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1 Introduction

The crossing symmetric basis of conformal four-point functions, pioneered by Polyakov in

1974 [2], is based on the following ansatz of the expansion of the four-point functions,1

〈O1(k1)O2(k2)O3(k3)O4(k4)〉′ =
∑

O

(
W

(s)
O +W

(t)
O +W

(u)
O

)
+ (analytic terms) , (1.1)

where the index O labels the intermediate primary operators. W
(s)
O is called the Polyakov

block in the s-channel. Each block satisfies the consistent factorization in momentum space,

just as the on-shell factorization of scattering amplitudes of ordinary field theories. The

Polyakov block with external scalar operators was shown in Mellin space to be nothing but

the Witten exchange diagram [3, 4]. Our paper [1] showed directly in three-dimensional

momentum space that the Witten exchange diagram is a natural consequence of the con-

sistent factorization, and constructed the Polyakov block with an intermediate symmetric

traceless operator of general spin.

1Primed correlators are defined as 〈 . . . 〉 = (2π)dδ(d)(
∑

i ki)〈 . . . 〉
′.
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This paper extends the construction in [1] to general dimensions. From a technical

point of view, the extension to general dimensions becomes a bit more involved due to the

treatment of symmetric traceless tensors of general spins. In the three dimensional case [1],

we adopted the helicity representation instead of dealing with explicit vector indices. More

concretely, one first fixes one of the momenta in the correlation function by using rotational

symmetry without loss of generality. One then decomposes a symmetric traceless tensor in

the correlator into irreducible representations of the little group of the fixed momentum.

In three-dimension, the little group is O(2) and the expansion is nothing but the Fourier

expansion [1, 5]. In general dimension, the Fourier expansion is replaced by the expansion

in spherical harmonics on the general dimensional unit sphere. In the present paper we

elucidate this point in general spacetime dimension to construct a crossing-symmetric basis

of scalar four-point functions.

The outline of the rest of this paper is as follows. Section 2 is a brief review of the

harmonic analysis needed for our analysis. In section 3 we find the helicity representation

of two- and three-point functions with spins, and discuss their analytic properties to define

the cubic vertex. In section 4 we construct the crossing symmetric basis of scalar four-point

functions. The two appendices present derivations of some integral formulae in section 3.

2 Properties of spherical harmonics

This section reviews basic properties of spherical harmonics in general spacetime dimen-

sions. The machinery will play a main role in expanding scalar functions of momenta and

polarization vectors which appear in conformal two- and three-point functions. Readers

familiar with spherical harmonics in general dimension may jump safely to section 3 after

checking the Funk-Hecke formula introduced in section 2.1

SO(2) spherical harmonics. Before going into the general dimensional case, let us

consider lower dimensional cases, in which the expansion is achieved easily. As the simplest

case, we begin with a scalar function of two unit vectors, ŵ = (ŵ1, ŵ2) and ẑ = (ẑ1, ẑ2),

in two dimension. More explicitly, it is a function of the inner product of the two unit

vectors, f(ŵ · ẑ). If this function is regular at ŵ · ẑ = 0, we may expand it as

f(ŵ · ẑ) = λ0 +
∞∑

m=1

λm

[
(ŵ1 + iŵ2)

m(ẑ1 − iẑ2)
m + (ŵ1 − iŵ2)

m(ẑ1 + iẑ2)
m
]
, (2.1)

where λm are constant parameters. Notice that the functions (ẑ1 ± iẑ2)
m are nothing but

the SO(2) spherical harmonics. If we denote a basis of the SO(2) spherical harmonics by

Y0(ẑ) = 1 , Ym+(ẑ) = (ẑ1 + iẑ2)
m , Ym−(ẑ) = (ẑ1 − iẑ2)

m , (2.2)

we may rewrite eq. (2.1) as

f(ŵ · ẑ) =
∞∑

m=0

λmΠm(ŵ, ẑ) , (2.3)
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where we introduced the projector Πm onto the spin m sector as

Π0(ŵ, ẑ) = Y0(ŵ)Y ∗

0 (ẑ) , (2.4)

Πm(ŵ, ẑ) = Ym+(ŵ)Y ∗

m+(ẑ) + Ym−(ŵ)Y ∗

m−
(ẑ) (m = 1, 2, . . .) . (2.5)

The expansion is nothing but the Fourier expansion, as is manifest in polar coordinates.

SO(3) spherical harmonics. A similar expansion applies in the three dimensional case.

As we physicists are familiar with, any regular scalar function of two unit vectors, ŵ and

ẑ, in three dimension may be expanded by the Legendre polynomials Pm(ŵ · ẑ). More

explicitly, we may write it in the form (2.3) with some Πm ∝ Pm(ŵ · ẑ). Since the addition
theorem of the SO(3) spherical harmonics states that for any orthonormal basis Ymn,

Pm(ŵ · ẑ) ∝
m∑

n=−m

Ymn(ŵ)Y ∗

mn(ẑ) , (2.6)

we may normalize Πm such that

Πm(ŵ, ẑ) =

m∑

n=−m

Ymn(ŵ)Y ∗

mn(ẑ) , (2.7)

which is again nothing but the projector onto the spin m sector.

2.1 Spherical harmonics in general dimension and Funk-Hecke formula

We can generalize the expansion of scalar functions with two unit vectors to general dimen-

sions in a straightforward manner. The expansion is called the Funk-Hecke formula [6–8]:

any scalar function of two unit vectors, ŵ and ẑ, in D dimension is expanded as

f(ŵ · ẑ) =
∞∑

m=0

λmΠm(ŵ, ẑ) with Πm(ŵ, ẑ) =

dimY
D
m∑

n=1

Ymn(ŵ)Y ∗

mn(ẑ) , (2.8)

where Ymn stands for an orthonormal basis of SO(D) spherical harmonics with total spin

m and dimY
D
m is the dimension of the spin m representation of SO(D).2 The coefficients

λm are evaluated by the integral,

λm =
vol(SD−2)

vol(SD−1)

∫ 1

−1
dt (1− t2)

D−3
2 P (D)

m (t)f(t) , (2.11)

2In more detail, spherical harmonics are elements of the eigenspace Y
D
m with eigenvalues m(m+D − 2)

of the quadratic Casimir operator of SO(D),

Ω2 = −
1

2
(zµ∂ν − z

ν
∂
µ)(zµ∂ν − zν∂µ) , (2.9)

where zµ is a general D-component vector satisfying zµ = |z|ẑµ. Note that Ω2 is independent of |z|. The

non-negative integer m is the total spin. The dimension of YD
m is given by

dimY
D
m =

(m+D − 1)!

m!(D − 1)!
−

(m+D − 3)!

(m− 2)!(D − 1)!
. (2.10)

See also the footnote in appendix B for the relation to harmonic polynomials.
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where P
(D)
m (t) is the normalized Gegenbauer polynomial defined by

P (D)
m (t) :=

C
(D/2−1)
m (t)

C
(D/2−1)
m (1)

(2.12)

with the Gegenbauer polynomial,

C(α)
m (t) =

[m/2]∑

n=0

(−)n
Γ(m− n+ α)

n!(m− 2n)!Γ(α)
(2t)m−2n , C(α)

m (1) =
(2α)m
m!

. (2.13)

Here [x] is the integer part of x and (α)m = Γ(α + m)/Γ(α) is the shifted factorial (also

known as the Pochhammer symbol). We may also write the projector Πm as3

Πm(ŵ, ẑ) = dimY
D
m · P (D)

m (ŵ · ẑ) . (2.14)

This is called the addition theorem of spherical harmonics. In the rest of this section we

summarize the basic properties of the spherical harmonics and review the derivation of the

Funk-Hecke formula.

2.2 Derivation of the Funk-Hecke formula

We begin with the fact that any function on the unit sphere SD−1 can be expanded in

spherical harmonics,

f(ẑ) =

∞∑

m=0

dimY
D
m∑

n=1

cmnYmn(ẑ) . (2.15)

The basis spherical harmonics Ymn are orthogonal and normalized as

〈Ymn, Ym′n′〉 = δmm′δnn′ (2.16)

with the inner product defined by

〈f, g〉 =
∫

ẑ

dσD−1 f
∗(ẑ)g(ẑ) . (2.17)

Here the integration measure dσD−1 is the standard one on the unit sphere SD−1 with the

normalization,
∫

ẑ

dσD−1 1 = 1 . (2.18)

We then introduce the projection operator onto the spin m subspace Y
D
m as

Πm(ẑ, ŵ) =

dimY
D
m∑

n=1

Ymn(ẑ)Y
∗

mn(ŵ) . (2.19)

In terms of the projection operator, the spin decomposition (2.15) reads

f =

∞∑

m=0

fm , fm(ẑ) =

∫

ŵ

dσD−1Πm(ẑ, ŵ)f(ŵ) . (2.20)

3We will not attach the dimensionality D to the projector Πm and the orthonormal basis vectors Ymn

as long as it is obvious from the context.
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Explicit form of the projector. Let us derive the expression (2.14) of the projector

Πm exploiting its rotational invariance. For this purpose, we first introduce the little group

O(D, â) of a unit vector â by

O(D, â) := {A ∈ O(D) : Aâ = â} . (2.21)

A function f(ẑ) on SD−1 is called O(D, â)-invariant when f(Aẑ) = f(ẑ) holds for any

element A ∈ O(D, â). It is known that any O(D, â)-invariant spherical harmonic of spin

m is proportional to the normalized Gegenbauer polynomial [8],

f(ẑ) ∈ Y
D
m is O(D, â)-invariant ⇐⇒ f(ẑ) = P (D)

m (ẑ · â)f(â) for any ẑ ∈ SD−1 . (2.22)

We will often use this property. As the first example, let us prove the addition theo-

rem (2.14). Notice first that the projector Πm(ẑ, ŵ) is O(D)-invariant because the ro-

tated spherical harmonics Ymn(Aẑ) (A ∈ O(D)) form another orthonormal basis of spin

m. In particular, we have Πm(Aẑ, ŵ) = Πm(ẑ, ŵ) for any little group transformation

A ∈ O(D, ŵ). Therefore, if we think of the projector Πm(ẑ, ŵ) as a function of ẑ, it is

an O(D, ŵ)-invariant spherical harmonic of spin m. Therefore, it follows from the equiva-

lence (2.22) that for each m

Πm(ẑ, ŵ) = Πm(ŵ, ŵ)P (D)
m (ẑ · ŵ) = dimY

D
m · P (D)

m (ẑ · ŵ) . (2.23)

The Funk-Hecke formula. The Funk-Hecke formula (2.8) with (2.11) is also a conse-

quence of the equivalence (2.22). Regarding a scalar function f(x̂ · ẑ) as a function of ẑ,

we may use the spin decomposition (2.20) to write

f(x̂ · ẑ) =
∞∑

m=0

∫

ŵ

dσD−1Πm(ẑ, ŵ)f(x̂ · ŵ)

=
∞∑

m=0

dimY
D
m

∫

ŵ

dσD−1 P
(D)
m (ẑ · ŵ)f(x̂ · ŵ) , (2.24)

where we used the addition theorem (2.14). Since each summand is an O(D, x̂)-invariant

spherical function of ẑ of spin m, we may apply the equivalence (2.22) to find
∫

ŵ

dσD−1 P
(D)
m (ẑ · ŵ)f(x̂ · ŵ) = λmP (D)

m (ẑ · x̂) , (2.25)

where we introduced

λm =

∫

ŵ

dσD−1 P
(D)
m (x̂ · ŵ)f(x̂ · ŵ) =

vol(SD−2)

vol(SD−1)

∫ 1

−1
dt (1− t2)

D−3
2 P (D)

m (t)f(t) . (2.26)

This concludes the proof of the Funk-Hecke formula (2.8) with (2.11).

3 Two- and three-point functions

In this section we introduce helicity representation of conformal correlators with symmet-

ric traceless tensors in general spacetime dimension d. After elaborating on the helicity
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decomposition of spinning operators, we utilize the Funk-Hecke formula to derive helicity

representation of two- and three-point functions in momentum space.4 We then discuss

their analytic properties. The cubic vertices introduced there will be used in the next

section to construct the crossing symmetric basis.

3.1 Helicity decomposition of spinning operators

A standard technique to handle a symmetric traceless tensor in CFT is to contract all vector

indices in the tensor operator with a null vector ǫ called the polarization vector [45, 46].5

More explicitly, we denote this in a shorthand notation,

ǫs.O = ǫµ1ǫµ2 . . . ǫµsOµ1µ2...µs , (3.1)

where s is the spin of the operator O. In momentum space it is convenient to further

decompose the operator by analogy with the helicity decomposition of massless on-shell

particles. Without loss of generality, let us use rotational invariance to set

k = (0, k) , (3.2)

where 0 is the (d − 1)-component zero vector. It is then convenient to parameterize the

polarization vector as

ǫ = (ẑ, i) , (3.3)

where ẑ is a (d−1)-component real unit vector. With this parameterization the contracted

tensor operator ǫs.O can be thought of as a scalar function on the unit sphere Sd−2 with

the coordinate ẑ, so that we may decompose it into the helicity operators Omn as

ǫs.O(k)=

s∑

m=0

dimY
d−1
m∑

n=1

Ymn(ẑ)Omn(k) with Omn(k)=

∫

ẑ

dσd−2Y
∗

mn(ẑ)ǫ
s.O(k) , (3.4)

where {Ymn} is an orthogonal normal basis for the space of spin m spherical harmonics

Y
d−1
m on Sd−2. As explained in section 2.1, this is the decomposition with respect to the spin

m of the little group O(d− 1) of k: each spin m sector gives an irreducible representation

of the little group. For later use it is convenient to introduce its conjugate as

Omn(−k) =

∫

ẑ

dσd−2 ǭ
s.O(−k)Ymn(ẑ) with ǭ = (ẑ,−i) , (3.5)

where note that what is complex conjugate to Omn(k) is not Omn(k), but rather Omn(−k).

Helicity operators with a general momentum are defined in a similar way by performing

an appropriate rotation.

4See, e.g., [5, 9–44] for related developments on conformal correlators in momentum space.
5We use the bold and ordinary fonts for vectors and their components, e.g., ǫ and ǫµ. Here µ is the

vector index.
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3.2 Two-point functions

In momentum space, two-point functions of primary operators with general spins read [1]6

〈ǫs1.O(k)ǭs2.O(−k)〉′=COO

(
k2
)ν
[
−(ǫ1·k)(ǭ2·k)

k2

]s
P

(ν−s, d
2
−2)

s

(
1− k2(ǫ1·̄ǫ2)

(ǫ1·k)(ǭ2·k)

)
, (3.8)

where primed correlators are defined by dropping the delta function for momentum conser-

vation as 〈 . . . 〉 = (2π)dδ(d)(
∑

i ki)〈 . . . 〉′. We also introduced ν = ∆ − d
2 with the scaling

dimension ∆. In this paper we use ∆ and ν + d
2 interchangeably to simplify equations.

P
(α,β)
n is the Jacobi polynomial defined by

P (α,β)
n (t) =

Γ(α+ n+ 1)

n! Γ(α+ β + n+ 1)

n∑

m=0

(
n

m

)
Γ(α+ β + n+m+ 1)

Γ(α+m+ 1)

(
t− 1

2

)m

. (3.9)

Following the last subsection, let us use rotational invariance to set the momentum and

the polarization vectors as

k = (0, k) , ǫ1 = (ẑ1, i) , ǭ2 = (ẑ2,−i) , (3.10)

where ẑ1, ẑ2 are (d−1)-component real unit vectors. The two-point function then becomes

〈ǫs1.O(k)ǭs2.O(−k)〉′ = COO

(
k2
)ν

(−)sP
(ν−s, d

2
−2)

s (−ẑ1 · ẑ2) , (3.11)

which is a function of ẑ1 · ẑ2 multiplied by a helicity-independent factor.

Helicity representation. We then introduce the helicity representation of the two-point

functions. Since the two-point function (3.11) is a scalar function of the inner product ẑ1·ẑ2,

we may apply the Funk-Hecke formula (2.8) to find

〈ǫs1.O(k)ǭs2.O(−k)〉′ = COO

(
k2
)ν s∑

m=0

aν,s(m)Πm(ẑ1, ẑ2)

= COO

(
k2
)ν s∑

m=0

aν,s(m)

dimY
d−1
m∑

n=1

Ymn(ẑ1)Y
∗

mn(ẑ2) , (3.12)

where Πm(ẑ1, ẑ2) is the projector (2.19) onto the spin m sector Y
d−1
m on the unit sphere

Sd−2. The factor aν,s(m) is given by the integral formula (2.11) as

aν,s(m) = (−)s
vol(Sd−3)

vol(Sd−2)

∫ 1

−1
dt (1− t2)

d
2
−2 P (d−1)

m (t)P
(ν−s, d

2
−2)

s (−t) , (3.13)

6The normalization of the position space correlator is given by

〈ǫs1.O(x1)ǭ
s
2.O(x2)〉 = C̃OO

[(ǫ1 · ǭ2)x
2
12 − 2(ǫ1 · x12)(ǭ2 · x12)]

s

(x2
12)

∆+s
, (3.6)

which is related to our momentum space normalization as

COO = 2s−2ν
π

d

2
s! Γ(−ν)

Γ(ν + s+ d
2
)
C̃OO . (3.7)

– 7 –
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which is computed in appendix A to find

aν,s(m) =
2d−3Γ

(
d−1
2

)
Γ
(
d
2 + s− 1

)
√
π(s−m)!(s+m+ d− 3)!

Γ(d+ s−∆− 1)Γ(∆ +m− 1)

Γ(d+m−∆− 1)Γ(∆− 1)
. (3.14)

The two-point function of helicity operators now reads

〈Omn(k)Om′n′(−k) 〉′ = δmm′δnn′COO aν,s(m)
(
k2
)ν

. (3.15)

3.3 Three-point functions of two scalars and one tensor

We then move on to three-point functions involving two primary scalars and one primary

tensor. In momentum space they are given by [1]

〈O1(k1)O2(k2)ǫ
s.O(k3)〉′ =

s∑

a=0

(ǫ · k2)
s−a(ǫ · k3)

a V
(a)
12O(k1, k2, k3) , (3.16)

where we collected a helicity-independent part into the last factor as

V
(a)
12O(k1, k2, k3)

= C12O
s!

a!(s− a)!

(
∆+s+D12O

2 − a
)
a

(∆− 1 + s− a)a

∫
∞

0

dz

zd+1
zsBν1(k1; z)Bν2(k2; z)Bν(k3; z) . (3.17)

Here C12O is a normalization factor and Bν is defined by

Bν(k; z) =
1

2ν−1Γ(ν)
kνzd/2Kν(k3z) (3.18)

with Kν(z) being the modified Bessel function of the second kind. Note that Bν is nothing

but the bulk-to-boundary propagator of a scalar field on AdSd+1 with mass m2 = ν2−d2/4.

Also D12O is a differential operator defined by (k12 := |k1 + k2|)

D12O =
k21 − k22
k212

(k1∂k1 + k2∂k2 −∆t + s+ 2d)−
[
(k1∂k1 −∆1)− (k2∂k2 −∆2)

]
. (3.19)

We refer the reader to ref. [1] for details of the helicity independent part (3.17). In the

following we instead discuss the helicity structure of the three-point function (3.16).

Helicity representation. As in the case of two-point functions, we use rotational in-

variance to fix the momentum of the tensor O and parameterize the polarization vector as

k3 = (0, k3) , ǫ = (ẑ, i) , (3.20)

where ẑ is a (d− 1)-component real unit vector as before. With this parameterization the

three-point function (3.16) reads

〈O1(k1)O2(k2)ǫ
s.O(k3)〉′ =

s∑

a=0

[
ks−a
2 (ik3)

a
(
i cos θ + κ̂2 · ẑ sin θ

)s−a
]
V

(a)
12O , (3.21)

– 8 –
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where we parameterized the momentum k2 with the (d− 1)-component unit vector κ̂2 as

k2 = k2(κ̂2 sin θ, cos θ) . (3.22)

We then decompose the three-point function (3.21) in the spin of the little group of k3.

Since this is a scalar function of the inner product κ̂2 · ẑ, the Funk-Hecke formula (2.8)

yields the following spin decomposition:

〈O1(k1)O2(k2)ǫ
s.O(k3)〉′ =

s∑

m=0

V12O(m, θ)Πd−1
m (κ̂2, ẑ)

=
s∑

m=0

V12O(m, θ)

dimY
d−1
m∑

n=1

Y ∗

mn(κ̂2)Ymn(ẑ) . (3.23)

In other words the three-point function with the helicity operator Omn is given by

〈O1(k1)O2(k2)Omn(k3)〉′ = V12O(m, θ)Y ∗

mn(κ̂2) . (3.24)

Here the m-dependent factor V12O(m, θ) is given through the integral formula (2.11) by

V12O(m, θ) =
s∑

a=0

V
(a)
12O ks−a

2 (ik3)
a

× vol(Sd−3)

vol(Sd−2)

∫ 1

−1
dt (1− t2)

d
2
−2P (d−1)

m (t)
[ (

i cos θ + t sin θ
)s−a

]
. (3.25)

In appendix B we derive its analytic expression as

V12O(m, θ) =
s−m∑

a=0

V
(a)
12O ks−a

2 ka3
is−m(s− a)!

2m(s− a−m)!
(
d−1
2

)
m

sinm θ · P̂ (d)
s−a,m(cos θ) , (3.26)

where note that the summation is over 0 ≤ a ≤ s −m. Here we introduced P̂
(d)
s−a,m(t) :=

P
(d+2m)
s−a−m (t). For d = 3, the combination sinm θ · P̂ (d)

s−a,m(cos θ) is proportional to the associ-

ated Legendre function in particular.

3.4 Analytic properties

At the end of this section, we discuss analytic properties of three-point functions. In

particular, we demonstrate that the non-analytic part of a three-point function enjoys a

factorization similarly to scattering amplitudes. Our argument here is parallel to that in

ref. [1], to which we refer the reader for more detailed explanations.

To discuss analytic properties, let us first rearrange eq. (3.24) into the form,

〈O1(k1)O2(k2)Omn(k3)〉′=(k2 sinθ)
mY ∗

mn(κ̂2) (3.27)

×A(m)
12O(k1,k2,k3;D12O)

∫
∞

0

dz

zd+1
zsBν1(k1;z)Bν2(k2;z)Bν(k3;z) ,

– 9 –



J
H
E
P
1
0
(
2
0
1
9
)
1
8
3

where we introduced a differential operator A(m)
12O as

A(m)
12O(k1,k2,k3;D12O)=C12O

is−m s!

2m
(
d−1
2

)
m
(s−m)!

(3.28)

×
s−m∑

a=0

(s−m)!

a!(s−m−a)!
ks−m−a
2 P̂

(d)
s−a,m(cosθ)ka3

(
∆+s+D12O

2 −a
)
a

(∆−1+s−a)a
.

Notice that A(m)
12O depends on the helicity only through the spin m of the little group. An

important observation here is that the only source of non-analyticity in the three-point

function (3.27) is the integral of three bulk-to-boundary propagators Bν(k; z): first, the

spherical harmonics and the normalized Gegenbauer polynomial are accompanied by an

appropriate power in k2 as (k2 sin θ)
m Y ∗

mn(κ̂2) and ks−m−a
2 P̂

(d)
s−a,m(cos θ), so that they are

polynomials in k2. Second, the differential operator D12O always appears in the form

k3D12O, which is a polynomial in the momenta ki and the Euler operators ki∂ki because

(k2−k1)·k3/k3 is a component of the vector k2−k1 along the k3 direction. Since the Euler

operator does not introduce any new non-analyticity, we conclude that the only source of

non-analyticity is the integral in eq. (3.27).

As we mentioned, the integrand of eq. (3.27) contains three bulk-to-boundary prop-

agators Bν(k; z). By looking at analytic properties of Bν(k; z), we find that the integral

enjoys the following factorization (see section 3 of ref. [1] for details):

Disck23

∫
∞

0

dz

zd+1
zsBν1(k1; z)Bν2(k2; z)Bν3(k3; z)

= −Γ(1− ν3)

2ν3

∫
∞

0

dz

zd+1
zsBν1(k1; z)Bν2(k2; z)z

d/2k−ν3
3 Iν3(k3z)×Disck23

(
k23
)ν3 , (3.29)

where Discz denotes a discontinuity on the complex z plane. Also, Iν(z) is the modified

Bessel function of the first kind. Since the prefactor and the differential operator A(m)
12O in

eq. (3.27) do not generate any new non-analyticity as discussed above, the non-analytic

part of the three-point function (3.27) also factorizes as

Disck23〈O1(k1)O2(k2)Omn(k3)〉′=T12;Omn(k1,k2;k3)Disck23〈Omn(−k3)Omn(k3)〉′ , (3.30)

where we introduced what we call the cubic vertex T12;Omn as

T12;Omn(k1,k2;k3)= (k2 sinθ)
mY ∗

mn(κ̂2) (3.31)

×−Γ(1−ν3)

2ν3
A(m)

12O

COOas,ν3(m)

∫
∞

0

dz

zd+1
Bν1(k1;z)Bν2(k2;z)z

d/2k−ν3
3 Iν3(k3z) .

Notice that the cubic vertex is analytic at k3 = 0. We will use it in the next section to

construct a crossing symmetric basis for scalar four-point functions.

Three-point functions with a conjugate operator. For later use, it is convenient to

write down three-point functions involving the conjugate operator Omn explicitly. Let us

first recall that

〈O1(−k1)O2(−k2)Omn(−k3)〉′ =
(
〈O1(k1)O2(k2)Omn(k3)〉′

)
∗

. (3.32)
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Correspondingly, the factorization (3.30) has a conjugate counterpart,

Disck23〈O1(−k1)O2(−k2)Omn(−k3)〉′

=
(
T12;Omn(k1,k2;k3)Disck23〈Omn(−k3)Omn(k3)〉′

)
∗

= T12;Omn(−k1,−k2;−k3)Disck23〈Omn(k3)Omn(−k3)〉′ , (3.33)

where we introduced the conjugate cubic vertex T12;Omn as

T12;Omn(−k1,−k2;−k3)

:=
(
T12;Omn(k1,k2;k3)

)
∗

= (k2 sin θ)
m Ymn(κ̂2)

−Γ(1− ν3)

2ν3

×

(
A(m)

12O(k1,k2,k3;D12O)
)
∗

COOas,ν3(m)

∫
∞

0

dz

zd+1
Bν1(k1; z)Bν2(k2; z)z

d/2k−ν3
3 Iν3(k3z) . (3.34)

Note that θ and κ̂2 are defined in eq. (3.22) in the frame satisfying eq. (3.20).

4 Crossing symmetric basis for scalar four-point functions

We then construct the crossing symmetric basis for scalar four-point functions using the

ingredients introduced in the previous section. After reviewing the strategy employed in

our previous work [1], we provide an explicit construction in general dimension d.

4.1 Strategy

In the previous section we have demonstrated that the non-analytic part of three-point

functions factorizes into the cubic vertex (3.32) and the two-point function as

Disck23〈O1(k1)O2(k2)Omn(k3)〉′ = T12;Omn(k1,k2;k3)Disck23〈Omn(−k3)Omn(k3)〉′ , (4.1)

which is analogous to on-shell factorization of scattering amplitudes.7 Its conjugate coun-

terpart is given in eq. (3.33) with the conjugate cubic vertex (3.34). Similarly, we require

that the non-analytic part of four-point functions factorizes as

Discs〈O1(k1)O2(k2)O3(k3)O4(k4)〉′

=
∑

O

∑

m,n

T12;Omn(k1,k2;−k12) Discs〈Omn(k12)Omn(−k12)〉′ T34;Omn(k3,k4;k12) , (4.2)

where the first sum is over all the intermediate primary operators and the second is over

helicity components Omn of the operator O. We also introduced kij = ki + kj and the

Mandelstam type variables,

s = −(k1 + k2)
2 , t = −(k1 + k3)

2 , u = −(k1 + k4)
2 . (4.3)

7Note that three-point functions enjoy factorization because our correlators are not amputated.
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Since the on-shell conditions are not imposed on the external momenta, these variables are

independent in contrast to the scattering amplitude case. We require similar factorization

in the other channels as well.

Based on the factorization property, we introduce a crossing symmetric basis for con-

formal four-point functions as [2]

〈O1(k1)O2(k2)O3(k3)O4(k4)〉′ =
∑

O

(
W

(s)
O +W

(t)
O +W

(u)
O

)
+ (analytic terms) , (4.4)

where the second term stands for analytic terms which cannot be determined only from

analyticity.8 The label O again runs over all the intermediate primary operators. The

function W
(s)
O , which we call the s-channel Polyakov block, is a conformally covariant

function enjoying the following two properties:

1. W
(s)
O reproduces the s-channel factorization:

DiscsW
(s)
O =

∑

m,n

T12;Omn(k1,k2;−k12)

×Discs〈Omn(k12)Omn(−k12)〉′ T34;Omn(k3,k4;k12) . (4.5)

2. W
(s)
O has no non-analyticity other than the one required by s-channel factorization.

In particular, it is analytic in k13 and k14, so free from t,u-channel discontinuity.

Also, W
(t)
O and W

(u)
O are t,u-channel analogues of W

(s)
O and enjoy similar properties. This

basis manifests the crossing symmetry whereas the consistency with the OPE is obscured,

hence the latter provides a nontrivial constraint on the theory [2, 24].

4.2 Construction of Polyakov block

Let us proceed to constructing the s-channel Polyakov block. In our previous work [1] we

have shown that the Polyakov block with an intermediate scalar operator is nothing but

the scalar-exchange Witten diagram:9

W
(s)
O = C12OC34O

∫
∞

0

dz1

zd+1
1

∫
∞

0

dz2

zd+1
2

× Bν1(k1; z1)Bν2(k2; z1)GνO(k12; z1, z2)Bν3(k3; z2)Bν4(k4; z2) , (4.6)

where we introduced the bulk-to-bulk propagator of the would-be dual bulk scalar as

Gν(k; z1, z2) =
Γ(1− ν)Γ(1− ν)

COO 22ν
z
d/2
1 z

d/2
2

[
Iν(kz1)Iν(kz2)

− θ(z1 − z2)I−ν(kz1)Iν(kz2)− θ(z2 − z1)Iν(kz1)I−ν(kz2)
]

=
−Γ(1− ν)

COO 22ν−1Γ(ν)

[
θ(z1 − z2)z

d/2
1 z

d/2
2 Kν(kz1)Iν(kz2) + (1 ↔ 2)

]
. (4.7)

8To constrain the analytic contributions, other ingredients will be necessary such as consistency with

OPE or locality of the dual bulk theory. Note that the analytic terms correspond to bulk contact terms.
9See [3, 4] for construction in the Mellin space.
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The non-analytic part of the bulk-to-bulk propagator, i.e., the first line of eq. (4.7), is

responsible for the factorization so that the first criterion (4.5) of the Polyakov block is

satisfied. Furthermore, the last expression of eq. (4.7) guarantees that the bulk-to-bulk

propagator exponentially damps down for large zi, hence there appear no undesirable

singularities, e.g., in the collinear limit k1 + k2 = k12. These criteria specify the form of

the Polyakov block up to analytic terms, which correspond to bulk contact interactions.

See [1] for more details.

The key observation for extending the construction for intermediate scalars to general

spinning operators is that the differential operators,

A(m)
12O(k1,k2,−k12;D12O) and

(
A(m)

34O(−k3,−k4,−k12;D34O)
)
∗

, (4.8)

appearing in the cubic vertices (3.32) and (3.34), do not change the non-analytic properties.

As a result, we may easily arrive at

W
(s)
O =

∑

m,n

(k2 sinθ2 ·k4 sinθ4)mY ∗

mn(κ̂2)Ymn(κ̂4)

×
A(m)

12O(k1,k2;−k12;D12O)
(
A(m)

34O(−k3,−k4,−k12;D34O)
)
∗

as,νO(m)
(4.9)

×
∫

∞

0

dz1

zd+1−s
1

∫
∞

0

dz2

zd+1−s
2

Bν1(k1;z1)Bν2(k2;z1)GνO(k12;z1,z2)Bν3(k3;z2)Bν4(k4;z2) ,

where GνO(k12; z1, z2) is the scalar bulk-to-bulk propagator defined by eq. (4.7). We also

defined the angles θ2,4 and the unit vectors κ̂2,4 in the frame −k12 = (0, k12) such that10

k2 = k2(κ̂2 sin θ2, cos θ2) , −k4 = k4(κ̂4 sin θ4, cos θ4) . (4.10)

Again, the non-analytic part of the propagator is responsible for the s-channel factorization

and its large zi behavior guarantees that there are no undesirable singularities.

Furthermore, since in eq. (4.9) the spherical harmonics in the first line are the only

n-dependent factors, the sum over n is nothing but the addition theorem (2.14) with (2.19).

The result is

W
(s)
O =

s∑

m=0

dimY
d−1
m ·(k2 sinθ2 ·k4 sinθ4)mP (d−1)

m (κ̂2 ·κ̂4)

×
A(m)

12O(k1,k2;−k12;D12O)
(
A(m)

34O(−k3,−k4,−k12;D34O)
)
∗

as,νO(m)
(4.11)

×
∫

∞

0

dz1

zd+1−s
1

∫
∞

0

dz2

zd+1−s
2

Bν1(k1;z1)Bν2(k2;z1)GνO(k12;z1,z2)Bν3(k3;z2)Bν4(k4;z2) .

This concludes our construction of the s-channel Polyakov block with an intermediate

operator of an arbitrary spin s. The t,u-channel blocks are defined in a similar fashion.

10Our definition of θ4 and κ̂4 is motivated by the fact that T34;Omn
(k3,k4;k12) is conjugate to

T34;Omn
(−k3,−k4;−k12).
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5 Conclusion

This paper generalized the construction of the crossing symmetric basis of scalar four-

point functions in three spacetime dimension [1] to general dimensions. To deal with

the complication due to spins in general spacetime dimension, we utilized techniques of

spherical harmonics.

A natural direction to explore along the line of the present work and our previous

one [1] is to generalize the construction to correlators involving external spinning opera-

tors such as the energy-momentum tensor and other conserved currents. A first step in

this direction is the construction of three-point functions with conserved currents and one

primary operator of arbitrary spin, which has been done recently in ref. [40]. There will

be no conceptual obstruction to constructing the crossing symmetric basis of four-point

functions with external conserved currents based on the results there.

Another interesting direction is the extension to de Sitter and inflationary correla-

tors. Some related recent works include [37, 42, 43]. For example, ref. [37] constructed

a crossing symmetric basis of de Sitter four-point functions with external scalars of the

conformal mass in four dimensions (dual to scalar operators of conformal weight ∆ = 2 in

three dimensions) by solving the conformal Ward-Takahashi identities and studying (non-

)analytic properties of de Sitter correlators. The extension to four-point functions with

external massless scalars was also explored there aiming at applications to inflationary

physics. More recently, refs. [42, 43] developed a Mellin representation of exchange di-

agrams on (anti-)de Sitter space in momentum space for external scalars with arbitrary

mass. It would be interesting to explore the relation of these works with ours. We hope to

revisit these issues in the near future.
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A Derivation of eq. (3.14)

We derive the analytic expression (3.14) of the factor aν,s(m). We present the integral form

of aν,s(m) again,

aν,s(m) = (−)s
vol(Sd−3)

vol(Sd−2)

∫ 1

−1
dt (1− t2)

d
2
−2P (d−1)

m (t)P
(ν−s, d

2
−2)

s (−t) . (A.1)

To evaluate this, it is convenient to notice that the Gegenbauer polynomial is a special case

of the Jacobi polynomial:

C(λ)
m (t) = (−)mC(λ)

m (−t) =
(2λ)m

(λ+ 1
2)m

P
(λ− 1

2
,λ− 1

2
)

m (t) , (A.2)
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which may be rephrased in terms of the normalized Gegenbauer polynomial (2.12) as

P (D)
m (t) = (−)mP (D)

m (−t) =
m!

(D−1
2 )m

P
(D−3

2
,D−3

2
)

m (t) . (A.3)

By using the integral formula (7.391.10, p. 807, [47]),11

∫ 1

−1
dt (1− t)α(1 + t)βP (α,β)

m (t)P (γ,β)
n (t)

=
2α+β+1 Γ(γ + β + n+ 1 +m)Γ(γ − α+ n−m)Γ(α+m+ 1)Γ(β + n+ 1)

m!(n−m)! Γ(γ + β + n+ 1)Γ(γ − α)Γ(α+ β +m+ n+ 2)
, (A.4)

we obtain

aν,s(m) =
2d−3Γ

(
d−1
2

)
Γ
(
d
2 + s− 1

)
√
π(s−m)!(s+m+ d− 3)!

Γ(d+ s−∆− 1)Γ(∆ +m− 1)

Γ(d+m−∆− 1)Γ(∆− 1)
. (A.5)

B Derivation of eq. (3.26)

In this appendix we derive eq. (3.26) by performing the integral (3.25). We first replace

the normalized Gegenbauer polynomial in the integral (3.25) by its Rodrigues formula

P (d−1)
m (t) =

(−1)m

2m(d2 − 1)m
(1− t2)2−

d
2
dm

dtm
(1− t2)m+ d

2
−2 , (B.1)

and integrate the resulting integral by part m times. Then the integral in the second line

of eq. (3.25) becomes

vol(Sd−3)

vol(Sd−2)

is−a−m(s− a)! sinm θ

2m(d2 − 1)m(s− a−m)!

∫ 1

−1
dt (1− t2)m+ d

2
−2(cos θ − it sin θ)s−a−m . (B.2)

Note that it vanishes when s− a−m < 0. Applying to this integral formula,

P (D)
m (cos θ) =

vol(SD−3)

vol(SD−2)

∫ 1

−1
dt (1− t2)

D−4
2 (cos θ − it sin θ)m , (B.3)

of the normalized Gegenbauer polynomial derived shortly, we find the result (3.26).

Integral formula of the normalized Gegenbauer polynomial. Here we give a

derivation of the integral formula (B.3), which had already been used in [1]. For this,

we start from the following integral

p(z) :=

∫

x̂

dσD−2 (zD − ix̂ · z(D−1))
m , (B.4)

where z is a D-component vector given by z = (z(D−1), zD) with a (D − 1)-component

vector z(D−1) and x̂ is a (D − 1)-component unit vector. Since the integrand (zD − ix̂ ·
z(D−1))

m is harmonic in z, its restriction to SD−1, namely p(ẑ), is a spherical harmonic

11This formula is found in the seventh edition of [47]. A caveat is that the formula in some older editions

has a typo.
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of spin m.12 Furthermore, this is O(D, êD)-invariant, where êD = (0, 1) with (D − 1)-

component zero vector 0. We may therefore apply the theorem (2.22) to the spherical

harmonic p(ẑ) of spin m, to find

p(ẑ) = P (D)
m (ẑ · êD) , (B.5)

where the overall normalization factor is 1 because p(êD) = 1. Combining eq. (B.5)

with eq. (B.4), we find the desired integral representation of the normalized Gegenbauer

polynomial,

P (D)
m (cos θ) =

vol(SD−3)

vol(SD−2)

∫ 1

−1
dt (1− t2)

D−4
2 (cos θ − it sin θ)m , (B.6)

where we introduced the angle θ by zD = |z| cos θ.
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[32] C. Corianò and M.M. Maglio, Exact Correlators from Conformal Ward Identities in

Momentum Space and the Perturbative TJJ Vertex, Nucl. Phys. B 938 (2019) 440

[arXiv:1802.07675] [INSPIRE].

[33] A. Bzowski, P. McFadden and K. Skenderis, Renormalised CFT 3-point functions of scalars,

currents and stress tensors, JHEP 11 (2018) 159 [arXiv:1805.12100] [INSPIRE].

[34] M. Gillioz, Momentum-space conformal blocks on the light cone, JHEP 10 (2018) 125

[arXiv:1807.07003] [INSPIRE].
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