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Abstract. The momentum-transfer cross section for positronium–He scattering has been
determined by analysing the thermalization process of orthopositronium in the gas. The
momentum distribution of the positronium is observed by using the one-dimensional angular
correlation of the annihilation radiation method. Silica aerogel is used to form a sufficient
amount of positronium in a restricted region necessary for the high-resolution measurements.
The average energies of orthopositronium for mean lifetimes ranging from 3.2 to 86 ns are
determined by applying static magnetic fields. A thermalization model which includes the
momentum-transfer cross section as an adjustable parameter is fitted to the average energy. The
cross section thus obtained isσm = (11± 3)× 10−16 cm2 for positronium in the energy range
below 0.3 eV.

1. Introduction

The angular correlation of annihilation radiation (ACAR) method provides rich information
about the interactions of positronium (Ps) with gas molecules at energies below 1 eV when
it is combined with the use of silica aerogel [1]. The silica aerogel permits high angular
resolution measurements by producing a large amount of slow Ps in a geometrically small
region. The method has been applied to study phenomena such as ortho–para conversion of
Ps in O2 [2, 3], formation of Ps in Xe [4], and thermalization of Ps in various gases [5–7].

In [5, 7], we estimated momentum-transfer cross sections for collisions of Ps with
various rare and molecular gases. The average energies for parapositronium (p-Ps) and
perturbed orthopositronium which was induced to self-annihilate into twoγ -rays by applying
a static magnetic field of 0.29 T (we shall refer to the perturbed orthopositronium as o′-Ps)
were measured by the ACAR method. The cross sections were estimated from these two
values, which correspond to the Ps lifetimes of 0.125 and 50 ns, respectively.

In this work, we have performed improved ACAR measurements on the Ps–He system.
The average energies of the o′-Ps for several different lifetimes ranging from 86 to 3.2 ns
have been measured by applying static magnetic fields in the range 0.16–1.5 T. These data
are analysed in detail to obtain the momentum-transfer cross section. We have derived
a differential equation for the Ps thermalization based on the Boltzmann equation, which
enables us to take into account the energy-dependent Ps energy loss in collisions with the
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grain surfaces of the silica aerogel. This method provides information on Ps scattering in the
energy range below 0.3 eV, which is lower than the range covered by a recently developed
variable energy o-Ps beam experiments [8–13].

2. Experimental procedure

The momentum distributions of o-Ps in silica aerogel in 0.92 amagat (1 amagat≡
2.69× 1025 atom m−3, the number density of an ideal gas at 0◦C and 1 atm) of He gas (at
a pressure of 1.00 atm) and in vacuum were measured at 296 K using the one-dimensional
ACAR apparatus as in previous works [1, 5, 7]. The macroscopic density of the aerogel
was 0.1 g cm−3, while the mean grain diameter was 5 nm and the mean distance between
the grains was about 70 nm. The momentum resolution of the apparatus was 0.5×10−3mc

full-width at half-maximum (FWHM), wherem and c are the electron mass and speed of
light, respectively. The positron source was 3 mCi of22Na. Magnetic fields up to 1.5 T
were applied by using an electromagnet. The 2γ coincidence counts were accumulated with
the field pointing parallel(B > 0) and antiparallel(B < 0) to the average momentum of
the positrons impinging on the aerogel. The data for opposite magnetic fields were taken
by reversing the field at each angular position of the counter.

Figure 1. ACAR data for silica aerogel (a) in vacuum and (b) in 0.92 amagat of He. The full
and broken curves show the broad component and the p-Ps component, respectively. All the
data are normalized to the same broad component intensity. The values ofτ are the calculated
mean lifetimes of the o′-Ps.
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3. Experimental data and analysis

Figure 1 shows the ACAR data taken in magnetic fields in the range ofB = 0 to+1.5 T.
The full curves for theB = 0 data are the same Gaussian curves obtained by fitting to
the data in the region|p| > 5× 10−3mc. They have a FWHM of 10.0× 10−3mc (broad
component). They represent the momentum distribution of the electrons in the silica grains
sampled by the positrons [1, 7]. Although the pickoff annihilation of o-Ps also contributes
to this component, the fraction is small enough to be neglected. The components above
the curves represent the momentum distribution of parapositronium (p-Ps) in the free space
between the grains.

In the presence of a magnetic field an additional narrow component appears resulting
from the 2γ self-annihilation of the o-Ps perturbed by the magnetic field (o′-Ps). Para-Ps
is also perturbed by the field (we shall refer to this Ps as p′-Ps). The annihilation rates of
the o′-Ps and p′-Ps are [14]

γo′ = γo+ y2γp

1+ y2
+ γpickoff (1)

and

γp′ = y2γo+ γp

1+ y2
+ γpickoff, (2)

respectively, whereγo and γp are the self-annihilation rates of the unperturbed o-Ps and
p-Ps, andy is given byy = x/[(1+ x2)1/2 + 1] with x = 4|µ|B/h̄ω0; µ is the magnetic
moment of the electron and ¯hω0 is the hyperfine structure splitting between o-Ps and p-Ps.
For Ps in vacuum,γo = 7.04× 106 s−1, γp = 7.99× 109 s−1, µ = −5.79× 10−5 eV T−1,
and h̄ω0 = 8.41× 10−4 eV. The last term,γpickoff, is the Ps pickoff annihilation rate.
The value forγpickoff was determined by measuring the positron lifetime spectrum for the
aerogel cut from the same block as that for the ACAR measurement. The obtained values
are 6× 105 s−1 for the aerogel in vacuum and 7× 105 s−1 for that in 0.92 amagat of He.
(These values, which were to be used for the analysis of the ACAR data, were determined
by fitting the spectra in the time range including the annihilation of epithermal o-Ps.) The
values ofτ indicated in figure 1 are the mean lifetimes of the o′-Ps calculated using (1).
These values vary widely in the range 86–3.2 ns asB varies from 0.16 to 1.5 T. On the
other hand, the mean lifetime of the p′-Ps in the fields of the present experiment remains
almost constant; it is 0.130 ns even forB = 1.5 T.

If the intensities of the broad component and the p′-Ps component were independent
of B, the o′-Ps component could be isolated by subtracting the ACAR data forB = 0
from that forB 6= 0. Precisely, however, the 2γ self-annihilation intensity of the p′-Ps
component depends weakly on the magnitude and the direction of the field due to the spin
polarization of the positrons from theβ decay [15]. The theoretical intensity is shown in
figure 1 of [15], where the intensity of the p′-Ps component varies almost linearly with
B. Hence, the average of the intensities forB and −B is almost independent of|B|.
The lifetime of o′-Ps does not depend on the polarity ofB. Thus, the accurate shapes of
the o′-Ps component for the field intensity|B| can be obtained by subtracting the ACAR
data forB = 0 from the average of those forB and−B. In the subtraction, theB = 0
data as well as the average were normalized to have the same intensity in the momentum
region |pz| > 5× 10−3mc. (The pickoff annihilation included in the broad component was
neglected in this procedure because the effect was smaller than the statistical error.) The
o′-Ps componentN(pz) obtained in this way is shown in figure 2. The p-Ps component is
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Figure 2. The momentum distributions of p-Ps (top) and those for o′-Ps in (a) vacuum and (b)
0.92 amagat of He.

shown at the top of this figure. It is clearly seen that the Ps momentum distribution depends
on the Ps mean lifetime indicated in the figure.

The average Ps energyεexp
av can be calculated fromN(pz) as

εexp
av = 3

∫ ∞
−∞

p2
z

2mPs
N(pz) dpz

/∫ ∞
−∞

N(pz) dpz (3)

wheremPs is the Ps mass. The values ofεexp
av obtained by using (3) for o′-Ps are plotted

againstτ in figure 3. The effect of the experimental resolution has been corrected by
quadratic deconvolution. The open circles in figure 3 are data in vacuum showing the
thermalization process of Ps by collisions with the grain surfaces of the silica aerogel, while
the full circles show the process in the presence of He atoms in addition.

In the appendix we develop a differential equation describing the thermalization of Ps
based on the Boltzmann equation. It gives the foundation for a simpler equation used
in previous works [7, 16, 17]. The new equation (A14) incorporates energy-dependent
momentum-transfer cross sections.

In a previous analysis of the same data [6], it was noticed that the fractional Ps energy
loss per collision with the grain surface decreases with the Ps energy. (This effect has also
been noticed in other works [7, 18–20].) It may be explained by the decrease of the phase
space available for the phonons created inside and on the surface of the silica grain. In this
work we approximate the initial step of the phonon creation by an elastic collision of the Ps
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Figure 3. Experimental average energies (ε
exp
av see equation (3)) of the o′-Ps in vacuum (open

circles) and in 0.92 amagat of He (full circles) plotted against the mean lifetimeτ . The broken
and full curves are theoretical curvesεth

av(τ ) fitted simultaneously.

with a group of surface atoms [19]. This picture is allowed because the Ps speed is large
compared with the speed of the sound in silica [21]. Instead of introducing the effective
mass of the surface atoms and the mean-free distance between the grain surfaces as in [19],

we simply replace2σ (j)m n
M

in (A14) with a parametersj . The sum

s(E) =
∞∑
j=0

sj

(
E

kBT

)j/2
(4)

then represents the total effect of the grain surfaces which could depend on the Ps energy.
The thermalization process by collisions with He atoms as well as with the grain surface

is described by the following equation:

dEav(t)

dt
= −

√
2mPsEav(t)

(
Eav(t)− 3

2
kBT

) ∞∑
j=0

ηj

(
2σ (j)m n

M
+ sj

)(
Eav(t)

kBT

)j/2
, (5)

whereEav(t) is the average Ps energy at timet , n is the number density of He,M is the
mass of the He atom,T is the gas temperature, andkB is the Boltzmann constant. The
momentum-transfer cross section has been expanded as equation (A13) and the coefficients
ηj are given by equation (A15).

The average energyεexp
av plotted in figure 3 represents that for Ps with the mean lifetime

τ averaged over the time duration for the ACAR measurement, i.e. practically fromt = 0
to∞. We should therefore compareεexp

av with

εth
av(τ ) =

∫∞
0 Eav(t)e−t/τ dt∫∞

0 e−t/τ dt
. (6)

We first analysed the energy dependence ofs. We determined the average value ofs(E)

for two adjacent points for vacuum shown in figure 3 by assuming thats(E) is constant
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in the regions between adjacent two points. Equation (5) takes the following form when
s = s0 (sj = 0 for j 6= 0) andn = 0:

d

dt
Eav(t) = −

√
2mPsEav(t)

(
Eav(t)− 3

2
kBT

)
8

3

√
2

3π
s. (7)

The solution of this equation is

Eav(t) =
(

1+ Ae−bt

1− Ae−bt

)2
3

2
kBT , (8)

where

b = 8

3

√
2

3π
s
√

3mPskBT , (9)

andA is a constant determined by the initial average energy of Ps. WhenEav(t) is given
by (8), εth

av(τ ) can be expanded as

εth
av(τ ) =

(
1+

∞∑
k=1

4kAk

1+ bτk
)

3kBT

2
. (10)

The values ofs in equation (9) determined by solving the simultaneous equation of type
(10) for the two adjacent points were plotted in figure 4 against the average energy of the
two points. This figure shows that the effect of the collision with the grain surfaces certainly
decreases with the Ps energy. For the sake of simplicity, we assume that energy dependence
of s can be represented by a power law

s(E) ∝
(
Eav

kBT

)β
(11)

over the limited range of this experiment, whereβ is a constant. (The full line in figure 4
representsβ = 2.2 as determined below.)

It is difficult to analyse the data if we take into account the energy dependencies of both
s(E) andσm(E). Therefore, we assume that the momentum-transfer cross section for He
is constant over the energy range of interest. The differential equation forEav(t) is then
simplified as follows

d

dt
Eav(t) = −

√
2mPsEav(t)

(
Eav(t)− 3

2
kBT

)(
8

3

√
2

3π

2σmn

M
+ α

(
Eav(t)

kBT

)β)
, (12)

whereα is a constant. (We assume here that (5), which is given only forj being integer,
is valid for any real value.) The theoretical Ps average energyεth

av(τ ) is determined from
equations (6) and (12) numerically for givenEav(0), σm, α andβ. We performed nonlinear
least-squares fit ofεth

av(τ ) to εexp
av for both the data in vacuum and in He simultaneously. The

value ofEav(0) was fixed to be 0.8 eV, which is the Ps emission energy from silica grains
[7]. The outcome of the fit is insensitive to this value. We also tried fixingEav(0) to be
the value in the range between 0.8 and 6.8 eV, which includes the Ps emission energy from
quartz single crystal measured by Sferlazzoet al [22]. The results are almost the same as
that for 0.8 eV. The optimized parameters are

σm = 11× 10−16 cm2, (13)

β = 2.2, (14)

and

α = 3.0× 1030 kg−1 m−1. (15)
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Figure 4. The values of the parameters plotted against average o′-Ps energy. The full line
shows power law dependenceα(Eav/kBT )

2.2.

The simultaneously fitted curves are shown in figure 3. The full line shown in figure 4 is
the fitted function of the form (11) withβ being fixed to be 2.2.

We also performed the fitting withβ being constrained to an integer or a half-integer.
If we assume thatβ = 2 or 5

2, the fit is almost as good as that forβ = 2.2. The optimized
value ofσm is also the same as equation (13).

By considering the statistical and systematic errors in the estimation ofε
exp
av , we

determined the momentum-transfer cross section in the Ps energy range below 0.3 eV
as follows

σm = (11± 3)× 10−16 cm2 = (13± 4)πa2
0, (16)

wherea0 is the Bohr radius.
The momentum-transfer cross section for this system was also estimated from the ACAR

data for lower gas density [23] in order to check the systematic effect. The density was
0.184 amagat, and a magnetic field of 0.29 T was applied. The momentum-transfer cross
section obtained withβ being fixed to be 2.2 isσm = 9× 10−16 cm2, which agrees with
the value given in equation (16) within the error.

4. Discussion

The value ofσm is improved on that estimated in the previous work [7] where the Ps average
energies only for the mean lifetimes of 0.125 and 50 ns were measured. The previous value
is a few times larger than the present value. This is because the energy dependence of
the Ps energy loss on collision with the grain surfaces was not taken into account. The
present value is also improved on the value in [6] where the average energy for the Ps mean
lifetime τ was compared with a value obtained from the simple model at timeτ without
the averaging procedure (6).

The ‘collision cross section’ of Ps in He was estimated by Spektor and Paul [24]
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experimentally from a Ps lifetime measurement long ago. Their value is three orders of
magnitude smaller than the present value. Garneret al [12] measured the Ps total scattering
cross section in He using the Ps beam. The value is 2.8–5.1×10−16 cm2 in the 10–110 eV
Ps energy range; no data in the present energy range are reported. The discrepancy between
these values and our result might indicate that there is a strong energy dependence of the
cross section. Colemanet al [25] estimated the Ps scattering cross section in He, Ne, and
Ar from two-dimensional ACAR measurements. They used the gas itself as Ps formation
medium. Although they only gave a common value of(9− 0.5E)π a2

0 for all the gases
whereE is the Ps energy in eV, it is of the same order of magnitude as the present result
for He.

Theoretical investigations on the Ps–He system have also been performed by several
authors [26–30]. The momentum-transfer cross section at 0.272 eV evaluated in [26, 27] are
10.6× 10−16 cm2 and 8.25× 10−16 cm2, respectively. These values agree with the present
result within the error. The total scattering cross section forE = 0 was also calculated by
Drachman and Houston [28] and Peach [29]. The obtained values are 6.8× 10−16 cm2 and
3.3× 10−16 cm2, respectively. Both values are smaller than our value. McAlindenet al
[30] calculated the total scattering cross section in the Ps energy range below 100 eV but
did not report values in the present energy range.

5. Conclusion

We have analysed the thermalization of Ps in 1 atm of He gas observed by the ACAR
method with silica aerogel, and obtained the momentum-transfer cross section for Ps–He
collisions. The result isσm = (11± 3) × 10−16 cm2 = (13± 4)πa2

0 for Ps in the energy
range below 0.3 eV.
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Appendix

In this appendix, we derive a differential equation describing the time evolution of the
Ps average energy in gas. It is used in section 3, where we determine the momentum-
transfer cross section through fitting with the average energies measured for different Ps
mean lifetimes.

Under the present experimental condition, the number density,n, of the gas is
overwhelmingly higher than the number density of the Ps atoms. Accordingly, we only
take into account the elastic scattering by the gas molecules, ignoring the scattering by
other Ps. We also assume that the gas remains in thermal equilibrium (velocity distribution
F(V )) during the Ps thermalization process. Thus, the time evolution of the Ps velocity
distribution functionf (v, t) is governed by the linear Boltzmann equation,

∂f (v, t)

∂t
=
∫

dv′ [w(v′ → v)f (v′, t)− w(v→ v′)f (v, t)]. (A1)
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Herew(v → v′) represents the transition probability per unit time due to the scattering,
where the velocities of Ps (massmPs) and the gas molecules (massM) change as
(v,V )→ (v′,V ′). It is written with the cross sectionσ as

w(v→ v′) = n
∫

dV F(V )

∫
dV ′ δ(3)(vg − v′g)

[
vr

dσ(vr → v′r )
dv′r

]
. (A2)

These transitions are also expressed in terms of the relative and the centre-of-mass velocities
as(vr ,vg)→ (v′r ,v

′
g), wherevr ≡ v−V andvg ≡ (mPsv+MV )/(mPs+M). The notation

for the derivative ofσ used in (A2) is related to the differential cross sectiondσ
d� as,

dσ(v→ v′)
dv′

= 1

v2
δ(v − v′) dσ

d�
. (A3)

Noting this relation, the momentum-transfer cross section can be written as

σm(v) =
∫

dv′
dσ(v→ v′)

dv′
(1− v̂ · v̂′), (A4)

wherev̂ = v/|v| and v̂′ = v′/|v′|.
Using the Boltzmann equation (A1), the time derivative of the Ps average energyEav(t)

is expressed as

Eav(t)

dt
= − mPsM

mPs+M
∫

dv
∫

dv′w(v→ v′)f (v, t)vg · (vr − v′r ). (A5)

This equation can be rewritten as

dEav(t)

dt
= −

∫
dv f (v, t)W(v);W(v) ≡ n mPsM

mPs+M
∫

dV F(V )vg · vr [vrσm(vr)]. (A6)

Here we have used (A2) and applied the formula derived from (A4):∫
dv′

dσ(v→ v′)
dv′

a · (v − v′) = a · vσm(v), (A7)

which is valid for any constant vectora.
Noting thatM is much larger thanmPs (by a factor of about 104), we expand the factor

W(v) in (A6) in terms of a small parametermPs/M, so that we obtain

W(v) =
[
E

kBT
− 3

2
− E d

dE

]
ω(E); ω(E) ≡ n2mPs

M
kBT [vσm(v)], (A8)

wherekB denotes the Boltzmann constant,T being the gas temperature. The factorkBT
comes from the thermal distributionF(V ) of the gas molecules. In themPs/M expansion,
we have assumed O((V/v)2) = O(mPs/M) for the velocities. This procedure is justified
because the average energy of Ps is near the thermal energy (within a factor of 7 at most)
through the present analysis.

To get a closed differential equation for theEav(t), we assume that thef (v, t) on the
right-hand side of (A6) has a Maxwellian form at any time, as∫

dv f (v, t)· H⇒
∫ ∞

0
dE fM(E; T ∗(t))·, (A9)

where the effective temperatureT ∗(t) is defined as
3
2kBT

∗(t) ≡ Eav(t), (A10)

i.e.

fM(E; T ∗(t)) ≡ 2√
π
(kBT

∗(t))−
3
2

√
E exp

(
− E

kBT ∗(t)

)
. (A11)
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This procedure is expected to be a good approximation at least near the thermal equilibrium.
By applying the replacement (A9) to (A6) and substituting (A8), the following equation is
obtained:

d

dt

[
3

2
kBT

∗(t)
]
=
(

1

kBT ∗(t)
− 1

kBT

)∫ ∞
0

dE fM(E; T ∗(t))Eω(E). (A12)

This equation determines the time evolution ofEav(t).
If the energy-dependent momentum-transfer cross section is expanded by a power series

σm(E) =
∞∑
j=0

σ (j)m

(
E

kBT

)j/2
, (A13)

(A12) is reduced to the form, after replacingT ∗(t) back toEav(t),

dEav(t)

dt
= −

√
2mPsEav(t)

(
Eav(t)− 3

2
kBT

) ∞∑
j=0

ηj
2σ (j)m n

M

(
Eav(t)

kBT

)j/2
, (A14)

whereηj represents

ηj ≡


(j + 4)!!( 1
3)

j+3
2 ; for j = odd

2√
π

(
j + 4

2

)
!

(
2

3

)j+3
2

; for j = even

 . (A15)
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