It would be interesting to

understand when the gap should agree, and when it should not.

Our solutions do not have all desired features of typical black-hole microstates: their

angular momenta are over-spinning and the throats are not as deep as those of typical

states. The corresponding orbifold CFT states contain strands having length of order k2p,

and so k can at most be of order
√
N1N5, while the longer wavelength scale k2p is not

apparent in the geometry. Thus we regard the supergravity solutions presented here as a

“proof of concept” of a supergravity realization of momentum fractionation on superstrata,

much like the solutions in [21] are a proof of concept of the existence of superstrata solutions

parameterized by arbitrary functions of two variables.

For the future, one would like to improve on both of these (related) features: to lower

the angular momenta, and to deepen the throat further. First, regarding the angular

momenta, in section 5.6 we identified CFT excitations that move away from the maximally

spinning/overspinning regime by reducing the angular momentum through a change in the

polarization of theR-symmetry currents acting on the two-charge seed. Using this freedom,

one can make available some of the free energy to wiggle the throat while remaining BPS.

Where in the throat the excitation lies should correlate with the degree of fractionation of

the modes whose polarizations are being adjusted in the CFT.

One place to look for these more general solutions on the supergravity side is to con-

sider more generic superstrata, described by arbitrary functions of two variables. In this

work we have focused on a sub-class of solutions which are parameterized by functions of
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one variable. This has been a choice made for technical convenience, to focus on the physics

of momentum fractionation in a tractable system. It would be interesting to generalize our

solutions to superstrata which are parametrized by functions of two variables and which

exhibit momentum fractionation. Looking further ahead, the generic CFT state deforma-

tions discussed above, which stay BPS by deforming the polarizations of the spectral flow

R-currents, will correspond to deformations of the supergravity solution that depend on

all all three angular variables (v, ϕ1, ϕ2).

The next essential step in the study of superstrata is to construct states with deeper

throats, that are in a macroscopic scaling regime. Our solutions have throats k times

deeper than the first superstrata constructed in [21], and so represent progress in this

direction. The standard way to obtain a macroscopic scaling solution is to use at least

three Gibbons-Hawking centers, but it may also be possible to construct scaling solutions

with two centers when the supertubes fluctuate. As we noted above, for technical reasons

we have focussed on some very particular modes and this choice of modes meant that

whenever we added momentum to the supertube we also added a similar amount of angular

momentum. Thus our solutions remained over-spinning or extremal. As a result, we could

not access the scaling region that is usually associated with the microstates of a black

hole with macroscopic horizon area. In this paper we added charges to the supertube in a

manner that precluded us from exploring such deep, scaling geometries.

In addition to the excitations discussed above that lower the angular momenta, more

broadly one can consider excitations that either have no angular momentum, or have neg-

ative angular momentum. In principle, by using these excitations one can add momentum

to the supertube in a way that takes the charges into the BMPV regime. The correspond-

ing black hole would then have a macroscopic horizon and the microstate geometry should

then scale and exhibit larger red-shifts and lower holographic energy gaps. This is presently

under investigation.

More generally, one may desire to embed superstrata and the kind of twisted-sector

structure elucidated here, in multi-centered deep, scaling geometries since this is (as yet)

the only known way to access typical twisted-sector CFT states within the supergravity

approximation. On a technical level this will be challenging, since it means going beyond

two centers and yet our construction has made very heavy use of the flat R
4 base and

the separability of various wave equations in bipolar coordinates. However, this does not

mean that it is impossible: the scalar Green functions for charge density fluctuations in

generic ambipolar backgrounds were discussed in [37], and a three-centered Green function

was constructed explicitly. So while this may be very difficult, it is not completely out of

reach. Moreover, we hope to find physical arguments that illuminate what the geometries

constructed in this paper will probe once they are combined with generic superstrata and

embedded in deep, scaling geometries.

Looking further to the future, it would be of great interest to study momentum frac-

tionation in non-supersymmetric microstates, as done in [54]. The recent construction of

multi-bubble non-BPS black-hole microstate geometries [80] offers the prospect of progress

in this direction.
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A The BMPV black hole

To help establish normalizations, it is useful to give the standard BMPV black-hole met-

ric [71] in terms of the Ansatz used in this paper. Everything is, of course, v-independent

and the vector field, β, and the ΘI , are set to zero. For a BMPV black hole located at the

center of space (r = 0, θ = 0) the ZI are appropriately-sourced harmonic functions:

Z1 = 1 +
Q1

Λ
, Z2 = 1 +

Q2

Λ
, F = −2Q3

Λ
, Z4 = 0 . (A.1)

The angular momentum vector, ω, is then simply the “harmonic” solution to the homoge-

neous equation (2.20) with source at the center of space:

ω =
J

Λ2

(
(r2 + a2) sin2 θ dϕ1 − r2 cos2 θ dϕ2

)
. (A.2)

Note that as r → ∞ one has

ZI ∼ 1 +
QI
r2

, I = 1, 2, 3 , ω ∼ J

r2
(
sin2 θ dϕ1 − cos2 θ dϕ2

)
, (A.3)

which determine the charges and angular momenta of the black hole.

To make the asymptotic analysis of the metric in the vicinity of the center of space

using more standard spherical coordinates in the infinitesimal neighborhood of r = 0, θ = 0,

one can simply take:

r = λ sinχ , θ =
λ

a
cosχ . (A.4)

and expand to lowest order in λ. One then finds that the leading part of the metric

becomes:

ds25 =
√
Q1Q2

[
dλ2

λ2
+ dχ2 + sin2 χ cos2 χ (dϕ1 − dϕ2)

2

+
2Q3

Q1Q2

(
dv − J

2Q3
(cos2 χdϕ1 + sin2 χdϕ2)

)2

+

(
1− J2

2Q1Q2Q3

)
(cos2 χdϕ1 + sin2 χdϕ2)

2

]
. (A.5)
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In particular, we see that with our normalizations one must impose the condition:

J2 ≤ 2Q1Q2Q3 ⇔ J2
L ≤ Q1Q2QP , (A.6)

where JL = J/
√
2 and QP = Q3.

B Reduction to five dimensions

There are two standard ways of reducing the six-dimensional solution, and the system of

BPS equations [38–41], to the standard, five-dimensional analogs found in may references

(see, for example, [13, 81]). These two choices of reduction come from different embeddings

of the five-dimensional fields in the six-dimensional formulation; we summarize these two

standard choices here. The five-dimensional BPS equations are:

Θ(I) = ⋆4Θ
(I) , (B.1)

∇2ZI = 1
2 CIJK ⋆4 (Θ

(J) ∧Θ(K)) , (B.2)

dk+ ⋆4dk = ZI Θ
(I) . (B.3)

Our goal will be to take v-independent, six-dimensional solutions and compactify on an

S1 fiber so that the system equations (2.14)–(2.16), (2.20) and (2.21) reduce to the five-

dimensional system.

B.1 Reduction 1

This is the canonical choice if F never vanishes and in particular, when F → −1 at infinity.

One can then write the metric (2.4) globally as

ds26 =
1√
P F

(du+ ω)2 − F√
P

(
dv + β + F−1(du+ ω)

)2
+
√
P ds24(B) . (B.4)

Upon making the identifications

F = −Z3 , u = t , v = t+ y , k = ω , Θ3 = dβ , (B.5)

the six-dimensional metric is given by

ds26 = − 1

Z3

√
P

(dt+ k)2 +
Z3√
P

[
dv + β − Z−1

3 (dt+ k)
]2

+
√
P ds24(B) , (B.6)

which can also be written as

ds26 = − 1

Z3

√
P

(dt+ k)2 +
Z3√
P

[
dy + (1− Z−1

3 )(dt+ k) + (β − k)
]2

+
√
P ds24(B) . (B.7)

Compactifying on the y-circle yields an overall warp factor of
(
Z3√
P

)1/3
on the five-

dimensional metric and leads to

ds25 = −
(
Z3 P

)− 2

3 (dt+ k)2 +
(
Z3 P

) 1

3 ds24(B) , (B.8)

These identifications reduce the six-dimensional BPS system used in this paper directly

to the canonical five-dimensional system; this is the origin of how we have chosen to

normalize the flux fields like ΘI . However we have chosen the t, y coordinates (2.2),

meaning that F → 0 at infinity, leading to a canonical embedding more closely associated

with supertubes. We will now describe this in more detail.
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B.2 Reduction 2

In this reduction we use the coordinates (2.2):

u ≡ 1√
2
(t− y) , v ≡ 1√

2
(t+ y) . (B.9)

Then as described in (2.5), we introduce

Z3 = 1− F
2
, k =

ω + β√
2

, (B.10)

and complete the squares in the metric as in (2.6) to obtain

ds26 = − 1

Z3

√
P

(dt+k)2 +
Z3√
P

[
dy +

(
1− Z−1

3

)
(dt+ k) +

β − ω√
2

]2
+
√
P ds24(B) . (B.11)

With these identifications one must make the following replacements and re-definitions

for the quantities defined in the body of this paper

ΘI →
√
2ΘI , I = 1, 2, 4 ; Θ3 =

√
2 dβ . (B.12)

Doing this, the BPS equations (2.14)–(2.16), (2.20) and (2.21) reduce to the five-

dimensional system (B.1)–(B.3). In particular, the terms arising from the constant in

F = −2(Z3 − 1) cancel in (2.20) against the terms Dβ + ∗4Dβ arising from the replace-

ment ω =
√
2k− β.

C The lowest Style 1 modes

In this appendix we demonstrate the agreement of conserved charges for the lowest possible

modes in Style 1, those with kp = 1, following the analysis for kp > 1 done in section 5.5.

For kp = 1, the dual CFT state is a particular superposition of states of the Style 1

type (5.89),

(
|++〉1

)n1 ∏

p̂∈Z

(
(J+

−1)
p̂|00〉p̂

)n2,p̂
(
(J+

−1)
p̂|++〉p̂+1

)n3,p̂
(
(J+

−1)
p̂|−−〉p̂−1

)n4,p̂

(C.1)

As explained at the end of section 5.4, the average numbers of |++〉k(kp̂+1) and |−−〉k(kp̂−1)

strands are equal for p̂ ≥ 2,

n̄3,p̂ = n̄4,p̂ for all p̂ ≥ 2 , (C.2)

while the excited |−−〉 strands that would be counted by n4,1 would have length zero,

which does not exist. Therefore we set

n4,1 = 0 . (C.3)

This means that the excited |++〉2 strands that are counted by n3,1 are not balanced out by

corresponding |−−〉 strands. Nevertheless, the conserved charges will work out properly,

as we now show.
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Since the total number of strands is N1N5, using (C.2) we obtain

n̄1 +
∑

p̂∈Z
[p̂n̄2,p̂ + (p̂+ 1)n̄3,p̂ + (p̂− 1)n̄4,p̂] = N1N5

⇒ n̄1 +
∑

p̂∈Z
[p̂(n̄2,p̂ + n̄3,p̂ + n̄4,p̂)] + n̄3,1 = N1N5 (C.4)

and so n̄1 is given by

n̄1 = N1N5 −Np − n̄3,1 . (C.5)

Next, the CFT ̄3 is

̄3 =
1

2

[
n̄1 +

∑

p̂

(n̄3,p̂ − n̄4,p̂)

]
=

1

2
(n̄1 + n̄3,1) =

1

2
N1N5 −

1

2
Np , (C.6)

in perfect agreement with the value of ̄3 computed from the gravity.

The CFT j3 is

j3 =
1

2

[
n̄1 +

∑

p̂

(n̄3,p̂ − n̄4,p̂)

]
+
∑

p̂∈Z
p̂ (n̄2,p̂ + n̄3,p̂ + n̄4,p̂)

=
1

2
(n̄1 + n̄3,1) +

∑

p̂∈Z
p̂ (n̄2,p̂ + n̄3,p̂ + n̄4,p̂) = ̄3 + kNp . (C.7)

which again agrees exactly with the value of j3 computed from the gravity. The momentum

charge determines b4 just as for kn > 1, and so all conserved charges agree.

This agreement shows that comparing conserved charges alone does not put any con-

straint on the value of n̄3,1. Of course, our proposal of section 5.4 fixes n̄3,1 unambiguously,

since we have specified in principle all coefficients in the coherent state. To scrutinize our

proposal further, one would have to perform further holographic tests.

One can see how this agreement works in another way: Relative to the unexcited base

supertube |++〉1 strands, the difference in conserved charges is as follows. For each excited

|++〉2 strand, the change in ̄3 is ∆̄3 = −1/2; for j3 we have ∆j3 = 1 − 1/2 = 1/2; and

we have ∆P = 1. So regardless of the value of n̄3,1, the above expressions for j3 and ̄3 in

terms of N1, N5, NP are the same.
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