
Mona: Monadic Second-Order
Logic in Practice

Jesper G. Henriksen*
Jakob Jensen*
Michael J0rgensen*
Nils Klarlund t
Robert Paige$
Theis Rauhe*
Anders Sandholm*

ABSTRACT 1 The purpose of this article is to introduce Monadic Second-

order Logic as a practical means of specifying regularity. The logic is a

highly succinct alternative to the use of regular expressions. We have built a

tool MONA, which acts as a decision procedure and as a translator to finite-

state automata. The tool is based on new algorithms for minimizing finite-

state automata that use binary decision diagrams (BDDs) to represent

transition functions in compressed form. A byproduct of this work is an

algorithm that matches the time but improves the space of Sieling and

Wegener's algorithm to reduce OBDDs in linear time.

The potential applications are numerous. We discuss text processing, Boole-

an circuits, and distributed systems. Our main example is an automatic
proof of properties for the "Dining Philosophers with Encyclopedia" ex-

ample by Kurshan and MacMillan. We establish these properties for the
parameterized case without the use of induction.

Our results show that, contrary to common beliefs, high computational

complexity may be a desired feature of a specification formalism.

*BRICS, Centre of the Danish National Research Foundation for Basic Research in
Computer Science, Department of Computer Science, University of Aarhus.

?The corresponding author is Nils Klarlund, who is with BRICS, Department of
Computer Science, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C. E-mail:
klarlund~daimi.aau.dk.

SDepartment of Computer Science, CIMS, New York University, 251 Mercer St. New
York, New York, USA; research partially supported by ONR grant N00014-93-1-0924,
AFOSR grant AFOSR-91-0308, and NSF grant MIP-9300210.

1 This article is a heavily revised version of [JJK94].

90 Henriksen et al.

1 Introduction

In computer science, regularity amounts t o the concept that a class of
structures is recognized by a finite-state device. Often phenomena a re so
complicated that their regularity either

�9 may be overlooked, as in the case of parameterized verification of dis-

t r ibuted finite-state systems with a regular communication topology;
or

�9 may not be exploited, as in the case when a search pat tern in a text
editor is known to be regular, but in practice inexpressible as a regular
expression.

In this paper we argue that the Monadic Second-Order Logic or M~L can

help in practice to identify and to use regularity. In M2L, one can directly

mention positions and subsets of positions in the string. This feature dis-
tinguishes the logic from regular expressions or automata. Together with

quantification and Boolean connectives, an extraordinary succinct formal-
ism arises.

Although it has been known for thirty-five years tha t M2L defines regular

languages (see [Tho90]), the translator from formulas to automata that we
describe in this article appears to be one of the first implementations.

The reason such projects have not been pursued may be the staggering

theoretical lower-bound: any decision procedure is bound to sometimes re-

quire as much time as a stack of exponentials that has height proportional
to the length of the formula.

It is often believed that the lower the computational complexity of a
formalism is, the more useful it may be in practice. We want to counter
such beliefs in this article - - at least for logics on finite strings.

1.1 W h y use logic?

Some simple finite-state languages easily described in English call for con-

voluted regular expressions. For example, the language L2a2b of all strings
over Z = (a, b, c} containing at least two occurrences of a and at least two

occurrences of b seems to require a voluminous expression, such as

Z* aZ* aZ*bZ*bE*

U E*aZ*bZ*aZ*bZ*

U Z*aZ*bZ*bE*aZ*

U E*bE*bZ*aZ*aZ*

U Z*bE*aZ*bZ*aZ*

U Z*bZ*aE*aE*bE*.

If we added n to the operators for forming regular expressions, then the lan-
guage L2a2b could be expressed more concisely as (~.*aE*aE*)n(E*bE*bE*).

Mona: Monadic Second-Order Logic in Practice 91

Even with this extended set of operators, it is often more convenient to ex-

press regular languages in terms of positions and corresponding letters. For
example, to express the set Laafterb of strings in which every b is followed
by an a, we would like a formal language allowing us to write something

like

"for every position p, if there is a b in p then for some position

q after p, there is an a in q."

The extended regular languages do not seem to allow an expression that
very closely reflects this description - - although upon some reflection a
small regular expression can be found. But in M2L we can express Laafter b

by a formula

Vp: 'b ' (p) =~ 3q: p < q A 'a'(q)

(Here the predicate ~b~(p) means "there is a b in position p" .) In general, we
believe that many errors can be avoided if logic is used when the description

in English does not lend itself to a direct translation into regular expressions
or automata. However, the logic can easily be combined with other methods
of specifying regularity since almost any such formalism can be translated

with only a linear blow-up into M2L.
Often regularity is identified by means of projections. For example, if

Ltran 8 is regular on a cross-product alphabet E x Z (e.g. describing a pa-
rameterized transition relation, see Section 5) and Lsta~t is a regular lan-

guage on Z describing a set of start strings, then the set of strings that can
be reached by a transition from a start string is r2(L~an8 N ~r~-l(Ls~rt)),
where ~rl and ~r2 are the projections from (Z x E)* to the first and sec-
ond component. Such language-theoretic operations can be very elegantly

expressed in M2L.

1.2 Our results

In this article, we discuss applications of M2L to text processesing and the
description of parameterized Boolean circuits. Our principal application
is a new proof technique for establishing properties about parameterized,

distributed finite-state systems with regular communication topology. We
illustrate our method by showing safety and liveness properties for a nov_-

trivial version of the Dining Philosophers' problem as proposed in [KM89]

by Kurshan and MacMillan.
We present MONA, which is our tool that translates formulas in M2L

to finite-state machines. We show how BDDs can be used to overcome
an otherwise inherent problem of exponential explosion. Our minimization

algorithm works very fast in practice thanks to a simple generalization of

the unary apply operation of BDDs.

92 Henriksen et al.

1.3 Comparisons to other work

Parameterized circuits are described using BDDs in [GF93]. This method
relies on formulating inductive steps as finite-state devices and does not
provide a single specification language. The work in [RS93] is closer in
spirit to our method in that languages of finite strings are used although
not as part of a logical framework. In [BSV93], another approach is given
based on iterating abstractions. The parameterized Dining Philosopher's
problem is solved in [KM89] by a finite-state induction principle.

A tool for M2L on finite, binary trees has been developed at the Uni-
versity of Kiel [Ste93]. Apparently, this tool has only been used for very
simple examples.

In [CR94], a programming language for finite domains based on a fixed
point logic is described and used for verification of non-parameterized finite
systems.

1.4 Contents

In Section 2, we explain the syntax and semantics of M2L on strings. We
recall the correspondence to automata theory in Section 3. We give several
applications of M2L and the tool in Section 4: text patterns, parameterized
circuits, and equivalence testing. Our main example of parameterized verifi-
cation is discussed in Section 5. We give an overview of our implementation
in Section 6.

2 The Monadic Second-order Logic on Strings

Let $ be an alphabet and let w be a string over Z. The semantics of the
logic determines whether a dosed M2L formula r holds on w. The language
L(r denoted by r is the set of strings that make r hold. Assume now that
w has length n and consists of letters aoa l . . . a , - l . The positions in w are
then 0,...,n - 1. We can now describe the three syntactic categories of M2L
on strings.

A position term t is either

�9 the constant 0 (which denotes the position 0);

�9 the constant $ (which denotes the last position, i.e. n - 1);

�9 a position variable p (which denotes a position i);

�9 of the form t (9 i (which denotes the position j + i rood n, where j is
the interpretation of t); or

�9 of the form t (9 i (which denotes the position j - i rood n, where j is
the interpretation of t);

Mona: Monadic Second-Order Logic in Practice

(Position terms are only interpreted for non-empty strings).

A position set t erm T is either

�9 the constant 0 (which denotes the empty set);

�9 the constant al l (which denotes the set (0, ..., n - 1});

�9 a position set variable P (which denotes a subset of positions);

93

�9 of the form T 1 0 T2, T1 A T2, or CT1 (which are interpreted in the
natural way);

�9 of the form T + i (which denotes the set of positions in T shifted right

by an amount of i); or

�9 of the form T - i (which denotes the set of positions in T shifted left

by an amount of i);

A formula r is either of the form

�9 'a~(t) (which holds if letter ai in w = aoal . . . is a, where i is the
interpretation of t);

�9 tl = t2, tl < t2 or tl _~ t2 (which are interpreted in the natural way);

�9 T1 = T2, T1 C T2, or t C T (which are interpreted in the natural way);

�9 -~r r A r r V r r =~ r or r ~=~ r (where r and r are
formulas, and which are interpreted in the natural way);

�9 3p : r (which is true, if there is a position i such that r holds when
i is substituted for p);

�9 Vp : r (which is true, if for all positions i, r holds when i is substituted
for p);

�9 3 P : r (which is true, if there is a subset of positions I such that r
holds when I is substituted for P); or

�9 VP : r (which is true, if for all subsets of positions I , r holds when I
is substituted for P);

3 From M2L to Au toma ta

In this section, we recall the method for translating a formula in M2L to an

equivalent finite-state automaton (see [Tho90] for more details). Note that

any formula ~b can be interpreted, given a string w and a value assignment

Z that fixes values of the free variables. If r then holds, we write w, Z ~ r

The key idea is tha t a value assignment and the string may be described

94 Henriksen et al.

together as a word over an extended alphabet consisting of E and extra
binary tracks, one for each variable. By structural induction, we then define
for each formula an automaton that exactly recognizes the words in the
extended alphabet corresponding to pairs consisting of a string and an
assignment tha t satisfy the formula.

Example

Assume that the free variables are 7) = {P1, P2} and that E = {a, b}.
Let us consider the string w = abaa and value assignment

z = [Pl {0, 2}, 0].

The set Z(P1) = {0, 2} can be represented by the bit pat tern 1010, since
the numbered sequence

1 0 1 0

0 1 2 3

defines tha t 0 is in the set (the bit in position 0 is 1), 1 is not in the set
(the bit in position 1 is 0), etc. Similarly, the bit pat tern 0000 describes
z(P) =

If these patterns are laid down as extra "tracks" along w, we obtain an
extended word a, which may be depicted as:

a b a a

1 0 1 0

0 0 0 0

Technically, we define a = a o . . . a 3 as the word (a,l,O)(b,O,O)(a,l,O)

(a ,0,0) over the alphabet Z x]~ x B of extended letters, where B = {0, 1}
is the set of t ru th values.

This correspondence can be generalized to any w and any value assign-
ment for a set of variables P (which can all be assumed to be second-order).

By structural induction on formulas, we construct automata A r over
alphabet Z x B ~ - w h e r e 7) = {P1," "", Pk} is any set of variables containing
the free variables in C--satisfying the fundamental correspondence:

w, Z ~ r iff (w, Z) �9 L(A r

Thus A r accepts exactly the pairs (w,Z) that make r true.

Example

Let ~b be the formula Pi = Pj + 1. Thus when r holds, Pi is represented
by the same bit pat tern as tha t of Pj but shifted right by one position.
This can be expressed by the automaton Ar

Mona: Monadic Second-Order Logic in Practice 95

aiffiO andaJ=O ~ a i = l and aJ=l

a i = l and aJ--0

In this drawing, a ~ refers to the ith extra track. Thus, the automaton checks
that the ith track holds the same bit as the j th track the instant before.

4 Applications

3.1 Text patterns

The language L2a2b of strings containing at least two occurrences of a and
two occurrences of b can be described in M2L by the formula

(3p1,p2 : 'a'(pl) A 'a'(p2) A Pl :tiP2) A
(3pa,P2 : 'b'(Pl) A 'b'(p2) A Pl # P2)

Our translator yields the minimal automaton, which contains nine states,
in a fraction of a second.

The language Laafterb given by the formula

Vp:'b'(p) =~ 3q: p < q A 'a'(q)

is translated to the minimal automaton, which has two states, in .3 seconds.
A far more complicated language to express is L<lapart consisting of

every string over {a,b} such that for any prefix the number of a's and b's
are at most one apart. When using regular expressions or M2L, one needs to
struggle a bit, but in M2L there is a strategy for describing the functioning
of the finite-state machine that comes to mind.

We observe that a position p may be used to designate a prefix; for
example, 0 denotes the prefix consisting of the first letter and $ (the last
position) denotes the whole input string. We may now recognize a string
in L<l~pan by identifying three sets of positions: the set P0 corresponding
to prefixes with an equal number of a's and b's, the set P+I corresponding

96 Henriksen et al.

3

/ "~ /" ",~ '.:,,,---i
i

OL0 Oll 0/2 O~n--2 O~n--1

F IGURE 1. A parameterized circuit.

to prefixes where the number of a's is one greater than the number of b's,

and the set P-1 corresponding to prefixes where the number of a's is one

less than the number of b's:

3Po,P+I ,P-1 :Po O P+I O P - 1 = a l l

AOr
^ 0 ~ P+~ ~0 'a'(o)
A 0 E P-1 ~ 'b'(O)

A V p : (p > O
pEPo r h p e l E P - I)

V ('b'(p) A p O l � 9
ApeP+I r 'a'(p) A p O l e P o
ApEP-1 r 'b'(p) A p O 1 E P o)

The resulting four-state automaton is calculated in a fraction of a second.

4.2 Pararaeterized circuits

Assume that we are given a drawing as in Figure I denoting a parameterized

Boolean function.
How do we describe the language Lex C B* of input bit patterns that

make the output true? From the drawing, no immediate description as a

regular expression or finite-state automaton is apparent. In M2L, however,

it is easy to model the outputs of the n or-gates as a second-order variable
Q, which allows the language to be described from a direct interpretation

of the drawing. Note that the or-gate at position p > 0 is true if either

there is a 1 at p - 1 or p, or in other words: p E Q r *le(p e l) v q*(p).
Since the output is 1 if and only if all or-gates are 1, i.e. if Q = all, the

language Lex is given by the formula

Mona: Monadic Second-Order Logic in Practice 97

3Q : (Vp : (p = o ~ p E Q ~ ' l ' (p)) A

(p > 0 ~ (p E Q r ' l ' (p G 1) v 'V(p))) A Q = all)

The resulting automaton has three states and accepts the language (1 O

10)*, which is the regular expression that one would obtain by reasoning
about the circuit. For more advanced applications to hardware verification,

see [BK95].

4.3 Equivalence testing

A closed formula r is a tautology if L(r = L(E*), i.e. if all strings over E

satisfy r The equivalence of formulas r and r then amounts to whether
r r162 r is a tautology.
Example. That a set P contains exactly the even positions in a non-empty

input string may be expressed in M2L by the following two rather different
approaches: either by the formula even1 (P) =

0 E P A Vp:((pEP A p < $ ~ p @ l C P)
A (p ~ P A p < $ ~ p @ l E P)) ,

or as a formula even2(P) --

P U (P + l) = a l l A P M (P + I) = 0 A P ~ 0

To show the equivalence of the two formulas, we check the t ru th value

of the bi-implication:

V P : evenl(P) r even2(P)

The translation of this formula does indeed produce an automaton accept-
ing E*, and thus verifies our claim.

5 Dining Philosophers with Encyclopedia

A distributed system is parameterized when the number n of processes is

not fixed a priori. For such systems the state space is unbounded, and

thus traditional finite-state verification methods cannot be used. Instead,
one often fixes n to be, say two or three. This yields a finite state space

amenable to state exploration methods. However, the validity of a property
for n = 2, 3 does not necessarily imply that the property holds for all n.

A central problem in verification is automatically to validate parame-

terized systems. One way to attack the problem is to formulate induction
principles such that the base case and the inductive steps can be formu-

lated as finite-state problems. Kurshan and MacMillan [KM89] used such

98 Henriksen et al.

S t ~

Selection

I j
FIGURE 2. Dining Philosophers with Encyclopedia

a method to verify safety and liveness properties of a non-trivial version of
the Dining Philosophers example.

In this system, symmetry is broken by an encyclopedia that circulates
among the philosophers. Thus each philosopher is in one of three states:

EAT, THINK, or READ. The global state can be described as a string

State of length n over the alphabet Zstate = {EAT, THINK, READ}, see
Figure 2.

The system makes a transition according to external events that consti-

tute a selection. Each process is presented with an event in the alphabet

ESelection = {eat, think, read, hungry}. Thus the selection can be viewed as

a string Selection o v e r ESelection, see Figure 2. As shown, all processes make
a synchronous transition to a new global State ~ on a selection according to

a transition relation trans(State, State ~, Selection), which is shown in Fig-
ure 3 2 together with an auxiliary predicate

blocking(Selection) used in its definition. Thus the new state of each pro-

cess is dependent on its old state and on the selection events presented to
itself and its neighbors. The transition relation is so complicated that it is

hard to grasp the functioning of the system.

Fortunately, the parameterized transition relation can be translated into
basic M2L on strings. For example, we encode State using two second-order

variables P and Q with the convention that

EATp(S ta te) - -pEP ^ p E Q
READp(State) - p ~ P ^ p E Q
THINKp(State) ==_ p ~ P A p ~ Q

Similarly, State' and Selection can also each be encoded using two second-

order variables. Thus, the predicate trans(State, State ~, Selection) becomes
a formula with six free second-order variables.

For this distributed system there are two important properties to verify:

�9 Safety Property: The encyclopedia is neither lost nor replicated. Thus

there is always exactly one process in state READ.

2We use '# ' in the beginning of a line to indicate that this line is a comment.

Mona: Monadic Second-Order Logic in Practice 99

�9 Liveness Property: If no process remains in state EAT forever, then
the encyclopedia is passed around over and over.

In [KM89] both properties are proved in terms of a complicated induc-
tion hypothesis. This hypothesis is itself a distributed system, where each

process has four states. (The Liveness Property in [KM89] is technically

different since it is modeled in terms of selections.)

Our strategy is fundamentally different. We cannot directly verify live-
ness properties. But we can easily verify properties about the transition
relation in the parameterized case and without induction as follows.

Let r be an M2L formula about the global state. For example, we might
consider the property that if a philosopher eats, then his neighbors do not:

r State) ~- Vp : EATp(State) ~ -~EATpel (State) A ~EATp~I (State)

A property given as a formula r can be verified using the invariance
principle:

VState, State t, Selection :
r State) A trans(State, State ~, Selection) ~ r State'),

which is also a formula in M2L. In this way, we have verified for the param-

eterized case that both Omutr and the Safety Proper ty that exactly one
philosopher reads, i.e. 3!p : READp(State), are invariant. MONA verifies

such a formula in approximately 3 seconds on a Sparc 20.

Note that this method does not rely on a state space exploration (which
is impossible since the state space is unbounded). Instead, it is based on the
Invariance Principle: to show that a property holds for all reachable states,

it is sufficient to show that it holds for the initial state and is preserved
under any transition.

5.1 Establishing the liveness property

The Liveness Proper ty can be expressed in Temporal Logic as

[~(READpel ~ 0READp), (1.1)

that is, it always holds that if philosopher p @ 1 reads, then eventually
philosopher p reads. We must prove this property under the assumption

that no philosopher eats forever:

[:](EATp ~ 0-~EATp). (1.2)

So assume that READpol holds. We must prove that 0R.EADp holds. There
are two cases as follows.

100 H e n r i k s e n et al.

blocking(Selection) -~
eatp~l (Selection) V h u n g r y p o 1 (Selection)
V eatp01 ($el~tion)

trans(~tate, State', Selection) -~
Vp:

T H I N K --~ T H I N K :

(THlNKp(State) A THINKp(State') =~
t h i n k u (Selection) ^ -~ (readpe 1 (Selection))

V

hungryp(Selection) A blocking(Selection))

A
T H I N K --+ E A T :

(THlNgp(State) A EATp(State')
hungryp(Selection) A -(blocking(Selection)))

A
T H I N K -~ R E A D :

(THINKp(State) A REA Dp(State') =~
thinkr,(2?election) A readpO l (Selection))

A
E A T -+ T H I N K :

(EATp(State) A THINKp(State')
thinkp(Selection) ^ - .(readp01 (Selection)))

A
E A T -+ E A T :

(EATp(State) A EATp(State')
eatp(Selection))

A
E A T -+ R E A D :

(EATp(State) A READp(State') =~
thinkp(Selection) A readpo 1 (Selection))

A
R E A D --r T H I N K :

(READp(~tate) A READp(State ~) =~
readp(Selection) A thinkpe l (Selection))

A
R E A D --+ E A T :

(READp(State) ^ EATp(State')
false)

A

R E A D --r R E A D :

(READp(State) A READp(bXate')=~
readp(Selection) A - - (th inkp~l (Selection)))

F I G U R E 3. T h e t r a n s i t i o n r e l a t i o n

Mona: Monadic Second-Order Logic in Practice I01

�9 Case EATp holds. By asssumption (1.2), there is an instant when

EATp A -~ O EATp holds. Thus if

R.EADpel A EATp A -~ O EATp ~ OR~ADp (1.3)

is a valid property of the transition system, 0EATp holds. In fact, we
verified using MONA that (1.3) indeed holds.

�9 Case ~EATp holds. If EATp becomes true, then use the previous case.
Otherwise, -~EATp continues to hold. Now, by the assumption (1.2)
at some point ~EATp~I will hold. We then use the property

READpol A -~EATp A -~OEATp$1 ~ OREADp V OEATp, (1.4)

which we have also verified using MONA, to show that eventually
READp holds (or eventually EATp holds, which contradicts the as-
sumption that -~EATp continues to hold).

6 Implementation.

MONA is our implementation of the decision procedure, which translates
formulas of M2L to finite-state automata as outlined in Section 3. Our tool
is implemented in Standard ML of New Jersey. A previous version of MONA
was written in C with explicit garbage collection and based on representing
transition functions in a conjunctive normal form. Our present tool runs
up to 50 times faster due to improved algorithms.

6.1 Representation of automata

Since the size of the extended alphabet grows exponentially with the num-
ber of variables, a straightforward implementation based on explicitly rep-
resenting the alphabet would only work for very simple examples. In-
stead, we represent the transition relation using Binary Decision Diagrams
(BDDs) [Bry92, Bry86]. In this way, the alphabet is never explicitly rep-
resented. For the external alphabet of ASCII-characters, we choose an
encoding based on seven extra tracks holding the binary representation.
Thus, character classes such as Ea-zh-Z] become represented as very sim-
ple BDDs.

A deterministic automaton A is represented as follows. The state space is
Q - (0,1 , n - 1}, where n is size of the state space; B k is the extended
alphabet; io E Q is the initial state; ~ : Q • •k _+ Q is the transition
function; and F C Q is the set of accepting states. We use a bit vector
of size n to represent F and an array containing n pointers to roots of
multi-terminal BDDs representing (f. A leaf of a BDD holds the integer
designating the next state. An internal node v is called a decision node and

102 Henriksen et aL

Initial state: 0 0

Accepting states: false
Transition function: /

1 2

false ~'ue
|

hi

1o

FIGURE 4. BDD automaton representation

contains an index denoted v.index, where 0 _< v.index < k, and high and
low successors v.hi and v.lo. If b is a sequence of k bits, i.e. b E B k , then
6(q, b) is found by looking up the qth entry in the array and following the
decision nodes according to b until a leaf is reached (node v is followed by
selecting the high successor if the v.inde:rth component of b is 1 and the
low successor if it is 0).

For example, the following finite automaton accepting all strings over B 2
with at least two occurrences of the letter "11"

00,01,10 00,01,10 00,01,10,11

could be represented as in Figure 4.
The use of BDDs makes the representation very succinct in comparison

to our earlier at tempt to handle automata with large alphabets [J,IK94]. In
most cases, we avoid the exponential blow-up associated with an explicit
representation of the alphabet. We shall see that all operations on automata
needed can be performed by means of simple BDD operations.

Another possibility would have been to use a two-dimensional array of
ordinary BDDs. But that would complicate the operations on automata,
because many more BDD operations would be needed.

Mona: Monadic Second-Order Logic in Practice 103

6.2 Rewriting forvnulas

The first step in the translation consists of rewriting formulas so as to

eliminate nested terms. Then all terms are variables and all formulas are

among a small number of basic formulas.

6.3 Translating formulas

The translation is inductive. All automata corresponding to basic formulas

have a small number of states (less than five!).
The composite formulas are translated by use of operations on automata.

For --r ~bl A 02 and 3 P : 0, which are the ones left after rewriting, we need

the operations of complement, product, projection, and determinization.

C o m p l e m e n t

Complementation is done by simply negating the bit vector representing

the set of final states.

P r o d u c t

The product automaton A of two automata A1 and A2 is

(Q1 • Q2,Bk,(~I,~2),~, F1 • F2),

where 5((ql, q2), b) = (61(ql, b), 62(q2, b)). We are careful, however, to con-

sider only those states of A that are reachable from (il, i2).
When considering a new state (qx, q2), we need to construct the BDD

representing the corresponding part of the transition function 5. We use the

binary apply operation on the BDDs corresponding to ql and q2. For each
pair of states (ql, q,) encountered in a pair of leaves, we associate a unique
integer in the range {0, 1 , . . . N - 1}, where N is the number of different

pairs considered so far. In this way, the new BDDs created conform with

the standard representation.

P r o j e c t i o n a n d d e t e r m i n i z a t i o n

Projection is the conversion of an automaton over B ~+1 to a nondeter-
ministic automaton over B k necessary for translating a formula of the form

3 P : ~. On any letter b E Bk, there are two transitions possible in the

nondeterministic automaton corresponding to whether the P-track is 0 or
1. Therefore this automaton is not hard to construct using the projection

(restriction) operation of BDDs.
Determinization is done according to the subset construction. The use of

the apply operation is similar to tha t of the product construction except

tha t leaves hold subsets of states.

104 Henriksen et aL

6.4 Minimizing

Minimization seems essential in order to obtain an effective decision pro-
cedure. For example, if a tautology occurs during calculations, then it is
obviously a good idea to represent it using a one-state automaton instead
of an automaton with e.g. 10,000 states.

The difficulty in obtaining an efficient minimization algorithm stems from
the requirement to keep our shared BDDs in reduced form. Recall that a
reduced BDD has no duplicate terminals or nonterminals. Such a BDD
is just a specialized form of directed acyclic graph that has been com-
pressed by combining structurally isomorphic nodes (see Aho, Hopcroft,
and Ullman [AHU74] or Section 3.4 of Cai and Palge [CP94]). In addition,
a reduced BDD has no redundant tests [Bry92]. Such a BDD is obtained by
repeatedly pruning every internal vertex v that has both outedges leading
to the same vertex w, and redirecting all of v's incoming edges to w.

Suppose that the shared BDD had all duplicate terminals and nonter-
minals eliminated, but did not have any of its redundant tests eliminated.
Then it would be easy to treat the deterministic finite automaton com-
bined with its BDD machinery as a single automaton whose states were
the union of the BDD nodes and the original automaton states, and whose
alphabet were zero and one. If this derived automaton had n states, then it
could be minimized in O(n logn) steps using Hopcroft's algorithm [Hop71].
Unfortunately, such an automaton would be too big.

For our purposes, the space savings due to redundant test removal is
of crucial importance. But the important 'skip' states that arise from
redundant test removal complicates minimization. Our algorithm com-
bines techniques based on [AHU74] with new methods adapted for use
with the shared BDD representation of the transition function. For a fi-
nite automaton with n states and a transition function represented by m
BDD nodes, the algorithm presented here achieves worst-case running time
O(max(n, re)n).

Terminology

A partition P of a finite set U is a set of disjoint nonempty subsets of U
such that the union of these sets is all of U. The elements of P are called its
blocks. A refinement Q of P is a partition of U such that any block of Q is
a subset of a block of 7 ~. If q E U, then [q]~ denotes the block of partition
P containing the element q, and when no confusion arises, we drop the
subscript.

Let A = (Q, •k, i0, 6, F) denote a deterministic finite automaton, and
let P be a partition of Q, and Q a refinement of P. A block B of Q
respects the partition P if for all q, q' E B and for all b e B k, [5(q, b)]~ =
[6(q', b)]~,. Thus, ~ cannot distinguish between the elements in B relative
to the partition P. A partition Q respects P if every block of • respects

Mona: Monadic Second-Order Logic in Practice 105

9 . A parti t ion is stable if it respects itself. The coarsest, stable partition
Q respecting P is a unique parti t ion such that any other stable part i t ion
respecting ~ is a refinement of Q.

The ref inement algorithm

The minimal automaton A' recognizing L(A) is isomorphic to the au-
tomaton defined by the coarsest stable partit ion QA of Q respecting the
parti t ion {F, Q \ F} . The states of A ~ are QA the transition function 6 ~ is

defined by ~'([p], b) = [~(p, b)], the initial state is [io], and the set of final

states is F ' = {[f][f e F}.
Now we are ready to sketch our minimizing algorithm, which works by

gradually refining a current partition.

�9 First split Q into an initial partit ion Q = {F, Q \ F}. Note that QA
is a refinement of this partition.

�9 Now let P be the current partition. We construct the new current
parti t ion Q so that it respects P while QA remains a refinement of
Q.

For each state q in Q consider the functions fq : ~k __~ p defined by
]q(b) = [~(q, b)]7, for all q and b. Now let the equivalence relation =-

be defined as q = q' ~=~ (fq = fq, A [q]~ = [q']7~). The new parti t ion
Q then consists of the equivalence classes of --. By definition of the

fq's, Q respects P and is the coarsest such parti t ion implying the

invariant.

We repeat this process until P = Q.

It can be shown that the final partition Q is obtained in at most n
iterations and equals QA. The preceding algorithm is an abstraction of the

initial naive algorithm presented in Section 4.13 of [AHU74].
The difficult step in the above algorithm is the splitting according to

the functions fq. However, we can here elegantly take advantage of the
shared BDD representation. The idea is to construct a BDD representing

the functions fq for each state. We represent a parti t ion of the states Q, by
associating with each state q ~ Q a block id identifying its block. The BDD
for fq is calculated by performing a unary apply on the collection of shared
BDDs, where the value calculated in a leaf is the block id. By a suitable

generalization of the standard algorithm, it is possible to carry out these

calculations while visiting each node at most once (assuming that hashing

takes constant time). Thus the split operation requires time O(max(n, m)).
Since we use shared BDDs, we may use the results of the apply operations
directly as new block ids.

106 Henriksen et al.

The splitting step without hashing

An alternative implementation of the splitting step is possible tha t

achieves the same worst case time bound O(max(n, m)) without hashing.

I t is instructive to first consider the case in which the shared BDDs are re-

duced only by eliminating redundant nodes but not by eumluet~ul$ lvuull-
dant tests. In this case the BDD may be regarded as an acydic deterministic
automaton D whose states are the BDD nodes, and whose alphabet is zero

and one. Consider a parti t ion P~ of the BDD nodes defined by equivalence
classes of the following relation. Two BDD leaves are equivalent iff their

next states belong to the same block of parti t ion ~v. All decision nodes of
the BDD are equivalent. The coarsest stable parti t ion Q' that respects :P~
for automaton D can be solved in O (m) worst case time by B.evuz [Rev92]
and Cai and Paige [CP94], Sec. 3.4. Finding the equivalence classes of states

in Q that point to BDD roots belonging to the same block of Q~ (i.e., find-

ing the coarsest parti t ion Q that respects P) solves the splitting step in

the original automaton in time O(n) .

In the case of fully reduced BDDs, the splitting step is somewhat harder,
and a closer look at the BDD structure is needed. For each decision node

v, v . i n d e x represents a position in a string of length k such that v . index <

(v.lo).index, A v . i ndex < (v .h i) . index . For each BDD leafy we have v . index

= k, and let v.lo = v .hi be an automaton state belonging to Q. For each

BDD node v we define function f v : B k --+ P much like the way functions fq

were defined earlier on automaton states. For each nonleaf v, f v is defined

by the rule fv(b) = f~.to(b) i f by.index ---- 0; f~(b) = fv.hi(b) if bv.lndex ---- 1.

For each leaf v, f v is a constant function that maps every argument into

an element (i.e., a block) of partit ion P.
If q E Q is an automaton state that points to a BDD root v, then, dearly,

fq = f~. I t is also not hard to see that for any two nonleaf BDD nodes v
and v ~, fv = fv, iff either of the following two conditions hold:

1. v . i n d e x = v~.index ^ fv.ni = f v ' . h i ^ f v . l o = fv'.lO, or

2. fv.hi = fv.io = fv A v.hi = v'.

This leads to the more concrete equivalence relation = on BDD nodes

defined as v = v ~ iff f v = fv, iff either,

1. v . i n d e x = v ' . i n d e z = k ^ [v.lo]7, = [v'.lo]~,, or

2. v . i n d e x = v~.index < k ^ v .hi = v~.hi ^ v.lo = v~.io, or

3. v . i n d e x < k A v. lo ==. v .hi = v ~.

Note that two BDD nodes of different index can be equivalent only by

condition (3). Note also, that we can strengthen condition (2) with the

Mona: Monadic Second-Order Logic in Practice 107

additional constraint v.hi ~ v.lo without modifying the equivalence rela-

tion. These two observations allow us to construct the equivalence classes
inductively using a bottom-up algorithm that processes all BDD nodes of

the same index in descending order, proceeding from leaves to roots. The

steps are sketched just below.

. In a linear time pass through all of the BDD nodes, place each node

in a bucket according to its index. An array of k + 1 buckets can be

used for this purpose.

. Next, distribute the BDD leaves (contained in the bucket associated

with index k) into blocks whose nodes all have lo successors that
belong to the same block of P. This takes time proportional to the

number of leaves.

. For j = k - 1,..., 0 examine each node v with v.index = j. Both nodes

v.lo and v.hi have already been examined, and have been placed into

blocks. Hence, a streamlined form of multiset sequence discrimination
[CP94] can be used to place v either in an old block (according to
condition (3)) or a new block (according to condition (2)) for nodes

whose children belong pair-wise to the same old block.

The preceding algorithm computes the equivalence classes as the final

set of blocks in O(m) time. As before, we can use these equivalence classes
to find the coarsest partition Q that respects P, which solves the splitting
step in the original automaton, in time O(n). Thus, the total worst-case

time to solve the splitting step is O(max(n,m)) (without hashing).
In an efficient implementation of finite-state automaton minimization,

when the splitting algorithm above is is performed repeatedly, we only

need to perform the first step of that algorithm (i.e., sorting BDD nodes
according to index) once. Thus, the full DFA minimization algorithm runs

in worst case time O(max(n, re)n) without hashing.

B D D r e d u c t i o n w i t h o u t h a s h i n g

Sieling and Wegener[SW93] were the first to compress an arbitrary BDD
into fully reduced form in linear time. Their result depended on a radix

sort, which is closely related to the multiset discrimination technique that
we use. However, their algorithm needs to maintain integer representations

of BDD nodes, and it utilizes two arrays of size m. We can show how

our algorithm just described can be modified to fully reduce an arbitrary
BDD in worst case time linear in the number of BDD nodes (without

hashing), but with expected auxiliary space k times smaller than Sieling

and Wegener's algorithm.
Let Q~ be the partition of BDD nodes produced by the algorithm. The

states of the reduced BDD are the blocks in Q*. For each block B E Q~,

108 Henriksen et al.

B . i n d e x is the largest index of any BDD node contained in B. Let v ~ be
any node belonging to B of maximum index. If v ~ is a BDD leaf, then B is
a leaf in the reduced BDD (i.e., B . i n d e x = k), and B . lo = B .h i = vn.lo.

Otherwise, B. lo = [v~.lo]Q, and B .h i = [vl.hi]Q,. The hi and lo successor
blocks can be determined during the multiset sequence discrimination pass
when a new block is first created. The index of the first node placed in a
newly created block is the index for that blocK.

What distinguishes our algorithm from that of Sieling and Wegener is
that our buckets in steps (2) and (3) are assodated with actual BDD nodes
(inside the main BDD data structure). Their buckets are associated with
components of two auxiliary arrays of size m each. If we replaced each
equivalence class by a single witness (as they do) each iteration of step
(3), then our auxiliary space would be bounded by the maximum number
of BDD nodes that have the same index. If BDD nodes were uniformly
distributed among indexes, then this number is m / k , which would give us
a k-fold advantage in auxiliary space over their algorithm. We expect a
minor constant factor advantage in time as well, because our BDD nodes
are represented by their locations instead of by computed integer values,
and because we avoid array access in favor of less expensive list and pointer

processing.
Work is in progress for exploring the "processing the smaller halff' idea

found in e.g. [PT87]. We should mention, however, that the current imple-
mentation of the minimization algorithm in practice seems to run faster
than the procedures for constructing product and subset automata.

6 . 5 MONA f e a t u r e s

MONA is enriched by facilities similar to those of programming languages.

Predicates

The user may declare predicates that can later be instantiated. For ex-
ample, if the predicate P is declared by P (X , x) = (0 = x A z E X) ,

then P can be instantiated as the formula P(CY, p ~ 1) with the obvious
meaning.

Libraries

MONA supports creation of user-defined libraries of predicates.

Separate trans la t ion

MONA automatically stores the automaton for a translated predicate. If
there are n free variables, then there may be up to n! different automata
corresponding to different orderings of variables in the BDD representation.

Mona: Monadic Second-Order Logic in Practice 109

6.6 To be done

In the current implementation, variables are ordered in their BDDs accord-
ing to the level of syntactic nesting in the formula; i.e. innermost variables
receive the highest index. This strategy is obviously often far from optimal
and we are working on implementing heuristics to improve variable order-
ing. Another orthogonal optimization strategy is to reorder the product
constructions by heuristics. In both cases, however, it is not hard to see
that finding optimal orderings is NP-complete.

Acknowledgements

We are thankful to Vladimiro Sassone for comments on an earlier version,
and to Andreas Potthoff for his advice based on the M2L implementation
at the University of Kiel.

7 REFERENCES

[AHU74] A. Aho, J. Hopcroft, and J. Ullman. Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

[BK95] D. Basin and N. Klarlund. Hardware verification using monadic
second-order lo~c. Technical Report RS-96-7, BRICS, 1995. To
appear in CAV '95 Proceedings.

[Bry86] R.E. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computers, C-35(8):677-691,
Aug 1986.

[Bry92] R. E. Bryant. Symbolic
binary-decision diagrams.
318, September 1992.

Boolean manipulation with ordered
ACM Computing surveys, 24(3):293-

[BSV93] F. Balarin and A.L. Sangiovanni-Vincentelli. An iterative ap-
proach to language containment. In Computer Aided Verifica-
tion, CAV '93, LNCS 697, pages 29-40, 1993.

[CP94] J. Cai and R. Palge. Using multiset discrimination to solve
language processing problems without hashing, to appear
Theoretical Computer Science, 1994. also, U. of Copen-
hagen Tech. Report, DIKU-TR Num. D-209, 94/16, URL
ftp: / / ftp.diku.dk / diku /semantics /papers /D- 209.ps.Z.

[CR94] M-M Corsini and A. Rauzy. Symbolic model checking and con-
straint logic programming: a cross-fertilisation. In 5th. Europ.
Syrup. on Programming, LNCS 788, pages 180-194, 1994.

110 Henriksen et al.

[GF93]

[Hop71]

[JJK94]

[KM89]

[PTS7]

[Rev92]

[RS93]

[Ste93]

[SW93]

[Tho90]

A. Gupta and A.L. Fisher. Parametric circuit representation us-
ing inductive boolean functions. In Computer Aided Verification,
CAV '93, LNCS 697, pages 15-28, 1993.

J. Hopcroft. An n log n algorithm for minimizing states in a finite
automaton. In Z. Kohavi and Paz A., editors, Theory o] machines
and ,~,'~ - 1Ro_l 9A Academic Press, 1.q71. ~ump~,~,~,~,~, pages

J. Jensen, M. JCrgensen, and N. Klarltmd. Monadic second-order
logic for parameterized verification. Technical report, BRICS Re-
port Series RS-94-10, Department of Computer SOence, Univer-
sity of Aarhus, 1994.

B. Kurshan and K. McMillan. A structural induction theorem for
processes. In Proe. Eigth Syrup. Princ. of Distributed Computing,
pages 239-247, 1989.

R. Palge and R. Tarjan. Three efficient algorithms based on
partition refinement. SIAM Journal of Computing, 16(6), 1987.

D. Revuz. Minimisation of acyclic deterministic automata in
linear time. Theoretical Computer Science, 92(1):181-189, 1992.

J-K. Rho and F. Somenzi. Automatic generation of network in-
variants for the verification of iterative sequential systems. In
Computer Aided Verification, CAV '93, LNCS 697, pages 123-
137, 1993.

M. Steinmann. Ubersetzung yon logischen Ausdriicken in Bau-
mautomaten: Entwicklung eines Verfahrens und seine Implemen-
tierung. Unpublished, 1993.

D. Sieling and I. Wegener. Reduction of OBDDs in linear time.
IPL, 48:139-144, 1993.

W. Thomas. Automata on infinite objects. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B,
pages 133-191. MIT Press/Elsevier, 1990.

