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Abstract

The identification of angular momentum l~ per photon with optical

vortices of charge l appears to require that the field amplitude be zero

within a finite distance of the vortex. This, however, is not compatible

with the known form of beams such as the Laguerre-Gaussian and Bessel

beams. We resolve this paradox by analysing the propagation of a Bessel

beam through a small circular aperture, showing that the resulting field

has evanescent components.
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1 Introduction and paradox

It is now well established that optical beams with helical wavefronts carry orbital

angular momentum. In particular, a beam with azimuthal phase dependence

eilφ has an associated orbital angular momentum of l~ per photon [1, 2]. This

azimuthal phase dependence is undefined on the beam axis and hence the asso-

ciated amplitude of the field will be zero. The field-zero is a beam dislocation

or optical vortex and such features have played an important role in the recent

development of optics [3]. Although the field is zero at the centre of the vortex,

it will have a non-zero value around it, typically growing in amplitude as the

|l|th power of the distance from the vortex core for small distances. We present

an argument, based on the orbital angular momentum of light, that questions

the existence of this non-zero amplitude in the immediate vicinity of the vortex

core. Our resolution of this paradox requires us to examine the propagation of

the light near to the core.

Our paradox may be described either within classical or quantum optics, but

it is most simply stated in terms of photons. Consider a monochromatic beam of

angular frequency ω = ck0. Each photon comprising the beam will have energy

~ω. If we consider a plane wave then it will also carry linear momentum

~p = ~~k0. (1)

Any beam may be decomposed in terms of such plane waves and it follows that

no component of the linear momentum can exceed ~k0 per photon. In particular,

if we work in cylindrical polar coordinates then the azimuthal component of the

momentum at any point in our light beam should be limited by

pφ ≤ p = ~k0. (2)

The angular momentum at a given radius r in the z-direction is jz = rpφ. If
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we associate this quantity with the l~ carried by each photon then we are led

to conclude that the azimuthal linear momentum per photon at distance r from

the beam axis will be [1, 2, 4, 5]

pφ =
~l

r
. (3)

This expression predicts that the azimuthal component of the linear momentum

increases without limit as the vortex lying on the the beam axis is approached.

We are led to conclude that the local value for the azimuthal linear momentum

(3) is in conflict with the inequality (2). This suggests that the field amplitude

should be zero for

r ≤ r̄ =
~l

~k0

=
lλ

2π
, (4)

where λ is the wavelength. This conflicts with the known forms of the Laguerre-

Gaussian and Bessel beams which have been shown to exhibit optical vortices,

carry orbital angular momentum and all have a non-zero amplitude for r 6= 0

[1, 2, 6, 7].

The paradox has been presented using a geometrical argument based on a

ray optics description, but the same conflict appears within a wave description.

Consider a simple wave carrying orbital angular momentum:

u(r, φ, z) = u0(r)e
ilφeikzz, l 6= 0. (5)

The spatial frequencies of the central circular region, of radius R, are

ũ(k, θ, z) =
1

2π

∫ 2π

0

dφ

∫ R

0

drru(r, φ, z)ei~k·~x = ileilθ

∫ R

0

drru0(r)Jl(kr)eikzz, (6)

where k2
z + k2 = k2

0, ~x = (r, φ) (~k = (k, θ)) is the near (far) field position vector

in polar coordinates, and Jl is a Bessel function of the first kind [8]. Intense

spatial components (6) require kR & l, otherwise the very small value of the
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Bessel function leads to a near-vanishing integral. If k > k0 then kz is forced to

be imaginary so that the wave is evanescent and does not propagate. In order

to have propagating components, therefore, we require k0R & l, which is again

the inequality (4).

We should note that our inequality (4) has appeared before in two related

problems. It was derived as a estimate of the minimum size of object to which

orbital angular momentum could be transfered from a Laguerre-Gaussian beam

[9]. It is also related to an inequality derived for the maximum topological

charge that can be contained within any given region [10]. The latter result

was based on the observation that violation of the inequality would necessarily

lead to the generation of evanescent waves and that the field would not then

propagate.

2 Propagation of a Bessel beam through a cir-

cular aperture

We can attempt a resolution of the paradox by isolating the part of the beam

in the vicinity of the vortex and thereby examining its properties. In order to

do so, we consider the propagation of a Bessel beam through a circular aperture

centred on the beam axis. In analysing this problem it is sufficient to work within

scalar wave theory as we are not concerned with the spin angular momentum

associated with polarisation. It is not sufficient, however, to employ the paraxial

approximation [11] as we need to allow for the possibility of evanescent waves,

that it waves decaying exponentially in the propagation direction. For the same

reason we should be cautions in using Fraunhofer diffraction as that is based

on the propagation of Huygens’s secondary waves [12]. We will see in the next

Section, however, that simple diffraction theory can reproduce the essential
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features of the problem.

In scalar wave theory, the field u with angular frequency ck0 satisfies the

Helmholtz equation

∇2u + k2
0u = 0. (7)

Solution of this equation by means of separation of variables in cylindrical polar

coordinates gives the Bessel beams

u(r, φ, z) = AeikzzeilφJl(ktr). (8)

Here A is the amplitude and k2
0 = k2

z +k2
t . The azimuthal phase dependence eilφ

means that such fields carry angular momentum l~ per photon and, for l 6= 0

have an optical vortex centred at r = 0. Bessel beams are also of interest as

they propagate without changing their form [13].

We consider a Bessel beam of the form (8) propagating in the positive z

direction and incident on a circular aperture of radius R placed in the z = 0

plane and centred on r = 0. Our task is then to calculate the form of the

field propagating through the aperture, that is to find u(r, φ, z) for z > 0. The

circular aperture does not break the cylindrical symmetry of the problem and

hence the angular momentum of the beam will be conserved and u will retain its

eilφ azimuthal dependence. A continuous and differentiable solution is obtained

by considering transmitted and reflected waves generated at the plane of the

aperture. It is convenient to express the transmitted wave for z > 0 and the

reflected wave for z < 0 in terms of Bessel function solutions to the Helmholtz

equation in the form

uT (r, φ, z > 0) =

∫ ∞

0

dkT (k)ei
√

k2

0
−k2zeilφJl(kr), (9)

uR(r, φ, z < 0) =

∫ ∞

0

dkR(k)e−i
√

k2

0
−k2zeilφJl(kr), (10)
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where T (k) and R(k) are transmission and reflection functions determined from

the form of the field incident on the aperture. We note that the integral is

evaluated over an infinite range of k-values. For k < k0 a propagating field will

result, but for k > k0 the z−dependence will take the form of an exponential

decay, e−
√

k2−k2

0
|z| corresponding to evanescent waves. We find the transmission

and reflection functions by requiring that u + uR, in Eqs. (8) and (10), and uT ,

Eq. (9), together with their first derivatives, match at z = 0:

T (k) =
1

2

(

√

k2
0 − k2

t
√

k2
0 − k2

+ 1

)

Ak

∫ R

0

drrJl(ktr)Jl(kr) (11)

R(k) =
1

2

(

√

k2
0 − k2

t
√

k2
0 − k2

− 1

)

Ak

∫ R

0

drrJl(ktr)Jl(kr). (12)

The Fourier-Bessel integral in Eqs. (11-12) is [14]

∫ R

0

drrJl(ktr)Jl(kr) = R
kJl(ktR)Jl−1(kR) − ktJl−1(ktR)Jl(kR)

k2
t − k2

. (13)

In the limit of very large aperture radius R this integral tends to δ(k − kt)/k,

the reflection coefficient (12) vanishes and the whole wave is transmitted.

The intensity of the beam propagating through the aperture is obtained

from the propagating part of the field (9). Within a scalar representation of

the electromagnetic field [15], the flux of energy in the propagation direction

is obtained by integrating over the transverse plane the z component of the

Poynting vector ic2

2
[u ∂

∂z
u∗ − c.c.]. Hence the total power reaching the far-field

is

PFF = lim
z→∞

∫

dφ

∫

drr
ic2

2
[uT (r, φ, z)

∂

∂z
u∗
T (r, φ, z) − c.c.], (14)

where the limit serves to remove the evanescent contributions. This power de-

pends on the aperture size (R) and on the characteristics of the input beam

(l, kt). It also depends on the total power incident on the aperture P0 =

c2
∫

dφ
∫ R

0
drr|u(r, φ, 0)|2

√

k2
0 − k2

t . It is sensible to remove the dependence on
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Figure 1: Ratio ρ as a function of f for qt = 0.9, and l = 0 (dashed-dotted line),
l = 3 (dotted), l = 5 (continuous), l = 10 (dashed line).

the incident power by considering the power ratio

ρ =
PFF

P0

=
1

∫ 1

0
rdrJ2

l (qtrf)

1

4
(15)

∫ 1

0

dqq

[

qJl(qtf)Jl−1(qf) − qtJl−1(qtf)Jl(qf)

q2
t − q2

]2
[

(1 − q2)
1

4

(1 − q2
t )

1

4

+
(1 − q2

t )
1

4

(1 − q2)
1

4

]2

,

that is the fraction of the power incident on the aperture that propagates to

the far field. Here we have introduced the normalised quantities qt = kt/k0 and

f = Rk0 corresponding to the transverse wavenumber and the aperture radius

respectively.

In Fig. 1 we plot the power ratio ρ as a function of the aperture size f .

For apertures that are very small compared with the input wave-length there
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is no light propagating and the power ratio tends to zero. It is important to

note that the plotted quantity is the transmitted light normalized with the light

incident on the aperture. For small apertures, of course, both quantities are

small, but Fig. 1 represents only the propagating component of the diffracted

wave. For small f the aperture excites only very high frequency components

with large transverse wavevector, transforming the propagating input wave in

an evanescent wave.

The aperture size needed to obtain a propagating wave strongly depends on

the orbital angular momentum carried by the wave. In Fig. 1 we see that beams

carrying non-zero orbital angular momentum, l 6= 0, need larger apertures to

propagate through than beams with l = 0. This means that in order to transmit

a propagating wave from the region around a vortex core we need an aperture

with a radius that increases with the index l. For f < l evanescent components

are mostly excited after the aperture, while for f > l a propagating wave is

transmitted. We note that f < l corresponds to selecting only the part of the

beam satisfying the inequality (4). We can conclude that the field in the region

described by our paradox does not propagate and comprises purely evanescent

components.

The ratio Eq. (15) also depends on qt, the focussing of the beam, as shown

in Fig. 2. For very large apertures (f) the whole beam propagates through

the aperture and evanescent components are negligible so ρ → 1. For weakly

focussed beams (small qt, black line in Fig. 2) larger apertures are needed to

obtain such a complete transmission. In general the ratio ρ is not a monotonic

function of the aperture size. For fqt & l the ratio ρ(f) oscillates with frequency

π/qt. A simple explanation may be found by considering the profile of the

incident beam. For f ∼ l/qt the aperture cuts the incident beam where it is
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Figure 2: Ratio ρ as a function of f for l = 5 and qt = 0.9 (dotted line), qt = 0.5
(dashed line), qt = 0.1 (continuous line).
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intense, along the inner bright ring of the Bessel beam, exciting high transverse

spectral components that are evanescent. This leads to a local minimum of

ρ in Fig. 2. When the aperture size is increased to reach the next dark ring

of the Bessel beam, evanescent components are only weakly excited giving a

local maximum in Fig. 2. The periodicity π/qt in the ratio ρ simply reflects the

periodicity of the rings in the input intensity. Fig. 2 also shows that for small

values of the aperture f . l the power ratio ρ obtained for different values of qt

overlap. Indeed for the aperture sizes where the paradox occurs the transmission

rate results largely independent of the focussing. We will further discuss this

point in the next Section, in which we introduce a more qualitative description.

3 Fraunhofer diffraction picture

Eq. (15) has been obtained through the exact description of the diffraction of a

wave through a circular aperture within a scalar theory. An approximate, but

still qualitatively correct, picture can be given by neglecting the reflected wave,

as in the more familiar Fraunhofer treatment of diffraction. The transmission

function is now obtained only by requiring that u and uT equations (8) and (9)

match continuously at z = 0:

T (k) = Ak

∫ R

0

rdrJl(ktr)Jl(kr). (16)

Within this approximation, we take the total power to be k0c
2
∫

dφ
∫

drr|u|2,

as in paraxial treatments. This simplified treatment can accommodate the ex-

citation of evanescent wave components in the diffracted wave, by ignoring the

requirement that k2
0 = k2 + k2

t , as is usual in paraxial optics. The power ratio

transmitted far from the aperture, not reached by evanescent components, is

10



then

ρ =
1

∫ 1

0
rdrJ2

l (qtrf)

∫ 1

0

qdq

[

qJl(qtf)Jl−1(qf) − qtJl−1(qtf)Jl(qf)

q2
t − q2

]2

. (17)

This approximate expression is compared with the exact ratio Eq. (15) in Fig. 3,

showing that the simplified model captures the relevant qualitative features of

the exact description. In particular, it reproduce the turn-on in transmission

at f ∼ l associated with the appearance of non-evanescent components. This

is in accord with the simple qualitative argument based on spatial frequencies,

presented in Sect. 1. The advantages of this simplified treatment are that it

embodies the familiar paraxial approach usually used in describing optical an-

gular momentum [1, 2], as well as providing the possibility of more immediate

analytical approximations for the ratio ρ.

In Fig. 4 we plot the dependence of the ratio Eq. (17) on qt, the focussing

of the beam, clearly showing that for small values of the aperture f . l the

focussing is irrelevant, as anticipated in the previous Section. This means that

it is the orbital angular momentum and not the degree of focussing of the

beam that determines if any light will propagate through the aperture. This

observation leads us to an approximate form for ρ, found by considering a weakly

focussed beam (qtf ¿ 2(l + 1)). In this limit

ρ ≈ 2(l + 1)

∫ 1

0

dqJ2
l+1(fq)/q (18)

and we can evaluate the integral to give

ρ ≈ J2
l+1(f) + 2

∞
∑

k=l+2

J2
k (f). (19)

For values of f within the region associated with the paradox, we can further

approximate this result by just its first term. This simple expression is a very

good approximation, as can be seen in Fig. 5, being good also for large values
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Figure 3: Comparison of the exact ratio Eq. (15) (continuous lines) and of
the approximated expression Eq. (17) (dashed lines) for l = 5. Grey curves
correspond to weak focussing (qt = 0.1), and black curves to strong focussing
(qt = 0.9).
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Figure 4: Ratio ρ (17) for l = 5 as a function of qt. From the lowest line
f = 5, 6, 7, 10, 30.
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Figure 5: The ratio ρ (17) as a function of f , for l = 5 and qt = 0.1 (squares
line), 0.9 (triangles line). The continuous grey line represents the approximation
(19) and the dashed grey line is the first term in (19), J2

6 (f). The approximation
(21) is represented by the black line. The inserts show the intensity transverse
profile of the input beam J2

5 (ktr) for f = k0R = 5, plotted in squares of size

−4 < x, y < 4 ( r
R

=
√

x2 + y2).

of qt and f . We conclude that the degree of focussing of the input Bessel beam

is not a relevant factor to control the transmission of light through the aperture

in the region of interest (f . l). Here the relevant parameter is only the orbital

angular momentum, associated with the index l, which fixes the power law near

the vortex core.

A further approximation of Eq. (18) can be introduced in the case of large

apertures. If we consider rather large values of l the integrand in Eq. (18) can

be approximated by high order Bessel beam expansions [17]. For f > (l + 1)/q

J2
l+1(fq) ≈ 2 cos2(α)

[

π
√

(fq)2 − (l + 1)2
]−1

, (20)
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where α is a complicated function of fq and l+1. For f < (l+1)/q the integrand

decays rapidly and we neglect the integral in this region. If we approximate

cos2(α) by its average value (1/2) then the integral (18) can be evaluated to

give

ρ ≈
[

1 − 2

π
arcsin

(

l + 1

f

)]

Θ(f − l − 1) . (21)

This expression is compared with the ratio ρ (17) in Fig. 5. We note that Eq. (21)

allows for the identification of the relevant scaling parameter l+1

f
, confirming

that larger apertures are needed to transmit beams carrying orbital angular

momentum, according to a linear relation between l and f .

We have found that when isolated by means of an aperture, the field in

the vicinity of a vortex core does not propagate. We might reasonably ask

where this light comes from. The answer, of course, is that in propagation

of the whole beam the field near to the vortex core is the result of diffractive

contributions from the whole field in any previous plane. The Bessel beam does

not diffract but this does not mean that we can associate the field in any given

region of a plane with the corresponding region of earlier planes. By virtue of

Babinet’s principle [12] the beam (8) can be written as the superposition of two

waves diffracted by complementary apertures, our circular aperture of radius

R and a circular mask of the same radius. The component diffracted by an

hole of radius R < r̄, Eq. (9), is evanescent. The component associated with

the circular mask, therefore comprises our Bessel beam minus an evanescent

component that cancels with that associated with the circular aperture. It

follows that a beam with l 6= 0 impinging on an opaque circular object with

radius R would be completely reconstructed after a free propagation distance

such that the evanescent components vanish [16].
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4 Resolution and conclusions

We have presented a paradox for a beam carrying orbital angular momentum,

arising from the comparison of the local dependence of the azimuthal linear

momentum (3) with the momentum for a plane wave (2). This led us to question

the possibility of having light within a finite radius of the vortex core (4). We

have shown that no propagating light can be isolated in this region, as any

attempt to select it inevitably gives rise to evanescent waves. Nevertheless the

intensity in this region is not zero. We are now in a position to resolve our

paradox.

We start by noting that the paradox involves localised angular momentum

and momentum. Within a wave theory, however, these should be discussed in

terms of densities. The densities of momentum and angular momentum have

been calculated for Bessel beams[6, 7] and for Gauss-Laguerre beams [1, 4]. In

both cases the azimuthal linear momentum density was shown to be inversely

proportional to the distance from the beam axis. This is not a problem for

the momentum density as it is not constrained to equal ~k0 and does, in fact,

depend on the position within the beam. Thus there is no problem with a local

violation Eq. (2), as long as we do not attempt to violate it for the whole beam.

If we try to isolate a region of the beam in which the inequality (2) is violated

then we inevitably excite evanescent waves. Such waves have an imaginary value

of the z-component of the wavevector and so can tolerate values of kφ > k0. Our

calculation of the propagation of Bessel beams through a small circular aperture

is a direct demonstration of this point.

We conclude by noting that our analysis is based only on the properties of

waves satisfying the Helmholtz equation. No other features specific to light have

been employed. Hence we would expect that the ideas presented here should
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apply to all wave forms including acoustic waves and electron wavefunctions.
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