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Abstract

Expressions for the ion perpendicular viscosity as well as for the electron and ion

parallel viscosities, gyroviscosities, and heat fluxes are derived for arbitrary mean-

free path plasmas, in which the lowest order distribution function is a Maxwellian, by

assuming the gyroradius is small compared to the shortest perpendicular scale length.

The results are given in terms of a few velocity space integrals of the gyrophase

independent correction to the Maxwellian, and correctly reproduce known results in

the collisional limit.
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I. INTRODUCTION

Expressions for the heat fluxes and viscosities are normally obtained by evaluat-

ing appropriate moments of species distribution functions to the required order in

the gyroradius expansion.1–4 To date, this has been done analytically only for short

mean-free path plasmas. The better known closures were obtained by Braginskii5 and

Robinson and Bernstein6 for plasmas with sonic or MHD flows and by Mikhailovskii

and Tsypin7 for plasmas with subsonic or diamagnetic drift flows. By assuming sonic

plasma flows for all components, the early investigations5,6 missed the important

physical effect of the dependence of viscosity on heat fluxes (or temperature gradi-

ents). The later series of studies7 took these effects into account (for ions, but not for

electrons), but made unjustifiable assumptions in the derivation and thereby obtained

incorrect expressions for the ion parallel and perpendicular viscosities,8 and missed

collisional contributions to gyroviscosity. Our recent work8,9 corrects the ion treat-

ment of Mikhailovskii and Tsypin and also derives the expressions for the electrons, to

obtain the first self-consistent collisional two-fluid description for magnetized plasmas

in the diamagnetic drift ordering.

In the work presented here we use the drift kinetic formalism of Hazeltine10 as

recently extended and generalized by Simakov and Catto,11 to obtain expressions for

the ion perpendicular viscosity as well as for the ion and electron parallel viscosities,

gyroviscosities, and heat fluxes for arbitrary mean-free path plasmas. The ion gyro-

viscosity is evaluated to the same order as the (smaller) ion perpendicular viscosity.

Electron perpendicular viscosity is small and usually of no interest. All the results are

obtained in terms of few velocity moments of the gyrophase independent correction to

the lowest order distribution function, which is assumed to be a Maxwellian. Higher

2



order moments of the Fokker-Planck equation are employed to obtain the viscosities

and heat fluxes in forms that require the minimum information about the distribution

function.

Somewhat more general lowest significant order expressions for gyroviscosities

have been obtained by us in Ref. 11 using a different approach. In this earlier treat-

ment, we did the calculation for an arbitrary distribution function that is isotropic in

the velocity space (i.e., independent of magnetic moment and gyrophase) to lowest

order. Such lowest significant order expressions for gyroviscosities were obtained even

more generally by Ramos for a collisionless plasma using a fluid approach.12 Ramos’

results do not assume velocity space isotropy of lowest order distribution functions.

To the best of our knowledge, the full ion perpendicular viscosity with heat flow

effects retained, as well as the gyroviscosity with higher order collisional heat flux

corrections retained, have only been correctly evaluated in the short mean-free path

limit,8,9 and are unavailable for other regimes of plasma collisionality.

The ion perpendicular viscosity (as well as the higher order corrections to the ion

gyroviscosity) is required to evaluate, among other things, the neoclassical and clas-

sical radial electric field in plasma confinement devices, in general, and in tokamaks,

in particular.9,13 To obtain this perpendicular viscosity in terms of species densities,

flow velocities, and pressures or temperatures from the expressions derived herein,

only the leading (first) order gyrophase independent correction to the Maxwellian is

required. To evaluate the ion perpendicular viscosity by a direct integration of the

distribution function we would need to solve for the ion distribution function to an

order much higher than the first order. Indeed, we would require the ion collision

frequency over ion gyrofrequency correction to the second order in gyroradius correc-

tion to the Maxwellian. Therefore, our formalism for the ion perpendicular viscosity
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presents a clear advantage over a purely kinetic evaluation. To obtain the lowest order

gyroviscosity only the leading gyrophase independent correction to the Maxwellian

is required. However, to obtain the ion gyroviscosity through the same order as the

ion perpendicular viscosity, the gyrophase independent portion of the distribution

function that is formally second order in the gyroradius expansion is needed.

This paper is organized as follows. In Sec. II we summarize our orderings and

discuss our basic kinetic model. The various contribution to the viscosity are reviewed

briefly in Sec. III. The gyroviscosity and perpendicular viscosity are evaluated in

Secs. IV and V, respectively. We evaluate electron and ion heat fluxes in Sec. VI.

The collisional results are recovered in Sec. VII, and a brief discussion follows in

Sec. VIII.

II. ORDERINGS, ASSUMPTIONS, AND NOTATION

We consider a magnetized quasineutral electron-ion plasma and assume that the

ion gyroradius ρ is small compared to both the characteristic perpendicular (to the

magnetic field) equilibrium length scale L⊥ and perturbation wavelength; that is,

δ ≡ ρ

L⊥
∼ k⊥ρ ¿ 1, (1)

where k⊥ is the perpendicular wave vector. The k⊥ρ ¿ 1 assumption allows us to use

a drift kinetic formalism instead of gyrokinetics. We allow the plasma mean-free path

to be arbitrary except in Sec. VII, where we use the general formalism to recover the

collisional ion results.

To obtain expressions for the ion gyroviscosity and perpendicular viscosity, we

need an expression for the gyrophase dependent piece of the ion distribution function,

f̃ , which is exact through order δ2. Such an f̃ was derived in Ref. 11 and is given by
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the sum

f̃ = f̃H + f̃NH + f̃C . (2)

Here, f̃H is given by

f̃H ≡ v ·
[
g − (vE + vM)

1

B

∂f̄

∂µ

]
− (v⊥ v × b̂ + v × b̂ v⊥) : ∇b̂

v‖
4ΩB

∂f̄

∂µ
, (3)

where

g ≡ 1

Ω
b̂×∇|ε,µf̄ − vE

∂f̄

∂ε
. (4)

This expression contains the first and some second order contributions and was ob-

tained in the seminal work of Hazeltine.10 The term

f̃NH ≡ 1

8Ω
vv : [b̂× (

↔
h +

↔
h

T

) · (↔I +3b̂b̂)− (
↔
I +3b̂b̂) · (↔h +

↔
h

T

)× b̂], (5)

with

↔
h≡ ∇|ε,µg +

eE

M

∂g

∂ε
, (6)

is of order δ2 and was evaluated by Simakov and Catto.11 Finally, the order δ2 term

f̃C is given by

f̃C ≡ 1

Ω

∫
dϕ[〈C(f)〉ϕ − C(f)] ≈ 1

Ω
C`

ii(v · g × b̂), (7)

with C = Cii + Cie the ion collision operator and C`
ii the linearized ion-ion collision

operator.

In Eqs. (2) through (7) and elsewhere, v is the velocity variable of the ion distri-

bution function, E and B are the electric and magnetic fields, B = |B|, b̂ = B/B,

and Ω = eB/Mc is the ion gyrofrequency, with e the unit electric charge (we consider

singly charged ions for simplicity), M the ion mass, and c the speed of light. The

independent variables ε = v2/2 and µ = v2
⊥/2B are the kinetic energy and the mag-

netic moment variables of the ion distribution function, ∇|ε,µ is the gradient with
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respect to the spatial variables taken at fixed ε and µ, while vE = cE × b̂/B and

vM = Ω−1b̂×(µ∇B+v2
‖κ+v‖∂b̂/∂t) are the E×B and the magnetic drift velocities,

with κ = b̂ ·∇b̂ the magnetic field line curvature. The bar above the ion distribution

function f indicates that it is gyrophase averaged: i.e., f̄ = 〈f〉ϕ. The gyrophase

average is defined as 〈· · ·〉ϕ ≡ (1/2π)
∮

dϕ(· · · ), with the gyrophase ϕ being the third

independent velocity variable, and of course f̃ = f− f̄ . As usual, “parallel” and “per-

pendicular” refer to the direction of B. We use the symbol “T” as a superscript on

a dyad to denote its transpose. In addition, the double dot scalar product is defined

for arbitrary vectors a, c and a dyad
↔
D as ac :

↔
D≡ c· ↔D ·a.

Expression (3) for f̃H was obtained in Ref. 10 by assuming

∂

∂t
∼ v ·∇ ∼ e

M
E ·∇v ∼ C ∼ δΩ. (8)

Expression (5) for f̃NH was derived in Ref. 11 by using the more restrictive orderings,

which we adopt herein:

∂

∂t
∼ δ2Ω, v ·∇ ∼ e

M
E ·∇v ∼ C ∼ δΩ, (9)

and by also assuming that the lowest order ion distribution function f0 is isotropic in

the velocity space, i.e., it does not depend on the gyrophase and magnetic moment.

Expression (7) for f̃C was also obtained for an f0 isotropic in velocity space. An

expression for the gyrophase dependent portion of the electron distribution function,

which is similar to that given by Eq. (2), can be derived if assumptions similar to

those given by Eqs. (8) and (9) are made for electrons.

Evaluation of f̃NH , f̃C , species viscosities, and heat fluxes can be carried out

without using the isotropy assumption for f0. However, such a calculation is beyond

the scope of the present treatment. Moreover, the evaluation of species viscosities and
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classical collisional perpendicular heat fluxes is greatly simplified for f0 a Maxwellian,

f0 = fM = n

(
M

2πT

)3/2

exp

(
−Mv2

2T

)
, (10)

where n is the plasma density and T is the ion temperature (a similar expression

should be used for the lowest order electron distribution function). For example, n

and T can be viewed as being advanced by the number and energy moments of the

kinetic equation being solved.

In this work we use assumption (10) since, as argued in Ref. 4, it usually holds

for plasmas of interest to magnetic fusion that are confined by magnetic fields with

closed flux surfaces in the absence of strong external driving forces, such as neutral

beams or radio-frequency waves. Use of Eq. (10) implicitly assumes that pressure

anisotropy is weak and parallel flows are subsonic. Orderings (8) and (9) result in

perpendicular flow velocities being subsonic as well.

III. PARALLEL VISCOSITY AND FORMS FOR GYRO-

VISCOSITY AND PERPENDICULAR VISCOSITY

We begin our evaluation of the ion viscosity by considering the full ion kinetic

equation,

∂f

∂t
+ ∇ · (vf) + ∇v ·

[
e

M

(
E +

1

c
v ×B

)
f

]
= Cii(f) + Cie(f). (11)

We use the full Landau form for the ion-ion Fokker-Planck collision operator Cii(f),

Cii(f) ≡ Cn`
ii (f, f) ≡ γ∇v ·

[∫
d3v′ ∇g∇gg · (f ′∇vf − f∇v′f

′)
]

, (12)

where γ ≡ (3
√

π/2)(ν/n)(T/M)3/2 with ν = (4
√

π/3)(Λe4n/M1/2T 3/2) the charac-

teristic ion collision frequency5 (Λ is the Coulomb logarithm); f ′ is obtained from f
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by substituting v′ for v, and g ≡ |v− v′|. We also employ the following approximate

form for the ion-electron Fokker-Planck collision operator Cie(f):

Cie(f) =
1

Mn
F ·∇vf − mνe

M
V ·∇vf +

mνe

M
∇v ·

(
Te

M
∇vf + vf

)
. (13)

Expression (13) is obtained by performing a mass ratio expansion of the full Landau

form for Cie. Here, V is the ion flow velocity, m and Te are the electron mass and

temperature, respectively, and νe = (4
√

2π/3)(Λe4n/m1/2T
3/2
e ) is the characteristic

electron-ion collision frequency.5 The electron-ion friction force is defined as F ≡
∫

d3v mvCei, with Cei the electron-ion collision operator.

Forming the Mvv moment of Eq. (11) and defining the ion viscous stress tensor,

↔
π≡ M

∫
d3v(vv − v2

↔
I /3)f = M

∫
d3v vvf − p

↔
I , with p the ion pressure and

↔
I

the unit dyad, we obtain the exact equation

∂

∂t
(p

↔
I +

↔
π) + ∇ ·

(
M

∫
d3v vvvf

)
− (enE − F )V − V (enE − F ) (14)

−Ω(
↔
π ×b̂− b̂× ↔

π) +
2mνe

M
(p

↔
I −pe

↔
I +

↔
π −MnV V ) = M

∫
d3v vvCii(f),

where pe = nTe is the electron pressure. Observing that (m/M)νe ∼ (m/M)1/2ν, and

anticipating that the integral on the right-hand side of Eq. (14) will contain terms of

order MnνV V , we can safely neglect the 2mnνeV V term on the left-hand side.

The general solution of Eq. (14) for
↔
π is given by the sum (see, for example,

Ref. 4)

↔
π=

↔
π‖ +

↔
πg +

↔
π⊥, (15)

where the parallel viscosity
↔
π‖ is a diagonal traceless tensor proportional to (3b̂b̂− ↔

I )

that cannot be determined from Eq. (14). To leading order, it follows from the

definition of
↔
π and from the orderings employed requiring f̃ ∼ δf̄ ¿ f̄ that

↔
π‖= M

∫
d3v(vv − v2

↔
I /3)f̄ = (p‖ − p⊥)(b̂b̂− ↔

I /3), (16)
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where p‖ ≡ M
∫

d3v v2
‖ f̄ and p⊥ ≡ M

∫
d3v µBf̄ are the ion parallel and perpendicular

pressures, respectively. Recall, that for an isotropic f0, p‖− p⊥ ¿ p. We assume that

↔
π‖ is at most an order δ correction to the lowest order isotropic pressure tensor p

↔
I .

As will be seen shortly, the gyroviscosity and perpendicular viscosity are at most the

order δ2 corrections to p
↔
I , so that the parallel viscosity can be the leading order

piece of the viscous stress tensor. When rewritten in terms of electron quantities,

Eq. (16) also describes the electron parallel viscosity.

The gyroviscosity
↔
πg is given by

↔
πg=

1

4Ω

[
b̂× ↔

K g ·(
↔
I +3b̂b̂)− (

↔
I +3b̂b̂)· ↔K g ×b̂

]
, (17)

where

↔
K g=

∂
↔
π‖

∂t
+ ∇ ·

(
M

∫
d3v vvvf

)
− (enE − F )V − V (enE − F ). (18)

Finally, the perpendicular viscosity
↔
π⊥ is given by

↔
π⊥=

1

4Ω

[
b̂× ↔

K⊥ ·(
↔
I +3b̂b̂)− (

↔
I +3b̂b̂)· ↔K⊥ ×b̂

]
, (19)

where

↔
K⊥= −M

∫
d3v vvCii(f). (20)

Notice that the [∂p/∂t + 2mνe(p − pe)/M ]
↔
I and (2mνe/M)

↔
π‖ terms have been

omitted in the expressions for
↔
K g and

↔
K⊥ since they are diagonal and consequently

do not contribute to
↔
πg and

↔
π⊥. The terms ∂(

↔
πg +

↔
π⊥)/∂t and (2mνe/M)(

↔
πg +

↔
π⊥)

are small compared to
↔
K⊥ and so can be dropped as well.

IV. GYROVISCOSITY

To evaluate the ion gyroviscosity we have to evaluate
↔
K g. When the “maximal”

ordering λ ∼ L⊥ ∼ L‖ is assumed, we must require ν/Ω ∼ δ, where λ is a particle
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mean-free path and L‖ is a characteristic parallel (to the magnetic field) length scale.

The leading order perpendicular viscosity is ν/Ω times smaller than the leading order

gyroviscosity (i.e., of order δ3), so to be consistent we have to evaluate the gyroviscos-

ity to order δ3. Doing so requires knowing
↔
K g and therefore ∇ · (M ∫

d3v vvvf
) ≈

∇ ·
(
M

∫
d3v 〈vvv〉ϕ f̄

)
+ ∇ ·

[
M

∫
d3v vvv

(
f̃H + f̃NH + f̃C

)]
through order δ2.

Observing that

〈vivjvk〉ϕ = b̂ib̂j b̂k

(
v3
‖ −

3

2
v‖v

2
⊥

)
+ (δij b̂k + δikb̂j + δjkb̂i)

1

2
v‖v

2
⊥, (21)

where δij is the Kronecker delta denoting the unit dyad
↔
I , and introducing

q1 ≡ 1

2
M

∫
d3v v‖v

2
⊥f̄ , q2 ≡ 1

2
M

∫
d3v v3

‖ f̄ (22)

we obtain

(
M

∫
d3v 〈vvv〉ϕ f̄

)

ijk

= b̂ib̂j b̂k(2q2 − 3q1) + (δij b̂k + δikb̂j + δjkb̂i)q1.

Consequently,

∇ ·
(

M

∫
d3v 〈vvv〉ϕ f̄

)
= (2q2 − 3q1)(b̂κ + κb̂) + ∇ · [(2q2 − 3q1)b̂] b̂b̂ (23)

+∇(q1b̂) + [∇(q1b̂)]T + ∇ · (q1b̂)
↔
I .

The contribution from f̃ is evaluated in Appendix A:

∇ ·
[
M

∫
d3v vvv

(
f̃H + f̃NH + f̃C

)]
= ∇a + (∇a)T+

↔
I ∇ · a + b̂b̂(∇ · c)

+[(∇ · b̂)b̂ + κ]c + c[(∇ · b̂)b̂ + κ] + b̂[b̂ ·∇c + c ·∇b̂] (24)

+[b̂ ·∇c + c ·∇b̂]b̂ + ∇· ↔A,
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where

a ≡ b̂×∇q4

2Ω
+

b̂× κ

Ω

(
2q3 − 5

2
q4

)
+ p⊥vE +

2

5
qc,

c ≡ 1

Ω
b̂×∇

(
2q3 − 5

2
q4

)
− b̂× κ

Ω

(
20q3 − 35

2
q4 − 4q5

)
+ (p‖ − p⊥)vE, (25)

↔
Aijk≡ 1

4Ω

(
2q3 − 5

2
q4

) (
b̂i

↔
Djk +b̂j

↔
D ik +b̂k

↔
D ij

)
.

Here,

q3 ≡ 1

4
M

∫
d3v v2v2

⊥f̄ , q4 ≡ 1

4
M

∫
d3v v4

⊥f̄ , q5 ≡ 1

4
M

∫
d3v v4f̄ , (26)

qc ≡ − 2 p ν

MΩ2
∇⊥T, (27)

and

↔
D= b̂× [∇b̂ + (∇b̂)T] · (↔I +3b̂b̂)− (

↔
I +3b̂b̂) · [∇b̂ + (∇b̂)T]× b̂. (28)

Using results (16), (23), and (24) to evaluate
↔
K g from Eq. (18), neglecting F⊥

as small by (νe/Ωe) as compared with enE⊥, where Ωe ≡ eB/mc is the electron

gyrofrequency, and employing Eq. (17), we finally arrive at the following expression

for the ion gyroviscous stress tensor, which is exact through δ3:

↔
πg= Mn

[
V ‖vE +

1

4
(V ⊥vE − V × b̂ vE × b̂)

]
+

1

Ω
(enE‖ − F ‖)V × b̂ (29)

+
2q2 − 3q1

Ω
b̂ b̂× κ +

1

Ω

[
(∇ · b̂)b̂× c b̂− (b̂ ·∇× b̂)c b̂ + (

↔
I −b̂ b̂) · (∇× c)b̂

]

+
1

4Ω

{
b̂×

[
κc + cκ + ∇(a + q1b̂) + ∇(a + q1b̂)T + ∇· ↔A

]
· (↔I +3b̂ b̂)

}

+
p‖ − p⊥

Ω
b̂ b̂× ∂b̂

∂t
+ Transpose.

All quantities in this expression should be evaluated to an accuracy which ensures an

overall accuracy of δ3.

Expression (29) can be simplified considerably if only δ2 accuracy is required. In

this case quantities q1, q2, a, c,
↔
A can be evaluated to accuracy δ, i.e. quantities q3,
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q4, q5, p‖, and p⊥ can be evaluated for f̄0 = fM , and the last term in the expression

for a can be neglected. Then, a = Ω−1b̂×∇(pT/M) + pvE, c = 0, and
↔
A= 0, giving

↔
πg→ Mn

[
V ‖vE +

1

4
(V ⊥V ⊥ − V ⊥ × b̂ V ⊥ × b̂)

]
+

2q2 − 3q1

Ω
b̂b̂× κ (30)

+
1

4Ω
b̂× (

↔
N +

↔
N

T

) · (↔I +3b̂b̂) + Transpose,

with

↔
N= p∇V ⊥ +

2

5
∇q⊥ + ∇(q1b̂). (31)

In these expressions, to the requisite order V ‖,

V ⊥ = c
E × b̂

B
+

b̂×∇p

MnΩ
, q⊥ =

5p

2MΩ
b̂×∇T (32)

are the lowest order parallel and perpendicular ion flow velocities, and heat flow,

respectively. To obtain expression (30) we also used the fact that to the order required

b̂ · (enE −∇p− F ) ≈ 0.

The ion gyroviscous stress tensor given by Eqs. (30) and (31) is exactly the same

(for the case f0 = fM) as the expression for
↔
πg obtained in Ref. 11 by directly

evaluating M
∫

d3v(vv − v2
↔
I /3)f̃ ≈ M

∫
d3v vv(f̃H + f̃NH) since f̃C does not

contribute. In addition, it does not contain any terms proportional to (b̂b̂− ↔
I /3).

As a result, to second order in the δ expansion f̃ does not contribute to the parallel

viscosity. Therefore, we conclude that expression (16) for
↔
π‖ is exact through at least

order δ2.

Reference 11 gives a somewhat more general expression for
↔
πg (exact through

order δ2), which is obtained for an arbitrary velocity space isotropic f0 (as opposed to

a Maxwellian). Moreover, it shows that Eqs. (30) and (31) also describe the electron

gyroviscous stress tensor if the ion quantities are replaced with the corresponding
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electron quantities. Indeed, our gyroviscosities are also consistent with the general

collisionless results obtained in Ref. 12 for an arbitrary f0.

V. ION PERPENDICULAR VISCOSITY

The ion perpendicular viscosity is given by the combination of Eqs. (19) and

(20). To evaluate it we need to know the leading order non-vanishing result for

M
∫

d3v vvCii(f). Noticing that

〈vivj〉ϕ = v2
‖b̂ib̂j + (v2

⊥/2)(δij − b̂ib̂j), (33)

and also that any terms in
↔
K⊥, which are proportional to

↔
I or b̂b̂, do not contribute

to
↔
π⊥, we conclude that to obtain the leading order non-trivial result we only need

M

∫
d3v vv[C`

ii(f̃1 + f̃2) + Cn`
ii (f1, f1)− Cn`

ii (f̄1, f̄1)]. (34)

Here, C`
ii(f) is the linearized (about a Maxwellian) form of the ion-ion collision oper-

ator,

C`
ii(f) ≡ γ∇v ·

{
fM

∫
d3v′ f ′M∇g∇gg · [∇v(f/fM)−∇v′(f

′/f ′M)]

}
, (35)

where f ′ and f ′M are obtained from f and fM , respectively, by substituting v′ for v,

and Cn`
ii (f, f) ≡ Cii(f) is the full bilinear form of the ion-ion collision operator given

by Eq. (12). The symbols f1 and f2 are used to denote the first and the second order

in δ portions of the ion distribution function.

A. LINEARIZED CONTRIBUTION C`
ii

First, we evaluate the contribution from the linearized collision operator

↔
K

`

⊥≡ −M

∫
d3v vvC`

ii(f̃1 + f̃2). (36)

13



Using the self-adjointness of C`
ii(f) we rewrite Eq. (36) as

↔
K

`

⊥= −M

∫
d3v (f̃1 + f̃2)f

−1
M C`

ii(vvfM), (37)

where8

C`
ii(vvfM) = νF (x)fM

(
vv − 1

3
v2

↔
I

)
, (38)

with

F (x) ≡ − 9
√

π√
2x3

[(
1− 3

2x2

)
E(x) +

3

2x
E ′(x)

]
, (39)

x ≡
√

Mv2/2T , E(x) ≡ (2/
√

π)
∫ x

0
dt exp(−t2) the error function, and E ′(x) ≡

dE(x)/dx. Substituting f̃ from Eq. (2) for f̃1 + f̃2, taking into account

(v⊥v × b̂ + v × b̂ v⊥) : ∇b̂ = −4v‖v · b̂× κ +
1

2
v· ↔D ·v, (40)

where
↔
D is defined in Eq. (28), and using Eqs. (21), (A2), and (A8) we obtain

↔
K

`

⊥= −νM

∫
d3v

v‖v2
⊥

2
F (x) b̂

[
g −

(
vE +

µ

Ω
b̂×∇B

) 1

B

∂f̄

∂µ
+

ν

Ω2
(∇⊥ ln T )Q(x)fM

]

− ν

8Ω
M

∫
d3v F (x)

[
v4
⊥
8

↔
M +v2

⊥

(
v2
‖ −

v2
⊥
4

)
b̂(b̂· ↔M)

]
+ Transpose. (41)

In this expression,

Q(x) ≡ −3
√

2π

x

[(
1− 5

2x2

)
E(x) +

5

2x
E ′(x)

]
, (42)

↔
M≡ b̂× (

↔
h 1 +

↔
h

T

1 ) · (↔I +3b̂b̂)− (
↔
I +3b̂b̂) · (↔h 1 +

↔
h

T

1 )× b̂, (43)

with

↔
h 1≡

↔
h −v‖

B

∂f̄

∂µ
∇b̂, (44)

and we neglected the small term (v‖/Ω)b̂× ∂b̂/∂t in vM .

14



To simplify Eq. (41) we notice that

M

∫
d3v

v‖v2
⊥

2
F (x)∇|ε,µf̄ =

6

5

(∇q6 − q6∇ ln B2 + q7∇ ln T
)
,

M

∫
d3v

v‖v2
⊥

2
F (x)

(
∂f̄

∂ε
+

1

B

∂f̄

∂µ

)
= −6M

5T
q8,

M

∫
d3v

v‖v2
⊥

2
F (x)

(µ

Ω
b̂×∇ ln B

) ∂f̄

∂µ
= −6 q6

5Ω
b̂×∇ ln B2,

M

∫
d3v

v‖v4
⊥

4
F (x)

1

B

∂f̄

∂µ
= −12

5
q6,

M

∫
d3v v‖v

2
⊥

(
v2
‖ −

v2
⊥
4

)
F (x)

1

B

∂f̄

∂µ
= −12

5
q9,

where we define the following integrals:

q6 ≡ 5

12
M

∫
d3v v‖v

2
⊥F (x)f̄ ,

q7 ≡ 5

24
M

∫
d3v v‖v

2
⊥xF ′(x)f̄ ,

q8 =
5

6
M

∫
d3v v‖

[
v2
⊥
4

F ′(x) +
T

M
F (x)

]
f̄ , (45)

q9 =
5

6
M

∫
d3v v‖

(
v2
‖ −

3

2
v2
⊥

)
F (x)f̄ .

Also, we evaluate terms involving
↔
h for f̄ = f0 = fM to find

M

∫
d3v v2

⊥

(
v2
‖ −

v2
⊥
4

)
F (x)

↔
h= 0,

M

∫
d3v

v2
⊥
4

F (x)
↔
h=

12

5

[
−∇

(
p V ⊥ +

1

10
q⊥

)

+∇ ln T

(
3

4
p V ⊥ +

9

40
q⊥

)
+

eE

T

(
pV ⊥ − 3

10
q⊥

)]
,

with V ⊥ and q⊥ given by Eq. (32). As a result, we obtain

↔
K

`

⊥=
3ν

10Ω

[
b̂× ↔

W ·(↔I +3b̂b̂)− (
↔
I +3b̂b̂)· ↔

W ×b̂
]
, (46)

where

↔
W≡ ∇

(
p V ⊥ +

1

10
q⊥ − q6 b̂

)
−∇ ln T

(
3

4
pV ⊥ +

9

40
q⊥ + q7 b̂

)
(47)

−eE

T

(
p V ⊥ − 3

10
q⊥ − q8 b̂

)
− q9 κ b̂ + Transpose.
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Substituting
↔
K

`

⊥ from Eq. (46) into Eq. (19) we finally obtain (see Ref. 8 for the

detailed procedure)

↔
π

`

⊥= − 3ν

10Ω2

[
↔
W +3b̂(b̂· ↔

W ) + 3(b̂· ↔
W )b̂ (48)

+
1

2
(
↔
I −15b̂b̂)(b̂· ↔

W ·b̂)− 1

2
(
↔
I −b̂b̂)

↔
W :

↔
I

]
.

Notice, that the right-hand side of Eq. (48) does not contain any terms proportional

to (b̂b̂− ↔
I /3) and has zero trace. The diagonal contributions represented by the last

two terms on the right-hand side of Eq. (48) of this work were retained in Ref. 9, but

ignored as small in Eqs. (62) and (63) of the collisional treatment of Ref. 8 [although

they were retained in the equation between Eqs. (61) and (62) of Ref. 8]. This was

done there because the two terms represent small corrections to the scalar pressure

and pressure anisotropy. Moreover, in a tokamak the perpendicular viscosity is likely

to only be important in evaluating conservation of toroidal angular momentum, where

it can be needed to determine an axisymmetric portion of the radial electric field. In

this case these diagonal terms play no role as found in Ref. 13.

B. BILINEAR CONTRIBUTION Cn`
ii

To evaluate the contribution from the nonlinear piece of the ion-ion collision op-

erator,

↔
K

n`

⊥≡ −M

∫
d3v vv[Cn`

ii (f1, f1)− Cn`
ii (f̄1, f̄1)], (49)

we use expression (12) for Cn`
ii (f, f) to rewrite

↔
K

n`

⊥ as

↔
K

n`

⊥ = −6γM

∫
d3v (2f̄1 + f̃1)∇v∇vG + 4γM

∫
d3v

[
(2f̄1 + f̃1)

(∫
d3v′f̃ ′1/g

)]
↔
I ,

(50)
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where G ≡ ∫
d3v′f̃ ′1g, and f̃ ′1 is obtained from f̃1 by substituting v′ for v. Since the

↔
I and b̂b̂ terms in the expression for

↔
K

n`

⊥ do not contribute to
↔
π⊥ we will neglect

the last term in Eq. (50) as well as all other
↔
I and b̂b̂ terms arising in the process of

evaluating the first term in Eq. (50).

Evaluating f̃1 from Eq. (3) by substituting f0 = fM for f̄ ,

f̃1 = v · M

T

[
V ⊥ − 2q⊥

5p
L

3/2
1 (x2)

]
fM , (51)

where L
3/2
1 (x2) is a generalized Laguerre polynomial and V ⊥ and q⊥ are given by

Eq. (32), and employing the result in the definition of G, we obtain

G = −∇v ·
(

V ⊥GM +
2T

5pM
q⊥HM

)
, (52)

where

GM ≡
∫

d3v′f ′M g = nv

[(
1 +

1

2x2

)
E(x) +

1

2x
E ′(x)

]
(53)

and

HM ≡
∫

d3v′
f ′M
g

=
n

v
E(x) (54)

are the Rosenbluth potentials for a Maxwellian.14 Then, the relevant piece of
↔
K

n`

⊥ can

be rewritten as

↔
K

n`

⊥ = 6γM

∫
d3v(2f̄1 + f̃1)

(
V ⊥ ·∇v∇v∇vGM +

2T

5pM
q⊥ ·∇v∇v∇vHM

)
, (55)

where for an arbitrary function L(v) and vector d

d·∇v∇v∇vL = (
↔
I d·v+dv+vd)

1

v

d

dv

(
1

v

dL

dv

)
+vv

d · v
v

d

dv

[
1

v

d

dv

(
1

v

dL

dv

)]
. (56)

Substituting expression (51) for f̃1 into Eq. (55), averaging over angles in velocity

space by using Eq. (A2), noting that for an arbitrary function L(v)

∫
d3v L(v)vv =

1

3

↔
I

∫
d3v v2L(v), (57)
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and continuing to drop terms proportional to
↔
I and b̂b̂, we obtain

6γM

∫
d3vf̃1

(
V ⊥ ·∇v∇v∇vGM +

2T

5pM
q⊥ ·∇v∇v∇vHM

)
=

2γM2

T

∫
d3v vfM

{
d

dv

(
1

v

dGM

dv

)
+

v2

5

d

dv

[
1

v

d

dv

(
1

v

dGM

dv

)]}

×
{

V ⊥

[
V ⊥ − 2q⊥

5p
L

3/2
1 (x2)

]
+

[
V ⊥ − 2q⊥

5p
L

3/2
1 (x2)

]
V ⊥

}
(58)

+
4γM

5p

∫
d3v vfM

{
d

dv

(
1

v

dHM

dv

)
+

v2

5

d

dv

[
1

v

d

dv

(
1

v

dHM

dv

)]}

×
{

q⊥

[
V ⊥ − 2q⊥

5p
L

3/2
1 (x2)

]
+

[
V ⊥ − 2q⊥

5p
L

3/2
1 (x2)

]
q⊥

}
.

Evaluating the integrals (by using, for example, MATHEMATICA) we arrive at

6γM

∫
d3vf̃1

(
V ⊥ ·∇v∇v∇vGM +

2T

5pM
q⊥ ·∇v∇v∇vHM

)
= (59)

−6

5
Mnν

[
V ⊥V ⊥ − 3

10p
(V ⊥q⊥ + q⊥V ⊥) +

3

20p2
q⊥q⊥

]
.

Observing that 〈v〉ϕ = v‖b̂ and using Eq. (21), we obtain in a similar way (again

dropping
↔
I and b̂b̂ terms)

12γM

∫
d3vf̄1

(
V ⊥ ·∇v∇v∇vGM +

2T

5pM
q⊥ ·∇v∇v∇vHM

)
= (60)

q10(V ⊥b̂ + b̂V ⊥) +
2q11

5p
(q⊥b̂ + b̂q⊥),

where

q10 ≡ 12γM

∫
d3v

v‖
v

{
d

dv

(
1

v

dGM

dv

)
+

v2
⊥
2

d

dv

[
1

v

d

dv

(
1

v

dGM

dv

)]}
f̄1, (61)

q11 ≡ 12γM

∫
d3v

v‖
v

{
d

dv

(
1

v

dHM

dv

)
+

v2
⊥
2

d

dv

[
1

v

d

dv

(
1

v

dHM

dv

)]}
f̄1.

Consequently, continuing to use the definitions for V ⊥ and q⊥ given by Eq. (32)

results in

↔
K

n`

⊥ = −6

5
Mnν

[
V ⊥V ⊥ − 3

10p
(V ⊥q⊥ + q⊥V ⊥) +

3

20p2
q⊥q⊥

]
(62)

+q10(V ⊥b̂ + b̂V ⊥) +
2q11

5p
(q⊥b̂ + b̂q⊥)
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and we obtain

↔
π

n`

⊥ = −3Mnν

10Ω
(b̂× V ⊥ V ⊥ + V ⊥ b̂× V ⊥)− 9Mν

200p TΩ
(b̂× q⊥ q⊥ + q⊥ b̂× q⊥)

+
9Mν

100 TΩ
(b̂× V ⊥ q⊥ + q⊥ b̂× V ⊥ + b̂× q⊥ V ⊥ + V ⊥ b̂× q⊥) (63)

+
q10

Ω
(b̂× V ⊥ b̂ + b̂ b̂× V ⊥) +

2q11

5pΩ
(b̂× q⊥b̂ + b̂ b̂× q⊥).

The general expression for the ion perpendicular viscosity
↔
π⊥=

↔
π

`

⊥ +
↔
π

n`

⊥ is there-

fore given by the sum of Eqs. (48) and (63) with
↔
W given by Eq. (47) and quantities

q6 through q11 defined by Eqs. (45) and (61).

VI. HEAT FLUXES

In this section, we give expressions for plasma heat fluxes. We define the ion heat

flux as

q ≡
∫

d3v

(
1

2
Mv2 − 5

2
T

)
vf, (64)

and the electron heat flux in a similar way. We consider ions first and treat electrons

next.

Recalling the definitions of q1 and q2 given by Eq. (22) we see that the parallel

heat flux is

q‖ ≡ q · b̂ = q1 + q2 − 5

2
pV‖. (65)

To evaluate the perpendicular component of the ion heat flux it is convenient

to employ the Mv2v/2 moment of the full kinetic equation. When the “maximal”

ordering λ ∼ L⊥ ∼ L‖ is assumed, ν/Ω ∼ δ must again be used. Consequently, we

have to evaluate all the terms in this moment equation to the same order as that of

the (small) terms leading to the perpendicular classical collisional heat flux. Keeping
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this in mind we arrive at the following equation for the ion perpendicular heat flux,

∇ ·
(∫

d3v
1

2
Mv2vvf

)
− e

M
E ·

(
5

2
p
↔
I +

↔
π

)

−Ω

(
5

2
pV + q

)
× b̂ =

∫
d3v

1

2
Mv2vC,

where we ignored time derivative terms as being of higher order and used the ap-

proximation
↔
π≈↔π‖, which is exact to the order required. Employing the momentum

conservation equation to the same order to remove the V × b̂ term yields

Ωb̂× q + ∇ ·
[∫

d3v

(
1

2
Mv2 − 5

2
T

)
vvf

]
+

5∇T

2M
·
(
p
↔
I +

↔
π‖

)
(66)

− e

M
E· ↔π‖=

∫
d3v

(
1

2
Mv2 − 5

2
T

)
vC,

where upon using expression (51) for f̃1 we can write through order δ

∫
d3v

(
1

2
Mv2 − 5

2
T

)
vvf = q3

↔
I +(2q5 − 3q3)b̂b̂− 5T

2M

(
p
↔
I +

↔
π‖

)
. (67)

To evaluate the term on the right-hand side of Eq. (66) we first notice that only

the linearized contribution from the ion-ion collision operator is required to the order

we require, giving

∫
d3v

(
1

2
Mv2 − 5

2
T

)
vC ≈

∫
d3v

1

2
Mv2vC`

ii(f1).

Using self-adjointness of the linearized ion-ion collision operator and the result15

C`
ii

(
1

2
Mv2vfM

)
= νTQ(x)fMv, (68)

with Q(x) defined by Eq. (42), we next write

∫
d3v

1

2
Mv2vC`

ii(f1) = νT

∫
d3v vf1Q(x).

Employing f̃1 from Eq. (51) and evaluating the integrals we finally obtain

∫
d3v

1

2
Mv2vC`

ii(f1) = b̂ νT

∫
d3v Q(x)v‖f̄1 − 2pν

MΩ
b̂×∇T. (69)
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Taking results (67) and (69) into account, we arrive at the following equation for

q⊥:

Ω b̂× q + ∇q3 − 5T

2M

[
∇p− 1

3
∇(p‖ − p⊥)

]
+ κ

[
(2q5 − 3q3)− 5T

2M
(p‖ − p⊥)

]

+
eE

3M
(p‖ − p⊥) + b̂ ∇ · [b̂(2q5 − 3q3)]− 5T

2M
b̂ ∇ · [b̂(p‖ − p⊥)] (70)

−eE‖
M

(p‖ − p⊥)− b̂ νT

∫
d3v Q(x)v‖f̄1 +

2pν

MΩ
b̂×∇T ≈ 0.

Crossing by b̂, we finally obtain

q⊥ =
b̂×∇q3

Ω
− 5T

2MΩ
b̂×

[
∇p− 1

3
∇(p‖ − p⊥)

]
− 1

3
vE(p‖ − p⊥) (71)

+
b̂× κ

Ω

[
(2q5 − 3q3)− 5T

2M
(p‖ − p⊥)

]
− 2pν

MΩ2
∇⊥T.

Following the same procedure for electrons we find that expression (65) for the

parallel ion heat flux also holds for the parallel electron heat flux if ion quantities are

replaced with the corresponding electron quantities. The perpendicular electron heat

flux can be found from the equation that is equivalent to the ion Eq. (66), but with

the right-hand side given by

∫
d3v

(
1

2
mv2 − 5

2
Te

)
v

[
C`

ee(f1e) + C`
ei(f1e)

]
. (72)

Here, C`
ee and C`

ei are linearized electron-electron and electron-ion collision oper-

ators, respectively. The former is given by the electron analog of Eq. (35) with

γe = (3
√

2π/4)(νe/n)(Te/m)3/2. The latter is given to the required order by the

expression

C`
ei(f1e) = Le(f1e) +

2γemn

Tev3
v · V fMe, (73)

where

Le(f1e) = γen∇v · (∇v∇vv ·∇vf1e) (74)
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is the Lorentz operator and fMe is the electron analog of the ion Maxwellian distri-

bution function (10).

By analogy with the ion Eq. (71), electron-electron collisions result in a

−(
√

2peνe/mΩ2
e)∇⊥Te contribution to the classical perpendicular electron heat flux;

the
√

2 difference arising purely from the difference in definitions of ν and νe. The

contribution from the Lorentz collision operator can be easily evaluated by taking

into account its self-adjointness, noticing that

Le

[(
1

2
mv2 − 5

2
Te

)
vfMe

]
= 2γepeL

3/2
1

(
mv2

2Te

)
v

v3
fMe, (75)

employing f̃1e (since f̄1e does not contribute to qe⊥), which is given by Eq. (51) with

ion quantities replaced by electron ones, and performing the velocity-space integra-

tion. As a result, we obtain

1

Ωe

b̂×
∫

d3v

(
1

2
mv2 − 5

2
Te

)
vLe(f1e) = −13peνe

4mΩ2
e

∇⊥Te +
3peνe

2Ωe

b̂× V e, (76)

where V e is the electron flow velocity. Finally, the (2γemn/Tev
3)v · V fMe piece of

the electron-ion collision operator results in the −(3peνe/2Ωe)b̂ × V contribution to

qe⊥. Putting everything together, we obtain

qe⊥ ≈ − b̂×∇q3e

Ωe

+
5Te

2mΩe

b̂×
[
∇pe − 1

3
∇(p‖e − p⊥e)

]

−1

3
vE(p‖e − p⊥e)− b̂× κ

Ωe

[
(2q5e − 3q3e)− 5Te

2m
(p‖e − p⊥e)

]
(77)

−
(

13

4
+
√

2

)
peνe

mΩ2
e

∇⊥Te − 3peνe

2Ωe

b̂× (V − V e).

VII. RECOVERING COLLISIONAL LIMIT

The general ion expressions for
↔
πg,

↔
π⊥, and q obtained in the previous sections

describe plasma of arbitrary collisionality, provided that the leading order distribution
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function is a Maxwellian. Consequently, they should recover the known collisional

expressions8 for the ion gyroviscosity, perpendicular viscosity, and heat flux. Of

course, the same should be true for the electron quantities as well.

To see that this is indeed the case we evaluate
↔
πg,

↔
π⊥, and q by employing the

standard16,17 short mean-free path result for f̄ coll as is given in the Appendix B. Then,

we obtain through second order in δ

q1 =
2

3
q2 = pV‖ +

2

5
q‖, (78)

with q‖ = −(125p/32Mν)b̂ ·∇T and V‖ the second order accurate parallel ion flow

velocity. Moreover, through first order in δ

q3 =
5pT

2M
, q4 =

2pT

M
, q5 =

15pT

4M
, p‖ = p⊥ = p. (79)

Then, through second order in δ we obtain

a = pV ⊥ +
2

5
(q⊥ + qc), c = 0,

↔
A= 0, (80)

where V ⊥ and q⊥ are given by Eq. (32). Using Eq. (29) we then find that

↔
πg→↔

πg |coll + ∆
↔
πg, (81)

where

↔
πg |coll ≡ 1

4Ω
b̂×

[
p∇(V ‖ + V ⊥) +

2

5
∇ (

q‖ + q⊥ + qc

)
+ Transpose

]
· (↔I +3b̂b̂)

+Transpose (82)

is the standard Mikhailovskii-Tsypin7 and Catto-Simakov8 short mean-free path ion

gyroviscosity (as generalized in Ref. 9 by adding qc to the heat flux) and the terms

left over are simply

∆
↔
πg≡ Mn(V ‖ + V ⊥)(V ‖ + V ⊥)−Mn

[
V 2
‖ b̂b̂ +

1

2
V 2
⊥(

↔
I −b̂b̂)

]
. (83)
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It can be shown using f̄ coll from Appendix B that n represents the plasma density

through second order in δ and p (or T ) represents ion pressure (or temperature)

through first order in δ. It follows from the fact that p‖ = p⊥ through first order

in δ and from ion momentum conservation that V ⊥ represents ion perpendicular

flow velocity accurately through the second order in δ. Eqs. (65) and (78) give q‖

accurately through second order in δ. Finally, Eqs. (71) and (79) predict that the

sum q⊥ + qc gives the ion perpendicular heat flux through second order in δ as well,

so that our expressions (65) and (71) recover the standard Braginskii’s result for the

ion heat flux,5 which is accurate through second order in δ. Consequently, Eqs. (82)

and (83) can be rewritten in more compact forms, accurate through third order in δ,

as

↔
πg |coll ≡ 1

4Ω
b̂×

[
p∇V + p(∇V )T +

2

5
∇q +

2

5
(∇q)T

]
· (↔I +3b̂b̂) + Transpose

and

∆
↔
πg≡ MnV V −Mn

[
V 2
‖ b̂b̂ +

1

2
V 2
⊥(

↔
I −b̂b̂)

]
,

where n, p, V , and q are the total plasma density, ion pressure, flow velocity, and

heat flux.

Similarly, to the requisite order we find

q6 = −
(

pV‖ +
7

100
q‖

)
, q7 =

3

4

(
pV‖ +

77

300
q‖

)
,

q8 = −
(

pV‖ − 1

4
q‖

)
, q9 = 0,

q10 = −3

4
Mnν

(
8

5
V‖ − 2

5p
q‖

)
, q11 =

69

80
Mnν

(
24

23
V‖ − 2

5p
q‖

)
,

so that

↔
π⊥=

↔
π

`

⊥ |coll+
↔
π

n`

⊥ |coll + ∆
↔
π

`

⊥ +∆
↔
π

n`

⊥ , (84)
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where

↔
π

`

⊥ |coll ≡ − 3ν

10Ω2

[
↔
W |coll + 3b̂(b̂· ↔

W |coll) + 3(b̂· ↔
W |coll)b̂ (85)

+
1

2
(
↔
I −15b̂b̂)(b̂· ↔

W |coll · b̂)− 1

2
(
↔
I −b̂b̂)

↔
W |coll :

↔
I

]

with

↔
W |coll ≡ p∇V +

2

5
∇q − 3[p∇q − (∇p)q]

10p
(86)

−3p∇q‖ + 5(∇p)q‖
100p

− ∇T (90q − 13q‖)

400T
+ Transpose

and

↔
π

n`

⊥ |coll ≡ − 9Mν

200pTΩ

[
b̂× q

(
q +

31

15
q‖

)
+

(
q +

31

15
q‖

)
b̂× q

]
. (87)

When the diagonal terms in Eq. (85) are ignored as small corrections to the scalar

pressure and parallel viscosity, the first two terms in Eq. (84) are the same as the

Catto-Simakov8 short mean-free path result for the ion perpendicular viscosity. Re-

taining the diagonal terms recovers Eq. (16) of Ref. 9.

The remaining terms in Eq. (84) are

∆
↔
π

`

⊥≡ − 3ν

10Ω2

[
∆

↔
W +3b̂(b̂ ·∆ ↔

W ) + 3(b̂ ·∆ ↔
W )b̂ (88)

+
1

2
(
↔
I −15b̂b̂)(b̂ ·∆ ↔

W ·b̂)− 1

2
(
↔
I −b̂b̂)∆

↔
W :

↔
I

]

with

∆
↔
W≡ (∇p− enE)

(
V − 3q

10p
+

q‖
20p

)
− 3

4
n∇TV + Transpose (89)

and

∆
↔
π

n`

⊥≡ −3Mnν

10Ω

[
b̂× V ⊥

(
V + 3V ‖ −

3q + 7q‖
10p

)
− 3b̂× q⊥

10p

(
V + 3V ‖

)
]

(90)

+Transpose.
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These extra terms in
↔
πg and

↔
π⊥ are attributable to the differences in the definitions

of the viscosity used in Ref. 8 and herein. In Ref. 8
↔
πg and

↔
π⊥ were defined in terms

of the random velocity variable w ≡ v − V , while here we employ the full velocity

variable v. To demonstrate that ∆
↔
πg, ∆

↔
π

`

⊥, and ∆
↔
π

n`

⊥ are indeed due to the use

of the different variables we notice that for any operator L(v) and functions fv(v),

fw(w)

∫
d3v L(v)fv(v)−

∫
d3w L(w)fw(w) =

∫
d3v L(v)[fv(v)− fw(v)]

≡
∫

d3v L(v)∆f(v).

Noticing that ∆
↔
πg= M

∫
d3v vv∆f̃(v), using expression (B5) for ∆f coll(v), employ-

ing Eqs. (21), (33), and (A2), and evaluating velocity space integrals we easily obtain

result (83) through second order in δ.

Next, we consider ∆
↔
π

`

⊥. Substituting result (B5) into the expression for the

difference between
↔
K

`

⊥ written in v and w variables,

∆
↔
K

`

⊥≡ −M

∫
d3v f−1

M ∆f̃C`
ii(vvfM), (91)

using Eqs. (21), (33), (38), and (A2), and evaluating velocity space integrals we find

∆
↔
K

`

⊥=
6

5
Mnν

[
V V − 3

10p
(V q + qV ) +

1

20p

(
V q‖ + q‖V

)]
. (92)

This result should coincide to the order required with the result for ∆
↔
K

`

⊥ obtained

by substituting ∆
↔
W from Eq. (89) for

↔
W in Eq. (46). To see that this is indeed the

case we first recall that b̂b̂ terms in ∆
↔
W do not contribute to ∆

↔
K

`

⊥ and can therefore

be omitted. We then rewrite Eq. (89) by recalling that the parallel, as well as the

perpendicular, friction is small in the collisional case so that the leading order ion

momentum equation is simply ∇p − enE ≈ MnΩV ⊥ × b̂. We use this in the first
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term of Eq. (89) and simplify the second term by noticing that

∇T = −2MΩ

5p

(
b̂× q⊥ +

16ν

25Ω
q‖

)
≈ 2MΩ

5p
b̂× q⊥,

where the q‖ contribution may be neglected since it results in the q‖ pieces of the

second term that are small by (ν/Ω) ∼ δ ¿ 1 as compared to the q‖ piece of the first

term. Substituting the expression for ∆
↔
W thus simplified into Eq. (46) we recover

result (92) as expected.

Finally, we will demonstrate that ∆
↔
π

n`

⊥ as given by Eq. (90) is also due to the

difference between v and w variables. Indeed, employing the formalism developed in

Sec. VB we can write

∆
↔
K

n`

⊥ = −6γM

∫
d3v [(2f̄1w + f̃1w)∇v∇v(∆G) + (2∆f̄1 + ∆f̃1)∇v∇vG], (93)

where f1w is given by Eq. (B3), ∆f1 is given by the first term on the right-hand side

of Eq. (B5), and ∆G ≡ ∫
d3v′∆f̃ ′1g = −V ⊥ · ∇vGM . Evaluating the integrals and

substituting the result obtained for ∆
↔
K

n`

⊥ into Eq. (19) recovers Eq. (90), completing

the demonstration.

VIII. DISCUSSION

In the preceding sections, expressions for the ion and electron parallel viscosities

and gyroviscosities, the ion perpendicular viscosity, and electron and ion parallel and

perpendicular heat fluxes are derived for arbitrary mean-free path plasmas. The

results for the ion perpendicular viscosity and species heat fluxes are obtained in

forms requiring f̄1 only. If the ion gyroviscosity is required through the same order as

the ion perpendicular viscosity then both f̄1 and f̄2 are needed. For the lowest order

expression for the gyroviscosity it is sufficient to know f̄1.
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The gyroviscosities are given by Eqs. (29) and (25) with quantities q1 through q5

defined by Eqs. (22) and (26), whereas the ion perpendicular viscosity is the sum of

Eqs. (48) and (63) with
↔
W given by Eq. (47) and quantities q6 through q11 defined by

Eqs. (45) and (61). Parallel viscosities as given by Eq. (16) require knowledge of f̄ to

first or second order, depending on the accuracy desired. It is shown in Sec. VII that

the general expressions for the ion gyroviscosity and perpendicular viscosity recover

the correct short mean-free path limits as expected.

Ion and electron parallel heat fluxes are given in terms of q1 and q2 by Eq. (65),

whereas ion and electron perpendicular heat fluxes are given by Eqs. (71) and (77),

respectively. The lowest order perpendicular heat fluxes are given by the standard

diamagnetic expressions, as expected.

These viscosity and heat flux expressions make it possible to obtain a practical hy-

brid fluid-kinetic closure consisting of the usual Hazeltine’s drift kinetic equation4,10,11

and the conservation of number, momentum, and energy equations for each species.
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Appendix A. EVALUATION OF ∇ · (M ∫
d3v vvvf̃)

To evaluate M
∫

d3v vvvf̃ with f̃ = f̃H + f̃NH + f̃C it is convenient to rewrite

f̃H + f̃NH = f̃ v + f̃ vv, (A1)

where

f̃ v ≡ v · d, f̃ vv ≡ 1

8Ω
vv :

↔
M ,

with

d ≡ g −
(

vE +
µ

Ω
b̂×∇B +

v‖
Ω

b̂× ∂b̂

∂t

)
1

B

∂f̄

∂µ

and
↔
M given by Eq. (43).

Noticing that

〈vivjvkvl〉ϕ = b̂ib̂j b̂kb̂l

(
v4
‖ − 3v2

‖v
2
⊥ +

3

8
v4
⊥

)
+ (δijδkl + δikδjl + δilδjk)

1

8
v4
⊥ (A2)

+(δij b̂kb̂l + δikb̂j b̂l + δilb̂j b̂k + δjkb̂ib̂l + δjlb̂ib̂k + δklb̂ib̂j)

(
1

2
v2
‖v

2
⊥ −

1

8
v4
⊥

)

we obtain

M

∫
d3v vivjvkf̃

v = (δijδkl + δikδjl + δilδjk)

(
M

∫
d3v

1

8
v4
⊥dl

)
+ (A3)

(δilb̂j b̂k + δjlb̂ib̂k + δklb̂ib̂j)

[
M

∫
d3v

(
v2
‖v

2
⊥

2
− v4

⊥
8

)
dl

]
,

where it is easy to show using integration by parts that

M

∫
d3v

1

8
v4
⊥d =

1

2Ω
b̂×∇q4 + p⊥vE +

q1

Ω
b̂× ∂b̂

∂t
, (A4)

M

∫
d3v

(
v2
‖v

2
⊥

2
− v4

⊥
8

)
d =

1

Ω
b̂×∇

(
2q3 − 5

2
q4

)
+ (p‖ − p⊥)vE +

2q2 − 3q1

Ω
b̂× ∂b̂

∂t
.

Since q1 and q2 are at most of order δ and ∂/∂t ∼ δ2Ω we can safely neglect the last

terms in both of Eqs. (A4).
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Observing that

〈vivjvkvlvm〉ϕ = b̂ib̂j b̂kb̂lb̂m

(
v5
‖ − 5v3

‖v
2
⊥ +

15

8
v‖v

4
⊥

)
+

(δij b̂kb̂lb̂m + δikb̂j b̂lb̂m + δilb̂j b̂kb̂m + δimb̂j b̂kb̂l + δjkb̂ib̂lb̂m+

δjlb̂ib̂kb̂m + δjmb̂ib̂kb̂l + δklb̂ib̂j b̂m + δkmb̂ib̂j b̂l + δlmb̂ib̂j b̂k)

(
1

2
v3
‖v

2
⊥ −

3

8
v‖v

4
⊥

)

[b̂i(δjkδlm + δjlδkm + δjmδkl) + b̂j(δikδlm + δilδkm + δimδkl) (A5)

+b̂k(δijδlm + δilδjm + δimδjl) + b̂l(δijδkm + δikδjm + δimδjk)

b̂m(δijδkl + δikδjl + δilδjk)]
1

8
v‖v

4
⊥,

we find for an arbitrary velocity space isotropic f0 (so that the portion of
↔
M due to

↔
h does not contribute):

M

∫
d3v vivjvkf̃

vv = (A6)

− 1

Ω

(
20q3 − 35

2
q4 − 4q5

)
[b̂ib̂j(b̂× κ)k + b̂ib̂k(b̂× κ)j + b̂j b̂k(b̂× κ)i]

+
1

Ω

(
2q3 − 5

2
q4

)[
δij(b̂× κ)k + δik(b̂× κ)j + δjk(b̂× κ)i +

1

4

(
b̂i

↔
Djk +b̂j

↔
D ik +b̂k

↔
D ij

)]
,

where
↔
D is defined by Eq. (28). To obtain Eq. (A6) for an arbitrary f̄ we employ the

definitions of Eqs. (26) and

∫
d3v M

(
1

2
v4
‖v

2
⊥ −

3

8
v2
‖v

4
⊥

)
1

B

∂f̄

∂µ
= 20q3 − 35

2
q4 − 4q5, (A7)

∫
d3v M

1

8
v2
‖v

4
⊥

1

B

∂f̄

∂µ
= −2q3 +

5

2
q4.

To evaluate M
∫

d3v vvvf̃C we first notice that for f0 = fM , Eqs. (7) and (68)

give

f̃C ≈ ν

Ω2
Q(x)fMv ·∇⊥ ln T. (A8)

We then employ Eq. (A2) and
∫ +∞

0
dxx6Q(x) exp(−x2) = −3

√
π/4 to obtain

M

∫
d3v vvvf̃C ≈ 2

5
(δijδkl + δikδjl + δilδjk)(qc)l, (A9)
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where qc is the classical collisional ion heat flux for short mean-free path plasma

defined in Eq. (27).

Employing Eqs. (A1), (A3), (A4), (A6), and (A9) we arrive at the final expression

given by Eqs. (24) and (25).

Appendix B. COLLISIONAL ION DISTRIBUTION FUNC-

TION

The ion distribution function for short mean-free path plasmas was evaluated in

Ref. 8 through order δ2 using the random velocity variable w ≡ v−V . The gyrophase

averaged portion of this distribution function is given by

f̄ coll
w = fMw + f̄ coll

1w + f̄ coll
2w + · · · (B1)

with

fMw = n

(
M

2πT

)3/2

exp

(
−Mw2

2T

)
,

f̄ coll
1w = − 2M

5pT

[
L

3/2
1 (x2

w)− 4

15
L

3/2
2 (x2

w)

]
q‖w‖fMw, (B2)

f̄ coll
2w =

{
a2L

1/2
2 (x2

w) + a3L
1/2
3 (x2

w) + P2(w‖/w)x2
w

[
b0L

5/2
0 (x2

w) + b1L
5/2
1 (x2

w)
]}

fMw,

where q‖ = −(125p/32Mν)b̂ · ∇T , and a2, a3, b0, and b1 are known coefficients,

P2(w‖/w) is a Legendre polynomial, x2
w ≡ (Mw2/2T ), and L

j+1/2
i (x2

w), i = 0, 1, 2, 3,

j = 0, 1, 2, are generalized Laguerre polynomials. In addition, the lowest order gy-

rophase dependent portion of the ion distribution function is given by

f̃ coll
1w = − 2M

5pT
q⊥ ·w⊥L

3/2
1 (x2

w)fMw,

so that

f coll
1w = f̄ coll

1w + f̃ coll
1w = − 2M

5pT
w ·

[
qL

3/2
1 (x2

w)− 4

15
q‖L

3/2
2 (x2

w)

]
fMw, (B3)
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where q = q‖ + q⊥, with q⊥ = (5p/2MΩ)b̂×∇T to the required order.

In this work, the gyrophase averaged portion of the ion distribution function

written in terms of the full velocity variable v is required through order δ2. To obtain

an expression for this distribution function we first notice that if fv(v) and fw(w) are

used to denote exactly the same distribution function but written in terms of v and

w variables, respectively, then fw(v − V ) = fv(v). If |V |/v ¿ 1 can be assumed,

then Taylor expanding this equality gives

∆f(v) ≡ fv(v)− fw(v) = −V ·∇wfw(w)|w→v +
1

2
V V : ∇w∇wfw(w)|w→v + · · · .

(B4)

Since for a short mean-free path plasma fw(w) is given through first order in δ by the

sum of fMw and f coll
1w from Eq. (B3) we obtain from Eq. (B4) through second order

in δ

∆f coll(v) = v · V M

T
fM − MV 2

2T
fM

+V · 2M

5pT

[
qL

3/2
1 (x2)− q‖

4

15
L

3/2
2 (x2)

]
fM (B5)

+vv :
M2

2T 2

{
V V − 4

5p
V

[
qL

5/2
1 (x2)− q‖

4

15
L

5/2
2 (x2)

]}
fM ,

where V in the first term on the right-hand side must be evaluated through second

order in δ, while elsewhere the lowest order expression for V with V ⊥ given by

Eq. (32) can be employed, and x2 ≡ (Mv2/2T ).

It follows from fv(v) = fw(v) + ∆f(v) that the gyrophase averaged portion of

the ion distribution function in v variables through second order in δ is given by

Eqs. (B1) and (B2) with w → v and the gyrophase averaged Eq. (B5): f̄v(v) =

f̄w(v) + ∆f̄ coll(v).
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