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The Coulomb interaction between two protons is included in the calculation of proton-deuteron elastic

scattering, radiative proton-deuteron capture, and two-body electromagnetic disintegration of 3He. The hadron

dynamics is based on the purely nucleonic charge-dependent (CD) Bonn potential and its realistic extension CD

Bonn + � to a coupled-channel two-baryon potential, allowing for single virtual �-isobar excitation. Calculations

are done using integral equations in momentum space. The screening and renormalization approach is employed

for including the Coulomb interaction. Convergence of the procedure is found at moderate screening radii. The

reliability of the method is demonstrated. The Coulomb effect on observables is seen at low energies for the

entire kinematic regime. In proton-deuteron elastic scattering at higher energies the Coulomb effect is confined

to forward scattering angles; the �-isobar effect found previously remains unchanged by the Coulomb effect. In

electromagnetic reactions the Coulomb effect competes with other effects in a complicated way.

DOI: 10.1103/PhysRevC.71.054005 PACS number(s): 21.30.−x, 21.45.+v, 24.70.+s, 25.10.+s

I. INTRODUCTION

Experimentally, hadronic three-nucleon scattering is pre-
dominantly studied in proton-deuteron (pd) reactions (i.e., in
pd elastic scattering and breakup). Proton and deuteron beams
and targets are available, with and without polarization. The
detection of charged particles yields complete experiments.
In contrast, the charge-symmetric neutron-deuteron (nd) reac-
tions are much more difficult to perform, since neutron beams
are scarce, neutron targets are nonexisting, and the detection
of two neutrons is a complicated experimental endeavor. In
electromagnetic (e.m.) reactions, proton-deuteron radiative
capture has a corresponding advantage over neutron-deuteron
capture and, furthermore, 3He is a safer target with breakup
products that are easier to detect compared with those of 3H.

In contrast, the Coulomb interaction between two protons
is a nightmare for the theoretical description of three-nucleon
reactions. The Coulomb interaction is well known, in contrast
to the strong two-nucleon and three-nucleon potentials mainly
studied in three-nucleon scattering. However, because of
its 1/r behavior, the Coulomb interaction does not satisfy
the mathematical properties required for the formulation of
standard scattering theory. When the theoretical description
of three-particle scattering is attempted in integral form,
the Coulomb interaction renders the standard equations ill-
defined; the kernel of the equations is noncompact. When
the theoretical description is based on differential equations,
the asymptotic boundary conditions for the wave function
have to be numerically imposed on the trial solutions and,
in the presence of the Coulomb interaction, those boundary
conditions are nonstandard.

There is a long history of theoretical prescriptions for the
solution of the Coulomb problem in three-particle scattering,

∗Electronic address: deltuva@cii.fc.ul.pt
†On leave from Institute of Theoretical Physics and Astronomy,

Vilnius University, Vilnius 2600, Lithuania.

where different procedures are followed by the groups in-
volved. A modified momentum-space integral equation ap-
proach is used in Refs. [1,2], whereas the configuration-space
differential equation approach is used in Ref. [3] in a varia-
tional framework and in Refs. [4,5] in the framework of the
Faddeev equations. There are more recent formulations [6,7]
of exact scattering equations with the Coulomb interaction;
however, these have not matured yet into practical applications.
In addition there exist approximate schemes: The most brutal
one is the description without the Coulomb interaction for
the three-nucleon system with two protons at those energies
and in those kinematical regimes in which the Coulomb
interaction is believed to be irrelevant for observables; such
an approximation has become standard in recent years [8],
and, to our own guilt, we admit having used it [9]. Reference
[10] extends the assumed applicability of that approximation
scheme by the addition of external Coulomb correction terms
to those non-Coulomb results.

In this paper our treatment of the Coulomb interaction is
based on the ideas proposed in Ref. [11] for the scattering
of two charged particles and extended in Ref. [12] for three-
particle scattering. The Coulomb potential is screened, the
standard scattering theory for short-range potentials is used,
and the obtained results are corrected for the unscreened limit.
We rely on Refs. [11,12] with respect to the mathematical rigor
of that procedure. We constrain this paper to the description of
reactions involving the pd system. Thus, we leave out breakup
in pd scattering and three-body breakup in e.m. reactions with
3He. We first explain the features of our procedure to ease
the understanding for the uninitiated reader and to point out
differences of our treatment relative to Refs. [1,2], which also
are based on Refs. [11,12].

(1) The calculations of Refs. [1,2] need improvement with
respect to the hadronic interaction. Whereas the authors
of Refs. [1,2] limited themselves to the use of low-rank
separable potentials, we use modern two-nucleon poten-
tials and three-nucleon forces in full without separable
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FIG. 1. Screening function wR(r)/w(r) as a function of the

proton-proton distance r for characteristic values of the parameter

n in Eq. (1): n = 1 (dashed-dotted curve) corresponds to Yukawa

screening, n = 4 (solid curve) is the choice of this paper, and n → ∞

(dotted curve) corresponds to a sharp cutoff.

expansion. In particular, the results of this paper are based
on the purely nucleonic charge-dependent (CD) Bonn
potential [13] and on its coupled-channel extension CD
Bonn + � [14], allowing for a single virtual �-isobar
excitation and fitted to the experimental data with the
same degree of accuracy as the CD Bonn potential itself.
In the three-nucleon system the � isobar mediates an
effective three-nucleon force and effective two- and three-
nucleon currents, both consistent with the underlying
effective two-nucleon force. A reliable technique [9]
for solving the three-particle Alt-Grassberger-Sandhas
(AGS) equation [15] without the Coulomb interaction is
at our disposal. We extend that technique to include the
screened Coulomb potential between the protons. Thus,
the form of our three-particle equations including the
screened Coulomb potential is completely different from
the quasiparticle equations of two-body type solved in
Refs. [1,2].

(2) We work with a Coulomb potential wR , screened around
the separation r = R between two charged baryons. We
choose wR in configuration space as

wR(r) = w(r) e−(r/R)n , (1)

with the true Coulomb potential w(r) = αe/r , where
αe ≈ 1/137 is the fine structure constant and n controls
the smoothness of the screening. We prefer to work with
a sharper screening than the Yukawa screening (n = 1) of
Refs. [1,2]. We want to ensure that the screened Coulomb
potential wR approximates well the true Coulomb one w

for distances r < R and simultaneously vanishes rapidly
for r > R, providing a comparatively fast convergence
of the partial-wave expansion. In contrast, the sharp
cutoff (n → ∞) yields an unpleasant oscillatory behav-
ior in the momentum-space representation, leading to
convergence problems. We find that values 3 � n � 6
provide a sufficiently smooth, but at the same time a
sufficiently rapid, screening around r = R; n = 4 is our
choice for the results of this paper, unless indicated
otherwise. The screening functions for different n values
are compared in Fig. 1, which shows that the present
choice n = 4 includes much more of the exact Coulomb

potential at short distances than the Yukawa screening. For
example, Yukawa screening requires a screening radius of
R = 1280 fm to approximate true Coulomb potential at
r = 5 fm as well as the present choice does with R =

20 fm. That fact is the reason why Yukawa screening in
Refs. [1,2] requires very large values of R for convergence
compared to those that the calculations of this paper will
need.

(3) The screening radius R is chosen to be much larger than
the range of the strong interaction, which is of the order
of the pion wavelength h̄/mπc ≈ 1.4 fm. Nevertheless,
the screened Coulomb potential wR is of short range
in the sense of scattering theory. Standard scattering
theory is therefore applicable. However, the partial-wave
expansion of the pair interaction requires much higher
angular momenta than that of the strong two-nucleon
potential alone, but not as high as one would need if
Yukawa screening were used.

(4) The screening radius R will always remain very small
compared with the nuclear screening distances, which
are of atomic scale (i.e., 105 fm). Thus, the employed
screened Coulomb potential wR is unable to simulate the
physics of nuclear screening properly and is even poorer
at modeling all features of the true Coulomb potential.
Therefore wR is unable to yield the Coulomb scattering
amplitude or the logarithmic distortion of the Coulomb
wave function and, consequently, the true Coulomb phase
shifts. However, the screened Coulomb potential is able
to simulate the short-range modifications in the scattering
amplitude. Since the Coulomb scattering amplitude and
the Coulomb phase shifts are known, and their occurrence
in the three-particle scattering amplitudes can be spotted,
approximate calculations with screened Coulomb wR can
be corrected for their shortcomings in a controlled way.
References [11,12] give the prescription for the correction
procedure that we follow here, this procedure involves
the renormalization of the on-shell amplitudes to get the
proper unscreened Coulomb limit.

(5) After the indicated corrections (4) are made, the pre-
dictions for observables of three-nucleon reactions have
to show independence from the choice of the screening
radius R, provided it is chosen sufficiently large. That con-
vergence will be our internal criterion for the reliability
of our Coulomb treatment.

Section II describes the practical working of the our
program in detail. Section III presents some characteristic
effects of the Coulomb interaction in three-nucleon reactions.
Section IV gives our conclusions.

II. TREATMENT OF COULOMB INTERACTION

BETWEEN PROTONS

Section I recalled the general idea for including the
Coulomb interaction in pd scattering and in related e.m.
reactions by screening and renormalization. This section
provides the theoretical framework on which we base our
practical procedure. We are aware that the equations given here
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have been developed in Ref. [12], but their practical realization
in Refs. [1,2] differs substantially from the work presented
here. For completeness we rederive some of the equations and
explain how we solve them; our description aims at elastic
pd scattering and e.m. reactions involving the pd system.
However, the essence of the procedure can already be well
seen in proton-proton (pp) scattering, which we therefore use
as an illustrative example. The example is also an especially
useful test, since exact results for the inclusion of the Coulomb
interaction are readily available; we recover the exact results,
which are easily obtainable in calculations with a sharp cutoff
Coulomb potential [13].

The numerical results presented in this section refer to the
coupled-channel potential CD Bonn + �, which allows for
single �-isobar excitation. The Coulomb interaction occurs
between the two protons and between the proton and the �+

in the coupled channel with an isobar.

A. Proton-proton scattering

The two protons interact through the strong potential v

and the Coulomb potential w. We introduce the full resolvent
g(R)(z) for the auxiliary situation in which the Coulomb
potential w is replaced by the screened potential wR ,

g(R)(z) = (z − h0 − v − wR)−1, (2a)

where h0 is the kinetic energy operator. The full resolvent
g(R)(z) yields the full scattering state when acting on a
plane-wave state |pν〉 of relative momentum p, energy e(p),
and discrete two-particle quantum numbers ν and taking the
appropriate limit z = e(p) + i0. The full resolvent therefore
also yields the desired S matrix. The full resolvent g(R)(z)
depends on the screening radius R for the Coulomb interaction
and that dependence is notationally indicated. Next, we discuss
formal manipulations of the full resolvent. The resolvent can
be decomposed according to

g(R)(z) = g0(z) + g0(z)t (R)(z)g0(z) (2b)

with the free resolvent

g0(z) = (z − h0)−1 (3)

and the full transition matrix

t (R)(z) = (v + wR) + (v + wR)g0(z)t (R)(z). (4)

Of course, t (R)(z) must contain the pure Coulomb transition
matrix tR(z) derived from the screened Coulomb potential
alone:

tR(z) = wR + wRg0(z)tR(z). (5)

Therefore, an alternative decomposition of the full resolvent
(2b) that isolates tR(z) appears conceptually neater. Instead of
correlating the plane-wave state |pν〉 in a single step to the
full scattering state by g(R)(z), it may be correlated first to a
screened Coulomb state by the screened Coulomb potential
wR through

gR(z) = (z − h0 − wR)−1, (6a)

gR(z) = g0(z) + g0(z)tR(z)g0(z). (6b)

Thus, the full resolvent can alternatively be decomposed into

g(R)(z) = gR(z) + gR(z)t̃ (R)(z)gR(z) (7)

with the short-range operator

t̃ (R)(z) = v + vgR(z)t̃ (R)(z). (8)

Equations (2b), (6), and (7) give an alternative form for the
difference of transition matrices [t (R)(z) − tR(z)], that is,

t (R)(z) − tR(z) = [1 + tR(z)g0(z)]t̃ (R)(z)[1 + g0(z)tR(z)].

(9)

This equation is the well-known two-potential formula that
achieves a clean separation of the full transition matrix t (R)(z)
into a long-range part tR(z) and a short-range part [t (R)(z) −

tR(z)]. In this paper the left-hand side of Eq. (9) is calculated
directly from the potentials v and wR according to Eqs. (4)
and (5). Equation (9) is only introduced by us to demonstrate
that [t (R)(z) − tR(z)], even in the infinite-R limit, is a short-
range operator resulting from the short-range nature of v and
t̃ (R)(z). However, on-shell, it is externally distorted owing to
the screened Coulomb wave generated by [1 + g0(z)tR(z)],
which together with the long-range part tR(z) does not have
a proper limit as R → ∞. This difficulty brings about the
concept of renormalization of on-shell matrix elements of the
operators as proposed in Refs. [11,12] to recover the proper
results in the unscreened Coulomb limit.

According to Refs. [11,12], the pp transition amplitude
〈pf νf |t |piνi〉, referring to the strong potential v and the
unscreened Coulomb potential w, is obtained via the renor-
malization of the on-shell t (R)(z) with z = e(pi) + i0 in the
infinite-R limit:

〈pf νf |t |piνi〉 = lim
R→∞

{

z
− 1

2

R (pf )〈pf νf |t (R)(e(pi) + i0)

× |piνi〉z
− 1

2

R (pi)
}

. (10a)

The transition amplitude 〈pf νf |t |piνi〉 connects the initial
and final states |piνi〉 and |pf νf 〉, pf = pi , of the considered
reaction. However, Eq. (10a) as it stands is unsuitable for the
numerical calculation of the full transition amplitude; instead,
the split of the full transition matrix t (R)(z) into long- and
short-range parts is more convenient. For the on-shell screened
Coulomb transition matrix tR(z), contained in t (R)(z), the limit
in Eq. (10a) can be carried out analytically, yielding the true
Coulomb transition amplitude 〈pf νf |tC |piνi〉 [11], that is,

〈pf νf |t |piνi〉 = 〈pf νf |tC |piνi〉

+ lim
R→∞

(

z
− 1

2

R (pf )〈pf νf |[t (R)(e(pi) + i0)

− tR(e(pi) + i0)]|piνi〉z
− 1

2

R (pi)
)

, (10b)

whereas the limit for the remaining short-range part [t (R)(z) −

tR(z)] of the transition matrix t (R)(z) has to be performed
numerically, but it is reached with sufficient accuracy at finite
screening radii R. In contrast to 〈pf νf |tC |piνi〉, the short-range
part [t (R)(z) − tR(z)] can be calculated using a partial-wave
expansion of Eqs. (4) and (5).

054005-3



A. DELTUVA, A. C. FONSECA, AND P. U. SAUER PHYSICAL REVIEW C 71, 054005 (2005)

The renormalization factor for R → ∞ is a diverging phase
factor

zR(p) = e−2iϕR (p), (11a)

where ϕR(p), though independent of the pp relative orbital
angular momentum L in the infinite-R limit, can be realized
according to [11] by

ϕR(p) = σL(p) − ηLR(p), (11b)

with the diverging screened Coulomb phase shift ηLR(p)
corresponding to standard boundary conditions and the proper
Coulomb one σL(p) referring to the logarithmically distorted
proper Coulomb boundary conditions. The form (11b) of the
renormalization phase is readily understood by looking back
to Eq. (9) and realizing that the external distortion generated
by the screened Coulomb wave function [1 + g0(e(p) +

i0)tR(e(p) + i0)]|pν〉 carries, in each partial wave, the overall
phase factor eiηLR (p) [16]. Except for this overall phase factor,
the screened Coulomb wave approximates well the unscreened
one in the range required by the operator t̃ (R)(z) in Eq. (9) for
distances r < R. Therefore, through the renormalization, that
unwanted phase factor is changed to the appropriate phase
factor eiσL(p) for the unscreened Coulomb wave.

For the screened Coulomb potential of Eq. (1) the infinite-R
limit of ϕR(p) is known analytically [11] and is given by

ϕR(p) = κ(p)[ln (2pR) − C/n], (11c)

where κ(p) = αeµ/p is the Coulomb parameter, µ is the
reduced pp mass, C ≈ 0.5772156649 is the Euler number,
and n is the exponent in Eq. (1). The renormalization phase
ϕR(p) to be used in the actual calculations with finite screening
radii R is not unique, since only the infinite-R limit matters,
but the converged results have to show independence of the
chosen form of ϕR(p). According to our investigations this is
indeed so. The results presented in this paper are based on
the partial-wave dependent form (11b) of the renormalization
factor for which we find the convergence with R to be slightly
faster than for (11c).

We refer to Refs. [11,12] for a rigorous justification of the
renormalization procedure of Eqs. (10) and (11) and proceed
here to study the numerical convergence of our predictions
with increasing screening radius R as a practical justification
for the validity of the chosen Coulomb treatment.

The previous discussion left out the identity of the two
protons. Taking the identity of the protons into account, we
have to calculate the transition amplitude 〈pf νf |t |piνi〉 of
Eq. (10b) for antisymmetrized states. Practical results based
on Eq. (10b) are shown in Figs. 2–4.

The Coulomb effect on the hadronic pp phase shifts η is
most important in the 1S0 partial wave. The convergence with
R for the 1S0 phase shift, shown in Fig. 2, is impressive. The
convergence is faster at higher energies. A screening radius
of R = 20 fm (10 fm) suffices for an agreement within 0.01◦

with the exact phase shift values at all energies above 5 MeV
(25 MeV). In contrast, to reproduce the 1S0 pp scattering
length aC

pp = −7.815 fm and the effective range rC
pp =

2.773 fm within 0.010 fm, screening radii larger than R =

100 fm are required. In comparison to the screening function
adopted in this paper, Fig. 2 also proves the convergence with
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FIG. 2. Convergence of the 1S0 pp phase shift η with screening

radius R for proton lab energies 3, 4, 5, and 10 MeV. Our results

derived from Eq. (10b) and given by dashed curves are compared

with exact results given by solid lines. At 3 MeV the results obtained

with Yukawa screening (dashed-dotted curve) and with a sharp cutoff

(dotted curve) are also shown, demonstrating the superiority of the

screening function chosen in this paper.

R to be rather slow for the Yukawa screening and to be of
unpleasant oscillatory behavior for a sharp cutoff.

Figure 3 exhibits the convergence of the result for the
spin-averaged pp differential cross section at 5-MeV proton
lab energy with increasing screening radius R. The screening
radius R = 20 fm appears to be sufficiently large for that
energy, since, according to Fig. 3, the results for R > 20 fm
are indistinguishable from the exact Coulomb results, despite
the rather fine scale of the plot. The rate of convergence seen
in Fig. 3 is characteristic for all studied observables at that
energy. The convergence of observables with R is also faster
at higher energies; beyond 25 MeV the radius R = 10 fm is
ample enough.
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FIG. 3. Convergence of the differential cross section for pp

scattering at 5-MeV proton lab energy with screening radius R. The

cross section is shown as function of the c.m. scattering angle. Exact

results given by the solid curve are compared to results with screening

radii of R = 10, 15, and 20 fm, given by dotted, dashed-dotted, and

dashed curves, respectively. Results obtained with R > 20 fm are not

distinguishable from the exact results.
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FIG. 4. Proton analyzing power for pp scattering at 100-MeV

proton lab energy as a function of the c.m. scattering angle. Exact

results, given by the solid curve, are indistinguishable from the results

of our Coulomb treatment with screening radius R � 10 fm; the

dashed curve corresponds to no Coulomb results, and the dotted

curve to the Coulomb externally corrected approximation.

Figure 4 shows the proton analyzing power results for
pp scattering at 100-MeV proton lab energy. The results are
converged with respect to screening and the exact results are
compared with two approximations, labeled no-Coulomb and
Coulomb externally corrected: In the no-Coulomb approxi-
mation, the Coulomb interaction is omitted completely; in the
Coulomb externally corrected approximation, the Coulomb
scattering amplitude is added to the no-Coulomb one, the
latter being modified for the external Coulomb distortion by
multiplication with the Coulomb phase factors eiσL(p) in the
initial and final states [10]. In fact, the Coulomb externally
corrected approximation coincides with a calculation with a
screened Coulomb interaction, whose screening radius is taken
to be zero for the short-range part of the transition amplitude.
Whereas the results converged with respect to screening and
the exact results are indistinguishable in Fig. 4, the no-
Coulomb and Coulomb externally corrected approximations
are pretty poor even at 100 MeV. Note that for the observable
of Fig. 3 the results for both approximations lie beyond the
scale of that plot.

The results presented in Figs. 3 and 4 are characteristic
for all observables studied. We conclude that the method
employed for the inclusion of the Coulomb interaction in
pp scattering works satisfactorily. We see convergence with
increasing screening radius R at moderate values. The con-
vergence in R is more rapid for higher scattering energies;
R = 10 fm is sufficient for proton lab energies above 25 MeV,
whereas the screening radius is to be increased beyond 20 fm
for energies below 5 MeV. We also note that the convergence
in R is considerably slower for Yukawa screening and is of
oscillatory behavior for a sharp cutoff. The exact Coulomb
results are correctly approached by the method employed with
satisfactory accuracy, unlike the no-Coulomb or the Coulomb
externally corrected approximations. The method we use,
based on the ideas of Refs. [11,12], encourages us to carry
it over to elastic pd scattering as Refs. [1,2] did and to e.m.
reactions involving the pd system.

B. Elastic proton-deuteron scattering

This section carries over the treatment of the Coulomb
interaction, given in Sec. II A for pp scattering, to elastic pd
scattering. It establishes a theoretical procedure leading to a
calculational scheme.

Each pair of nucleons (βγ ) interacts through the strong
coupled-channel potential vα and the Coulomb potential wα .
We assume that wα acts formally between all pairs (βγ ) of
particles, but it is nonzero only for states with two-charged
baryons (i.e., pp and p�+ states). We introduce the full
resolvent G(R)(Z) for the auxiliary situation in which the
Coulomb potential wα is screened with a screening radius
R, with wα being replaced by wαR:

G(R)(Z) =

(

Z − H0 −
∑

σ

vσ −
∑

σ

wσR

)−1

, (12)

where H0 is the three-particle kinetic energy operator. The
full resolvent yields the full pd scattering state when acting
on the channel state |φα(q)να〉 of relative pd momentum q,
energy Eα(q), and additional discrete quantum numbers να

and taking the appropriate limit Z = Eα(q) + i0. The full
resolvent therefore also yields the desired S matrix. The full
resolvent G(R)(Z) depends on the screening radius R for
the Coulomb interaction and that dependence is notationally
indicated; the same will be done for operators related to
G(R)(Z). The full resolvent G(R)(Z), following standard AGS
notation [15] of three-particle scattering, may be decomposed
into channel resolvents:

G(R)
α (Z) = (Z − H0 − vα − wαR)−1, (13)

where, in pd channels α,wαR = 0, and into the full multichan-

nel three-particle transition matrix U
(R)
βα (Z) according to

G(R)(Z) = δβαG(R)
α (Z) + G

(R)
β (Z)U

(R)
βα (Z)G(R)

α (Z). (14)

The full multichannel transition matrix satisfies the AGS
equation [15]

U
(R)
βα (Z) = δ̄βαG−1

0 (Z) +
∑

σ

δ̄βσT (R)
σ (Z)G0(Z)U (R)

σα (Z),

(15a)

where the two-particle transition matrix is derived from the
full channel interaction vα + wαR , that is,

T (R)
α (Z) = (vα + wαR) + (vα + wαR)G0(Z)T (R)

α (Z), (15b)

where G0(Z) = (Z − H0)−1 is the free resolvent and δ̄βα =

1 − δβα . Of course, the full multichannel transition matrix

U
(R)
βα (Z) must contain the pure Coulomb transition matrix

T c.m.
αR (Z) derived from the screened Coulomb potential W c.m.

αR

between the spectator proton and the center of mass (c.m.) of
the remaining neutron-proton (np) pair in channel α, that is,

T c.m.
αR (Z) = W c.m.

αR + W c.m.
αR G(R)

α (Z)T c.m.
αR (Z), (16)

with the pd channel being one of those channels α. The same
screening function is used for both Coulomb potentials wαR

and W c.m.
αR .

As we have done in Sec. II A, an alternative decomposition
of the full resolvent, which appears conceptually neater for the
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purpose of elastic pd scattering, may be developed based on the
following idea. Instead of correlating the plane-wave channel
state |φα(q)να〉 in a single step to the full scattering state by
G(R)(Z), it may be correlated first to a screened Coulomb state
of proton and deuteron by the screened Coulomb potential
W c.m.

αR between a proton and the c.m. of an np pair through

GαR(Z) =
(

Z − H0 − vα − wαR − W c.m.
αR

)−1
, (17a)

GαR(Z) = G(R)
α (Z) + G(R)

α (Z)T c.m.
αR (Z)G(R)

α (Z), (17b)

where, in each channel α,wαR and W c.m.
αR are never simulta-

neously present: When α corresponds to a pp pair, wαR is
present and W c.m.

αR = 0; when α denotes an np pair, wαR = 0
and W c.m.

αR is present. Thus, the full resolvent can alternatively
be decomposed into

G(R)(Z) = δβαGαR(Z) + GβR(Z)Ũ
(R)
βα (Z)GαR(Z), (18a)

G(R)(Z) = δβαG(R)
α (Z) + G

(R)
β (Z)δβαT c.m.

αR (Z)G(R)
α (Z)

+G
(R)
β (Z)

{[

1 + T c.m.
βR (Z)G

(R)
β (Z)

]

Ũ
(R)
βα (Z)

×
[

1 + G(R)
α (Z)T c.m.

αR (Z)
]}

G(R)
α (Z), (18b)

where the operator Ũ
(R)
βα (Z) may be calculated through the

integral equation

Ũ
(R)
βα (Z) = δ̄βα

[

G−1
αR(Z) + vα

]

+ δβαWαR

+
∑

σ

(δ̄βσvσ + δβσWβR)GσR(Z)Ũ (R)
σα (Z), (19)

which is driven by the strong potential vα and the potential of
three-nucleon nature WαR =

∑

σ (δ̄ασwσR − δασ W c.m.
σR ). This

potential WαR accounts for the difference between the direct
pp Coulomb interaction and the one that takes place between
the proton and the c.m. of the remaining bound as well as
unbound np pair. When calculated between on-shell screened

pd Coulomb states, Ũ
(R)
βα (Z) is of short range, even in the

infinite-R limit. Equation (18b), together with Eq. (14), gives
an alternative form for the difference of the transition matrices
[U

(R)
βα (Z) − δβαT c.m.

αR (Z)], that is

U
(R)
βα (Z) − δβαT c.m.

αR (Z) =
[

1 + T c.m.
βR (Z)G

(R)
β (Z)

]

Ũ
(R)
βα (Z)

×
[

1 + G(R)
α (Z)T c.m.

αR (Z)
]

. (20)

Though we calculate that difference directly from the poten-
tials vα, wαR , and W c.m.

αR through the numerical solution of
Eqs. (15) and (16), Eq. (20) demonstrates that for initial and

final pd states [U
(R)
βα (Z) − δβαT c.m.

αR (Z)] is a short-range opera-

tor owing to the nature of Ũ
(R)
βα (Z) as previously discussed, but

it is externally distorted owing to the screened Coulomb wave
generated by [1 + G(R)

α (Z)T c.m.
αR (Z)]. Thus, Eq. (20) achieves a

clean separation of the full on-shell transition matrix U
(R)
βα (Z)

into the long-range part δβαT c.m.
αR (Z) and the short-range part

[U
(R)
βα (Z) − δβαT c.m.

αR (Z)]. On-shell, both parts do not have a
proper limit as R → ∞. To obtain the results appropriate for
the unscreened Coulomb limit, they need to be renormalized
as was done for the corresponding amplitudes for pp scattering
in Sec. II A.

According to Refs. [11,12], the full pd transition amplitude
for initial and final states |φα(qi)ναi

〉 and |φβ(qf )νβf
〉, qf =

qi , referring to the strong potential vα and the unscreened
Coulomb potential wα , is obtained via the renormalization

of the on-shell multichannel transition matrix U
(R)
βα (Z) with

Z = Eα(qi) + i0 in the infinite-R limit:

〈φβ(qf )νβf
|Uβα|φα(qi)ναi

〉 = lim
R→∞

[

Z
− 1

2

R (qf )〈φβ(qf )νβf
|

×U
(R)
βα (Eα(qi) + i0)

∣

∣φα(qi)ναi

〉

Z
− 1

2

R (qi)
]

. (21a)

As for pp scattering, splitting the full on-shell multichannel

transition matrix U
(R)
βα (Z) into long- and short-range parts is

most convenient. For the screened Coulomb transition matrix
T c.m.

αR (Z), contained in U
(R)
βα (Z), the limit in Eq. (21a) can be

carried out analytically, yielding the proper Coulomb transition
amplitude 〈φβ(qf )νβf

|T c.m.
αC |φα(qi)ναi

〉 [11,12], that is,
〈

φβ(qf )νβf

∣

∣Uβα

∣

∣φα(qi)ναi

〉

= δβα

〈

φβ(qf )νβf

∣

∣T c.m.
αC

∣

∣φα(qi)ναi

〉

+ lim
R→∞

(

Z
− 1

2

R (qf )
〈

φβ(qf )νβf

∣

∣

[

U
(R)
βα (Eα(qi) + i0)

− δβαT c.m.
αR (Eα(qi) + i0)

]∣

∣φα(qi)ναi

〉

Z
− 1

2

R (qi)
)

. (21b)

The limit for the remaining part [U
(R)
βα (Z) − δβαT c.m.

αR (Z)]
of the multichannel transition matrix has to be performed
numerically, but, owing to the short-range nature of that part,
it is reached with sufficient accuracy at finite screening radii

R, and furthermore, [U
(R)
βα (Z) − δβαT c.m.

αR (Z)] can be calculated
using a partial-wave expansion.

In close analogy with pp scattering, the renormalization
factor for R → ∞ is a diverging phase factor

ZR(q) = e−2iφR (q), (22a)

where φR(q), though independent of the pd relative angular
momentum l in the infinite-R limit, is realized by

φR(q) = σl(q) − ηlR(q), (22b)

with the diverging screened Coulomb pd phase shift ηlR(q)
corresponding to standard boundary conditions and the proper
Coulomb one σl(q) referring to the logarithmically distorted
proper Coulomb boundary conditions. In analogy to pp
scattering the form (22b) of the renormalization phase is
readily understood by looking back to Eq. (20). For the
screened Coulomb potential of Eq. (1) the infinite-R limit of
φR(q) is known analytically and is given by

φR(q) = κ(q)[ln (2qR) − C/n], (22c)

where κ(q) = αeM/q is the pd Coulomb parameter and M is
the reduced pd mass. The form of the renormalization phase
φR(q) to be used in the actual calculations with finite screening
radii R is not unique, but, as in Sec. II A, the converged results
show independence of the chosen form of φR(q). The results
presented in this paper are based on the partial-wave dependent
form (22b) of the renormalization factor for which we find the
convergence with R to be slightly faster than for (22c).

Again we refer to Refs. [11,12] for a rigorous justification
of the correction procedure of Eqs. (21) and (22) and proceed
here to study the numerical convergence of our predictions
with increasing R.

We choose an isospin description for the three baryons
involved in three-nucleon scattering. In the isospin formalism
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the isospin T of the interacting pair and the isospin t of the
spectator are coupled to the total isospin T with the projection
MT . Because of the hadronic charge dependence together with
the screened Coulomb interaction in pp and p�+ pair states
(i.e., in states with isospin |T MT 〉 = |11〉), the two-baryon
transition matrix T (R)

α (Z) becomes an operator coupling total

isospin T = 1
2

and T = 3
2

states according to

〈(T ′t ′)T ′M′
T |T (R)

α (Z)|(T t)T MT 〉

= δT ′T δt ′tδM′
T MT

∑

MT mt

〈T MT tmt |T
′MT 〉

× 〈T MT |T (R)
α (Z)|T MT 〉〈T MT tmt |T MT 〉. (23)

Because of the isospin formulation, the nucleons are therefore
considered identical. However, the discussion has left out the
identity of nucleons till now. Instead of the transition amplitude
of Eq. (21b) we therefore have to use the properly symmetrized
form

〈φα(qf )ναf
|U |φα(qi)ναi

〉 =
∑

σ

〈φα(qf )ναf
|Uασ |φσ (qi)νσi

〉,

(24a)
〈

φα(qf )ναf

∣

∣U
∣

∣φα(qi)ναi

〉

=
〈

φα(qf )ναf

∣

∣T c.m.
αC

∣

∣φα(qi)ναi

〉

+ lim
R→∞

(

Z
− 1

2

R (qf )
〈

φα(qf )ναf

∣

∣

[

U (R)(Eα(qi) + i0)

− T c.m.
αR (Eα(qi) + i0)

]∣

∣φα(qi)ναi

〉

Z
− 1

2

R (qi)
)

(24b)

with U (R)(Z) = U (R)
αα (Z) + U

(R)
αβ (Z)P231 + U (R)

αγ (Z)P312 for
the calculation of observables, with (αβγ ) being cyclic and
P231 and P312 being the two cyclic permutations of (αβγ ).
U (R)(Z) satisfies the standard symmetrized form of the integral
equation (15a), that is,

U (R)(Z) = PG−1
0 (Z) + PT (R)

α (Z)G0(Z)U (R)(Z) (25)

with P = P231 + P312.
The practical implementation of the outlined calculational

scheme faces a technical difficulty. We solve Eq. (25) in a
partial-wave basis. The partial-wave expansion of the screened
Coulomb potential converges rather slowly. The problem does
not occur in pp scattering, since there the partial waves
with different two-baryon total angular momentum I are
not coupled and the maximal I required for [t (R)(z) − tR(z)]
is determined according to Eqs. (8) and (9) by the range
of the hadronic potential v. However, in the calculation of
U (R)(Z) all two-baryon partial waves are coupled dynamically;
the required maximal I is determined by the range of the
screened Coulomb potential and is considerably higher than
that required for the hadronic potential alone. In this context,
the perturbation theory for higher two-baryon partial waves
developed in Ref. [17] is a very efficient and reliable technical
tool for treating the screened Coulomb interaction in high
partial waves. Furthermore, in practical calculations we split
the difference of the transition matrices in Eq. (24b) into two
parts with different partial-wave convergence properties,

U (R)(Z) − T c.m.
αR (Z) = [U (R)(Z) − PTαR(Z)P ]

−
[

T c.m.
αR (Z) − PTαR(Z)P

]

, (26)

where TαR(Z) is the two-baryon screened Coulomb transition
matrix derived from wαR alone and hidden in T (R)

α (Z)

according to Eq. (15b). The term PTαR(Z)P is the remain-
der of the three-body operator U (R)(Z) − PG−1

0 (Z) in the
absence of the strong force, and it is contained in U (R)(Z)
as the most important Coulomb contribution; the difference
[U (R)(Z) − PTαR(Z)P ] converges with respect to included
two-baryon states considerably faster than U (R)(Z) alone.
The term [T c.m.

αR (Z) − PTαR(Z)P ] accounts for the off-c.m.
pd screened Coulomb interaction and converges rather slowly,
but including very high partial waves is much easier to do
than for [U (R)(Z) − PTαR(Z)P ]. We vary the dividing line
between partial waves included exactly and perturbatively in
U (R)(Z) as well as angular momentum cutoffs for both terms in
Eq. (26) to test the convergence and thereby establish the
validity of the procedure. The problem of high partial waves
does not occur in Refs. [1,2], since the authors use the quasi-
particle formalism and work with equations of two-body type
in which the partial-wave decomposition has to be performed
only with respect to the relative motion of the spectator particle
and the correlated pair. Technical limitations restricted the
authors of Refs. [1,2] to using low-rank separable potentials
for the hadronic interaction and approximating the two-proton
screened Coulomb transition matrix by the potential. In
contrast, we work with a realistic hadronic interaction (CD
Bonn or CD Bonn + �) without separable approximation, and
we never approximate the energy-dependent pair transition
matrix for screened Coulomb TαR(Z) by the potential wαR .

With respect to the partial-wave expansion in the actual
calculations of this paper, we obtain fully converged results
by taking into account the screened Coulomb interaction in
two-baryon partial waves with pair orbital angular momentum
L � 13 for the first term in Eq. (26) and with L � 25 for
the second term; orbital angular momenta L � 7 can safely
be treated perturbatively. These values refer to the screening
radius R = 25 fm; for smaller screening radii the convergence
in orbital angular momentum is faster. The hadronic interaction
is taken into account in two-baryon partial waves with total
angular momentum I � 5. Both three-baryon total isospin T =
1
2

and T = 3
2

states are included. The maximal three-baryon

total angular momentum J considered is 31
2

.
Figures 5 and 6 show the convergence of our method with

increasing screening radius R according to Eq. (24b). The
comparison with the no-Coulomb results (dashed curves),
used till now by us when accounting for pd data, gives
the size of the Coulomb effect. First we concentrate on
3-MeV proton lab energy, the lowest energy considered in this
paper. As examples we show the differential cross section,
the nucleon analyzing power Ay(N ), which has the most
critical convergence behavior according to Refs. [2,18], and
the deuteron tensor analyzing power T21, the most slowly
converging observable at 3-MeV proton lab energy according
to our experience. Nevertheless, the convergence is impressive
even for those worst cases: Only T21, shown in Fig. 6,
requires a screening radius R > 15 fm. Convergence is more
rapid at higher energies, as demonstrated in Fig. 6 for the
deuteron tensor analyzing power T21 at 3-and 10-MeV proton
lab energy. The observed convergence strongly suggests the
reliability of the chosen Coulomb treatment. Furthermore, a
forthcoming paper [19] makes a detailed comparison between
the results obtained by the present technique and those of
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FIG. 5. Convergence of the differential cross section and of the

proton analyzing power Ay(N ) for pd elastic scattering at 3-MeV

proton lab energy with screening radius R. The observables are shown

as functions of the c.m. scattering angle. The hadronic potential is

CD Bonn + �. Results obtained with screening radii of R = 5 fm

(dotted curves), 10 fm (dashed-double-dotted curves), 15 fm (dashed-

dotted curves), 20 fm (double-dashed-dotted curves), and 25 fm

(solid curves) are compared. Results without the Coulomb interaction

(dashed curves) are given as reference for the size of the Coulomb

effect.

Ref. [3] obtained from the variational solution of the three-
nucleon Schrödinger equation in configuration space with the
inclusion of an unscreened Coulomb potential between the
protons and imposing the proper Coulomb boundary condi-
tions explicitly. The agreement, across the board, between the
results derived from two entirely different methods, clearly
indicates that both techniques for including the Coulomb
interaction are reliable; this is another justification for the
technique used in this paper.

As in Fig. 4 for pp scattering, Fig. 7 compares predic-
tions including the Coulomb interaction with results from
traditional approximate treatments, which were labeled be-
fore as no-Coulomb and Coulomb externally corrected. As
already known from Refs. [2,18] both approximations are
unsatisfactory at low energies. At higher energies the Coulomb
effect is confined more and more to the forward direction;
the no-Coulomb treatment fails there, whereas the Coulomb
externally corrected approximation is usually not accurate
enough for larger scattering angles.

The Coulomb effects seen and their physics implications
are discussed in Sec. III.

C. Radiative capture and two-body e.m. disintegration of the

three-nucleon bound state

For the description of the considered e.m. processes
the matrix element 〈ψ (−)

α (qf )ναf
|jµ(Q, K+)|B〉 of the e.m.

 0.00

 0.02

T
2
1

EN lab = 3 MeV

-0.05

0.00

0.05

0 60 120 180

T
2
1

Θc.m. (deg)

EN lab = 10 MeV

FIG. 6. Convergence of the deuteron tensor analyzing power T21

for pd elastic scattering at 3- and 10-MeV proton lab energy with

screening radius R. The observable is shown as function of the c.m.

scattering angle. The curves are explained in the caption of Fig. 5.

current operator between the three-nucleon bound state and
the pd scattering state has to be calculated. The calculation
of that matrix element without the Coulomb interaction is
discussed in great length in Refs. [20,21]. This subsection
only discusses the modification arising from the inclusion of
the Coulomb interaction between the charged baryons. The
Coulomb interaction is included as a screened potential and
the dependence of the bound and scattering states [i.e., |B(R)〉

and |ψ (±)(R)
α (qf )ναf

〉] on the screening radius R is notationally
made explicit. In analogy to pd scattering, the current matrix
element referring to the unscreened Coulomb potential is
obtained via renormalization of the matrix element referring
to the screened Coulomb potential in the infinite-R limit:

〈

ψ (−)
α (qf )ναf

∣

∣jµ(Q, K+)|B〉

= lim
R→∞

Z
− 1

2

R (qf )
〈

ψ (−)(R)
α (qf )ναf

∣

∣jµ(Q, K+)|B(R)〉. (27)

As for pd scattering, the practical results presented in this
paper are based on the partial-wave dependent form of
the renormalization factor (22b). Owing to the short-range
nature of jµ(Q, K+)|B(R)〉 the limit R → ∞ is reached with
sufficient accuracy at finite screening radii R. The presence
of the bound-state wave function in the matrix element
strongly suppresses the contribution of the screened Coulomb
interaction in high partial waves (i.e., two-baryon partial
waves with orbital angular momentum L � 6 are sufficient for
convergence). The other quantum-number-related cutoffs in
the partial-wave dependence of the matrix element are the same
as in Refs. [20,21], that is, I � 4,J �

15
2

for photoreactions,

and I � 3,J �
35
2

for two-body electrodisintegration of 3He.

All calculations include both total isospin T = 1
2

and T = 3
2

states.
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FIG. 7. Differential cross section and deuteron analyzing power

Ay(d) for pd elastic scattering at 135-MeV proton lab energy as

functions of the c.m. scattering angle. Converged results of the

present Coulomb treatment with R = 10 fm given by solid curves are

compared to the results calculated with no-Coulomb (dashed curves)

and Coulomb externally corrected (dotted curves) approximations.

Figure 8 shows the convergence of our method with
increasing screening radius R for pd radiative capture at 3-MeV
proton lab energy. We show the differential cross section and
the deuteron tensor analyzing power T21, which are the most
critical observables in terms of convergence behavior. As in
the case of pp and pd elastic scattering the convergence is
impressive and becomes more rapid with increasing energy; it
is quite comparable to pd elastic scattering. The convergence
with increasing screening radius R is the same for two-body
electrodisintegration of 3He; we therefore omit a correspond-
ing figure.

D. Conclusions on the practical implementation of

the Coulomb interaction

Using the described method we are able to include the
Coulomb interaction between two protons in the description of
hadronic and e.m. three-nucleon reactions in the pd c.m. energy
regime from about 1 MeV up to the pion production threshold.
The screening radius required for the convergence decreases
with increasing energy. Whereas R = 20 fm is required for
energies around deuteron breakup threshold, the screening
radius can be lowered to R = 10 fm above 10-MeV c.m.
energy. In contrast, the screening radius has to be increased
considerably when calculating extreme low-energy quantities,
such as the pd doublet scattering length, which at present
is outside the reach of our adopted technique. However, the
high-energy limit is imposed by the form of the hadronic
interaction, which is applicable only below the pion production
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FIG. 8. Convergence of the differential cross section and of the

deuteron analyzing power T21 for pd radiative capture at 3-MeV

proton lab energy with screening radius R. The observables are shown

as functions of the c.m. scattering angle. The curves are explained in

the caption of Fig. 5.

threshold. We notice no particular feature of the convergence
when crossing the three-body breakup threshold. However, the
paper does not treat the three-body breakup reactions yet.

As a side remark on the technique for solving the AGS
equations, developed in Ref. [9], we find, in the context
of the Coulomb interaction, the interpolation procedure for
two-baryon transition matrices based on splines to be more
convenient than the one based on the Chebyshev expansion.

III. RESULTS

We base our calculations on the two-baryon coupled-
channel potential CD Bonn + � with and without the
Coulomb interaction and use the CD Bonn potential with and
without the Coulomb interaction as purely nucleonic reference.
We use the charge and current operators of Refs. [20,21],
which are appropriate for the underlying dynamics. We add
relativistic corrections to the charge in the Siegert part of the
operator when describing the photoreactions, an admittedly
questionable procedure, but one entirely unrelated to the real
issue of the Coulomb interaction in this paper.

Obviously, we have many more predictions than it is
possible and wise to show. Therefore we make a judicious
selection and present those predictions that illustrate the
message we believe the results tell us. The readers, dissatisfied
with our choice, are welcome to obtain the results for their
favorite data from us.

Our predictions are dominantly based on the two-baryon
coupled-channel potential CD Bonn + �; its single virtual
�-isobar excitation yields, in the three-nucleon system, an
effective three-nucleon force consistent with the two-nucleon
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FIG. 9. Differential cross section and analyzing powers for pd elastic scattering at 3-MeV proton lab energy as functions of the c.m.

scattering angle. Results including �-isobar excitation and the Coulomb interaction (solid curves) are compared to results without the Coulomb

interaction (dashed curves). To better appreciate the size of the �-isobar effect the purely nucleonic results including the Coulomb interaction

are also shown (dotted curves). The experimental data are from Ref. [22].

interaction. �-isobar effects increase the 3H binding energy
from 8.004 MeV for CD Bonn to 8.297 MeV for CD
Bonn + �, the experimental value is 8.482 MeV. That
binding energy increase has simultaneous beneficial effects
on other bound state properties (e.g., on the charge radius)
but those effects also appear in the pd elastic scattering

amplitude, especially in the three-nucleon J � = 1
2

+
partial

wave. The correlation between trinucleon binding and other
low-energy observables is known as scaling. However, the
Coulomb interaction also makes a significant contribution to
trinucleon binding; the 3H-3He binding energy difference is
0.746 MeV for CD Bonn and 0.756 MeV for CD Bonn +
�, compared with the experimentally required value of 0.764
MeV. This binding energy difference is dominantly due to the
Coulomb repulsion between the protons in 3He; the contri-
bution arising from the hadronic charge asymmetry is much
smaller.

In three-nucleon scattering the � isobar therefore con-
tributes to the scaling phenomenon at low energies, but it
manifests itself more directly at higher energies when channel
coupling becomes more probable. This section tries to explore
the interplay between �-isobar and Coulomb effects in the
considered three-nucleon reactions.

A. Elastic proton-deuteron scattering

Figures 9 and 10 give characteristic low-energy results.
As examples we show observables at 3-MeV and 9-MeV
proton lab energy, respectively below and above deuteron
breakup threshold. The Coulomb effect is quite appreciable
at all scattering angles, but its relative importance decreases
with increasing energy. In contrast, on the scale of the

observed Coulomb effect, the �-isobar effect is minute at
those low energies. The inclusion of the Coulomb interaction is
essential for a successful account of data for the spin-averaged
differential cross section and for the deuteron tensor analyzing
powers. However, its inclusion increases the discrepancy
between theoretical predictions and experimental data in the
peak region of proton and deuteron vector analyzing powers,
the so-called Ay puzzle. Our findings are consistent with the
results of Refs. [1,3].

Figure 11 shows selected results at 135-MeV proton lab en-
ergy. The Coulomb effect is confined to the forward direction,
that is, to c.m. scattering angles smaller than 30◦ where the
�-isobar effect is not visible. The �-isobar effect shows up
rather strongly in the region of the diffraction minimum, where
its effect is beneficial and the Coulomb effect is gone. �-isobar
and Coulomb effects are nicely separated. Thus, the �-isobar
effect found previously [14] on the Sagara discrepancy and
on spin observables remains essentially unchanged by the
inclusion of the Coulomb interaction. The predictions of
Fig. 11 are characteristic for all observables at higher energies.

B. Proton-deuteron radiative capture

The e.m. current operator is the standard choice of
Ref. [20] supplemented by the relativistic one-nucleon charge
corrections, also given in Ref. [20], which we found to be
important for some spin observables even at low energies.

References [27,28] carried out corresponding realistic
calculations for pd radiative capture with different two-nucleon
potentials and an irreducible three-nucleon force, but without
relativistic one-nucleon charge corrections. The calculations
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FIG. 10. Differential cross section and analyzing powers for pd elastic scattering at 9-MeV proton lab energy as functions of the c.m.

scattering angle. The curves are explained in the caption of Fig. 9. The experimental data are from Ref. [23].

of Ref. [27] take the Coulomb interaction fully into account
but are limited to reactions below 10-MeV c.m. energy.
Reference [28] neglects the Coulomb interaction in the
continuum states. When comparable, the results of this paper
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FIG. 11. Differential cross section and proton analyzing power

Ay(N ) for pd elastic scattering at 135 MeV proton lab energy as

functions of the c.m. scattering angle. The curves are explained in the

caption of Fig. 9. The experimental data are from Ref. [24] (crosses)

and from Ref. [25] (full circles) for the differential cross section and

from Ref. [26] for the analyzing power.

and those of Refs. [27,28] agree qualitatively; benchmark
comparisons have not been done.

Figure 12 shows the Coulomb effect for pd radiative capture
at 3-MeV proton lab energy. The Coulomb effect is most
important for the differential cross section, which is reduced by
about 20% and agrees rather well with the experimental data.
In contrast, the spin observables show only a small Coulomb
effect. The effect of relativistic one-nucleon charge corrections
is entirely negligible for the differential cross section, but it is
rather sizable and necessary for a satisfactory description of
the data for the vector analyzing powers. Our results without
relativistic one-nucleon charge corrections are consistent with
the corresponding calculations of Ref. [27], which also fail
to account for the vector analyzing power data. A moderate
�-isobar effect caused by scaling is visible around the peak of
the differential cross section.

Selected deuteron analyzing powers at 17.5-MeV deuteron
lab energy with moderate Coulomb effects are shown in
Fig. 13 together with the experimental data. Since the deuteron
analyzing power Ayy is rather flat between 40◦ and 140◦

according to Fig. 13, Fig. 14 focuses on the energy dependence
of Ayy at 90◦ photon lab scattering angle. Clearly, our
calculation accounts rather well for the known data of Ayy in
the entire deuteron lab energy region up to 95 MeV. However,
a similar study for T20 at 90◦ (not shown here) indicates
that the strong energy dependence of the low-energy data
from TUNL [29] is not compatible with the present calcu-
lation. The rather good agreement with experimental data in
Figs. 13 and 14 is obtained in general as an interplay of three
considered effects, that is, the effects due to (i) the � isobar,
(ii) the relativistic one-nucleon charge corrections, and (iii) the
Coulomb interaction.

Figure 15 shows the differential cross section and
the nucleon analyzing power for pd radiative capture at
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FIG. 12. Differential cross section and analyzing powers for pd radiative capture at 3-MeV proton lab energy as functions of the photon

c.m. scattering angle with respect to the direction of the proton. The results shown include, respectively, the Coulomb interaction, the relativistic

one-nucleon charge corrections, and the �-isobar excitation (solid curves); the relativistic one-nucleon charge corrections and the �-isobar

excitation (dashed-dotted curves); the �-isobar excitation (dashed curves); and purely nucleonic results (dotted curves). The experimental data

are from Ref. [30].

150-MeV nucleon lab energy where we previously found
rather significant �-isobar effects [20]. Even at this relatively
high energy there is a visible, though small, Coulomb effect
around the peak of the differential cross section. In addition,
both observables show a sizable effect of the relativistic
one-nucleon charge corrections.

Figures 12–15 also recall the non-Coulomb effects on
observables to illustrate their interplay with the Coulomb
interaction. In the differential cross section at 3- and 150-MeV

proton lab energy the � isobar plays different roles; at
low energy the � isobar manifests itself through scaling
caused by changed bound state properties, but at higher
energies the explicit excitation of � channels in scattering
becomes more predominant. We also note that relativistic
one-nucleon charge corrections are important for proton and
deuteron vector analyzing powers even at low energies; with
increasing energy they become quite significant in general.
The relativistic one-nucleon charge corrections are mostly
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FIG. 13. Deuteron analyzing powers for pd

radiative capture at 17.5-MeV deuteron lab en-

ergy as functions of the photon c.m. scattering

angle with respect to the direction of the proton.

The curves are explained in the caption of Fig.

12. The experimental data are from Ref. [31].
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The curves are explained in the caption of Fig. 12. The experimental

data are from Refs. [32,33].

beneficial for accounting for the experimental data, though
their inclusion is not fully consistent with the underlying
nonrelativistic hadronic dynamics.

C. Two-body electrodisintegration of 3He

The e.m. current operator is taken from Ref. [21]; com-
pared to photo reactions, the relativistic one-nucleon charge
corrections are less important and are therefore omitted.
The Coulomb effect in the two-body electrodisintegration of
3He depends on both energy and momentum transfer. We
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FIG. 16. Lab differential cross section for two-body electrodis-

integration of 3He as a function of the proton lab scattering angle.

The electron lab energy, scattering angle, momentum, and energy

transfer are 390 MeV, 74.4◦, 434.8 MeV, and 66.1 MeV for the

reaction kinematics C1; 527.9 MeV, 52.2◦, 430.0 MeV, and 99.8 MeV

for the reaction kinematics I; and 390 MeV, 39.7◦, 250.2 MeV, and

113.0 MeV for the reaction kinematics HR of Ref. [35], respectively.

Results including �-isobar excitation and the Coulomb interaction

(solid curves) are compared to the results without the Coulomb

interaction (dashed curves). To better appreciate the size of the

�-isobar effect the purely nucleonic results with the Coulomb

interaction are also shown (dotted curves). The experimental data

are from Ref. [35].

do not study that dependence in detail. We only show in
Fig. 16 a sample result for the three reaction kinematics
C1, I, and HR of Ref. [35]. The Coulomb effect on the
C1 and I differential cross sections is visible in the peak,
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though in C1 it is small compared with the discrepancy
between theoretical predictions and experimental data. In the
HR differential cross section a Coulomb effect is not visible
in the logarithmic scale of the plot, but instead a �-isobar
effect is observed at backward angles. Qualitatively our results
without the Coulomb interaction agree well with the ones of
Ref. [36].

IV. SUMMARY

This paper shows how the Coulomb interaction between
the charged baryons can be included in the momentum-
space description of elastic proton-deuteron scattering and of
related e.m. reactions using the screening and renormalization
approach. The theoretical framework is the AGS integral
equation [15]. The calculations are done on the same level of
accuracy and sophistication as for the corresponding neutron-
deuteron reactions. The conclusions of the paper refer to the
developed technique and to the physics results obtained with
that technique.

Technically, the idea of screening and renormalization is
the one used in Refs. [11,12] and we rely on these works for
mathematical rigor. However, our practical realization differs
quite significantly from the one of Refs. [1,2] in the following
ways:

(1) We use modern hadronic interactions, CD Bonn and CD
Bonn + �, in contrast to the low-rank separable potentials
of Refs. [1,2]. Our use of the full potential requires
the standard form of the three-particle equations, which
differs from the quasiparticle approach of Refs. [1,2].

(2) We do not approximate the screened Coulomb transition
matrix by the screened Coulomb potential.

(3) The quasiparticle approach of Refs. [1,2] treats the
screened Coulomb potential between the protons without
partial-wave expansion and therefore has no problems
with the slow convergence of that expansion. Our solu-
tion of three-nucleon equations proceeds in partial-wave
basis and therefore is faced with the slow partial-wave
convergence of the Coulomb interaction between the
charged baryons. However, we are able to obtain fully
converged results by choosing a special form of the
screening function and by using the perturbation theory
of Ref. [17] for treating the screened Coulomb transition
matrix in high partial waves. This would not be possible
if we had used Yukawa screening as in Refs. [1,2] for two
reasons: (a) The convergence with respect to screening
would require much larger radii R; (b) the larger values

of R would necessitate the solution of the AGS equation
with much higher angular momentum states.

(4) Our method for including the Coulomb interaction is
efficient. Though the number of the isospin triplet partial
waves to be taken into account is considerably higher than
in the case without the Coulomb interaction, the required
computing time increases only by a factor of 2 to 3, owing
to the use of the perturbation theory for high partial waves.

The obtained results are fully converged with respect
to the screening and with respect to the quantum number
cutoffs; they are therefore well checked for their validity. The
employed technique gets cumbersome when approaching very
low energies (i.e., pd c.m. energies below 1 MeV) because of
the need for very large screening radii. Thus, the calculation
of the doublet scattering length for elastic pd scattering at
present, lies outside of our numerical reach, a barrier that
does not exist for the coordinate-space techniques adopted
in Refs. [3,4]. Nonetheless, we do not see any particular
numerical problem when crossing the breakup threshold and
going to higher energies where coordinate-space techniques
are very hard to apply.

The present technique is not yet used for breakup itself, but
such an extension is on its way.

Physicswise, the Coulomb effect in elastic pd scattering is
important at low energies for all kinematic regimes, but it gets
confined to the forward direction at higher energies, whereas
the effect mediated by the � isobar remains almost unmodified
by the inclusion of the Coulomb interaction. In radiative
pd capture the Coulomb effect is important for low-energy
differential cross sections and for some spin observables up
to about 30-MeV proton lab energy; at higher energies there
is still a visible Coulomb effect for some observables (e.g.,
in the peak of the differential cross section). In two-body
electrodisintegration of 3He the Coulomb effect appears not to
be simply related to the internal excitation of the three-nucleon
system. A thorough study of the dependence of the Coulomb
effect on the energy and three-momentum transfer to the 3He
target is beyond the scope of this paper.
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