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Momentum-space description of three-nucleon breakup reactions including
the Coulomb interaction
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2Institut fiir Theoretische Physik, Universitit Hannover, D-30167 Hannover, Germany
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The Coulomb interaction between two protons is included in the calculation of proton-deuteron breakup and
of three-body electromagnetic disintegration of *He. The hadron dynamics is based on the purely nucleonic

charge-dependent (CD) Bonn potential and its realistic extension, CD Bonn + A, to a coupled-channel two-
baryon potential, allowing for single virtual A-isobar excitation. Calculations are done using integral equations
in momentum space. The screening and renormalization approach is employed for including the Coulomb
interaction. Convergence of the procedure is found at moderate screening radii. The reliability of the method
is demonstrated. The Coulomb effect on breakup observables is seen at all energies in particular kinematic

regimes.

DOI: 10.1103/PhysRevC.72.054004

I. INTRODUCTION

The inclusion of the Coulomb interaction in the description
of the three-nucleon continuum is one of the most challenging
tasks in theoretical few-body nuclear physics [1]. Whereas
it has already been solved for elastic proton-deuteron (pd)
scattering with realistic hadronic interactions by use of various
procedures [1-5], there are only very few attempts [6—8] that
have been made to calculate pd breakup, and none of them uses
a complete treatment of the Coulomb interaction and realistic
hadronic potentials that allows for a stringent comparison with
the experimental data.

Recently in Ref. [5] we included the Coulomb interaction
between the protons in the description of three-nucleon
reactions with two-body initial and final states. The description
is based on the Alt-Grassberger-Sandhas (AGS) equation [9]
in momentum space. The Coulomb potential is screened,
and the resulting scattering amplitudes are corrected by the
renormalization technique of Refs. [10,11] to recover the un-
screened limit. The treatment is applicable to any two-nucleon
potential without separable expansion. Reference [5] and this
paper use the purely nucleonic charge-dependent (CD) Bonn
potential [12] and its coupled-channel extension, CD Bonn +
A [13], allowing for a single virtual A-isobar excitation and
fitted to the experimental data with the same degree of accuracy
as the CD Bonn itself. In the three-nucleon system the A
isobar mediates an effective three-nucleon force and effective
two- and three-nucleon currents, both consistent with the
underlying two-nucleon force. The treatment of Ref. [5] is
technically highly successful, but still limited to the description
of pd elastic scattering and of electromagnetic (e.m.) reactions
involving 3He with pd initial or final states only. This paper
extends the treatment of Coulomb to the breakup in pd
scattering and to the e.m. three-body disintegration of *He. In
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that extension we follow the ideas of Refs. [6,10,11] but avoid
approximations on the hadronic potential and in the treatment
of screened Coulomb. Thus, our three-particle equations,
including the screened Coulomb potential, are completely
different from the quasiparticle equations solved in Ref. [6], in
which the two-nucleon screened Coulomb transition matrix is
approximated by the screened Coulomb potential. In Ref. [14]
we presented for the first time a limited set of results for pd
breakup using the same technical developments we explain
here in greater detail.

We have to recall that the screened Coulomb potential wg
we work with is particular. It is screened around the separation
r = R between two charged baryons and in configuration
space is given by

wr(r) = w(r) e "R, 6]

with the true Coulomb potential w(r) = «, /7, @, being the
fine-structure constant and # controlling the smoothness of the
screening. We prefer to work with a sharper screening than
the Yukawa screening (n = 1) of Ref. [6]. We want to ensure
that the screened Coulomb potential wg approximates well
the true Coulomb one w for distances » < R and simultane-
ously vanishes rapidly for r > R, providing a comparatively
fast convergence of the partial-wave expansion. In contrast,
the sharp cutoff (n — oo) yields an unpleasant oscillatory
behavior in the momentum-space representation, leading to
convergence problems. We find the values 3 < n < 6 to provide
a sufficiently smooth, but at the same time a sufficiently
rapid screening around » = R as in Ref. [5]; n =4 is our
choice for the results of this paper. The screening radius R is
chosen much larger than the range of the strong interaction
that is of the order of the pion wavelength /i /m,c ~ 1.4 fm.
Nevertheless, the screened Coulomb potential wg is of short-
range in the sense of scattering theory. Standard scattering
theory is therefore applicable. A reliable technique [15] for
solving the AGS equation [9] with short-range interactions is
extended in Ref. [5] to include the screened Coulomb potential
between the charged baryons. However, the partial-wave

©2005 The American Physical Society
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expansion of the pair interaction requires much higher angular
momenta than the one of the strong two-nucleon potential
alone.

The screening radius R will always remain very small com-
pared with nuclear screening distances of atomic scale, i.e.,
10° fm. Thus the employed screened Coulomb potential wy, is
unable to simulate properly the physics of nuclear screening
and, even more, all features of the true Coulomb potential.
Thus the breakup calculations with screened Coulomb wg
have to be corrected for their shortcomings in a controlled
way. References [10,11] give the prescription for the correction
procedure that we follow here for breakup as we did previously
for elastic scattering, and that involves the renormalization of
the on-shell amplitudes in order to get the proper unscreened
Coulomb limit. After the indicated corrections, the predictions
for breakup observables have to show independence from
the choice of the screening radius R, provided it is chosen
sufficiently large. That convergence is the internal criterion
for the reliability of our Coulomb treatment.

Configuration space treatments of Coulomb [7,8] may
provide a feasible alternative to the integral equation approach
in momentum space on which this paper is based. Refer-
ences [7,8] have provided first results for pd breakup, but
they still involve approximations in the treatment of Coulomb
and the employed hadronic dynamics is not realistic. Thus
a benchmark comparison between our breakup results and
corresponding configuration space results is, in contrast to
pd elastic scattering [16], not possible yet. With respect to
the reliability of our Coulomb treatment for breakup, we rely
solely on our internal criterion, i.e., the convergence of breakup
observables with the screening radius R; however, that criterion
was absolutely reliable for pd elastic scattering and related e.m.
reactions.

Section II develops the technical apparatus underlying the
calculations. Section III presents some characteristic effects of
Coulomb in three-nucleon breakup reactions. Section IV gives
our conclusions.

II. TREATMENT OF COULOMB INTERACTION
BETWEEN PROTONS IN BREAKUP

This section carries over the treatment of the Coulomb
interaction given in Ref. [5] for pd elastic scattering and
corresponding e.m. reactions, to pd breakup and to e.m.
three-body disintegration of *He. It establishes a theoretical
procedure leading to a calculational scheme. The discussions
of hadronic and e.m. reactions are done separately.

A. Theoretical framework for the description of
proton-deuteron breakup with Coulomb

This subsection focuses on pd breakup. However, the
transition matrices for elastic scattering and breakup are so
closely connected that certain relations between scattering
operators already developed in Ref. [5] have to be recalled
to make this paper self-contained.

Each pair of nucleons (By) interacts through the strong
coupled-channel potential v, and the Coulomb potential w,.
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We assume that w, acts formally between all pairs (8y) of
particles, but it is nonzero only for states with two-charged
baryons, i.e., pp and pA™T states. We introduce the full
resolvent G®(Z) for the auxiliary situation in which the
Coulomb potential w, is screened with a screening radius
R, w, being replaced with wyg:

—1
GM(z) = (Z —Hy— ) vo— ) waR> @

where Hj is the three-particle kinetic-energy operator. The
full resolvent yields the full pd scattering state when acting
on the initial channel state |¢q(q;)vy,) of relative pd mo-
mentum q;, energy E,(g;), and additional discrete quantum
numbers v,, and taking the appropriate limit Z = E,(g;) + i0.
The full pd scattering state has, above breakup threshold,
components corresponding to the final breakup channel
states |¢o(Prqy)vo,), Py and gy being three-nucleon Jacobi
momenta, Eo(psqy) its energy, and vy, additional discrete
quantum numbers. The full resolvent therefore also yields
the desired S matrix for breakup. The full resolvent G'®(Z)
depends on the screening radius R for the Coulomb potential,
and that dependence is notationally indicated; the same will be
done for operators related to G®(Z). Following standard AGS
notation [9] of three-particle scattering, one may decompose
the full resolvent G®(Z) into channel resolvents and free
resolvent,

G®(2) =(Z — Hy — vo — war) ™", (3a)
Go(Z) = (Z — Hy)™", (3b)

together with the full multichannel three-particle transition

matrices U /§§> (Z) for elastic scattering and Uéf)(Z ) for breakup
according to

GP(Z) = 85.GP(2) + G (U 2)GP(2),  (4a)
GP(z) = Gy 2)UR(2)GP (). (4b)

The full multichannel transition matrices satisfy the AGS
equations [9]:

U (Z) = 8pu Gy (Z) + Y 8p T(Z)Go(2)UR(2),

(5a)

D(Z2) =Gy (2)+ Y TRDGU2ULE(Z),  (5b)

(
UOa

with 85, = 1 — 8p,; the two-particle transition matrix 7®(Z)
is derived from the full channel interaction v, + wqg including
the screened Coulomb, i.e.,

T(Z) = (Vg + war) + (Vo + Wer)Go(Z)TR(Z).  (5c)

In pd elastic scattering, an alternative decomposition of the
full resolvent is found that is conceptually more revealing.
Instead of correlating the plane-wave channel state |¢q(q)vy)
in a single step to the full scattering state by G'®(Z), it may
be correlated first to a screened Coulomb state of proton and
deuteron by the screened Coulomb potential WS g" between
a proton and the center of mass (c.m.) of the remaining
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neutron-proton (np) pair in channel « through

Gur(Z) = (Z — Hy— va — war — W)™, (60)
Gur(Z) = GP(2) + GR(TSH(2)GR(2), (6b)
Tsi"(Z) = Wegt + W' GR (D) T (2), (6¢)

where, in each channel «, the potentials wqg and W " are
never simultaneously present: When « corresponds to a pp
pair, weg is present and W, 2" = 0; when « denotes a np pair,
wer = 0 and WS is present. The same Coulomb correlation
is done explicitly in both initial and final states. Thus the full
resolvent can be decomposed, as an alternative to Eq. (4a), as

G(2) = 8paGur(Z) + Gpr(2) U3, (2)Gur(Z).  (T)

yielding a new form for the full multichannel transition
matrix:

U (2) = 8pa Tgi () + [1 + TSR (2)G0(2)]

x U (2)[1+ GPDTEM(2)]. (8a)
The reduced operator U é’;)(Z ) may be calculated through the
integral equation

USR(Z) = 8pa[Gk(Z) + va] + 8paWar
+ D Bpovo + 8pe Wer)Gor(Z)UR(Z). (8b)

which is driven by the strong potential v, and the potential
of a three-nucleon nature W,g = ZU(SM Wor — Oag WiR").
This potential W, accounts for the difference between the
direct pp Coulomb interaction and the one that takes place
between the proton and the c.m. of the remaining bound as
well as unbound np pair. When calculated between on-shell
screened pd Coulomb states, U éﬁ)(Z) is of short range, even
in the infinite R limit.

In the same spirit, the final breakup state to be analyzed
may not be reached in a single step; instead it may be
correlated first to a screened Coulomb state between the
charged particles whose corresponding Coulomb resolvent
keeps only the screened Coulomb interaction:

-1
Gr(Z) = (z ~Ho— waR) :

In the system of two protons and one neutron, only the channel
o = p, corresponding to a correlated pp pair, contributes to
Gr(2),

GRr(Z) = Go(Z) + Go(D)T,r(2)Go(2),

TpR(Z) = WpR + waGO(Z)TpR(Z)s
making channel p the most convenient choice for the descrip-
tion of the final breakup state. Thus, for the purpose of pd

breakup, a decomposition of the full resolvent, as an alternative
to Eq. (4b), is

(9a)

(9b)
%)

GP(Z)= Gr(Z2)TL(2)Gur(2),
G®(2) = Go(2)[1 + T,r(2)Go(2NTL (2)
x[1+GR@DTH ()]G (Z), (10b)

(10a)
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where the full breakup transition matrix may be written as

UR(Z) = 11 + Tor(2)Go( 21T (2)

x [1+ GP@DTI D). (11a)
The reduced operator Uéf)(Z) may be calculated through
quadrature,

U (2) = Gop(Z) +va + Y 0,Gor(Z)TR(2),  (11b)

from the correspondingly reduced operator U ég)(Z ) of elastic
scattering. In the form of Eq. (11a) for the full breakup
transition matrix, the external distortions that are due to
screened Coulomb in the initial and final states are made
explicit. On-shell the reduced operator Uéf)(Z) calculated
between screened Coulomb distorted initial and final states is
of finite range and has two contributions with slightly different
range properties:

(i) The contribution G;,%(Z ) + vy, when calculated on-shell
between initial pd and final three-nucleon states, becomes
the three-nucleon potential W,r and is the longest-
range part of breakup, since the np pair is correlated
by the hadronic interaction only in the initial pd state.
The corresponding contribution in Ref. [6] is called the
pure Coulomb breakup term.

(ii) The remaining part, Y, v, G,r(Z)UR(Z), is of shorter
range, comparable with the one of the reduced operator
U ég)(Z) for elastic pd scattering.

In the full breakup operator Uéf)(Z ) the external distortions
show up in screened Coulomb waves generated by [l +
GR(Z)TS™(Z)]in the initial state and by [1 + T,(Z)Go(Z)]
in the final state; both wave functions do not have proper
limits as R — oo. Therefore Uéf)(Z) has to be renormalized
as the corresponding amplitude for pd elastic scattering [5,11],
in order to obtain the results appropriate for the unscreened
Coulomb limit. According to Refs. [6,11], the full breakup
transition amplitude for initial and final states |¢q(q;)v,,) and
[#o(PrasIvo,)s Ea(gi) = Eo(psqy), referring to the strong
potential v, and the unscreened Coulomb potential w,, is
obtained by means of the renormalization of the on-shell
breakup transition matrix Uéf)(Ea(qi) 4+ i0) in the infinite R
limit:

(BoPrdr)vo, 1 Uoe|Pa(qiIVe;)
= lim {e (0 )o@ rav,|

XU (Eo(g) + i0)|6a(@)va) 257 (@D}, (12)

where Zg(g;) and zg(py) are the pd and pp renormalization
factors defined below.

As in Ref. [5], here we choose an isospin description
for the three baryons in which the nucleons are considered
identical. The two-baryon transition matrix 7%(Z) becomes
an operator, coupling total isospin 7 = % and T = % states as
described in detail in Ref. [5]. Instead of the breakup amplitude
given by Eq. (12) we have to use the properly symmetrized
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form,
(o ras)vo, |Uo|da(@i)ve,)

=Y _{po@ras)vo, |Use|do(@)Ivs).  (132)

(bo(pras)vo,|Uo|ba(giIve,)
- ngr;o {Zz_e%(Pf)(%(Pfo)vof |

X US(Ea(ge) + i0)|ga(@ve ) 2 (g0)} - (13b)

with U§™(2) = Uy (Z) + Usy(Z) Pas1 + Ug, (Z) P31y for

the calculation of observables, («¢By) being cyclic and P»3;
and P31 being the two cyclic permutations of (wf8y). The

symmetrized breakup transition matrix UéR)(Z) follows by
quadrature,

Us(2) = (1 + P)Gy ' (2)

+ 1+ P)YTR(2)Go(2)UR(2), (14a)

from the symmetrized multichannel transition matrix U®
(2) = UP(2) + ULL(Z) Piz1 + UR(Z)P3yp of elastic pd
scattering, satisfying the standard symmetrized form of AGS
integral equation (5a), i.e.,

UB(Z)= PG, (Z2)+ PT®(Z)Gy(2)UR(Z), (14b)

with P = P31 + Ps1n.

The renormalization factors Z(g;) and zz(p r) in the initial
and final channels are diverging phase factors defined in
Ref. [10] for a general screening and calculated in Refs. [5,17]
for the screened Coulomb potential of Eq. (1), i.e.,

Zr(gi) = e 2ix(g)lIn 2q; R)—C/n]

) — e—2i/<(pf)[ln(2pr)—C/n]

(15a)
zr(py (15b)

k(qi) = a.M/q; and k(pys) = et/ py being the pd and pp
Coulomb parameters, M and u the reduced pd and pp masses,
C ~ 0.5772156649 the Euler number, and n the exponent in
Eq. (1). In pd elastic scattering, the renormalization factors
were used in a partial-wave-dependent form that yielded a
slight advantage in convergence with R compared with the
partial-wave-independent form of Eq. (15). In breakup, the
operator T\®(Z2)Gy(Z)U®(Z) in Eq. (14a) is calculated on
a partial-wave basis, but the on-shell elements of the full
breakup operator UéR)(Z) are calculated on a plane-wave
basis. Therefore the renormalization is applicable only in the
partial-wave-independent form of Eqgs. (15).

The limit in Eq. (13b) has to be performed numerically,
but, because of the finite-range nature of the breakup operator,
the infinite R limit is reached with sufficient accuracy at rather
modest screening radii R. Furthermore, the longer-range pure
Coulomb breakup part that after symmetrization reads [1 +
T,r(Z)Go(Z)1Pvg[l + GP(Z)TE™(Z)] and the remaining
shorter-range part can be renormalized with different screening
radii, since the limit in Eq. (13b) exist for them separately.
The limit for the pure Coulomb breakup part can even
be carried out explicitly, since the renormalization of the
screened Coulomb waves yields the corresponding unscreened
Coulomb waves accessible in configuration space; thus the

PHYSICAL REVIEW C 72, 054004 (2005)

integral can be carried out numerically in configuration space
as was done indeed in Ref. [6]. However, we find such a
procedure unnecessary when our standard screening function
is used. In fact, in most cases there is even no necessity for
splitting the full breakup amplitude into pure Coulomb and
Coulomb-modified short-range parts, the only exception being
the kinematical situations characterized by small momentum
transfer in the pp subsystem that are sensitive to the Coulomb
interaction at larger distances.

The practical implementation of the outlined calculational
scheme faces a technical difficulty. We solve Eq. (14b)
on a partial-wave basis. The partial-wave expansion of the
screened Coulomb potential converges rather slowly. In this
context, the perturbation theory for higher two-baryon partial
waves developed in Ref. [18] is a very efficient and reliable
technical tool for treating the screened Coulomb interaction
in high partial waves. We vary the dividing line between
partial waves included exactly and perturbatively in order
to test the convergence and thereby establish the validity
of the procedure. Furthermore, the partial-wave convergence
becomes slightly faster when lowest-order screened Coulomb
contributions in U(()R)(Z) are replaced with the respective
plane-wave results, i.e.,

U (2) = [UP(2) = (1 + Pywer P] + (1 + P)wer P,
(16)

where the first term converges with respect to partial waves
faster than UéR)(Z) itself and the second term is calculated
without partial-wave decomposition.

With respect to the partial-wave expansion in the actual
calculations of this paper, we obtain fully converged results
by taking into account the screened Coulomb interaction in
two-baryon partial waves with pair orbital angular momentum
L < 15; orbital angular momenta 9 < L <15 can safely be
treated perturbatively. The above values refer to the screening
radius R = 30 fm; for smaller screening radii the convergence
in orbital angular momentum is faster. The hadronic interaction
is taken into account in two-baryon partial waves with total
angular momentum / < 5. Both three-baryon total isospin
T =1/2 and 7 = 3/2 states are included. The maximal
three-baryon total angular momentum J considered is 61/2.
Figures 1-3 study the convergence of our method with
increasing screening radius R according to Eq. (13b). All
the calculations of this section are based on CD Bonn as
the hadronic interaction. The kinematical final-state configu-
rations are characterized in a standard way by the polar angles
of the two protons and by the azimuthal angle between them
(61,02, 92 — ¢1). We show several characteristic examples
referring to pd breakup at 13-MeV proton lab energy and at
130-MeV deuteron lab energy. The convergence is impressive
for the spin-averaged differential cross section as well as
for the spin observables in most kinematical situations, as
demonstrated in Figs. 1 and 2. The screening radius R = 20 fm
is sufficient; it is only in the top plot of Fig. 1 that the curves
for R = 20 fm and R = 30 fm are graphically distinguishable.
The exception requiring larger screening radii is the differential
cross section in kinematical situations characterized by very
low pp relative energy E,,, i.e., close to the pp final-state
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1.2+ 1

1.1

1.0

3.0

d°c/dS dQ, dQ, (mb MeV 'sr?)

2.0

1.0

0.05
z
< 0.00
0.05| (39.0°,62.5°,180.0°) 1
0 5 10 15
S (MeV)

FIG. 1. Convergence of the pd breakup observables with screen-
ing radius R. The differential cross section and the proton analyzing
power A, (N) for pd breakup at 13-MeV proton lab energy are shown
as functions of the arc length S along the kinematical curve. Results
for the CD Bonn potential obtained with screening radius R = 10 fm
(dotted curves), 20 fm (dash-dotted curves), and 30 fm (solid curves)
are compared. Results without Coulomb (dashed curves) are given as
reference for the size of the Coulomb effect.

interaction (pp-FSI) regime, as shown in Fig. 3. In there,
the pp repulsion is responsible for decreasing the cross
section, converting the pp-FSI peak obtained in the absence of
Coulomb into a minimum with zero cross section at py = 0,
i.e., for E,, = 0. A similar convergence problem also takes
place in pp scattering at very low energies, as discussed in
Ref. [5]. In fact, screening and renormalization procedures
cannot be applied at py = 0, since the renormalization factor
zr(py = 0) is ill defined. Therefore an extrapolation has to
be used to calculate the observables at ps = 0, which works
pretty well since the observables vary smoothly with p;.
In Fig. 3 the fully converged result would start at zero for
E,, =0.

The seen Coulomb effects and their physics implications
are discussed in Sec. III.

PHYSICAL REVIEW C 72, 054004 (2005)

0.1 F ]

—_
o
T

0.0

-0.1

(20°,15° 40°)

d°6/dS dQ, dQ, (mb MeV 'sr?)
o
(6]

o
=}

80 120 80 120
S (MeV)

FIG. 2. Convergence of the pd breakup observables with screen-
ing radius R. The differential cross section and the deuteron analyzing
power A, for pd breakup at 130 MeV are shown. Curves as in
Fig. 1.

B. Three-body e.m. disintegration of >He

For the description of the considered e.m. processes, the
matrix element (wé_)(pqu)vofU“(Q, K,)|B) of the e.m.
current operator between the three-nucleon bound state and the
breakup scattering state has to be calculated. The calculation
of that matrix element without Coulomb and the meaning
of the momenta Q and K, are discussed in great length in
Refs. [19,20]. This subsection discusses only the modification
that arises because of the inclusion of the Coulomb interaction
between the charged baryons. Coulomb is included as a
screened potential, and the dependence of the bound and

_L
o
4

—_
o
T
’
7
I

o
o

(39.0°,39.0°,0.0%

d°c/dS dQ, dQ, (mb MeV 'sr?)

0.0 0.5 1.0
Epp (MeV)

FIG. 3. Convergence of the pd breakup observables with screen-
ing radius R. The differential cross section for pd breakup at 13-MeV
proton lab energy in the pp-FSI configuration is shown as function
of the relative pp energy E,,. Results obtained with screening radius
R = 10 fm (dotted curves), 20 fm (dashed-double-dotted curves),
30 fm (dashed-dotted curves), 40 fm (double-dashed-dotted curves),
and 60 fm (solid curves) are compared. Results without Coulomb
(dashed curves) are given as reference for the size of the Coulomb
effect.
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FIG. 4. Convergence of the *He(y, pp)n reaction observables
with screening radius R. The differential cross section and the target
analyzing power A, at 15-MeV photon lab energy are shown. Curves
as in Fig. 1.

scattering states, i.e., |B®) and |1/f(§i)(R)(pqu)v0f), on the
screening radius R is notationally made explicit. In analogy
to pd breakup, the current matrix element referring to the
unscreened Coulomb potential is obtained by means of
renormalization of the matrix element referring to the screened
Coulomb potential in the infinite R limit:

W5 ®ravo, 1j"(Q. K4)IB)

= lim {2, " (2 (s P pray o, |14Q KIB®)).
(17

The renormalization factor zg(py) is the same as that used
in pd breakup for the final state. Because of the short-range
nature of j*(Q, K,)|B®), the limit R — oo is reached with
sufficient accuracy at finite screening radii R. The presence
of the bound-state wave function in the matrix element
strongly suppresses the contribution of the screened Coulomb
interaction in high partial waves, i.e., two-baryon partial
waves with orbital angular momentum L < 6 are sufficient for
convergence. The other quantum-number-related cutoffs in the
partial-wave dependence of the matrix element are the same as
in Refs. [19,20], i.e., I <4, J < 15/2 for photoreactions, and
I <3, J <35/2 for inelastic electron scattering from 3He. All
calculations include both total isospin 7 = 1/2 and 7 = 3/2
states.

Figures 4 and 5 study the convergence of our method with
increasing screening radius R for the three-body photodisinte-
gration of *He at 15- and 55-MeV photon lab energy. The
calculations are again based on CD Bonn as the hadronic
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FIG. 5. Convergence of the 3He(y, pn)p reaction observables
with screening radius R. The differential cross section at 55-MeV
photon lab energy in the pp-FSI configuration is shown. Curves as in
Fig. 3.

interaction and the currents from Refs. [19,20]. We show
the differential cross section and the target-analyzing power
A, for selected kinematic configurations. The convergence is
again extremely good and quite comparable with pd breakup;
the screening radius R = 20 fm is fully sufficient in most
cases. The only exceptional cases, as in the pd breakup,
are pp-FSI regimes, as shown in Fig. 5. The convergence
with increasing screening radius R is the same for the
three-body electrodisintegration of *He; we therefore omit a
corresponding figure.

III. RESULTS

We base our calculations on the two-baryon coupled-
channel potential CD Bonn 4+ A with and without Coulomb
and use the CD Bonn potential with Coulomb as a purely
nucleonic reference. We use the charge and current operators
of Refs. [19,20], which are appropriate for the underlying
dynamics. In contrast to Ref. [5], here we do not include
one-nucleon relativistic charge corrections for photoreactions,
since their effect on the considered observables is very
small.

Obviously we have many more predictions than it is
possible to show. Therefore we make a selection of the most
interesting predictions that illustrate the message we believe
the results tell us. Readers are welcome to obtain the results
for their favorite data from us.

A. Proton-deuteron breakup

Figures 6-9 give our results for the fivefold differential
cross section at 10.5-, 13-, 19-, and 65-MeV proton lab energies
in the standard space star, collinear, quasi-free-scattering
(QFS), and np final-state interaction (np-FSI) configurations,
for which there are available experimental data. Although the
inclusion of Coulomb slightly improves the agreement with
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FIG. 6. Differential cross section for space star configurations
as a function of the arc length S along the kinematical curve.
Results including A-isobar excitation and the Coulomb inter-
action (solid curves) are compared with results without Coulomb
(dashed curves). To show the size of the A-isobar effect, the
purely nucleonic results including Coulomb are also shown (dotted
curves). The experimental pd data (circles) are from Ref. [21] at
10.5 MeV, from Ref. [22] at 13 MeV, from Ref. [23] at 19 MeV,
from Ref. [24] at 65 MeV, and nd data at 13 MeV (squares) from
Ref. [25].
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FIG. 7. Differential cross section for collinear configurations.
Curves and experimental data as in Fig. 6, except for 65-MeV data
from Ref. [26].

data in the space star configurations in Fig. 6, the Coulomb
effect is far too small to reproduce the difference between pd
and nd data and to resolve the so-called space star anomaly
at 13 MeV. The inclusion of Coulomb clearly improves
the description of the data around the collinear points at
lower energies, i.e., at the minima in Fig. 7. The remaining
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FIG. 8. Differential cross section for QFS configurations. Curves
and experimental data as in Fig. 6, except for 65-MeV data from
Ref. [27].

discrepancies around the peaks are probably due to the finite
geometry, not taken into account in our calculations owing to
the lack of information on experimental details, but may also
be due to the underlying hadronic interaction. The inclusion
of Coulomb decreases the differential cross section around
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FIG. 9. Differential cross section for np-FSI configurations.
Curves and experimental data as in Fig. 6.

the QFS peaks, i.e., around the central peaks in Fig. 8; those
changes are supported by the data at lower energies. In the
np-FSI configurations of Fig. 9 the Coulomb effect is rather
insignificant.

The Coulomb effect on proton-analyzing powers in the
considered kinematical configurations is usually small, on the
scale of the experimental error bars. We therefore show in
Fig. 10 only few collinear configurations.

Recently, pd breakup has been measured at 130-MeV
deuteron lab energy in a variety of kinematical configurations
[28]. In some of them we find significant Coulomb effects
for the differential cross section as well as for the deuteron-
analyzing powers. Examples are shown in Figs. 11 and 12.
By and large the agreement between theoretical predictions
and experimental data is improved. The pp-FSI repulsion is
responsible for lowering the peak of the differential cross
section in the configuration (15°, 15°, 40°) in Fig. 11, left-hand
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FIG. 10. Proton-analyzing power for collinear configurations at
13- and 65-MeV proton lab energy. Curves and experimental data as
in Fig. 7.

panel, where the relative pp energy is rather low at the peak. In
contrast, the relative pp energy gets considerably increased as
one changes the azimuthal angle to 160° in Fig. 11, right-hand
panel, leading to an increase of the differential cross section
that is due to Coulomb. Since the total breakup cross section
at this energy, corresponding to 65-MeV proton lab energy, is
almost unaffected by Coulomb, as shown in Fig. 13, one may
expect in given configurations an increase of the cross section
that is due to Coulomb to compensate for the sharp decrease
of the cross section in the vicinity of pp-FSI points. Figure 12
shows deuteron tensor-analyzing powers A,, and A, for the
same configurations for which experimental data may become
available soon [30].

Compared with the results of Ref. [6], based on a simple
hadronic S-wave potential, we see a rough qualitative agree-
ment in most cases. Quantitatively, the Coulomb effect we
observe is smaller than the one of Ref. [6].
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FIG. 11. Differential cross section for pd breakup at 130-MeV
deuteron lab energy. Curves as in Fig. 6. The experimental data are
from Ref. [28].

Figures 613 recall also the A-isobar effect on observables,
which, in most cases we studied, is much smaller than the
Coulomb effect. As expected, the A-isobar effect on polar-
ization observables is more significant than on the differential
cross sections, which confirms previous findings [13].

B. Three-body e.m. disintegration of *He

Experimental data for three-body photodisintegration of
3He are very scarce; we therefore show in Fig. 14 only two
examples referring to the semi-inclusive *He(y, pn)p reaction
at 55- and 85-MeV photon lab energy. The semi-inclusive
fourfold differential cross section is obtained from the standard
fivefold differential cross section by integrating over the

0.0
0.1
%
< 00
-0.4
(15°,15°,40°)
-0.1 } }
=
< j
0.2t . 71
..... - E

80 120 80 120 160
S (MeV)

FIG. 12. Deuteron-analyzing powers for pd breakup at 130-MeV
deuteron lab energy. Curves as in Fig. 6.
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FIG. 13. Total cross section for pd breakup as function of the
proton lab energy. Curves as in Fig. 6. The experimental data are
from Ref. [29].

kinematical curve S. For scattering angles corresponding to
the peak of the fourfold differential cross section, the region
of the phase space to be integrated over contains a pp-FSI
regime, in which the pp-FSI peak obtained without Coulomb
is converted into a minimum as shown in Fig. 5. Therefore the
fourfold differential cross section in Fig. 14 is also significantly
reduced by the inclusion of Coulomb, clearly improving the
agreement with the data. A similar Coulomb effect of the same
origin is shown in Fig. 15 for the semi-inclusive threefold
differential cross section for the *He(y,n)pp reaction at
15-MeV photon lab energy. In contrast, the photon-analyzing
power remains almost unchanged by the inclusion of Coulomb.
The experiment measuring this reaction is in progress [32],
but the data are not available yet. Again the importance of the
A-isobar degree of freedom is considerably smaller than the
effect of Coulomb.

The available data of three-nucleon electrodisintegration
of *He refer to fully inclusive observables. In Fig. 16 we

120 -
R ]
o
o)
=,
~ 80t
«~ ]
G
©
g
B 40+ ]
<
©
0

1 1 O 1 1
160 200 160 200
0,+0, (deg)

FIG. 14. The semi-inclusive fourfold differential cross section for
the 3He(y, pn)p reaction at 55- and 85-MeV photon lab energy as a
function of the np opening angle 6, + 6, with 8, = 81°. Curves as in
Fig. 6. The experimental data are from Ref. [31].
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15-MeV photon lab energy as a function of the neutron energy E, for
the neutron scattering angle 6, = 90°. Curves as in Fig. 6.

show 3He inclusive longitudinal and transverse response
functions R; and Rr as examples. Although the Coulomb
effect may be large in particular kinematic regions, it is rather
insignificant for the total cross section and therefore also for
response functions. Only the transverse response function near

0.02 - - 1

0.01

R, (MeV™)

0.00

0.01

Ry (MeVv')

0.00

FIG. 16. *He inclusive longitudinal and transverse response
functions R; and Rz for the momentum transfer |Q| = 300 MeV
as functions of the energy transfer Q¢. Curves as in Fig. 6. The
experimental data are from Ref. [33] (circles) and from Ref. [34]
(squares).
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FIG. 17. *He inclusive transverse response function R near
threshold as a function of the excitation energy E.; Q, is the value
of three-momentum transfer at threshold. Curves as in Fig. 6. The
experimental data are from Ref. [35].

threshold is affected more visibly, as shown in Fig. 17; at
higher momentum transfer there is also quite a large A-isobar
effect.

IV. SUMMARY

In this paper we show how the Coulomb interaction between
charged baryons can be included in the momentum-space
description of proton-deuteron breakup and of the three-body
e.m. disintegration of 3He by using the screening and renor-
malization approach. The theoretical framework is the AGS
integral equation [9]. The calculations are done on the same
level of accuracy and sophistication as for the corresponding
neutron-deuteron and *H reactions. The conclusions of the
paper refer to the developed technique and to the physics
results obtained with that technique.

Technically, the idea of screening and renormalization is
that of Refs. [6,10,11]. However, our practical realization
differs quite significantly from that of Ref. [6]:

(i) We use modern hadronic interactions, CD Bonn and
CD Bonn + A, in contrast to the simple S-wave separable
potentials of Ref. [6]. Our use of the full potential requires
the standard form of the three-particle equations, different
from the quasiparticle approach of Ref. [6].

(ii)) We do not approximate the screened Coulomb transition
matrix by the screened Coulomb potential.

(iii) The quasiparticle approach of Ref. [6] treats the screened
Coulomb potential between the protons without partial-
wave expansion and therefore has no problems with
the slow convergence of that expansion. Our solution
of three-nucleon equations proceeds on the partial-
wave basis and therefore faces the slow partial-wave
convergence of the Coulomb interaction between the
charged baryons. However, we are able to obtain fully
converged results by choosing a special form of the
screening function and by using the perturbation the-
ory of Ref. [18] for treating the screened Coulomb
transition matrix in high partial waves. This would not be
possible, if we had used Yukawa screening as in Ref. [6],
for two reasons: (a) The convergence with respect to
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screening would require much larger radii R and (b) the
larger values of R would necessitate the solution of
the AGS equation with much higher angular-momentum
states.

(iv) Our method for including the Coulomb interaction is
efficient. Although the number of the isospin triplet
partial waves to be taken into account is considerably
higher than in the case without Coulomb, the required
computing time increases by only a factor of 3—4 for each
screening radius R, because of the use of perturbation
theory for high partial waves.

The obtained results are fully converged with respect
to the screening and with respect to the quantum-number
cutoffs; they are therefore well checked for their validity.
The employed technique becomes cumbersome in kinematical
regions with very low relative pp energy, i.e., pp c.m. energies
below 0.1 MeV, because of the need for quite large screening
radii.

As to physics, the Coulomb effect in pd breakup and
in the three-body e.m. disintegration of *He is extremely
important in kinematical regimes close to pp-FSI. There
the pp repulsion converts the pp-FSI peak obtained in the
absence of Coulomb into a minimum with zero cross section.
This significant change of the cross-section behavior has
important consequences in nearby configurations where one
may observe instead an increase in the cross section that is
due to Coulomb. This phenomenon is independent of the beam
energy and depends solely on specific momentum distributions
of the three-nucleon final state. Therefore, unlike in pd elastic
scattering in which the Coulomb contribution decreases with
the beam energy until it is confined to the forward direction,
in three-body breakup large Coulomb effects may always be
found in specific configurations besides pp-FSI, even at high
beam energies.

Another important consequence of this work is that we
can finally ascertain with greater confidence the quality of
two- and three-nucleon force models one uses to describe pd
observables; any disagreement with high-quality pd data may
now be solely attributed to the underlying nuclear interaction.
In the framework of the present study we reanalyzed the
contribution of A-isobar degrees of freedom to three-body
breakup observables. The largest A effects take place in
analyzing powers for given configurations. Nevertheless, the
lack of high-quality analyzing power data on a broad spectrum
of configurations prevents a full evaluation of the A effects
in pd breakup. The situation is even worse in the three-
body photodisintegration of *He, for which there are neither
kinematically complete experiments without polarization nor
any analyzing power data available.

ACKNOWLEDGMENTS

The authors thank St. Kistryn and H. Paetz gen Schieck
for providing experimental data. A.D. is supported by
Fundagcdo para a Ciéncia e a Techologia (FCT) grant
SFRH/BPD/14801/2003, A.C.F. in part by FCT grant
POCTI/FNU/37280/2001, and P.U.S. in part by Deutsche
Forschungsgemeinschaft grant Sa 247/25.

054004-11



A.DELTUVA, A. C. FONSECA, AND P. U. SAUER

[1] E. O. Alt, A. M. Mukhamedzhanov, M. M. Nishonov, and A. L.
Sattarov, Phys. Rev. C 65, 064613 (2002).

[2] A. Kievsky, M. Viviani, and S. Rosati, Phys. Rev. C 64, 024002
(2001).

[3] C.R. Chen, J. L. Friar, and G. L. Payne, Few-Body Syst. 31, 13
(2001).

[4] S. Ishikawa, Few-Body Syst. 32, 229 (2003).

[5] A. Deltuva, A. C. Fonseca, and P. U. Sauer, Phys. Rev. C 71,
054005 (2005).

[6] E. O. Alt and M. Rauh, Few-Body Syst. 17, 121 (1994).

[7] A. Kievsky, M. Viviani, and S. Rosati, Phys. Rev. C 56, 2987
(1997).

[8] V. M. Suslov and B. Vlahovic, Phys. Rev. C 69, 044003
(2004).

[9] E. O. Alt, P. Grassberger, and W. Sandhas, Nucl. Phys. B2, 167
(1967).

[10] J. R. Taylor, Nuovo Cimento B 23, 313 (1974); M. D. Semon
and J. R. Taylor, Nuovo Cimento A 26, 48 (1975).

[11] E. O. Alt, W. Sandhas, and H. Ziegelmann, Phys. Rev. C
17, 1981 (1978); E. O. Alt and W. Sandhas, ibid. 21, 1733
(1980).

[12] R. Machleidt, Phys. Rev. C 63, 024001 (2001).

[13] A. Deltuva, R. Machleidt, and P. U. Sauer, Phys. Rev. C 68,
024005 (2003).

[14] A. Deltuva, A. C. Fonseca, and P. U. Sauer, Phys. Rev. Lett. 95,
092301 (2005).

[15] A. Deltuva, K. Chmielewski, and P. U. Sauer, Phys. Rev. C 67,
034001 (2003).

PHYSICAL REVIEW C 72, 054004 (2005)

[16] A. Deltuva, A. C. Fonseca, A. Kievsky, S. Rosati, P. U. Sauer,
and M. Viviani, Phys. Rev. C 71, 064003 (2005).

[17] M. Yamaguchi, H. Kamada, and Y. Koike, nucl-th/0310024.

[18] A. Deltuva, K. Chmielewski, and P. U. Sauer, Phys. Rev. C 67,
054004 (2003).

[19] A. Deltuva, L. P. Yuan, J. Adam, Jr., A. C. Fonseca, and P. U.
Sauer, Phys. Rev. C 69, 034004 (2004).

[20] A. Deltuva, L. P. Yuan, J. Adam, Jr., and P. U. Sauer, Phys. Rev.
C 70, 034004 (2004).

[21] R. GroBmann et al., Nucl. Phys. A603, 161 (1996).

[22] G. Rauprich et al., Nucl. Phys. A535, 313 (1991).

[23] H. Patberg, R. Grossman, G. Nitzsche, L. Sydow, S. Vohl, H. P.
Schieck, J. Golak, H. Witala, W. Glockle, and D. Huber, Phys.
Rev. C 53, 1497 (1996).

[24] J. Zejma et al., Phys. Rev. C 55, 42 (1997).

[25] J. Strate et al., Nucl. Phys. A501, 51 (1989).

[26] M. Allet et al., Phys. Rev. C 50, 602 (1994).

[27] M. Allet et al., Few-Body Syst. 20, 27 (1996).

[28] St. Kistryn et al., Phys. Rev. C 68, 054004 (2003); St. Kistryn
et al., to be published, nucl-th/0508012.

[29] R. E. Carlson et al., Lett. Nuovo Cimento 8, 319 (1973).

[30] E. Stephan et al., AIP Conf. Proc. 768, 73 (2005).

[31] N. R. Kolb, P. N. Dezendorf, M. K. Brussel, B. B. Ritchie, and
J. H. Smith, Phys. Rev. C 44, 37 (1991).

[32] W. Tornow et al., AIP Conf. Proc. 768, 138 (2005).

[33] K. Dow et al., Phys. Rev. Lett. 61, 1706 (1988).

[34] C. Marchand et al., Phys. Lett. B153, 29 (1985).

[35] R. S. Hicks et al., Phys. Rev. C 67, 064004 (2003).

054004-12





