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CHUIXIANG YI

Queens College, City University of New York, Flushing, New York

(Manuscript received 12 December 2006, in final form 21 March 2007)

ABSTRACT

To understand the basic characteristics of the observed S-shaped wind profile and the exponential flux

profile within forest canopies, three hypotheses are postulated. The relationship between these fundamental

profiles is well established by combining the postulated hypotheses with momentum equations. Robust

agreements between theoretical predictions and observations indicate that the nature of momentum trans-

fer within canopies can be well understood by combining the postulated hypotheses and momentum equa-

tions. The exponential Reynolds stress profiles were successfully predicted by the leaf area index (LAI)

profile alone. The characteristics of the S-shaped wind profile were theoretically explained by the plant

morphology and local drag coefficient distribution. Predictions of maximum drag coefficient were located

around the maximum leaf area level for most forest canopies but lower than the maximum leaf area level

for a corn canopy. A universal relationship of the Reynolds stress between the top and bottom of the canopy

is predicted for all canopies. This universal relationship can be used to understand what percentage of the

Reynolds stress at the top of canopy is absorbed by the whole canopy layer from the observed LAI values

alone. All of these predictions are consistent with the conclusions from dimensional analysis and satisfy the

continuity requirement of Reynolds stress, mean wind speed, and local drag coefficient at the top of canopy.

1. Introduction

The exchange of materials and energy between plant

canopies and the atmosphere is the foundation of some

of the most important environmental challenges facing

humankind, including perturbations to the global car-

bon cycle, the introduction of pollutants into the atmo-

sphere, and the transfer of water from soil and vegeta-

tion to the atmosphere (Schimel et al. 2001; Vitousek et

al. 1997; Wofsy 2001). Turbulent transport processes

that occur within canopies are extremely complex and

have not been adequately represented in models, caus-

ing poor environmental analysis and prognosis (Mass-

man and Weil 1999; Finnigan 2000).

Canopy turbulent flows are characterized by two fun-

damental profiles (Fig. 1): the S-shaped wind profile

and the exponential Reynolds stress profile. The S-

shaped wind profiles have been widely observed within

forest canopies (Baldocchi and Meyers 1988; Bergen

1971; Fischenich 1996; Fons 1940; Lalic and Mihailovic

2002; Landsberg and James 1971; Lemon et al. 1970;

Meyers and Paw U 1986; Oliver 1971; Shaw 1977;

Turnipseed et al. 2003; Yi et al. 2005). The S-shaped

profile refers to a secondary wind maximum that is of-

ten observed within the trunk space of forests and a

secondary minimum wind speed in the region of great-

est foliage density. For crops or other more uniform

plant canopies, the secondary wind maximum is very

weak and observed wind speeds are almost constant in

the lower part of canopy (Allen 1968; Legg and Long

1975; Uchijima and Wright 1964), as shown by the thin

solid line in Fig. 1. Regardless of whether the vegeta-

tion is a forest or a crop, the Reynolds stress profiles

within canopy always follow an exponential shape

(Amiro 1990; Baldocchi and Meyers 1988; Katul and

Albertson 1998; Katul et al. 2004; Kelliher et al. 1998;

Shaw 1977; Wilson 1988).

The relationship between these fundamental profiles

is key to understanding the transport dynamics of

chemical compounds and reaction products within the

canopy. The mixing length hypothesis, postulated by

Prandtl to derive the logarithmic velocity profile from

the constant flux profile above canopy, is not valid

within canopy (Massman 1997; Raupach and Thom

1981). Yi et al. (2005) applied the relationship between

the Reynolds stress and velocity squared, which has
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been widely used in the constant flux layer over a rough

surface or above canopy (Massman 1987; Mahrt et al.

2000; Monteith and Unsworth 1990; Raupach 1992; Sut-

ton 1953), to within-canopy flow and established rela-

tionships between these fundamental profiles. However,

Yi et al. (2005) did not adequately address the physics

behind their formulation. Also, this new formulation

has not been adequately validated by the experiments

conducted at the Niwot Ridge AmeriFlux site since tur-

bulent fluxes were measured only in the tree trunk

space and above canopy and not in the upper canopy

layer. In this paper, the formulation is rationalized into

a theoretical framework, and the consistency between

theoretical predictions and observations is tested utiliz-

ing previously published data (see appendix).

2. Theoretical background

This section addresses 1) the classic hypotheses and

basic characteristics of turbulent flow above canopy; 2)

why Prandtl’s mixing length theory is successful in de-

scribing the basic characteristics of airflow near most

natural surfaces, but not within canopy; 3) the limita-

tion of the widely used, Inoue model; and 4) the weak-

nesses of the higher-order closure approach.

a. The classic hypotheses and flow above canopy

Most hypotheses postulated in boundary layer theory

endeavor to establish a relationship between Reynolds

stresses and mean velocity (Schlichting 1960). The main

empirical hypotheses are summarized as follows:

�

�
� �u�w� � u2

*
� �

Km

�u

�z
, K theory, proposed by Boussinesq in 1877, �1�

�
2 |

�u

�z |
�u

�z
, mixing length theory, developed by Prandtl in 1925, and �2�

cDu2, proposed by Prandtl in 1932 based on the velocity-squared law, �3�

FIG. 1. Fundamental patterns of wind speed and the Reynolds stress within and above canopy and their governing equations.
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where � is the turbulent shearing stress, Km is the eddy

viscosity, � is the mixing length, and u
*

is the friction

velocity. The gradient transport hypothesis (K theory)

(1), initially proposed by Boussinesq (1877), could

not be effectively used until Prandtl developed the mix-

ing length hypothesis (Prandtl 1925). Although one

unknown (mixing length) merely replaced another

(eddy viscosity), by Km � �
2 |�u/�z| , the introduction of

the mixing length has led to vigorous studies both the-

oretically and experimentally. To determine mixing

length, �, further plausible hypotheses are needed. Von

Kármán proposed a similarity hypothesis in which mix-

ing length satisfies the equation

� � � | du�dz

d2u�dz2 |, �4�

where � is an empirical constant. The logarithmic ve-

locity profile is derived with the assumption of a linear

shearing stress distribution from the surface (von

Kármán 1930). Prandtl (1925) derived the logarithmic

velocity profile, assuming that the mixing length was

proportional to the distance from the surface, � � �z,

and that shearing stress remains constant. These two

hypotheses lead to identical velocity profiles and to the

establishment of the constant, � (�0.4, von Kármán

constant). The logarithmic velocity distribution is found

to apply to the flow near any rough surface. The em-

pirical extension to very rough surface (tall vegetation)

is written as

u

u
*

�
1

�
ln�z � d

z0
�, z � h, �5�

where d is a zero-plane displacement, z0 is roughness

height, and h is canopy height. The most remarkable

feature of the logarithmic velocity distribution is that it

satisfies the velocity-squared law (3) (Brunt 1939, 259–

260; Oke 1987, p. 76; Schlichting 1960, p. 480; Sutton

1953, 256–257). Taylor (1916) was the first to test the

validity of the velocity-squared law on the earth’s sur-

face and estimated its drag coefficient values. Numer-

ous experiments conducted since Taylor’s investigation

demonstrate that the values of drag coefficients for dif-

ferent natural surfaces are of the same order of magni-

tude as those employed in aerodynamics (Deacon 1949;

Mahrt et al. 2001; Sutcliffe 1936; Sutton 1953). These

natural surface drag coefficient estimates are usually

made during adiabatic conditions. Mahrt et al. (2001)

examined the dependence of the drag coefficient on

stability.

Airflow near a rough surface or above a canopy is

characterized by the logarithmic velocity distribution

and constant Reynolds stress (Fig. 1). The mixing

length theory (or K theory) has achieved remarkable

success in describing a relationship between these two

fundamental profiles. Since the logarithmic velocity dis-

tribution is derived based on the constant flux assump-

tion, the logarithmic layer is consistent with the con-

stant flux layer (Fig. 1). The constant flux assumption is

based on the fact that the pressure gradient near a natu-

ral surface (or wall) is small. If the x axis is in the

direction of the mean wind, neglecting advection and

the Coriolis force, the Reynolds stress is governed by

��

�z
�

�p

�x
, �6�

where �p/�x is the pressure gradient in the direction of

the mean wind and is assumed to be independent of

height in the shallow layer above canopy. Integrating

Eq. (6) from the top of canopy h to level z,

��z� � ��h� 	 �z � h�
�p

�x
. �7�

In most meteorological problems, �h � �(h) k (z �

h)�p/�x (Sutton 1953), provided that (z � h) is not

large. Thus, �h � constant is a reasonable approxi-

mation (Wyngaard 1973). The friction velocity, u
*

�


�h /� � 
|u�w�| , was initially introduced as an aux-

iliary reference velocity and is constant in the logarith-

mic layer. Sutton (1953) commented, “the friction ve-

locity is the artificial but related velocity for which the

square law holds exactly.” Obviously, the square law

(3) can be derived from the logarithmic velocity distri-

bution. For statically nonneutral conditions, a stability

correction factor can be included in Eq. (5) (Stull 1988).

These stability correction factors are related to the

Monin–Obukhov similarity theory, which is valid in the

same layer as the logarithmic law (Obukhov and Monin

1953).

b. The mixing length theory and flow within a

canopy

Many attempts have been made to apply mixing

length theory to within-canopy flow to interpret the

basic characteristics of canopy turbulent flow by em-

pirical modifications of the logarithmic velocity distri-

bution (5) (Barr 1971; Cionco 1965; Inoue 1963; Jack-

son 1981; Macdonald 2000; Uchijima and Wright 1964).

However, all the extensions and applications of mixing

length theory to within-canopy flows have never been

successful in describing the S-shaped wind profile and

the exponential flux profile (Raupach and Thom 1981).

Theoretically, mixing length theory is unable to de-

scribe the S-shaped wind profile for two reasons. First,
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mixing length vanishes at the level of the secondary

wind speed maximum and at the level of minimum wind

speed in the upper part of the canopy. This is a neces-

sary because of von Kármán’s condition in Eq. (4); oth-

erwise turbulence would be nonexistent at the loca-

tions. Second, the negative wind gradient �u/�z in the

lower part of the canopy would lead to a negative eddy

viscosity Km as predicted by Eq. (1), based on the fact

that the momentum flux throughout the canopy must

be downward. This is a well-known problem with coun-

tergradient momentum transport. Similarly, many ob-

servations have demonstrated that all gradient-

diffusion schemes including momentum, mass, and heat

fail completely within canopy (Denmead and Bradley

1985).

c. The spatial-average scheme and simplified

governing equation

As discussed above, the mixing length � is not appro-

priate to use as the length scale within canopy. The drag

exerted on flow by plant elements is an essential part of

understanding air–plant interactions. Thom (1968)

tested all aspects of the drag coefficient of a single ar-

tificial leaf with wind tunnel experiments. However, the

drag forces within plant canopies are far more complex

than a single leaf. Complex plant canopy structures not

only create interference drag (shelter effect; Massman

1997), they also generate three-dimensional turbulent

structures (Raupach and Thom 1981).

The spatial averaging scheme (hereinafter referred to

as WSRF averaging scheme) was a revolutionary step

to simplify three-dimensional canopy flow into a one-

dimensional description. WSRF was first introduced by

Wilson and Shaw (1977) and further developed by Rau-

pach and Shaw (1982) as an area average over a hori-

zontal plane intersecting numerous plants. The more

general volume averaging approach was subsequently

developed by Finnigan (1985) and Raupach et al.

(1986). The choice of averaging volume is usually a

thin, wide, horizontal slab that preserves the fundamen-

tal vertical heterogeneity of the canopy but reflects its

horizontal uniformity on the scale of many plants. More

details about the WSRF averaging scheme can be found

in Raupach and Thom (1981). The simplified governing

equation is

��

�z
� �cD�z�a�z�u2�z� � FD�z�, �8�

where FD(z) is a drag force that results physically from

the noncommutative nature between the spatial aver-

aging and differentiation (in contrast to adding the drag

forces arbitrarily into the equation of motion as be-

fore), a(z) is leaf area density (frontal area per unit

volume), and cD(z) � CD(z)/pM is an effective drag

coefficient where pM is a shelter factor (Massman

1997). For convenience, the symbols �(z) � ��u�w�(z)

and u(z) are used to denote the WSRF average vari-

ables.

The steady-state Eq. (8) is valid for horizontally ho-

mogeneous, plane turbulence with no static pressure

gradient, advection, Coriolis force, and dispersion of

flux terms. With the exception of the dispersive flux

terms, these simplifications are typically assumed. The

dispersive fluxes result from the spatial correlation of

regions of mean updraft or downdraft with regions

where u(z) differs from its spatial mean (Raupach and

Thom 1981). Wind tunnel experiments demonstrate

that the dispersive fluxes can be neglected in dense

canopies across the entire depth of canopy (Poggi et al.

2004a; Cheng and Castro 2002; Raupach et al. 1986).

However, for sparse canopies, the dispersive fluxes can

be large in the bottom layers of the canopy (Poggi et al.

2004b; Bohm et al. 2000). These wind tunnel observa-

tions are supported by the experiments conducted in

real forests, which show that the dispersive fluxes are

typically on the order of 0%–20% (on average 14%) of

the mean momentum flux within the lower layer of the

sparse canopy (Christen and Vogt 2004). Therefore, the

derivations from Eq. (8) will be valid for dense cano-

pies, and subject to a dispersive flux correction in the

bottom layers of sparse canopies.

d. Inoue’s analytical solution

Inoue (1963) found an analytical solution for Eq. (8)

based on these assumptions: 1) the vertical leaf area

distribution is uniform, a(z) � a; 2) the drag coefficient

is constant, cD(z) � cD; and 3) the mixing length is

constant with height except very near the ground. In-

oue first assumed the solution of (8) in exponential

form:

u�z� � uhe�
�z�h��1�, �9�

where uh is the wind speed at the top of the canopy, and

then used the above three assumptions to determine

the attenuation coefficient, � � �h/� [where � � u
*
/uh,

� � 2�3Lc, and Lc � (cDa)�1] from Eq. (8) with em-

pirical adjustments (Cionco 1965). This simple solution

has been widely used for crop canopies (Raupach and

Thom 1981) and urban canopies of buildings (Belcher

et al. 2003), where the drag elements have a uniform

vertical distribution. The upper part of most canopy

profiles can be well described by the exponential profile

(9), with a reasonable choice of � values. This portion

of the canopy is sometimes called the shear layer within

which the constant mixing length assumption is likely
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valid. However, the mixing length concept cannot be

used in regions where the wind profile reaches a mini-

mum or maximum, or where it remains constant with

height because the mixing length is zero as discussed

above, according to von Kármán’s similarity law in

Eq. (4).

e. Higher-order closures

Attempts to interpret the S-shaped wind profile by

modifying the exponential profile in Eq. (9), have not

been successful because of the intrinsic weaknesses dis-

cussed above (Albini 1981; Mohan and Tiwari 2004).

To interpret the basic characteristics of within-canopy

flow, several higher-order closure models have been

developed (Katul and Albertson 1998; Katul and

Chang 1999; Meyers and Paw U 1986; Wilson 1988).

Wilson and Shaw (1977) first proposed the second-

order closure scheme for within-canopy flow. The basic

characteristics of within-canopy flow can be success-

fully simulated by these numerical, higher-order clo-

sure models. However, the use of numerous adjustable

constants is a weakness of higher-order closure models,

especially when treating the drag coefficient as an ad-

justable constant. The problem of treating the drag co-

efficient as an adjustable constant throughout the

canopy layer has been recognized by several investiga-

tors (Ayotte et al. 1999; Brunet et al. 1994; Novak et al.

2000; Pinard and Wilson 2001; Poggi et al. 2004X).

Even for a rodlike canopy, the drag coefficient exhibits

a characteristic height dependence, as shown in wind

tunnel experiments (Brunet et al. 1994).

3. New hypotheses

The basic physical processes in the lowest atmo-

spheric layers, whether over bare ground or tall vegeta-

tion, are the downward transport processes of momen-

tum and the dissipative processes of turbulent energy

cascades. Drag is essential in this process and is gener-

ated when a fluid moves over the ground or through

vegetation. Drag creates velocity gradients and eddies,

characterized by the profiles of flow velocity and Reyn-

olds stress (Fig. 1), which lead to momentum loss of the

fluid. Information about downward momentum trans-

fer is contained in the wind and Reynolds stress pro-

files, which are related to one another. The relationship

between the two fundamental profiles cannot be de-

rived from first principles but can be tested by semiem-

pirical hypotheses, such as the K theory expressed by

Eq. (1), the mixing length theory in Eq. (2), and the

velocity-squared law in Eq. (3).

In the case of bare ground, these semiempirical the-

ories not only universally express the mathematical re-

lationship between the logarithmic wind speed distri-

bution and the constant Reynolds stress, but also physi-

cally explain the mechanisms of downward transport of

horizontal momentum by the mixing length and friction

velocity. This is because bare ground provides similar

drag conditions and slows down wind in a shallow layer

near the ground. However, for a vegetative canopy,

complex canopy structures form an addition buffer

layer over the ground in which 1) large-scale eddies are

broken into smaller-scale eddies in the wake formed

behind obstructions and 2) momentum is absorbed by

canopy elements. Since mixing length theory failed to

describe the basic characteristics of within-canopy flows

as discussed previously, new hypotheses are proposed

to establish the relationship between the mean wind

speed and Reynolds stress. The new relationships will

be used to formulate a closure approach for the mo-

mentum equations. With these hypotheses, we can pre-

dict the basic characteristics of within-canopy flows.

Consider a steady, two-dimensional mean flow (here

the mean flow refers to the WSRF average flow), where

u(z) denotes the mean wind speed in the direction of

the streamline (i.e., x axis), � � ��u�w�(z) is Reynolds

stress, � is air density, and the z axis is normal to the

ground. Assume that canopy elements are horizontally

homogeneous with a continuous vertical distribution of

leaf area density, a(z), and that h denotes the vegeta-

tion height.

a. Hypothesis 1

Within the canopy, the transport of horizontal mo-

mentum is continuous and downward. Meanwhile the

horizontal momentum is continuously absorbed by

canopy elements from the air.

b. Hypothesis 2

A local equilibrium exists between the rate of hori-

zontal momentum transfer and its rate of loss. With

appropriate averaging scales of time and space, the lo-

cal equilibrium relationship at level z is

��u�w��z� � �cD�z�u2�z�, �10�

where cD(z) is a drag coefficient (the factor one-half is

absorbed in cD following the micrometeorological con-

vention). To understand the physical meaning of the

drag coefficient in Eq. (10), consider an extreme case

where a fluid is uniformly decelerated from speed u to

rest on the drag elements. If the initial momentum per

unit volume of fluid is �u and the averaged wind speed

during deceleration is u/2, the rate at which momentum

is lost from the fluid is �u � u/2 � �u2/2. In practice,

fluid tends to slip around the drag elements so that the
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momentum losses are less than �u2/2 (Monteith and

Unsworth 1990). Therefore, the physical meaning of

cD(z) is the effectiveness of canopy drag elements in

absorbing momentum from the airflow.

c. Hypothesis 3

The drag coefficient, cD(z), defined in Eq. (10), is

equal to that defined in the volumetric drag force in the

momentum equation if their averaging operations are

same. The cD(z) can be determined empirically, and

directly, from observed profiles of wind speed and

Reynolds stress; cD(z) can be also deduced from theo-

retical predictions by substituting Eq. (10) into the mo-

mentum equation. Results from these two methods can

be used to examine the consistency.

Equation (10) is consistent with dimensional analysis

using the Buckingham pi theorem. The pertinent vari-

ables and their physical dimensions (listed below them)

are posed as follows:

� � � u 	 h a

m�
�1t�2 m�

�3
�t�1 m�

�1t�1
� �

�1� , �11�

where � is the dynamic viscosity. Assume that Reyn-

olds stress � is a function of the remaining five variables

in Eq. (11):

� � f��, u, 	, h, a�. �12�

Equation (12) can be written as

g��, �, u, 	, h, a� � 0. �13�

According to the Buckingham pi theorem, three dimen-

sionless variables are necessary in Eq. (13). After

simple manipulation, Eq. (13) becomes

g� �

�u2
,

�uh

	
, ah� � 0, �14�

or

� � f1�Re, LAI��u2, �15�

where Re � �uh/� is the Reynolds number and ah is a

cumulative leaf area here replaced by leaf area index

(LAI). Combining Eqs. (15) and (10),

cD � f1�Re, LAI�. �16�

In calm atmospheric conditions (low wind speed), it is

possible for cD to be a function of the Reynolds number

(Grant 1983; Landsberg and Powell 1973; Maheshwari

1992; Mahrt et al. 2001; Murota et al. 1984; Schuepp

1984; Thom 1971), but in most meteorological condi-

tions, cD is independent of the Reynolds number. Nev-

ertheless, the canopy drag coefficient always depends

on the LAI profile as demonstrated in the following

sections.

Equation (10) is the extension of the universal veloc-

ity-squared law to within-canopy flows, where a local

equilibrium is rapidly established between the down-

ward transfer rate and rate of horizontal momentum

loss. The above hypotheses are semiempirical and in-

dependent of the Navier–Stokes equations, but can be

combined with the Navier–Stokes equations to predict

the regimes of canopy turbulent motion. The validity of

the above hypotheses can be judged by ascertaining if

the consequences are consistent with observations. Sev-

eral ways to test the above hypotheses are 1) the hy-

potheses should be consistent with dimensional analysis

as discussed above; 2) the observed basic characteristics

of the S-shaped wind profile and the exponential Rey-

nolds stress profile can be predicted based on the hy-

potheses; 3) the values of the local drag coefficient,

determined empirically by Eq. (10), should be consis-

tent with theoretical predictions; 4) the new (proposed)

theory does not contradict the existing theory but in-

cludes it as a specific case; and 5) all theoretical pre-

dictions deduced from the above hypotheses must sat-

isfy the continuity requirements of the variables such as

wind speed u, Reynolds stress �, and the drag coeffi-

cient cD at the top of the canopy, where they become

bulk variables of a unit equivalent column of vegeta-

tion.

According to the above hypotheses, Eq. (8) is easily

closed, provided that both Eqs. (8) and (10) are aver-

aged by the same WSRF averaging operations. With

these hypotheses, Eq. (8) becomes a solvable equation

either for the mean wind speed

d 
cD�z�u2�z��

dz
� a�z�cD�z�u2�z�, �17�

or for the Reynolds stress

�
du�w��z�

dz
	 a�z�u�w��z� � 0. �18�

To understand what causes change in the momen-

tum loss rate (or momentum transfer rate), p(z) �

�cD(z)u2(z), integrate Eq. (17) from z1 to z2. We obtain

p�z2� � p�z1� � �
z1

z2

FD�z�� dz�, �19�

where 0 
 z1 � z2 
 h, and FD(z) � �a(z)cD(z)u2(z).

The implication of Eq. (19) is that the reduction of

horizontal momentum loss downward from z2 to z1 is

uniquely determined by the total integrated drag force

exerted on the airflow by the drag elements of unit
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equivalent column of the layer �z � z2 � z1. The im-

plication is the same for the momentum transfer rate.

4. Inoue’s model as a trial solution

Assume that the vegetation has a uniform vertical

distribution of leaf area [a(z) � a � constant] and drag

coefficient [cD(z) � cD � constant]. Equation (17) be-

comes

dq�z�

dz
� aq�z�, �20�

where q(z) � cDu2(z). Integrating Eq. (20) from z to

the top of canopy,

q�z� � q�h� exp
a�z � h�� � q�h� exp
LAI�z�h � 1��,

�21�

where q(h) � cDu2
h, LAI � ah, and uh is mean wind

speed at the top of the canopy. Using q(z) � cDu2(z),

the solution of Eq. (21) can be written as

u�z� � uh exp�LAI

2 �z

h
� 1��. �22�

Inoue’s model defines the attenuation coefficient � in

(9) as

� �
�h

l
�

�h

2�3Lc

�
hcDa

2�2
�

ah

2
�

LAI

2
, �23�

where cD � �2 � (u
*
/uh)2 is used.

Inoue’s model was derived without using mixing

length theory and the attenuation coefficient in this

model was derived as one-half LAI. Many observations

show that the attenuation coefficient � is related to the

LAI (Cionco 1972; Jackson 1981; Macdonald 2000).

Combining Eqs. (10) and (21), the Reynolds stress is

predicted as

��z� � �h exp
LAI�z �h � 1��, �24�

where �h is the Reynolds stress at the top of canopy.

The LAI dependence of the Reynolds stress �(z) is

consistent with the conclusion [Eq. (15)] of the dimen-

sional analysis. The normalized form of Eq. (24) is

�̃ � eLAI���1�, �25�

where �̃ � �(z)/�h and � � z/h. This result indicates that

the normalization Reynolds stress profiles of all verti-

cally uniform canopies collapse into a unique curve that

depends only on LAI (Fig. 2).

5. Predictions and observations

For most vegetation canopies, particularly forest

canopies, the variation in vertical leaf area distribution

is large. In this section, theoretical predictions are com-

pared with the observations using previously published

data for canopies with nonuniform vertical leaf area

distributions.

a. Exponential Reynolds stress profile

If the cumulative leaf area per unit ground area be-

low height z is defined as

L�z� � �
0

z

a�z�� dz�, �26�

the solution of Eq. (18) is obtained as

�u�w��z��u2

*
�h� � exp��
LAI � L�z��� �27�

with the top boundary condition, where LAI � L(h),

and u2

*
(h) � �u�w�(h) is the Reynolds stress at the top

of the canopy, or

�u�w��z� � �u�w��0�eL�z�, �28�

where �u�w�(0) is Reynolds stress at the bottom of the

canopy. The boundary conditions for Reynolds stress at

the bottom and top of a canopy are related to one

another as

�u�w��h� � �u�w��0�eLAI, �29a�

or

�0��h � e�LAI, �29b�

where �0 � �u�w�(0) and �h � �u�w�(h). This simple

relationship is universal to all canopies. As shown in

FIG. 2. The universal distribution of the normalization Reynolds

stress [Eq. (25)] for all uniform canopies. The horizontal axis is

normalized Reynolds stress and the vertical axis is normalized

height.
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Fig. 3, a unique ratio of the Reynolds stress at the bot-

tom and the top of the canopy versus LAI is predicted

by Eq. (29). The physical meaning of this universal

curve is that the LAI determines what percentage of

horizontal momentum at the top of canopy is absorbed

by the whole canopy. When the LAI reaches about 5,

almost all of the momentum at the top of the canopy is

absorbed by canopy elements.

The solutions in both Eqs. (27) and (28) indicate that

the downward transfer rate of momentum at z is

uniquely determined by the cumulative leaf area of a

unit equivalent column between z and some reference

level [i.e., LAI � L(z) in Eq. (27) is the cumulative leaf

area between z and the top of canopy, and L(z) is the

cumulative leaf area between the ground and z]. Again,

the relationship between the Reynolds stress and the

cumulative leaf area is also consistent with the predic-

tions from dimensional analysis.

The predictive ability of Eq. (27) can be tested using

previously published data on leaf area density and nor-

malized Reynolds stress (Table 1; appendix). The cal-

culated Reynolds stress profiles from Eq. (27), using

measured leaf area density profiles as input, accurately

describe empirically determined patterns (Fig. 4).

The comparisons of predictions between the present

model and two higher-order closure models (Wilson

and Shaw 1977; Albini 1981) are also illustrated in Fig.

4a. The observed leaf area density data reported by

Shaw (1977) were used in the three models for this

comparison. The theoretical prediction of the Reynolds

stress profile is equally as good, or better, than the

more complicated higher-order closure models. How-

ever, the theoretical prediction in Eq. (27) or (28) is

determined by the LAI profile alone and the drag co-

efficient information is not necessary, while the higher-

order closure models use several adjustable constants

and treat the drag coefficient as a free parameter.

b. The S-shaped wind profile

The mean wind speed can be obtained by directly

integrating Eq. (17), or by substituting Eq. (10) into

(27); thus,

u�z� � uh
cD
h �cD�z��1�2 exp��0.5
LAI � L�z���, �30�

where ch
D is the drag coefficient at the top of canopy.

Equation (30) successfully explains why the secondary

wind speed maximum is often observed in the trunk

space within a forest canopy, while the minimum wind

speed is located around the maximum canopy drag

level.

The prediction of minimum wind speed is important

because Yi et al. (2005) found that a superstable layer

was formed around the maximum canopy drag level if

the potential temperature gradient is significant. The

superstable layer is characterized by 1) slow mean air-

flow; 2) maximum density of drag elements; 3) near-

zero vertical velocity; 4) minimum vertical exchange of

mass or energy; 5) maximum horizontal CO2 gradient

(or other scalar gradient; Yi et al. 2008); and 6) maxi-

mum ratio of wake and shear production rate (Yi et al.

2005). The existence of the superstable layer was tested

by conducting SF6 diffusion experiments with a four-

tower system at the Niwot Ridge AmeriFlux site in the

Rocky Mountains of Colorado (Yi et al. 2005).

The existence of the superstable layer can be viewed

as a condition of airflow separation at night. A vegeta-

tion canopy can be divided into two regions: the region

above the superstable layer (the “vertical exchange

zone”) where vertical turbulent mixing dominates, and

the region below the superstable layer (the “longitudi-

nal exchange zone”) where horizontal advection pre-

vails. The superstable layer creates difficult conditions

for eddy flux measurement of CO2 at night. The theo-

retical explanations of the S-shaped wind profile char-

FIG. 3. The relationship between the ratio of the Reynolds stress

at the bottom and top of canopy and LAI. Here �0 � �u�w�(0)

denotes Reynolds stress at the ground, and �h � �u�w�(h) is

Reynolds stress at the top of canopy.

TABLE 1. Canopy morphology. COa and COb are different corn

canopies, AS is the aspen stand, HW is the hardwood forest, JPI

is the jack pine stand, LPI is the loblolly pine stand, SP is the

spruce stand, and SPI is the Scots pine stand. Details of sites and

measurements are described in the appendix.

Canopy COa COb AS HW JPI LPI SP SPI

h (m) 2.9 2.2 10 22 15 16 10 20

LAI (m2 m�2) 3.0 2.9 4.0 5.0 2.0 3.8 10.0 2.6

JANUARY 2008 Y I 269



acteristics are helpful in understanding the nighttime

advective flux, of interest to the eddy flux measurement

community (Yi et al. 2008).

To summarize, good agreement is evident between

the predicted wind speed by Eq. (30) and the observa-

tions based on the previously published data (Fig. 5;

Table 1; appendix). The drag coefficients were calcu-

lated by Eq. (10) from the measurements of wind speed

and Reynolds stress. The cumulative leaf area function

L(z) was calculated from the measured leaf area den-

sity profiles shown in Fig. 4. Therefore, the drag coef-

ficient profile is needed to predict the wind speed pro-

file. For this reason the prediction of wind speed has

phenomenological features. Here the drag coefficient

profile is measurable, but not adjustable, distinguishing

the present approach from that of higher-order closure

models.

c. The canopy drag coefficient

The canopy drag coefficient profile can also be pre-

dicted by the solution of the momentum Eq. (17). To

understand the profile similarity between canopy struc-

ture, wind speed, and drag coefficient described in Eq.

(17), the solution is written in nondimensional form


cD
�z�
u

2 �z� � e�LAI
1���z��, �31�

where �cD
(z) � cD(z)/ch

D, �u(z) � u(z)/uh, and �(z) �

L(z)/LAI. The solution in Eq. (31) implies that if the

normalization profiles of wind speed �u(z) and cumu-

lative leaf area �(z) are the same between two systems,

the relative distribution of the drag coefficient, �cD
(z),

differs only by LAI. This implication is once again con-

sistent with dimensional analysis (16).

The agreement between model predictions and ob-

servations of the local canopy drag coefficients are

shown in Fig. 6. The magnitudes of the local drag co-

efficients observed and predicted here are within the

ranges observed by wind tunnel experiments for terres-

trial canopies (0–2) (Brunet et al. 1994). Maximum drag

coefficients are located around the maximum leaf area

density levels for most forest canopies, but for a corn

canopy, the level (z/h � 0.45) with the maximum drag

coefficient is lower than the level (z/h � 0.8) of maxi-

mum leaf area density (Fig. 6). The inconsistent loca-

tion between the maximum drag coefficient and maxi-

mum leaf area density is possibly caused by the stronger

bending effect of the corn canopy relative to forest

canopies. The drag coefficient at z predicted by Eq.

(31) is related to the total integrated leaf area of a unit

equivalent column between z and the top of canopy

rather than leaf area at z alone. Actually, the canopy

drag coefficient at z depends on a total leaf area of a

unit column between z and any reference level where

the drag coefficient is known. For example, if the bot-

tom of a canopy is chosen as a reference level, the

prediction equation of canopy drag coefficient becomes

cD�z� � cD
0

u0
2

u2�z�
eL�z�, �32�

where c0
D and u0 are, respectively, drag coefficient and

wind speed at the ground. In such a condition, the drag

coefficient at z is related to the integrated leaf area

FIG. 4. Comparison of predicted normalization Reynolds stress profiles from the present model (solid line) with observed data (filled

circle) in eight vegetation types (see Table 1) reported in the literature (Shaw 1977; Katul and Albertson 1998; Katul et al. 2004; Wilson

1988; Amiro 1990; Baldocchi and Meyers 1988; Kelliher et al. 1998). The comparison of the prediction between the present model and

the higher-order closure models is also shown in (a): the long dashed line was predicted by Wilson and Shaw’s model (Wilson and Shaw

1977), and the dashed line was predicted by Albini’s model (Albini 1981).
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from the ground to z. In practice, however, measuring

the drag coefficient at the ground is far more difficult

than at the top of canopy. Therefore, the top boundary

conditions are often used in practice. However, the bot-

tom boundary condition is related to the top boundary

condition by the relation

cD
0

cD
h

�
e�LAI

u0
2 �uh

2
. �33�

Equations (27), (30), and (31) indicate that all deriva-

tions from the posed hypotheses satisfy the continuity

requirement of �, u, and cD at the top of canopy.

6. Summary and concluding remarks

The hypotheses postulated in this paper can be sum-

marized briefly as follows: 1) within the canopy, the

transport and loss of horizontal momentum is continu-

FIG. 6. Comparison of predicted drag coefficient profiles from the present model (solid line) to observed data (same sources as Fig.

5). The observed drag coefficients were calculated by Eq. (10) from the observed data of wind speed and Reynolds stress.

FIG. 5. Comparison between present model predictions and observations across seven vegetation types for wind speed. The symbols

indicate vegetation types as listed in Table 1. The absence of COa data that are in Figs. 4 and 5 is due to the fact that measured wind

speeds and Reynolds stresses were not at the same levels (see Shaw 1977, his Figs. 1 and 2).
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ous and downward; 2) a local momentum transfer

rate, ��u�w�(z), is balanced by the rate of local mo-

mentum loss, cD(z)u2(z), provided that the average

scales of time and space are appropriate; and 3) the

drag coefficient, cD(z), is equivalent whether defined in

the local equilibrium relationship or defined in the

volumetric drag force in the momentum equations, if

their averaging operations are the same. The validity of

these hypotheses was tested against the observed data

and previously published observations.

The momentum equations are closed using these hy-

potheses, and turbulence profiles of momentum are

predicted. The model predictions were realistic and

satisfactory when tested against the observed data of

eight morphologically distinct canopies. The character-

istics of the S-shaped wind profile were theoretically

explained by the impact of plant morphology on the

local drag coefficient distribution. The agreement be-

tween the predicted and observed wind speed was re-

markably good. Predictions of maximum drag coeffi-

cient were located around the maximum leaf area level

for most forest canopies but lower than the maximum

leaf area level for a corn canopy. The widely used

model of Inoue (1963) was derived without using mix-

ing length theory, provided that the leaf area density

and drag coefficient are constant in the vertical. A uni-

versal relationship of the Reynolds stress between the

top and bottom of the canopy is predicted for all cano-

pies. This relationship can be used to understand what

percentage of the Reynolds stress at the top of canopy

is absorbed by the entire canopy layer from the ob-

served LAI values alone. All of these predictions are

consistent with dimensional analysis and satisfy the

continuity requirement of the Reynolds stress, mean

wind speed, and local drag coefficient at the top of the

canopy.

The most interesting prediction is that the Reynolds

stress is uniquely determined by the LAI profile alone

[see Eqs. (27) or (28)]. The prediction of the Reynolds

stress is theoretical rather than phenomenological be-

cause the leaf area density profile (model input) can be

directly measured. However, the predictions of the

wind speed and drag coefficient profiles are still phe-

nomenological. The prediction of the wind speed from

Eq. (30) requires a known leaf area density distribution

as well as the drag coefficient distribution [determined

from Eq. (10) and previous wind speed observations].

Although the predictions of the wind speed have phe-

nomenological features, these predictions have several

advantages over higher-order closure models: 1) the

canopy drag coefficient is determined by Eq. (10) from

the observed wind speed and predicted Reynolds stress

from the measured LAI profile (rather than treated as

an adjustable constant); 2) no adjustable constants are

used in the model predictions; and 3) model predictions

can be used to theoretically understand the basic char-

acteristics of the S-shaped wind profile. The practical

application of the theory developed here is to provide a

canopy drag coefficient profile for the numerical simu-

lation of canopy flow. The procedures are as follows:

first, the Reynolds stress profile is predicted by Eq. (27)

from the observed leaf area density distribution; sec-

ond, the canopy drag coefficient profile is estimated by

Eq. (10) using the predicted Reynolds stress profile and

observed wind profile data.

Several lines of further research on canopy flow

theory, observations, and their applications are needed.

First, intensive measurements of turbulent flow statis-

tics and fluxes, net radiation, and scalars at multiple

levels on existing eddy flux towers are required to fur-

ther test the hypotheses. Second, the development of

theories of canopy mass and energy transfer, which are

similar to that of canopy momentum transfer developed

in this paper, are needed. Third, the characteristics of

the wind speed profile and Reynolds stress profile are

different between, above, and within canopy as shown

in Fig. 1. A description of the connection between the

two fundamental profiles at the top of canopy or at the

top of the roughness sublayer is needed. Fourth, the

canopy layer is likely one of the weakest links among

the entire suite of boundary layer parameterizations in

global and mesoscale models since the mixing length

theory (or K theory) and Monin–Obukhov similarity

theory are not valid within canopy. Applying the mo-

mentum transfer theory to improve the land surface

parameterizations for the mesoscale models such as

the Weather Research and Forecasting Model (WRF)

and the Air Quality Model are encouraged. Fifth,

using the analytical solutions developed here to assi-

milate canopy flow measurements from the eddy flux

networks into large-scale numerical models is encour-

aged.
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APPENDIX

Data and Measurements

Data from observations of leaf area density and

Reynolds stress, and predictions from higher-order clo-

sure models, were taken from the literature (Amiro

1990; Baldocchi and Meyers 1988; Katul and Albertson

1998; Katul et al. 2004; Kelliher et al. 1998; Shaw 1977;

Wilson 1988) by digitizing published graphs when nec-

essary. The experiments, COa and COb, were con-

ducted in two different corn canopies in Elora, Ontario,

Canada, in 1971 (Wilson 1988), 1976, and 1977 (Amiro

1990; Wilson 1982). The Reynolds stress profiles of

COa were measured using hot-film anemometers, while

in COb, servo-controlled split-film heat-transfer an-

emometers were used. The observed stress data for

COb were mean values for each measurement level

from Table 1 (Amiro 1990; Wilson 1982). The experi-

ments for aspen (AS), jack pine (JPI), and spruce (SP)

were conducted in three different boreal forest canopy

sites near Whiteshell Nuclear Research Establishment

in southeastern Manitoba, Canada (Amiro 1990; Wil-

son 1982). The Reynolds stress profiles were measured

by two triaxial sonic anemometers (Applied Technol-

ogy Inc., Boulder, Colorado): one operated above the

forest canopy while the other was roving at different

heights. The experiments for oak–hickory–pine (HW)

were conducted near Oak Ridge, Tennessee (Baldocchi

and Meyers 1988). The Reynolds stress profiles were

measured using three simultaneous Gill sonic anemom-

eters. The experiments for loblolly pine (LPI) were

conducted at the Blackwood division of the Duke For-

est near Durham, North Carolina (Katul and Albertson

1998). The Reynolds stress profiles were simulta-

neously measured at six levels using five Campbell Sci-

entific CSAT3 (Campbell Scientific, Logan, Utah) tri-

axial sonic anemometers within the canopy and a So-

lent Gill sonic anemometer above the canopy. The

experiments for Scots pine (SPI) were carried out at 40

km southwest of the village of Zotino along the western

bank of the Yenisei River in central Siberia, Russia

(Kelliher et al. 1998, 1999). The Reynolds stress profiles

were measured using five sonic anemometers (Solent

R3, Gill Instruments, Lymington, United Kingdom).

All leaf area density profiles were measured across the

eight sites either by destructive harvest or by plant

canopy analyzers.
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