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ABSTRACT 1 The purpose of this article is to introduce Monadic Second- 

order Logic as a practical means of specifying regularity. The logic is a 

highly succinct alternative to the use of regular expressions. We have built a 

tool MONA, which acts as a decision procedure and as a translator to finite- 

state automata. The tool is based on new algorithms for minimizing finite- 

state automata that use binary decision diagrams (BDDs) to represent 

transition functions in compressed form. A byproduct of this work is an 

algorithm that  matches the time but improves the space of Sieling and 

Wegener's algorithm to reduce OBDDs in linear time. 

The potential applications are numerous. We discuss text processing, Boole- 

an circuits, and distributed systems. Our main example is an automatic 
proof of properties for the "Dining Philosophers with Encyclopedia" ex- 

ample by Kurshan and MacMillan. We establish these properties for the 
parameterized case without the use of induction. 

Our results show that,  contrary to common beliefs, high computational 

complexity may be a desired feature of a specification formalism. 
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1 Introduction 

In computer  science, regularity amounts t o  the concept that  a class of 
structures is recognized by a finite-state device. Often phenomena a re  so 
complicated that  their regularity either 

�9 may be overlooked, as in the case of parameterized verification of dis- 

t r ibuted finite-state systems with a regular communication topology; 
or 

�9 may not be exploited, as in the case when a search pat tern in a text  
editor is known to be regular, but  in practice inexpressible as a regular 
expression. 

In this paper we argue that  the Monadic Second-Order Logic or M~L can 

help in practice to identify and to use regularity. In M2L, one can directly 

mention positions and subsets of positions in the string. This feature dis- 
tinguishes the logic from regular expressions or automata.  Together with 

quantification and Boolean connectives, an extraordinary succinct formal- 
ism arises. 

Although it has been known for thirty-five years tha t  M2L defines regular 

languages (see [Tho90]), the translator from formulas to automata  that  we 
describe in this article appears to be one of the first implementations. 

The reason such projects have not been pursued may be the staggering 

theoretical lower-bound: any decision procedure is bound to sometimes re- 

quire as much time as a stack of exponentials that  has height proportional 
to the length of the formula. 

It is often believed that  the lower the computational complexity of a 
formalism is, the more useful it may be in practice. We want to counter 
such beliefs in this article - -  at least for logics on finite strings. 

1.1 W h y  use logic? 

Some simple finite-state languages easily described in English call for con- 

voluted regular expressions. For example, the language L2a2b of all strings 
over Z = (a,  b, c} containing at least two occurrences of a and at least two 

occurrences of b seems to require a voluminous expression, such as 

Z* aZ* aZ*bZ*bE* 

U E*aZ*bZ*aZ*bZ* 

U Z*aZ*bZ*bE*aZ* 

U E*bE*bZ*aZ*aZ* 

U Z*bE*aZ*bZ*aZ* 

U Z*bZ*aE*aE*bE*. 

If we added n to the operators for forming regular expressions, then the lan- 
guage L2a2b could be expressed more concisely as (~.*aE*aE*)n(E*bE*bE*). 
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Even with this extended set of operators, it is often more convenient to ex- 

press regular languages in terms of positions and corresponding letters. For 
example, to express the set Laafterb of strings in which every b is followed 
by an a, we would like a formal language allowing us to write something 

like 

"for every position p, if there is a b in p then for some position 

q after p, there is an a in q." 

The extended regular languages do not seem to allow an expression that  
very closely reflects this description - -  although upon some reflection a 
small regular expression can be found. But in M2L we can express Laafter b 

by a formula 

Vp: 'b ' (p)  =~ 3q: p < q  A 'a'(q) 

(Here the predicate ~b~(p) means "there is a b in position p" .) In general, we 
believe that  many errors can be avoided if logic is used when the description 

in English does not lend itself to a direct translation into regular expressions 
or automata.  However, the logic can easily be combined with other methods 
of specifying regularity since almost any such formalism can be translated 

with only a linear blow-up into M2L. 
Often regularity is identified by means of projections. For example, if 

Ltran 8 is regular on a cross-product alphabet E x Z (e.g. describing a pa- 
rameterized transition relation, see Section 5) and Lsta~t is a regular lan- 

guage on Z describing a set of start  strings, then the set of strings that  can 
be reached by a transition from a start  string is r2(L~an8 N ~r~-l(Ls~rt)), 
where ~rl and ~r2 are the projections from (Z x E)* to the first and sec- 
ond component. Such language-theoretic operations can be very elegantly 

expressed in M2L. 

1.2 Our  results 

In this article, we discuss applications of M2L to text  processesing and the 
description of parameterized Boolean circuits. Our principal application 
is a new proof technique for establishing properties about parameterized, 

distributed finite-state systems with regular communication topology. We 
illustrate our method by showing safety and liveness properties for a nov_- 

trivial version of the Dining Philosophers' problem as proposed in [KM89] 

by Kurshan and MacMillan. 
We present MONA, which is our tool that  translates formulas in M2L 

to finite-state machines. We show how BDDs can be used to overcome 
an otherwise inherent problem of exponential explosion. Our minimization 

algorithm works very fast in practice thanks to a simple generalization of 

the unary apply operation of BDDs. 
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1.3 Comparisons to other work 

Parameterized circuits are described using BDDs in [GF93]. This method 
relies on formulating inductive steps as finite-state devices and does not 
provide a single specification language. The work in [RS93] is closer in 
spirit to our method in that  languages of finite strings are used although 
not as part  of a logical framework. In [BSV93], another approach is given 
based on iterating abstractions. The parameterized Dining Philosopher's 
problem is solved in [KM89] by a finite-state induction principle. 

A tool for M2L on finite, binary trees has been developed at the Uni- 
versity of Kiel [Ste93]. Apparently, this tool has only been used for very 
simple examples.  

In [CR94], a programming language for finite domains based on a fixed 
point logic is described and used for verification of non-parameterized finite 
systems. 

1.4 Contents 

In Section 2, we explain the syntax and semantics of M2L on strings. We 
recall the correspondence to automata theory in Section 3. We give several 
applications of M2L and the tool in Section 4: text patterns, parameterized 
circuits, and equivalence testing. Our main example of parameterized verifi- 
cation is discussed in Section 5. We give an overview of our implementation 
in Section 6. 

2 The Monadic Second-order Logic on Strings 

Let $ be an alphabet and let w be a string over Z. The semantics of the 
logic determines whether a dosed M2L formula r holds on w. The language 
L(r denoted by r is the set of strings that  make r hold. Assume now that  
w has length n and consists of letters aoa l . . . a , - l .  The positions in w are 
then 0,...,n - 1. We can now describe the three syntactic categories of M2L 
on strings. 

A position term t is either 

�9 the constant 0 (which denotes the position 0); 

�9 the constant $ (which denotes the last position, i.e. n - 1); 

�9 a position variable p (which denotes a position i); 

�9 of the form t (9 i (which denotes the position j + i rood n, where j is 
the interpretation of t); or 

�9 of the form t (9 i (which denotes the position j - i rood n, where j is 
the interpretation of t); 
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(Position terms are only interpreted for non-empty strings). 

A position set  t erm T is either 

�9 the constant 0 (which denotes the empty set); 

�9 the constant al l  (which denotes the set (0, ..., n - 1}); 

�9 a position set variable P (which denotes a subset of positions); 

93 

�9 of the form T 1 0  T2, T1 A T2, or CT1 (which are interpreted in the 
natural  way); 

�9 of the form T + i (which denotes the set of positions in T shifted right 

by an amount of i); or 

�9 of the form T - i (which denotes the set of positions in T shifted left 

by an amount of i); 

A formula r is either of the form 

�9 'a~(t) (which holds if letter ai in w = aoal . . .  is a, where i is the 
interpretation of t); 

�9 tl  = t2, tl  < t2 or tl _~ t2 (which are interpreted in the natural  way); 

�9 T1 = T2, T1 C T2, or t C T (which are interpreted in the natural way); 

�9 -~r r A r r V r r =~ r or r ~=~ r (where r and r are 
formulas, and which are interpreted in the natural way); 

�9 3p : r (which is true, if there is a position i such that  r holds when 
i is substituted for p); 

�9 Vp : r (which is true, if for all positions i, r holds when i is substituted 
for p); 

�9 3 P  : r (which is true, if there is a subset of positions I such that  r 
holds when I is substituted for P);  or 

�9 VP : r (which is true, if for all subsets of positions I ,  r holds when I 
is substituted for P);  

3 From M2L to Au toma ta  

In this section, we recall the method for translating a formula in M2L to an 

equivalent finite-state automaton (see [Tho90] for more details). Note that  

any formula ~b can be interpreted, given a string w and a value assignment  

Z that  fixes values of the free variables. If r then holds, we write w, Z ~ r 

The key idea is tha t  a value assignment and the string may be described 
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together as a word over an extended alphabet consisting of E and extra 
binary tracks, one for each variable. By structural induction, we then define 
for each formula an automaton that  exactly recognizes the words in the 
extended alphabet corresponding to pairs consisting of a string and an 
assignment tha t  satisfy the formula. 

Example 

Assume that  the free variables are 7) = {P1, P2} and that  E = {a, b}. 
Let us consider the string w = abaa and value assignment 

z = [Pl {0, 2}, 0]. 

The set Z(P1) = {0, 2} can be represented by the bit pat tern 1010, since 
the numbered sequence 

1 0 1 0 

0 1 2 3 

defines tha t  0 is in the set (the bit in position 0 is 1), 1 is not in the set 
(the bit in position 1 is 0), etc. Similarly, the bit pat tern 0000 describes 
z(P ) = 

If these patterns are laid down as extra "tracks" along w, we obtain an 
extended word a, which may be depicted as: 

a b a a 

1 0 1 0 

0 0 0 0 

Technically, we define a = a o . . . a 3  as the word (a,l,O)(b,O,O)(a,l,O) 

(a ,0,0)  over the alphabet Z x ]~ x B of extended letters, where B = {0, 1} 
is the set of t ru th  values. 

This correspondence can be generalized to any w and any value assign- 
ment for a set of variables P (which can all be assumed to be second-order). 

By structural induction on formulas, we construct automata  A r over 
alphabet Z x B ~ - w h e r e  7 ) = {P1," "", Pk} is any set of variables containing 
the free variables in C--satisfying the fundamental correspondence: 

w, Z ~ r iff (w, Z) �9 L(A r 

Thus A r accepts exactly the pairs (w,Z)  that  make r true. 

Example 

Let ~b be the formula Pi = Pj + 1. Thus when r holds, Pi is represented 
by the same bit pat tern as tha t  of Pj but  shifted right by one position. 
This can be expressed by the automaton Ar 
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aiffiO andaJ=O ~ a i = l  and aJ=l  

a i = l  and aJ--0 

In this drawing, a ~ refers to the ith extra track. Thus, the automaton checks 
that the ith track holds the same bit as the j th  track the instant before. 

4 Applications 

3.1 Text patterns 

The language L2a2b of strings containing at least two occurrences of a and 
two occurrences of b can be described in M2L by the formula 

(3p1,p2 : 'a'(pl) A 'a'(p2) A Pl :tiP2) A 
(3pa,P2 : 'b'(Pl) A 'b'(p2) A Pl # P2) 

Our translator yields the minimal automaton, which contains nine states, 
in a fraction of a second. 

The language Laafterb given by the formula 

Vp:'b'(p) =~ 3q: p < q  A 'a'(q) 

is translated to the minimal automaton, which has two states, in .3 seconds. 
A far more complicated language to express is L<lapart consisting of 

every string over {a,b} such that for any prefix the number of a's and b's 
are at most one apart. When using regular expressions or M2L, one needs to 
struggle a bit, but in M2L there is a strategy for describing the functioning 
of the finite-state machine that comes to mind. 

We observe that a position p may be used to designate a prefix; for 
example, 0 denotes the prefix consisting of the first letter and $ (the last 
position) denotes the whole input string. We may now recognize a string 
in L<l~pan by identifying three sets of positions: the set P0 corresponding 
to prefixes with an equal number of a's and b's, the set P+I corresponding 
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3 

/ "~ /" ",~ '.:,,,---i 
i 

OL0 Oll 0/2 O~n--2 O~n--1 

F IGURE 1. A parameterized circuit. 

to prefixes where the number of a's is one greater than the number of b's, 

and the set P-1  corresponding to prefixes where the number of a's is one 

less than the number of b's: 

3Po,P+I ,P-1  :Po O P+I  O P - 1  = a l l  

AOr  
^ 0 ~ P+~ ~0 'a'(o) 
A 0 E P-1 ~ 'b'(O) 

A V p : ( p > O  
pEPo r h p e l E P - I )  

V ('b'(p) A p O l � 9  
ApeP+I r 'a'(p) A p O l e P o  
ApEP-1 r 'b'(p) A p O 1 E P o )  

The resulting four-state automaton is calculated in a fraction of a second. 

4.2 Pararaeterized circuits 

Assume that  we are given a drawing as in Figure I denoting a parameterized 

Boolean function. 
How do we describe the language Lex C B* of input bit patterns that  

make the output  true? From the drawing, no immediate description as a 

regular expression or finite-state automaton is apparent. In M2L, however, 

it is easy to model the outputs of the n or-gates as a second-order variable 
Q, which allows the language to be described from a direct interpretation 

of the drawing. Note that  the or-gate at position p > 0 is true if either 

there is a 1 at p - 1 or p, or in other words: p E Q r *le(p e l )  v q*(p). 
Since the output  is 1 if and only if all or-gates are 1, i.e. if Q = all, the 

language Lex is given by the formula 
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3Q : (Vp : (p = o ~ p  E Q ~ ' l ' ( p ) )  A 

(p > 0 ~ (p E Q r ' l ' ( p  G 1) v 'V(p))) A Q = all) 

The resulting automaton has three states and accepts the language (1 O 

10)*, which is the regular expression that  one would obtain by reasoning 
about the circuit. For more advanced applications to hardware verification, 

see [BK95]. 

4.3 Equivalence testing 

A closed formula r is a tautology if L(r = L(E*),  i.e. if all strings over E 

satisfy r The equivalence of formulas r and r then amounts to whether 
r r162 r is a tautology. 
Example. That  a set P contains exactly the even positions in a non-empty 

input string may be expressed in M2L by the following two rather different 
approaches: either by the formula even1 (P) = 

0 E P  A Vp:( (pEP A p < $ ~ p @ l C P )  
A ( p ~ P  A p < $ ~ p @ l E P ) ) ,  

or as a formula even2(P) -- 

P U ( P + l ) = a l l  A P M ( P + I ) = 0  A P ~ 0  

To show the equivalence of the two formulas, we check the t ru th  value 

of the bi-implication: 

V P :  evenl(P) r even2(P) 

The translation of this formula does indeed produce an automaton accept- 
ing E*, and thus verifies our claim. 

5 Dining Philosophers with Encyclopedia 

A distributed system is parameterized when the number n of processes is 

not fixed a priori. For such systems the state space is unbounded, and 

thus traditional finite-state verification methods cannot be used. Instead, 
one often fixes n to be, say two or three. This yields a finite state space 

amenable to state exploration methods. However, the validity of a property 
for n = 2, 3 does not necessarily imply that  the property holds for all n. 

A central problem in verification is automatically to validate parame- 

terized systems. One way to attack the problem is to formulate induction 
principles such that  the base case and the inductive steps can be formu- 

lated as finite-state problems. Kurshan and MacMillan [KM89] used such 
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S t ~  

Selection 

I j 
FIGURE 2. Dining Philosophers with Encyclopedia 

a method to verify safety and liveness properties of a non-trivial version of 
the Dining Philosophers example. 

In this system, symmetry is broken by an encyclopedia that  circulates 
among the philosophers. Thus each philosopher is in one of three states: 

EAT, THINK,  or READ. The global state can be described as a string 

State of length n over the alphabet Zstate = {EAT, THINK, READ}, see 
Figure 2. 

The system makes a transition according to external events that  consti- 

tute a selection. Each process is presented with an event in the alphabet 

ESelection = {eat, think, read, hungry}. Thus the selection can be viewed as 

a string Selection o v e r  ESelection, see Figure 2. As shown, all processes make 
a synchronous transition to a new global State ~ on a selection according to 

a transition relation trans(State, State ~, Selection), which is shown in Fig- 
ure 3 2 together with an auxiliary predicate 

blocking(Selection) used in its definition. Thus the new state of each pro- 

cess is dependent on its old state and on the selection events presented to 
itself and its neighbors. The transition relation is so complicated that  it is 

hard to grasp the functioning of the system. 

Fortunately, the parameterized transition relation can be translated into 
basic M2L on strings. For example, we encode State using two second-order 

variables P and Q with the convention that  

EATp(S ta te ) - -pEP ^ p E Q  
READp(State) - p ~ P ^ p E Q 
THINKp(State) ==_ p ~ P A p ~ Q 

Similarly, State' and Selection can also each be encoded using two second- 

order variables. Thus, the predicate trans(State, State ~, Selection) becomes 
a formula with six free second-order variables. 

For this distributed system there are two important  properties to verify: 

�9 Safety Property: The encyclopedia is neither lost nor replicated. Thus 

there is always exactly one process in state READ. 

2We use '# '  in the beginning of a line to indicate that this line is a comment. 



Mona: Monadic Second-Order Logic in Practice 99 

�9 Liveness Property: If no process remains in state EAT forever, then 
the encyclopedia is passed around over and over. 

In [KM89] both  properties are proved in terms of a complicated induc- 
tion hypothesis. This hypothesis is itself a distributed system, where each 

process has four states. (The Liveness Property in [KM89] is technically 

different since it is modeled in terms of selections.) 

Our strategy is fundamentally different. We cannot directly verify live- 
ness properties. But we can easily verify properties about the transition 
relation in the parameterized case and without induction as follows. 

Let r be an M2L formula about the global state. For example, we might 
consider the property that  if a philosopher eats, then his neighbors do not: 

r State) ~- Vp : EATp( State) ~ -~EATpel ( State ) A ~EATp~I (State) 

A property given as a formula r can be verified using the invariance 
principle: 

VState, State t, Selection : 
r State ) A trans( State, State ~, Selection) ~ r State'), 

which is also a formula in M2L. In this way, we have verified for the param- 

eterized case that  both Omutr and the Safety Proper ty  that  exactly one 
philosopher reads, i.e. 3!p : READp(State), are invariant. MONA verifies 

such a formula in approximately 3 seconds on a Sparc 20. 

Note that  this method does not rely on a state space exploration (which 
is impossible since the state space is unbounded). Instead, it is based on the 
Invariance Principle: to show that  a property holds for all reachable states, 

it is sufficient to show that  it holds for the initial state and is preserved 
under any transition. 

5.1 Establishing the liveness property 

The Liveness Proper ty  can be expressed in Temporal Logic as 

[~(READpel ~ 0READp),  (1.1) 

that  is, it always holds that  if philosopher p @ 1 reads, then eventually 
philosopher p reads. We must prove this property under the assumption 

that  no philosopher eats forever: 

[:](EATp ~ 0-~EATp). (1.2) 

So assume that  READpol holds. We must prove that  0R.EADp holds. There 
are two cases as follows. 
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blocking(Selection) -~ 
eatp~l (Selection) V h u n g r y p o  1 (Selection) 
V eatp01 ($el~tion) 

trans( ~tate, State', Selection) -~ 
Vp: 

# T H I N K  --~ T H I N K  : 

(THlNKp( State) A THINKp( State') =~ 
t h i n k  u (Selection) ^ -~ ( readpe  1 (Selection)) 

V 

hungryp( Selection) A blocking(Selection)) 

A 
# T H I N K  --+ E A T  : 

(THlNgp( State) A EATp( State') 
hungryp(Selection) A -(blocking(Selection))) 

A 
# T H I N K  -~ R E A D  : 

(THINKp( State) A REA Dp( State') =~ 
thinkr,( 2?election ) A readpO l ( Selection) ) 

A 
# E A T  -+ T H I N K  : 

(EATp( State) A THINKp( State') 
thinkp( Selection) ^ - .(readp01 (Selection))) 

A 
# E A T  -+ E A T  : 

(EATp(State) A EATp(State') 
eatp( Selection) ) 

A 
# E A T  -+ R E A D  : 

(EATp(State) A READp(State') =~ 
thinkp( Selection) A readpo  1 (Selection)) 

A 
# R E A D  --r T H I N K  : 

(READp(~tate) A READp(State ~) =~ 
readp( Selection) A thinkpe l ( Selection) ) 

A 
# R E A D  --+ E A T  : 

(READp(State) ^ EATp(State') 
false) 

A 

# R E A D  --r R E A D  : 

(READp(State) A READp(bXate')=~ 
readp( Selection) A - - ( th inkp~l  (Selection))) 

F I G U R E  3. T h e  t r a n s i t i o n  r e l a t i o n  
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�9 Case EATp holds. By asssumption (1.2), there is an instant when 

EATp A -~ O EATp holds. Thus if 

R.EADpel A EATp A -~ O EATp ~ OR~ADp (1.3) 

is a valid property of the transition system, 0EATp holds. In fact, we 
verified using MONA that (1.3) indeed holds. 

�9 Case ~EATp holds. If EATp becomes true, then use the previous case. 
Otherwise, -~EATp continues to hold. Now, by the assumption (1.2) 
at some point ~EATp~I will hold. We then use the property 

READpol A -~EATp A -~OEATp$1 ~ OREADp V OEATp, (1.4) 

which we have also verified using MONA, to show that eventually 
READp holds (or eventually EATp holds, which contradicts the as- 
sumption that -~EATp continues to hold). 

6 Implementation. 

MONA is our implementation of the decision procedure, which translates 
formulas of M2L to finite-state automata as outlined in Section 3. Our tool 
is implemented in Standard ML of New Jersey. A previous version of MONA 
was written in C with explicit garbage collection and based on representing 
transition functions in a conjunctive normal form. Our present tool runs 
up to 50 times faster due to improved algorithms. 

6.1 Representation of automata 

Since the size of the extended alphabet grows exponentially with the num- 
ber of variables, a straightforward implementation based on explicitly rep- 
resenting the alphabet would only work for very simple examples. In- 
stead, we represent the transition relation using Binary Decision Diagrams 
(BDDs) [Bry92, Bry86]. In this way, the alphabet is never explicitly rep- 
resented. For the external alphabet of ASCII-characters, we choose an 
encoding based on seven extra tracks holding the binary representation. 
Thus, character classes such as Ea-zh-Z] become represented as very sim- 
ple BDDs. 

A deterministic automaton A is represented as follows. The state space is 
Q - (0,1 . . . .  , n - 1}, where n is size of the state space; B k is the extended 
alphabet; io E Q is the initial state; ~ : Q • •k _+ Q is the transition 
function; and F C Q is the set of accepting states. We use a bit vector 
of size n to represent F and an array containing n pointers to roots of 
multi-terminal BDDs representing (f. A leaf of a BDD holds the integer 
designating the next state. An internal node v is called a decision node and 
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Initial state: 0 0 

Accepting states: false 
Transition function: / 

1 2 

false ~'ue 
| 

hi 

1o 

FIGURE 4. BDD automaton representation 

contains an index denoted v.index, where 0 _< v.index < k, and high and 
low successors v.hi and v.lo. If b is a sequence of k bits, i.e. b E B k , then 
6(q, b) is found by looking up the qth entry in the array and following the 
decision nodes according to b until a leaf is reached (node v is followed by 
selecting the high successor if the v.inde:rth component of b is 1 and the 
low successor if it is 0). 

For example, the following finite automaton accepting all strings over B 2 
with at least two occurrences of the letter "11" 

00,01,10 00,01,10 00,01,10,11 

could be represented as in Figure 4. 
The use of BDDs makes the representation very succinct in comparison 

to our earlier at tempt to handle automata with large alphabets [J,IK94]. In 
most cases, we avoid the exponential blow-up associated with an explicit 
representation of the alphabet. We shall see that  all operations on automata 
needed can be performed by means of simple BDD operations. 

Another possibility would have been to use a two-dimensional array of 
ordinary BDDs. But that  would complicate the operations on automata,  
because many more BDD operations would be needed. 
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6.2 Rewriting forvnulas 

The first step in the translation consists of rewriting formulas so as to 

eliminate nested terms. Then all terms are variables and all formulas are 

among a small number of basic formulas. 

6.3 Translating formulas 

The translation is inductive. All automata  corresponding to basic formulas 

have a small number of states (less than five!). 
The  composite formulas are translated by use of operations on automata.  

For --r ~bl A 02 and 3 P  : 0, which are the ones left after rewriting, we need 

the operations of complement, product,  projection, and determinization. 

C o m p l e m e n t  

Complementation is done by simply negating the bit vector representing 

the set of final states. 

P r o d u c t  

The product  automaton A of two automata  A1 and A2 is 

(Q1 • Q2,Bk,(~I,~2),~, F1 • F2), 

where 5((ql, q2), b) = (61(ql, b), 62(q2, b)). We are careful, however, to con- 

sider only those states of A that  are reachable from (il, i2). 
When considering a new state (qx, q2), we need to construct the BDD 

representing the corresponding part  of the transition function 5. We use the 

binary apply operation on the BDDs corresponding to ql and q2. For each 
pair of states (ql, q,)  encountered in a pair of leaves, we associate a unique 
integer in the range {0, 1 , . . .  N - 1}, where N is the number of different 

pairs considered so far. In this way, the new BDDs created conform with 

the standard representation. 

P r o j e c t i o n  a n d  d e t e r m i n i z a t i o n  

Projection is the conversion of an automaton over B ~+1 to a nondeter- 
ministic automaton over B k necessary for translating a formula of the form 

3 P  : ~. On any letter b E Bk, there are two transitions possible in the 

nondeterministic automaton corresponding to whether the P-track is 0 or 
1. Therefore this automaton is not hard to construct using the projection 

(restriction) operation of BDDs. 
Determinization is done according to the subset construction. The use of 

the apply operation is similar to tha t  of the product  construction except 

tha t  leaves hold subsets of states. 
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6.4 Minimizing 

Minimization seems essential in order to obtain an effective decision pro- 
cedure. For example, if a tautology occurs during calculations, then it is 
obviously a good idea to represent it using a one-state automaton instead 
of an automaton with e.g. 10,000 states. 

The difficulty in obtaining an efficient minimization algorithm stems from 
the requirement to keep our shared BDDs in reduced form. Recall that  a 
reduced BDD has no duplicate terminals or nonterminals. Such a BDD 
is just a specialized form of directed acyclic graph that  has been com- 
pressed by combining structurally isomorphic nodes (see Aho, Hopcroft, 
and Ullman [AHU74] or Section 3.4 of Cai and Palge [CP94]). In addition, 
a reduced BDD has no redundant tests [Bry92]. Such a BDD is obtained by 
repeatedly pruning every internal vertex v that  has both outedges leading 
to the same vertex w, and redirecting all of v's incoming edges to w. 

Suppose that  the shared BDD had all duplicate terminals and nonter- 
minals eliminated, but did not have any of its redundant tests eliminated. 
Then it would be easy to treat  the deterministic finite automaton com- 
bined with its BDD machinery as a single automaton whose states were 
the union of the BDD nodes and the original automaton states, and whose 
alphabet were zero and one. If this derived automaton had n states, then it 
could be minimized in O(n logn) steps using Hopcroft's algorithm [Hop71]. 
Unfortunately, such an automaton would be too big. 

For our purposes, the space savings due to redundant test removal is 
of crucial importance. But the important 'skip' states that  arise from 
redundant test removal complicates minimization. Our algorithm com- 
bines techniques based on [AHU74] with new methods adapted for use 
with the shared BDD representation of the transition function. For a fi- 
nite automaton with n states and a transition function represented by m 
BDD nodes, the algorithm presented here achieves worst-case running time 
O(max(n, re)n). 

Terminology 

A partition P of a finite set U is a set of disjoint nonempty subsets of U 
such that  the union of these sets is all of U. The elements of P are called its 
blocks. A refinement Q of P is a partition of U such that  any block of Q is 
a subset of a block of 7 ~. If q E U, then [q]~ denotes the block of partition 
P containing the element q, and when no confusion arises, we drop the 
subscript. 

Let A = (Q, •k, i0, 6, F)  denote a deterministic finite automaton, and 
let P be a partition of Q, and Q a refinement of P.  A block B of Q 
respects the partition P if for all q, q' E B and for all b e B k, [5(q, b)]~ = 
[6(q', b)]~,. Thus, ~ cannot distinguish between the elements in B relative 
to the partition P. A partition Q respects P if every block of • respects 
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9 .  A parti t ion is stable if it respects itself. The coarsest, stable partition 
Q respecting P is a unique parti t ion such that  any other stable part i t ion 
respecting ~ is a refinement of Q. 

The ref inement algorithm 

The minimal automaton A' recognizing L(A) is isomorphic to the au- 
tomaton defined by the coarsest stable partit ion QA of Q respecting the 
parti t ion {F, Q \ F} .  The states of A ~ are QA the transition function 6 ~ is 

defined by ~'([p], b) = [~(p, b)], the initial state is [io], and the set of final 

states is F '  = {[f][f  e F}. 
Now we are ready to sketch our minimizing algorithm, which works by 

gradually refining a current partition. 

�9 First split Q into an initial partit ion Q = {F, Q \ F}.  Note that  QA 
is a refinement of this partition. 

�9 Now let P be the current partition. We construct the new current 
parti t ion Q so that  it respects P while QA remains a refinement of 
Q. 

For each state q in Q consider the functions fq : ~k __~ p defined by 
]q(b) = [~(q, b)]7, for all q and b. Now let the equivalence relation =- 

be defined as q = q' ~=~ (fq = fq, A [q]~ = [q']7~). The new parti t ion 
Q then consists of the equivalence classes of --. By definition of the 

fq's, Q respects P and is the coarsest such parti t ion implying the 

invariant. 

We repeat this process until P = Q. 

It can be shown that  the final partition Q is obtained in at most n 
iterations and equals QA. The preceding algorithm is an abstraction of the 

initial naive algorithm presented in Section 4.13 of [AHU74]. 
The difficult step in the above algorithm is the splitting according to 

the functions fq. However, we can here elegantly take advantage of the 
shared BDD representation. The idea is to construct a BDD representing 

the functions fq for each state. We represent a parti t ion of the states Q, by 
associating with each state q ~ Q a block id identifying its block. The BDD 
for fq is calculated by performing a unary apply on the collection of shared 
BDDs, where the value calculated in a leaf is the block id. By a suitable 

generalization of the standard algorithm, it is possible to carry out these 

calculations while visiting each node at most once (assuming that  hashing 

takes constant time). Thus the split operation requires time O(max(n,  m)).  
Since we use shared BDDs, we may use the results of the apply operations 
directly as new block ids. 
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The splitting step without hashing 

An alternative implementation of the splitting step is possible tha t  

achieves the same worst case time bound O(max(n,  m)) without hashing. 

I t  is instructive to first consider the case in which the shared BDDs are re- 

duced only by eliminating redundant nodes but  not by eumluet~ul$ lvuull- 
dant tests. In this case the BDD may be regarded as an acydic  deterministic 
automaton D whose states are the BDD nodes, and whose alphabet is zero 

and one. Consider a parti t ion P~ of the BDD nodes defined by equivalence 
classes of the following relation. Two BDD leaves are equivalent iff their 

next states belong to the same block of parti t ion ~v. All decision nodes of 
the BDD are equivalent. The coarsest stable parti t ion Q' that  respects :P~ 
for automaton D can be solved in O ( m )  worst case time by B.evuz [Rev92] 
and Cai and Paige [CP94], Sec. 3.4. Finding the equivalence classes of states 

in Q that  point to BDD roots belonging to the same block of Q~ (i.e., find- 

ing the coarsest parti t ion Q that  respects P)  solves the splitting step in 

the original automaton in time O(n) .  

In the case of fully reduced BDDs, the splitting step is somewhat harder, 
and a closer look at the BDD structure is needed. For each decision node 

v, v . i n d e x  represents a position in a string of length k such that  v . index  < 

(v.lo).index, A v . i ndex  < (v .h i ) . index .  For each BDD leafy we have v . index  

= k, and let v.lo = v .hi  be an automaton state belonging to Q. For each 

BDD node v we define function f v  : B k --+ P much like the way functions fq 

were defined earlier on automaton states. For each nonleaf v, f v  is defined 

by the rule fv(b)  = f~.to(b) i f  by.index ---- 0; f~(b) = fv.hi(b) if  bv.lndex ---- 1. 

For each leaf v,  f v  is a constant function that  maps every argument into 

an element (i.e., a block) of partit ion P.  
If q E Q is an automaton state that  points to a BDD root v, then, dearly, 

fq = f~. I t  is also not hard to see that  for any two nonleaf BDD nodes v 
and v ~, fv  = fv, iff either of the following two conditions hold: 

1. v . i n d e x  = v~.index ^ fv.ni = f v ' . h i  ^ f v . l o  = fv'.lO, or 

2. fv.hi = fv.io = fv  A v.hi  = v'.  

This leads to the more concrete equivalence relation = on BDD nodes 

defined as v = v ~ iff f v  = fv, iff either, 

1. v . i n d e x  = v ' . i n d e z  = k ^ [v.lo]7, = [v'.lo]~,, or 

2. v . i n d e x  = v~.index < k ^ v .hi  = v~.hi ^ v.lo = v~.io, or 

3. v . i n d e x  < k A v. lo ==. v .hi  = v ~. 

Note that  two BDD nodes of different index can be equivalent only by 

condition (3). Note also, that  we can strengthen condition (2) with the 
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additional constraint v.hi ~ v.lo without modifying the equivalence rela- 

tion. These two observations allow us to construct the equivalence classes 
inductively using a bottom-up algorithm that processes all BDD nodes of 

the same index in descending order, proceeding from leaves to roots. The 

steps are sketched just below. 

. In a linear time pass through all of the BDD nodes, place each node 

in a bucket according to its index. An array of k + 1 buckets can be 

used for this purpose. 

. Next, distribute the BDD leaves (contained in the bucket associated 

with index k) into blocks whose nodes all have lo successors that 
belong to the same block of P. This takes time proportional to the 

number of leaves. 

. For j = k -  1,..., 0 examine each node v with v.index = j. Both nodes 

v.lo and v.hi have already been examined, and have been placed into 

blocks. Hence, a streamlined form of multiset sequence discrimination 
[CP94] can be used to place v either in an old block (according to 
condition (3)) or a new block (according to condition (2)) for nodes 

whose children belong pair-wise to the same old block. 

The preceding algorithm computes the equivalence classes as the final 

set of blocks in O(m) time. As before, we can use these equivalence classes 
to find the coarsest partition Q that respects P, which solves the splitting 
step in the original automaton, in time O(n). Thus, the total worst-case 

time to solve the splitting step is O(max(n,m)) (without hashing). 
In an efficient implementation of finite-state automaton minimization, 

when the splitting algorithm above is is performed repeatedly, we only 

need to perform the first step of that algorithm (i.e., sorting BDD nodes 
according to index) once. Thus, the full DFA minimization algorithm runs 

in worst case time O(max(n, re)n) without hashing. 

B D D  r e d u c t i o n  w i t h o u t  h a s h i n g  

Sieling and Wegener[SW93] were the first to compress an arbitrary BDD 
into fully reduced form in linear time. Their result depended on a radix 

sort, which is closely related to the multiset discrimination technique that 
we use. However, their algorithm needs to maintain integer representations 

of BDD nodes, and it utilizes two arrays of size m. We can show how 

our algorithm just described can be modified to fully reduce an arbitrary 
BDD in worst case time linear in the number of BDD nodes (without 

hashing), but with expected auxiliary space k times smaller than Sieling 

and Wegener's algorithm. 
Let Q~ be the partition of BDD nodes produced by the algorithm. The 

states of the reduced BDD are the blocks in Q*. For each block B E Q~, 
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B . i n d e x  is the largest index of any BDD node contained in B. Let v ~ be 
any node belonging to B of maximum index. If v ~ is a BDD leaf, then B is 
a leaf in the reduced BDD (i.e., B . i n d e x  = k),  and B . lo  = B .h i  = vn.lo. 

Otherwise, B. lo  = [v~.lo]Q, and B .h i  = [vl.hi]Q,. The hi and lo successor 
blocks can be determined during the multiset sequence discrimination pass 
when a new block is first created. The index of the first node placed in a 
newly created block is the index for that blocK. 

What distinguishes our algorithm from that of Sieling and Wegener is 
that our buckets in steps (2) and (3) are assodated with actual BDD nodes 
(inside the main BDD data structure). Their buckets are associated with 
components of two auxiliary arrays of size m each. If we replaced each 
equivalence class by a single witness (as they do) each iteration of step 
(3), then our auxiliary space would be bounded by the maximum number 
of BDD nodes that have the same index. If BDD nodes were uniformly 
distributed among indexes, then this number is m / k ,  which would give us 
a k-fold advantage in auxiliary space over their algorithm. We expect a 
minor constant factor advantage in time as well, because our BDD nodes 
are represented by their locations instead of by computed integer values, 
and because we avoid array access in favor of less expensive list and pointer 

processing. 
Work is in progress for exploring the "processing the smaller halff' idea 

found in e.g. [PT87]. We should mention, however, that the current imple- 
mentation of the minimization algorithm in practice seems to run faster 
than the procedures for constructing product and subset automata. 

6 . 5  MONA f e a t u r e s  

MONA is enriched by facilities similar to those of programming languages. 

Predicates  

The user may declare predicates that can later be instantiated. For ex- 
ample, if the predicate P is declared by P ( X ,  x)  = (0 = x A z E X ) ,  

then P can be instantiated as the formula P(CY,  p ~ 1) with the obvious 
meaning. 

Libraries 

MONA supports creation of user-defined libraries of predicates. 

Separate  trans la t ion  

MONA automatically stores the automaton for a translated predicate. If 
there are n free variables, then there may be up to n! different automata 
corresponding to different orderings of variables in the BDD representation. 
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6.6 To be done 

In the current implementation, variables are ordered in their BDDs accord- 
ing to the level of syntactic nesting in the formula; i.e. innermost variables 
receive the highest index. This strategy is obviously often far from optimal 
and we are working on implementing heuristics to improve variable order- 
ing. Another orthogonal optimization strategy is to reorder the product 
constructions by heuristics. In both cases, however, it is not hard to see 
that finding optimal orderings is NP-complete. 
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