
Monad-Independent Hoare Logic in HasCasl

Lutz Schröder and Till Mossakowski

BISS, Department of Computer Science, University of Bremen

Abstract. Monads have been recognized by Moggi as an elegant device
for dealing with stateful computation in functional programming lan-
guages. It is thus natural to develop a Hoare calculus for reasoning about
computational monads. While this has previously been done only for the
state monad, we here provide a generic, monad-independent approach,
which applies also to further computational monads such as exceptions,
input/output, and non-determinism. All this is formalized within the
logic of HasCasl, a higher-order language for functional specification
and programming. Combination of monadic features can be obtained by
combining their loose specifications. As an application, we prove partial
correctness of Dijkstra’s nondeterministic version of Euclid’s algorithm
in a monad with nondeterministic dynamic references.

1 Introduction

One of the central concepts of modern functional programming is the encapsu-
lation of side effects via monads following the seminal paper [11]. In particular,
state monads are used to emulate an imperative programming style in the func-
tional programming language Haskell [15]. Monads can be used to abstract from
a particular notion of computation, since they model a wide range of compu-
tational effects: e.g., stateful computations, non-determinism, partiality, excep-
tions, input, and output can all be viewed as monadic computations, and so
can various combinations of these concepts such as non-deterministic stateful
computations.

Here, we show how one can also build a generic logical environment for rea-
soning about generic monadic computations by providing a monad-independent
Hoare calculus. These results are developed in the framework of the algebraic
specification language HasCasl. In this way, we generalize the suggestions
of [11], which were aimed purely at a state monad with state interpreted as
global store.

HasCasl has been introduced in [14] as a higher order extension of the first
order algebraic specification language Casl [3]. HasCasl is geared towards spec-
ification of functional programs, in particular in Haskell; in fact, HasCasl has
an executable subset that corresponds quite closely to a large subset of Haskell.
Features of HasCasl include partial and total higher order types, polymor-
phism, type classes, and general recursive functions. The technical requirement
for a general treatment of monads is support for constructor classes, which are
a straightforward extension of HasCasl’s type classes. In the correspondingly

M. Pezzè (Ed.): FASE 2003, LNCS 2621, pp. 261–277, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

262 L. Schröder and T. Mossakowski

extended language, one can easily specify not only the operations, but also the
axioms associated to a monad.

Using HasCasl’s internal logic, one can give a semantics to Hoare triples
independently of the internal structure of the monad. The HasCasl logic then
provides a Hoare calculus that allows reasoning about partial correctness as
well as loosely specifying imperative programs. We provide both a generic ker-
nel calculus and specialized calculi that provide additional rules dealing with
monad-specific operations such as assignment. We end up with an environment
that offers not only a combination of functional and imperative programming
(as provided in Haskell), but also a surrounding logic that is rather effortlessly
adapted to the specification of both functional and imperative aspects.

2 HASCASL

The language HasCasl has been introduced in [14] as a higher order extension
of Casl, based on the partial λ -calculus. We give a brief summary of how basic
HasCasl specifications are written and what they mean. For more details on
both syntax and semantics, see [14].

Any HasCasl specification determines essentially two things: a signature
consisting of classes, types, and operations, and associated axioms that the op-
erations are required to satisfy. Basic types are introduced by means of the
keyword type. Types may be parametrized by type arguments; e.g., we may
write

var a : Type
type List a

and obtain a unary type constructor List . There are built-in type constructors
(with fixed interpretations) × , × × etc. for product types, →? and

→ for partial and total function types, respectively, Pred for predicate
types, and a unit type Unit . In particular, the function types of Haskell are
really partial function types.

Next, an operator is a constant of some type, declared by
op f : t

where t is a type. Since types may contain type variables, operators can be
polymorphic in the style of ML.

From the given operators, we may form higher order terms in the usual way:
a term is either a variable, an application, a tuple, or a λ -abstraction. Such
terms may then be used in axioms formulated, to begin, in what we shall call
the external logic. This external logic offers the usual logical connectives (con-
junction, negation etc.) as well as universal and existential quantifiers, where the
outermost universal quantifications may also be over type variables, strong and
existential equality denoted by = and e=, respectively, and definedness assertions
def α (the latter feature and the distinction between the various equalities are
related to partial functions; cf. [12] for a detailed discussion). The notation used
in the examples below is largely self-explanatory, so we shall refrain from listing
the syntactic details here. It is important to note that formulas of the external

Monad-Independent Hoare Logic in HasCasl 263

logic, including external equations, are not regarded as terms of a program and
hence cannot be λ -abstracted. Partial functions are, unlike in Haskell, required
to be strict; non-strict functions can be emulated by means of the procedural
lifting method, for which suitable syntactical sugar is provided.

The semantics of a HasCasl specification is the class of its (set-theoretic)
intensional Henkin models: a function type need not contain all set-theoretic
functions, and two functions that yield the same value on every input need
not be equal; see [14] for a discussion of the rationale behind this. If desired,
extensionality of models may be forced by means of an axiom expressible within
the language.

A consequence of the intensional semantics is the presence of an intuitionistic
internal logic that lives within λ -terms. One can specify an internal equality
(for which the symbol = is built-in syntactical sugar) to be used within λ -terms,
which then allows specifying the full set of logical operations and quantifiers of
intuitionistic logic; this is carried out in detail in [14]. There is built-in syntactical
sugar for the internal logic, invoked by means of the keyword internal which
signifies that formulas in the following block are to be understood as formulas
of the internal logic.

By means of the internal logic, one can then specify a class of complete partial
orders and fixed point recursion in much the same style as in HOLCF [13]. On top
of this, syntactical sugar is provided that allows recursive function definitions in
the style used in functional programming, indicated by the keyword program.
Similarly, the no-junk-no-confusion axioms associated to datatypes are implicitly
coded by means of the internal logic.

HasCasl supports type classes. These are declared in the form
class C

and are to be understood as subsets of the syntactical universe of all types.
Types as well as type variables can be restricted to belong to an assigned class,
e.g. by writing

type t : C
In particular, axioms and operators may be polymorphic over classes. Classes
may be subclasses of each other, and they may have generic instances. By
attaching polymorphic operators and axioms to a class, one achieves a similar
effect as with Haskell’s type classes.

In a similar vein, one can add constructor classes to HasCasl. They can be
interpreted as predicates on the syntactical universe of abstracted type expres-
sions (also called pseudotypes), e.g.

λ a : Type • a →? List a

As for type classes, there are constructor subclasses; types, operators, axioms
may be polymorphic over constructor classes; and this polymorphism is seman-
tically coded by collections of instances. A typical example of a constructor class
is the class of monads (see Fig. 1); an example of a constructor subclass can be
found in Fig. 3.

264 L. Schröder and T. Mossakowski

In summary, HasCasl is a language that allows both property-oriented spec-
ification and functional programming; executable HasCasl specifications may
easily be translated into Haskell programs.

3 Monads for Computations

On the basis of the seminal paper [11], monads are being used for encapsulating
side effects in modern functional programming languages; in particular, this
idea is one of the central concepts of Haskell [8]. Intuitively, a monad associates
to each type A a type TA of computations of type A; a function with side
effects that takes inputs of type A and returns values of type B is, then, just
a function of type A → TB. This approach abstracts away from particular
notions of computation such as store, non-determinism, non-termination etc.; a
surprisingly large amount of reasoning can in fact be carried out independently
of the choice of such a notion.

More formally, a monad on a given category C can be defined as a Kleisli
triple (T, η, ∗), where T : ObC → ObC is a function, the unit η is a family
of morphisms ηA : A → TA, and ∗ assigns to each morphism f : A → TB a
morphism f∗ : TA → TB such that

η ∗
A = idTA, f∗ηA = f, and g∗f∗ = (g∗f)∗.

This description is equivalent to the more familiar one via an endofunctor with
unit and multiplication [10]. A monad gives rise to a Kleisli category over C,
which has the same objects as C and ‘functions with side effects’ f : A → TB
as morphisms from A to B; the composite of two such functions g and f is just
g∗f . This composite will also be denoted f ; g.

In order to support a language with finitary operations and multi-variable
contexts (see below), one needs a further technical requirement: a monad is called
strong if it is equipped with a natural transformation

tA,B : A × TB → T (A × B)

called tensorial strength, subject to certain coherence conditions (see e.g. [11]);
this is equivalent to enrichment of the monad over C (see discussion and refer-
ences in [11]).

Example 1 ([11]). Computationally relevant monads on Set (since strength
is equivalent to enrichment, all monads on Set are strong) include

– stateful computations with possible non-termination: TA = (S →? (A×S)),
where S is a fixed set of states and →? denotes the partial function type;

– (finite) non-determinism: TA = Pfin(A), where Pfin denotes the finite power
set functor;

– exceptions: TA = A + E, where E is a fixed set of exceptions;
– interactive input: TA is the smallest fixed point of γ �→ A + (U → γ), where

U is a set of input values.

Monad-Independent Hoare Logic in HasCasl 265

– non-deterministic stateful computations: TA = (S → Pfin(A × S)), where,
again, S is a fixed set of states;

Figure 1 shows a specification of monads in HasCasl. As an example of an
instance for this type class, a specification of the state monad is shown in Fig. 2.
Since the operations of the monad are functions in the model, the monads thus
specified are automatically strong, strength being equivalent to enrichment. The
notation is (almost) identical to the one used in Haskell, i.e. the unit is denoted by
ret , and the type constructor by m; the operator >>= denotes, in the above
notation, the function (x, f) �→ f∗(x). This specification is the basis for a built-
in sugaring in the form of a Haskell-style do-notation: for monadic expressions
e1 and e2,

do x ← e1; e2

abbreviates e1 >>= λ x • e2. A slight complication concerning the axiomatiza-
tion arises from the fact that partial functions are involved. Note that the first
axiom has been equipped with a definedness guard. This ensures that standard
monads such as the state monad with its usual definition (cf. Fig. 2 and the
recent discussion on [7]) are actually subsumed, while leaving the essence of the
proposed calculus untouched.

spec Monad = InternalLogic then
class Monad : Type → Type {
vars m : Monad ; a, b, c : Type
ops >>= : m a → (a →?m b) →?m b;

ret : a → m a }
internal {
forall x , y : a; y : m a; f : a →?m b; g : b →?m c

• def (f x) ⇒ ((ret x) >>= f) = f x
• (y >>= ret) = y
• ((y >>= f) >>= g) = (y >>= (λx : a • f x >>= g)) }

Fig. 1. The constructor class of monads

Reasoning about a category C equipped with a strong monad is greatly
facilitated by the fact that proofs can be conducted in an internal language
introduced in [11]. The crucial features of this language are

– A type operator T ; terms of type TB for some B are called programs;
– an polymorphic operator ret : A → TA corresponding to the unit;
– a binding construct, which we here denote in Haskell’s do style instead of by

let: terms of the form

do x ← p; q

266 L. Schröder and T. Mossakowski

spec State [type S] = Monad then
type instance ST : Monad
vars a, b : Type
type ST a := S →? (a × S)
internal {
forall x : a; y : ST ; f : a →?ST b

• ret x = λs : S • (x , s)
• (y >>= f) = λs1 : S • let (z , s2) = y s1 in f z s2 }

Fig. 2. Specification of the state monad

are interpreted by means of the tensorial strength and Kleisli composition
(See [11] for details. This is essentially equivalent the do-notation introduced
above.). Intuitively, do x ← p; q computes p and passes the results on to q.
Nested do expressions like do x ← p; do y ← q; . . . may also be denoted
do x ← p; y ← q; Repeated nestings such as do x1 ← p1, . . . , xn ←
pn; q are somewhat inaccurately denoted in the form do x̄ ← p̄; q. Term
fragments of the form x̄ ← p̄ are called program sequences. Variables xi that
do not appear lateron may be omitted from the notation.

Terms are generally formed in a context Γ = (x1 : s1, . . . , xn : sn) of variables
with assigned types. Thanks to an equivalence theorem proved in [11], this lan-
guage (with further term formation rules and a deduction system) can be used
both in order to define morphisms in C and in order to prove equalities between
them. For example, morphisms f : A → TB and g : B → TC may also be seen
as terms f : TB and g : TC in context x : A and y : B, respectively; the Kleisli
composite f ; g is represented by do y ← f ; g.

On top of a monad, one can generically define control structures such as a
while loop. However, such definitions require general recursion, which is realized
in HasCasl by means of fixed point recursion on cpos. Thus, one has to restrict
to monads that allow lifting a cpo structure on A to a cpo structure on the type
TA of computations in such a way that the monad operations become continuous.
This is an example of a constructor subclass; the corresponding specification of
cpo-monads is shown in Fig. 3. Function types indicated by c→ indicate types of
continuous functions [14]. The relevant examples including the ones given above
belong to this subclass.

As an example of a recursively defined control structure we introduce an
iteration construct which generalizes the while loop by extending it with a default
return value (the while loop as programmed e.g. in the Haskell prelude returns
only a unit value) which is fed through the iteration. This has the advantage that
the construct makes sense also for ‘stateless’ monads; e.g., iteration in the non-
determinism monad results in a function that has all values as outcomes that can
be reached by repeatedly applying the original function while a given condition
holds. The (executable) specification of the iteration construct is shown in Fig. 4.
Note that the while loop is just iteration ignoring the return value.

Monad-Independent Hoare Logic in HasCasl 267

spec CpoMonad = Recursion and Monad then
class CpoMonad < Monad {
vars m : CpoMonad ; a : Cpo
type m a : Cpo

ops >>= : m a
c→ (a c→?m b) c→?m b;

return : a
c→ m a }

Fig. 3. The constructor subclass of cpo-monads

spec Iteration = CpoMonad and Bool then
vars m : CpoMonad ; a : Cpo

op iter : (a c→ m Bool) c→ (a c→?m a) c→ a
c→?m a

program iter test f x =
do b ← test x

if b then
do y ← f x

iter test f y
else return x

op while(b : m Bool)(p : m Unit) : m Unit = iter (λx • b) (λx • p) ()

Fig. 4. The iteration control structure

4 The Generic Hoare Calculus

We now proceed to describe a Hoare-calculus which is generic over the underlying
monad. (Similar calculi discussed in [5,11] are specific for the state monad, where
‘state’ is additionally restricted to mean global store). We shall be using the
notation for monads introduced in the previous section (T , η etc.) throughout,
as well as the internal language discussed at the end of the previous section.

As usual, the calculus will be concerned with proving Hoare triples consisting
of a stateful expression together with a pre- and a postcondition. Since in general
we cannot undo changes to the ‘state’, we have to require the pre- and postcon-
ditions to ‘leave the state unchanged’ in a suitable sense in order to guarantee
composability of Hoare triples, at the same time allowing the conditions to read
the state.

Definition 2. A program p is called side-effect free if

(do y ← p; ret ∗) = ret ∗ (shorthand: sef (p)),

where ∗ is the unique element of the unit type.

Note that sef (p) implies that p is always defined. Properties such as side-effect
freeness are said to hold for a program sequence iff they hold for each of the
component programs.

268 L. Schröder and T. Mossakowski

Lemma 3. If p is side-effect free, then

(do x ← p; q) = q

for each program q that does not contain x.

Example 4. A program p is side-effect free

– in the state monad iff p terminates and does not change the state;
– in the non-determinism monad iff p always has at least one possible outcome;
– in the exception monad iff p terminates normally;
– in the interactive input monad iff p never reads any input;
– in the non-deterministic state monad iff p does not change the state and

always has at least one possible outcome (i.e. never gets stuck).

A program p is called stateless if it factors through η , i.e. if it is just a value
inserted into the monad (‘p exists’ in the terminology of [11]) – otherwise, it is
called stateful. E.g. in the state monad, p is stateless iff it neither changes nor
reads the state. Stateless programs are side-effect free, but not vice versa.

We will want to regard programs that return truth values as formulas with
side effects. We equip such formulas with a notion of global validity, denoted
explicitly by a ‘global box’ �G :

Definition 5. Given a term φ of type T Ω , where Ω denotes the type of internal
truth values, �G φ abbreviates

φ = do x ← φ ; ret�,

read as a formula of the internal logic.

If φ is side-effect free, then �G φ simplifies to φ = ret �; otherwise, the formula
above ensures that the right hand side has the same side-effect as φ .

Remark 6. Note that the equality in the definition of �G φ above is strong
equality. In particular, in the classical case �G φ is true if φ is undefined.

Example 7. In the monads of Example 1, �G φ amounts to the following:

– in the state monad: successful execution of φ from any initial state yields �;
– in the non-determinism monad: φ yields at most the value � (or none at all)
– in the exception monad: φ yields � whenever it terminates normally.
– in the interactive input monad: the value eventually produced by φ after

some combination of inputs is always �;
– in the non-deterministic state monad: execution of φ from any initial state

yields at most the value �.

Monad-Independent Hoare Logic in HasCasl 269

For meta-proofs about the Hoare logic, we require an auxiliary calculus
(Fig. 5) for judgements of the form [x̄ ← p̄]G φ , which intuitively state that
the formula φ : Ω , which may contain x̄, holds after x̄ ← p̄. The idea is to shove
all state-dependence to the outside, so that the usual logical rules apply to the
remaining part. Formally, [x̄ ← p̄]G φ abbreviates

�G do x̄ ← p̄; ret φ.

The set of free variables of p is denoted by FV (p). The calculus is sound:

Theorem 8. If [ȳ ← q̄]G ψ is deducible from [x̄ ← p̄]G φ by the rules of Fig. 5,
then ([x̄ ← p̄]G φ) ⇒ ([ȳ ← q̄]G ψ) holds in the internal logic.

(mp)

[x̄ ← p̄]G φi, i = 1, . . . , n
φ1 ∧ . . . ∧ φn ⇒ ψ

[x̄ ← p̄]G ψ
(eq)

[x̄ ← p̄]G φ ⇒ q1 = q2

[x̄ ← p̄; y ← q1; z̄ ← r̄]G φ ⇒ ψ

[x̄ ← p̄; y ← q2; z̄ ← r̄]G φ ⇒ ψ

(app)

[x̄ ← p̄]G φ
y /∈ FV (φ)

[x̄ ← p̄; y ← q]G φ
(pre)

[ȳ ← q̄]G φ
x /∈ FV (φ)

[x ← p; ȳ ← q̄]G φ
(η)

[x ← ret a]G x = a

(ctr)
[. . . ; x ← p; y ← q; z̄ ← r̄]G φ

[. . . ; y ← (do x ← p; q); z̄ ← r̄]G φ
(x /∈ FV (φ) ∪ FV (r̄))

Fig. 5. The auxiliary calculus

We can now define and give a semantics to Hoare triples:

Definition 9. A Hoare triple, written {φ } x̄ ← p̄ {ψ }, consists of a program
sequence x̄ ← p̄, a precondition φ : T Ω , and a postcondition ψ : T Ω (which may
contain x̄), where φ and ψ are side-effect free. This abbreviates the formula

[a ← φ ; x̄ ← p̄; b ← ψ]G a ⇒ b.

The fact that Hoare triples as just defined mention program sequences (rather
than just programs) reflects the need to actually reason about results of compu-
tations, including intermediate results, as opposed to just about state changes
as in the traditional case.

Example 10. A Hoare triple {φ } x ← p {ψ } holds

270 L. Schröder and T. Mossakowski

– in the state monad iff, whenever φ holds in a state s, then ψ holds for x after
successful execution of p from s with result x;

– in the non-determinism monad iff, whenever φ holds possibly, then ψ holds
for all possible results x of p;

– in the exception monad iff, whenever φ holds and p terminates normally,
returning x, then ψ holds for x;

– in the interactive input monad iff, whenever φ holds and p returns x after
reading some sequence of inputs, then ψ holds for x.

– in the non-deterministic state monad iff, whenever φ holds possibly in a state
s, then φ holds after execution of p for all possible results x.

Remark 11. It is clear that the main application domain of Hoare triples are
monads where some sort of state is involved that gives meaning to notions of
‘before’ and ‘after’. However, as can be seen in the combination of the state
monad with non-determinism, considering Hoare-triple for ‘stateless’ monads
does make sense inasmuch as it provides for a separation of concerns.

Lastly, one can capture determinacy at least for side-effect free programs:

Definition 12. A side-effect free program p is deterministically side-effect free
if

[x ← p; y ← p]G x = y (shorthand: dsef (p)).

Stateless programs are deterministically side-effect free. In most of the running
examples, all side-effect free programs are deterministically side-effect free, with
the unsurprising exception of the monads where non-determinism is involved. In
these cases, a side-effect free program is deterministically side-effect free iff it is
deterministic.

Having defined an interpretation of Hoare triples as formulas in the internal
logic of HasCasl, we can now proceed to establish a set of monad-independent
Hoare rules as shown in Fig. 6; the rules are lemmas in the internal logic.

The rule (wk) uses the notation φ ⇒T ψ . This is just syntactic sugar for the
Hoare triple {φ } {ψ }; hence, (wk) is really a special case of the sequential rule
(seq). The decoding of φ ⇒T ψ can be simplified to

(do a ← φ, b ← ψ ; ret a ⇒ b) = ret�.

The rule (dsef) applies in particular to stateless programs p = ret a, for which
the postcondition simplifies to x = a. Although the classical Hoare calculus does
not require the usual introduction and elimination rules for logical connectives,
such rules are sometimes convenient (see the example below); we have included
introduction rules for conjunction and disjunction. Here, φ ∧ ψ abbreviates

do a ← φ ; b ← ψ ; ret a ∧ b,

similarly for other logical connectives.

Monad-Independent Hoare Logic in HasCasl 271

(sef)
sef (q)

{φ} q {φ} (stateless) {ret φ} p {ret φ}

(dsef)
dsef (p)

{} x ← p {do y ← p; ret(x = y)} (seq)

{φ} x̄ ← p̄ {ψ}
{ψ} ȳ ← q̄ {χ}

{φ} x̄ ← p̄; ȳ ← q̄ {χ}

(ctr)

{φ} . . . ; x ← p; y ← q; z̄ ← r̄ {ψ}
x /∈ FV (r̄) ∪ FV (ψ)

{φ} . . . ; y ← (do x ← p; q); z̄ ← r̄ {ψ} (wk)

{φ} x̄ ← p̄ {ψ}
φ′ ⇒T φ
ψ ⇒T ψ′

{φ′} x̄ ← p̄ {ψ′}

(if)

{φ ∧ b} x ← p {ψ}
{φ ∧ ¬b} x ← p {ψ}

{φ} x ← if b then p
else q {ψ}

(iter)
{φ ∧ (b x)} y ← p x {φ[x/y]}

{φ} y ← iter b p e {φ[x/y] ∧ ¬(b y)}

(conj)

{φ} x̄ ← p̄ {ψ}
{φ} x̄ ← p̄ {χ}

{φ} x̄ ← p̄ {ψ ∧ χ} (disj)

{φ} ȳ ← q̄ {χ}
{ψ} ȳ ← q̄ {χ}

{φ ∨ ψ} ȳ ← q̄ {χ}

Fig. 6. The generic Hoare calculus

One typical Hoare rule that is missing here is the assignment rule; this rule
only makes sense in a more specialized context where some sort of store is present.
An example of an extension of the calculus by specialized rules for a particular
monad is presented below.

As examples of rules for user-defined generic control-structures, we have in-
cluded an invariant rule for the iteration construct introduced in Section 3 and
a rule for an if-then-else construct defined in the obvious way; rules for similar
control structures such as while work as usual. In the pre- and postconditions,
boolean values b are implicitly converted to Ω as b = true, and formulas of type
Ω are implicity cast to T Ω via ret when needed.

The rules of the calculus are sound for arbitrary (cpo-)monads:

Theorem 13. If a Hoare triple is derivable in a cpo-monad (monad) by the
rules of Fig. 6 (excluding (iter)), then the corresponding formula is derivable in
the internal language.

It is clear that completeness can only be expected in combination with suitable
monad-specific rules; e.g., the calculus becomes the usual (complete) Hoare cal-

272 L. Schröder and T. Mossakowski

culus when extended with an assignment rule specific to the store monad. In this
sense, the calculus may be regarded as a generic framework for computational
deduction systems.

5 Example: Reasoning about Dynamic References

We now apply the general machinery developed so far to the (slightly extended)
domain of the classical Hoare calculus, namely states consisting of creatable and
destructively updatable references (note that this is just one example of a state
monad), later to be extended by non-determinism.

The reference monad R uses a type constructur Ref , where Ref a is the set
of references to values of type a. R a is, then, the type of reference computations
over a. The monad comes with operations for reading from and writing to ref-
erences (besides the usual monad operations); see Fig. 7. We use the shorthand
φ (∗r) for do x ← read r; φ (x). Note that with this notation, ret(x = ∗r) is
not stateless. Also note the difference between ret(r = s) (equality of references,
a stateless formula) and ret(∗r = ∗s) (equality of contents, a stateful formula).
Moreover, recall that ret is inserted implicitly where needed.

spec Reference = CpoMonad then
var a : Cpo
types R : CpoMonad ; Ref a : Flatcpo

ops read : Ref a
c→ R a;

:= : Ref a
c→ a

c→ R Unit
forall x , y : a; r , s : Ref a
• dsef (read r)
• {} r := x {x = *r}
• {¬r = s ∧ x = *r} s := y {x = *r}

%(dsef-read)%
%(read-write)%
%(read-write-other)%

spec DynamicReference = Reference then
var a, b : Type

op new : a
c→ R(Ref a)

forall x , y : a; r : Ref a; p : R b
• {} r ← new x {x = *r}
• {x = *r} s ← new y {¬r = s ⇒ x = *r}
• {} r ← new x ; p; s ← new y {¬r = s}

%(read-new)%
%(read-new-other)%
%(new-distinct)%

Fig. 7. Specification of the reference and the dynamic reference monad

The axiomatization provides all that is really necessary in order to reason
about references, i.e. one does not need to rely on a particular implementation:
rule dsef-read states that reading is deterministically side-effect free. read-write
says that after writing to a reference, we can read the value. By contrast, writing

Monad-Independent Hoare Logic in HasCasl 273

to a reference does not change the values of other references (read-write-other).
Note that nothing is said about the nature of references; they could e.g. be
integers. The specification of dynamic references additionally provides an oper-
ation new for dynamically creating new references. read-new states that after
initializing a reference, we can read the initial value. Moreover, creation of new
references does not change the values of other references (read-new-other). Fi-
nally, two newly created references are distinct (new-distinct). Note that we do
not say anything about reading from references that have not been created yet.

Starting from this axiomatization, properties such as

{} r ← new x; s ← new y {¬r = s ∧ x = ∗r ∧ y = ∗s} (1)

are easily established using the Hoare rules of Fig. 6.
Another example is the nondeterminism monad, shown in Fig. 8. While fail

yields no result and hence everything follows from it, chaos yields any result
and hence nothing can be said about it. [] is nondeterministic choice (i.e. takes
the union of value sets), and sync synchronises two nondeterministic values (i.e.
takes the intersection of value sets).

spec Nondeterminism = CpoMonad then
var a : Cpo
ops fail , chaos : N a;

[] , sync : N a
c→ N a

c→ N a
forall x : a; p, q : N a; ϕ, ψ : NΩ; χ1 , χ2 : a → NΩ
• {} fail {ψ}
• {ϕ} x ← p {χ1 x} ∧ {ϕ} x ← q {χ2 x} ⇒

{ϕ} x ← p[]q {χ1 x ∨ χ2 x}
• {ϕ} x ← p {χ1 x} ∧ {ϕ} x ← q {χ2 x} ⇒

{ϕ} x ← p sync q {χ1 x ∧ χ2 x}

%(fail)%

%(join)%

%(sync)%

Fig. 8. The nondeterminism monad

One advantage of the looseness of the specifications introduced so far is that
we now can combine the specification of references and of nondeterminism and
get a specification of nondeterministic reference computations (Fig. 9).

As an example, we prove the partial correctness of Dijkstra’s nondeterministic
version of Euclid’s algorithm for computing the greatest common divisor [4]
within this monad. Let euclid be the program sequence (over NR Int)

r ← new x ;
s ← new y ;
while ret(¬*r == *s)

(if ret(*r > *s) then r := *r − *s else fail
[]
if ret(*s > *r) then s := *s − *r else fail)

274 L. Schröder and T. Mossakowski

spec NondeterministicDynamicReference =
DynamicReference with R �→ NR
and Nondeterminism with N �→ NR

Fig. 9. The nondeterministic dynamic reference monad

Assuming that we have some specification of arithmetic, including gcd spec-
ified to be the greatest common divisor function, we now will try to prove

{} euclid {∗r = gcd(x, y)}.

We proceed as follows. Using (dsef), (sef), (seq), (stateless) and (conj), we
can show

{¬r = s ∧ gcd(∗r,∗s) = gcd(x, y) ∧ *r > *s}
u ← read r; v ← read s
{¬r = s ∧ gcd(∗r,∗s) = gcd(x, y) ∧ *r > *s ∧ u = ∗r ∧ v = ∗s}.

By arithmetic reasoning and (wk), we obtain

{¬r = s ∧ gcd(∗r,∗s) = gcd(x, y) ∧ *r > *s}
u ← read r; v ← read s
{¬r = s ∧ gcd(u, v) = gcd(x, y) ∧ u > v ∧ v = ∗s}.

(3)

By (stateless), (read-write), (read-write-other), and (conj), we can show

{¬r = s ∧ gcd(u, v) = gcd(x, y) ∧ u > v ∧ v = ∗s}
r := u − v
{¬r = s ∧ gcd(u, v) = gcd(x, y) ∧ u > v ∧ v = ∗s ∧ u − v = ∗r}.

By arithmetic reasoning and (wk), we get

{¬r = s ∧ gcd(u, v) = gcd(x, y) ∧ u > v ∧ v = ∗s}
r := u − v
{¬r = s ∧ gcd(∗r,∗s) = gcd(x, y)}.

By (seq) with (3) and noting that r := *r − *s is shorthand for u ← read r; v ←
read s; r := u − v, we get

{¬r = s ∧ gcd(∗r,∗s) = gcd(x, y) ∧ *r > *s}
r := *r − *s
{¬r = s ∧ gcd(∗r,∗s) = gcd(x, y)}.

By (fail), we have

{¬r = s ∧ gcd(∗r,∗s) = gcd(x, y) ∧ ¬*r > *s}
fail
{¬r = s ∧ gcd(∗r,∗s) = gcd(x, y)}.

Monad-Independent Hoare Logic in HasCasl 275

Hence by (if)
{¬r = s ∧ gcd(∗r,∗s) = gcd(x, y)}
if ret(*r > *s) then r := *r − *s else fail
{¬r = s ∧ gcd(∗r,∗s) = gcd(x, y)}

In an entirely analogous way, we get

{¬r = s ∧ gcd(∗r,∗s) = gcd(x, y)}
if ret(*s > *r) then s := *s − *r else fail
{¬r = s ∧ gcd(∗r,∗s) = gcd(x, y)}.

From these, together with (join) and (wk), we get

{¬r = s ∧ gcd(∗r,∗s) = gcd(x, y)}
if ret(*r > *s) then r := *r − *s else fail

[] if ret(*s > *r) then s := *s − *r else fail
{¬r = s ∧ gcd(∗r,∗s) = gcd(x, y)}.

Applying (wk) and (iter) leads to

{¬r = s ∧ gcd(∗r,∗s) = gcd(x, y)}
while ret(¬*r == *s)
(if ret(*r > *s) then r := *r − *s else fail
[] if ret(*s > *r) then s := *s − *r else fail)

{¬r = s ∧ gcd(∗r,∗s) = gcd(x, y) ∧ ∗r == ∗s}.

Using the arithmetic fact that gcd(x, x) = x, by (wk) we obtain

{¬r = s ∧ gcd(∗r,∗s) = gcd(x, y)}
while ¬*r == *s
(if ret(*r > *s) then r := *r − *s else fail
[] if ret(*s > *r) then s := *s − *r else fail)

{∗r = gcd(x, y)}.

(4)

From (1) above, we get by arithmetic reasoning and (wk)

{} r ← new x; s ← new y {¬r = s ∧ gcd(∗r,∗s) = gcd(x, y)}, (5)

and the result now follows by applying (seq) to (4) and (5).

6 Conclusion and Future Work

We have generalized Moggi’s Hoare calculus for the state monad to a monad-
independent Hoare calculus. To this end, we have used an extension of the wide-
spectrum language HasCasl with Haskell-style imperative programming via
monads, which in terms of additional language features required essentially no
more than a rather straightforward encorporation of constructor classes.

276 L. Schröder and T. Mossakowski

We have illustrated this approach by several example monads, some of which
we have described axiomatically, rather than via an implementation as in Haskell.
Specific monads come with specific extensions to the generic Hoare calculus; it
is even possible to axiomatize a monad by means of Hoare triples. Further work
will include the production of a library of such monad specifications, thus pro-
viding a broad basis for formal reasoning about imperative functional programs.
Moreover, the examples suggest that general results about monad combination
[9] bear some relation to the combination of monad-specific Hoare calculi; ways
in which axiomatizations of more complex monads can be compositionally ob-
tained those of simpler ones are the subject of further investigation. Another
interesting topic is the relation to the monad independent aspects of the testing
tool QuickCheck [1].

The traditional Hoare calculus can be embedded into propositional dynamic
logic [6], which allows for rather more flexibility. However, this is expected to
work with monads only in special cases, since unlike as with Moggi’s evaluation
logic, the computation needs to be split (i.e. the ‘state’ needs to be duplicated)
for evaluations of compound formulas, e.g. conjunctions such as [p] φ ∧ [q] ψ
where the evaluation of the second conjunct requires ‘resetting the state’ (here,
[p] φ reads ‘φ holds after exection of p’). Several of the computationally relevant
monads, among them the usual state monad, do admit such a state duplication;
a general axiomatization of this concept is forthcoming.

Acknowledgements. This work forms part of the DFG-funded project Has-
CASL (KR 1191/7-1). The authors wish to thank Christoph Lüth for useful
comments and discussions.

References

[1] K. Claessen and J. Hughes, Testing monadic code with QuickCheck, Haskell Work-
shop, ACM, 2002, pp. 65–77.

[2] CoFI, The Common Framework Initiative for algebraic specification and develop-
ment, electronic archives, http://www.brics.dk/Projects/CoFI.

[3] CoFI Language Design Task Group, Casl – The CoFI Algebraic Specification
Language – Summary, version 1.0, Documents/CASL/Summary, in [2], July 1999.

[4] E. W. Dijkstra, A discipline of programming, Prentice Hall, 1976.
[5] J.-C. Filliâtre, Proof of imperative programs in type theory, Types for Proofs and

Programs, LNCS, vol. 1657, Springer, 1999, pp. 78–92.
[6] R. Goldblatt, Logics of time and computation, CSLI, 1992.
[7] The Haskell mailing list, http://www.haskell.org/mailinglist.html, May

2002.
[8] S. P. Jones, J. Hughes, L. Augustsson, D. Barton, B. Boutel, W. Burton, J. Fasel,

K. Hammond, R. Hinze, P. Hudak, T. Johnsson, M. Jones, J. Launchbury, E. Mei-
jer, J. Peterson, A. Reid, C. Runciman, and P. Wadler, Haskell 98: A non-strict,
purely functional language, (1999), http://www.haskell.org/onlinereport.

[9] C. Lüth and N. Ghani, Monads and modularity, Frontiers of Combining Systems,
LNAI, vol. 2309, Springer, 2002, pp. 18–32.

Monad-Independent Hoare Logic in HasCasl 277

[10] S. Mac Lane, Categories for the working mathematician, Springer, 1997.
[11] E. Moggi, Notions of computation and monads, Inform. and Comput. 93 (1991),

55–92.
[12] P. D. Mosses, Casl: A guided tour of its design, Workshop on Abstract Datatypes,

LNCS, vol. 1589, Springer, 1999, pp. 216–240.
[13] F. Regensburger, HOLCF: Higher order logic of computable functions, Theorem

Proving in Higher Order Logics, LNCS, vol. 971, 1995, pp. 293–307.
[14] L. Schröder and T. Mossakowski, HasCasl: Towards integrated specification and

development of Haskell programs, Algebraic Methodology and Software Technol-
ogy, LNCS, vol. 2422, Springer, 2002, pp. 99–116.

[15] Philip Wadler, How to declare an imperative, ACM Computing Surveys 29 (1997),
240–263.

	Monad-Independent Hoare Logic in HasCasl
	Introduction
	Monads for Computations
	The Generic Hoare Calculus
	Example: Reasoning about Dynamic References
	Conclusion and Future Work

