
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Monadic Second-Order Logic on Finite Sequences

Loris D’Antoni Margus Veanes

University of Wisconsin-Madison Microsoft Research

loris@cs.wisc.edu margus@microsoft.com

Abstract

We extend the weak monadic second-order logic of one succes-
sor for finite strings (M2L-STR) to symbolic alphabets by allowing
character predicates to range over decidable quantifier free theo-
ries instead of finite alphabets. We call this logic, which is able to
describe sequences over complex and potentially infinite domains,
symbolic M2L-STR (S-M2L-STR). We present a decision procedure
for S-M2L-STR based on a reduction to symbolic finite automata,
a decidable extension of finite automata that allows transitions to
carry predicates and can therefore model complex alphabets. The
reduction constructs a symbolic automaton over an alphabet con-
sisting of pairs of symbols where the first element of each pair is
a symbol in the original formula’s alphabet, while the second ele-
ment is a bit-vector. To handle this modified alphabet we show that
the Cartesian product of two decidable Boolean algebras, e.g., the
product of formula’s algebra and bit-vector’s algebra, also forms a
decidable Boolean algebra. To make the decision procedure practi-
cal, we propose two efficient representations of the Cartesian prod-
uct of two Boolean algebras, one based on algebraic decision dia-
grams and one on a variant of Shannon expansions. Finally, we im-
plement our decision procedure and evaluate it on more than 10,000
formulas. Despite the generality, our implementation has compara-
ble performance with the state-of-the-art M2L-STR solvers.

Categories and Subject Descriptors F.2.2 [Theory of Computa-
tion]: Automata over infinite objects, Regular languages

Keywords Symbolic automata, SWS1S, MSO logic

1. Introduction

Logics for describing strings and sequences are ubiquitous and ap-
pear in applications such as program verification, string processing,
program monitoring, and personalized education [4, 7, 27, 36, 40].
These logics are typically equipped with operators that can describe
the order between events appearing in a given sequence and oper-
ators for describing the kind of events that can appear. Notable ex-
amples are linear temporal logic (LTL) [18] and the weak monadic
second-order logic of one successor (WS1S) [9]. For example, an
LTL formula can specify that, in a given string, the symbol a should
always be followed by a symbol b. WS1S is more expressive than
LTL and one can write a WS1S formula specifying that every b is
preceded by an even number of as. The success of these logics is
largely due to their good properties and the decidability of check-

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact

the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)

869-0481.

POPL ’17, January 18 - 20, 2017, Paris, France

Copyright c© 2017 held by owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4660-3/17/01. . . $15.00

DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/3009837.3009844

ing satisfiability. In this paper, we present S-M2L-STR as a decid-
able extension of M2L-STR (WS1S for finite strings, c.f. [29, 30])
for describing finite sequences over arbitrary domains.

S-M2L-STR: a logic for sequences over arbitrary domains. Al-
though used in many practical contexts, logics like M2L-STR and
LTL can only describe sequences over finite and typically small do-
mains. For example, neither LTL nor M2L-STR provide an elegant
and natural way to describe the set of all sequences of integers such
that every odd number is eventually followed by a number greater
than 4. In this paper we present symbolic M2L-STR (S-M2L-STR),
an extension of M2L-STR that can naturally describe this property
while retaining decidable satisfiability checking. S-M2L-STR for-
mulas are parametric in an underlying alphabet theory (e.g., linear
integer arithmetic), which operates over a potentially infinite do-
main (e.g., integers). To retain decidability, the underlying theory
is required to form a decidable Boolean algebra, i.e., it is decidable
to check whether a predicate is satisfiable and the set of predicates
is closed under Boolean operations.

The following S-M2L-STR formula, ψ, captures the property we
informally described: ∀x.[ϕodd](x) → ∃y.x < y∧ [ϕ>4](y). Here
ϕodd and ϕ>4 are unary integer linear arithmetic predicates, and ψ
describes all sequences of integers such that if a position x contains
an odd element ([ϕodd](x)), then there exists a position y appearing
after x (x < y) that contains an element greater than 4 ([ϕ>4](y)).
The variables x and y represent positions in the sequence.

From S-M2L-STR to M2L-STR. M2L-STR can only describe se-
quences over finite domains because it only supports (encoding
of) unary predicates of the form [a](x) where a is a symbol from
a finite alphabet. Despite this limitation, there is a way to con-
vert every S-M2L-STR formula into an equi-satisfiable M2L-STR

one. Although the predicates appearing in a given S-M2L-STR for-
mula ϕ operate over an infinite domain, the set of maximal satisfi-
able Boolean combinationsM(ϕ)—also called minterms—of such

predicates induces a finite set of equivalence classes.1 For example,
the set of equivalence classes of the S-M2L-STR formula ψ is:

M(ψ)={ϕodd∧ϕ>4,¬ϕodd∧ϕ>4, ϕodd∧¬ϕ>4,¬ϕodd∧¬ϕ>4}.

Intuitively, using only these predicates there is no way to, e.g., dis-
tinguish the number 1 from the number 3, i.e., given any sequence
l, if one replaces any element 1 in l with the element 3, the new
sequence l′ is a model of ψ if and only if l is a model of ψ. Using
this argument, every S-M2L-STR formula ψ can be compiled into
an equi-satisfiable M2L-STR formula over the alphabet M(ψ). Un-
fortunately, computing the set of formulas M(ϕ) is an expensive
procedure and requires numerous satisfiability checks over poten-
tially large predicates. Moreover, since there can be exponentially
many minterms, such a reduction may result in an alphabet whose
size is exponential in the size of the S-M2L-STR formula.

1 This property was already observed in the context of symbolic finite
automata [16].

A symbolic decision procedure for S-M2L-STR. We propose a
decision procedure for S-M2L-STR that avoids the reduction to
M2L-STR. Our decision procedure extends the following result:
given a M2L-STR formula ϕ, one can construct a finite automa-
ton that accepts the same set of sequences accepted by ϕ [9]. In
this reduction, if the M2L-STR formula ϕ has k free variables and
operates over a finite alphabet Σ, the resulting automaton operates
over the alphabet Σ × {0, 1}k, where k bits are used to represent
variable values—i.e., what positions in the string are attached to
what variables. We show that, given an S-M2L-STR formula ϕ, one
can construct a symbolic finite automaton (s-FA) [16] that accepts
the same set of sequences accepted by ϕ. Similarly to S-M2L-STR,
s-FAs extend finite automata to sequences over symbolic alphabets
by allowing transitions to carry predicates from an underlying al-
phabet theory. This theory is required to form a decidable Boolean
algebra—i.e., the theory is closed under Boolean operations and,
given a predicate in the theory, it is decidable to check whether
the predicate is satisfiable. Given a S-M2L-STR formula ϕ over an
(infinite) alphabet σ and with k free variables, we construct a sym-
bolic automaton Aϕ over the alphabet σ × {0, 1}k. We do so by
showing that if the alphabet theory used by ϕ forms a decidable
Boolean algebra, the theory resulting from building the product al-
phabet σ×{0, 1}k still forms a decidable Boolean algebra. Since it
is decidable to check whether an s-FA accepts the empty language,
we can then test whether the formula ϕ is satisfiable by checking
whether the corresponding s-FA accepts some sequence. If the for-
mula is satisfiable, we can use the s-FA to produce a model for it.

Implementing the algebra σ×{0, 1}k To implement our S-M2L-
STR decision procedure we propose two efficient representations
of the product Boolean algebra over the alphabet σ × {0, 1}k.
The first representation is based on algebraic decision diagrams
or ADDs [6],2 by allowing the leaves to be predicates themselves,
from another effective Boolean algebra. The second representation
is based on a variant of Shannon expansions, that utilizes If-Then-
Else or ITE expressions whose nonterminals are predicates of one
algebra and whose terminals are predicates of another algebra.

We implement our decision procedure using both of these rep-
resentations and evaluate on more than 10,000 existing M2L-STR

formulas, and on new benchmark S-M2L-STR formulas over the
theories of bit-vector arithmetic and linear integer arithmetic. Our
experiments show the following. (1) Our solver has comparable
performance to existing M2L-STR solvers in the case of M2L-STR

formulas. (2) Our solver has better performance than the reduction
from S-M2L-STR to M2L-STR in the case of formulas over complex
alphabet theories. (3) The representation based on ADDs is more
efficient than the representation based on ITEs.

Contributions. In summary our contributions are the following.
(1)The logic S-M2L-STR for describing sets of finite sequences

over infinite alphabets (Section 5).
(2) A symbolic decision procedure for S-M2L-STR based on a

reduction to symbolic finite automata over a product Boolean alge-
bra, with two efficient representations of this algebra (Section 6).

(3) A predicate trie algorithm for efficiently detecting equiva-
lence of predicates. (Section 4)

(4) An efficient implementation of S-M2L-STR and its decision
procedure together with an integration with external SMT solvers
to support complex alphabet theories (Section 7).

(5) A comprehensive evaluation on more than 10,000 existing
M2L-STR benchmarks and on new S-M2L-STR formulas over the
theories of bit-vectors and linear integer arithmetic (Section 8).

2 ADDs are an extension of BDDs whose leaves can be elements of another
finite domain, not just 0 and 1.

(∗ Caesar c i p h e r ove r a l i s t ∗)

l e t rec m a p c a e s a r (x : i n t l i s t) : i n t l i s t =
match x with

[] −> []
| h : : t −> ((h + 5) mod 26) : : m a p c a e s a r t

(∗ Remove odd numbers ∗)

l e t rec f i l t e r e v (x : i n t l i s t) : i n t l i s t =
match x with

[] −> []
| h : : t when (h mod 2=0) −> h : : f i l t e r e v t
| h : : t when (h mod 2=1) −> f i l t e r e v t

(∗ Compos i t i on o f t h e two f u n c t i o n s ∗)

l e t m a p f i l t (x : i n t l i s t) : i n t l i s t =
f i l t e r e v (m a p c a e s a r x)

(∗ Compos i t i on o f t h e f u n c t i o n s ∗)

l e t f i l t m a p f i l t (x : i n t l i s t) : i n t l i s t =
m a p f i l t (f i l t e r e v x)

(∗ C o n t r a c t s ∗)

{ l i s t o f e v e n x} y := m a p c a e s a r x { l i s t o f o d d y}
{ l i s t o f e v e n x} y := m a p f i l t x { e m p t y l i s t y}
{ a n y l i s t x} y := f i l t m a p f i l t x { e m p t y l i s t y}

Figure 1. Example of contracts for list manipulating programs.

2. Motivating Example

We use a simple example to illustrate the need for a decidable logic
for describing properties involving lists over arbitrary domains.

Figure 1 contains simple ML programs operating over lists of
integers: map caesar replaces each value x of an integer list with
(x + 5) mod 26, filter ev removes all the odd elements from a
list, while map filt and and filt map filt are different functional
compositions of map caesar and filter ev.

A programmer might want to verify that such functions adhere
to the contracts given at the end of the figure. For example, the
first contract specifies that the function map caeser, when given
as input a list of even numbers always produces a list of odd
numbers. Similarly, the last contract specifies that the function
filt map filt always outputs the empty list regardless of its input.
Although arbitrary contracts over arbitrary programs are hard to
verify, contracts like the ones presented in Figure 1 have been
successfully verified using tools such as Fast [17], an automaton-
based language for verifying contracts in programs that operate
over lists and trees.

The reader at this point might wonder how constructs such
as list of even and any list can be programmed by the user. One
option is to define them using programs of type (int list → bool).
While this option provides generality, it has two main drawbacks:

- The user can write arbitrary programs that are therefore hard
to reason about.

- Writing contracts using programs might be challenging, error-
prone, and lengthy.

Another option, is to restrict the type of predicates appearing in
the contract to restricted classes of programs that have decidable
properties. The language Fast [17] adopts this option and only
allows contracts to be specified using symbolic finite automata.
While this option addresses the first problem, it still poses a burden
on the programmer who has to think in terms of automata rather
than declaratively.

We argue that a good option that fits both our requirements is
to write such contracts using a decidable logic and we propose S-
M2L-STR as a possible choice for such a logic. For example, the
predicate list of even can be expressed using S-M2L-STR as

list of even l
def
= l ∈ L (∀p.[λx.x mod 2 = 0](p))

where L (ϕ) is the set of lists that are models of the S-M2L-STR

formula ϕ. Informally, the S-M2L-STR formula states that all the
positions p in the list l contain a number satisfying the predicate
λx.x mod 2 = 0. The other predicates can be defined smilarly.

list of odd l
def
= l ∈ L (∀p.[λx.x mod 2 = 1](p))

any list l
def
= l ∈ L (true)

empty list l
def
= l ∈ L (¬∃p.true)

The predicate empty list simply states that the list l contains no
positions—i.e., the list is empty. Notice that, while the core logic
of S-M2L-STR is quite wordy, one can easily imagine a language in
which macros are used to define commonly occurring predicates.
In this paper, we formalize the logic S-M2L-STR and provide a
decision procedure for it. As the decision procedure of S-M2L-STR

produces symbolic automata, S-M2L-STR can be directly used as
the specification logic for languages like Fast [17] and Bek [26], in
which properties have to be expressed as symbolic automata.

3. Effective Boolean Algebras and Generic BDDs

We recall the notion of an effective Boolean algebra that is used
in place of a concrete alphabet and introduce a particular algebra
based on BDDs that is used in our main algorithm.

3.1 Effective Boolean Algebras

We use effective Boolean algebras in place of concrete alphabets.
An effective Boolean algebra A is a tuple (U,Ψ, [[]],⊥,⊤,∨,∧,¬)
where U is a non-empty recursively enumerable set called the uni-
verse of A. Ψ is a recursively enumerable set of predicates closed
under the Boolean connectives, ∨,∧ : Ψ × Ψ → Ψ, ¬ : Ψ → Ψ,
and ⊥,⊤ ∈ Ψ. The denotation function [[]] : Ψ → 2U is
r.e. and is such that, [[⊥]] = ∅, [[⊤]] = U , for all ϕ,ψ ∈ Ψ,

[[ϕ∨ψ]] = [[ϕ]]∪ [[ψ]], [[ϕ∧ψ]] = [[ϕ]]∩ [[ψ]], and [[¬ϕ]] = U \ [[ϕ]].3

For ϕ ∈ Ψ, we write Sat(ϕ) when [[ϕ]] 6= ∅ and say that ϕ is satis-
fiable. The algebra A is decidable if Sat is decidable.

In practice, an (effective) Boolean algebra is implemented as an
API with corresponding methods implementing the operations. We

use the following Boolean algebras. B1
def
= ({∅}, {0,1}, {0 7→

∅,1 7→ {∅}},0,1,∨,∧,¬) is the simplest possible effective
Boolean algebra. The connectives implement the standard truth
tables. SMTτ is a Boolean algebra representing a restricted use of
an SMT solver such as Z3 [19, 20] on predicates over elements of
type τ . Formally, SMTτ = (U,Ψ, [[]],⊥,⊤,∨,∧,¬), where U is
the set of all elements of type τ , Ψ is the set of all quantifier free
formulas containing a single uninterpreted constant x : τ , ⊤ is
x = x, ⊥ is x 6= x, and the Boolean operations are the correspond-
ing connectives in SMT formulas. The interpretation function [[ϕ]]
is defined using the operations of satisfiability checking and model
generation provided by an SMT solver.

General notations. For a sequence s = (e1, . . . , en) and for

i ∈ [1;n] we let s(i)
def
= ei and s · e

def
= (e1, . . . , en, e). The empty

sequence is (). For a non-empty set S of positive integers we define

ε(S) to be any element of S and ε(∅)
def
= 0. In practice, we only use

ε(S) when |S| = 1. For a term or formula ϕ we let FV(ϕ) denote
the set of all free variables in ϕ.

3.2 Generic BDDs

In our algorithm we use a variant of Algebraic Decision Dia-
grams [6] or ADDs, also known as Multi-Terminal BDDs [11].

3 The underlying Boolean algebra of A corresponds to the field of sets

(UA, {[[ψ]] | ψ ∈ ΨA}), where elements of UA are sometimes called
points, using the Representation Theorem of Boolean Algebras (cf. [10]).

ADDs are binary decision diagrams in which the terminals are el-
ements of an algebra A. We call our variant generic BDDs and we
let the leaves belong to ΨA where A is a Boolean algebra instead
of an arbitrary algebra. Generic BDDs differ from BDDs where
leaves can only belong to ΨB1. The terminals are elements that
denote subsets of UA. Since the number of bits in the domain of
generic BDDs is unrestricted4 they denote sets of functions from N

to {[[α]] | α ∈ ΨA} that we view as relations over UA × N.
Formally, a generic BDD algebra over a given Boolean leaf

algebra A is a tuple BDD〈A〉 = (UA × N,Ψ, [[]],⊥,⊤,∨,∧,¬)
where N is the set of natural numbers. The set of predicates Ψ is

defined as the set
⋃

k≥0 Ψ
(k), where Ψ(k) for k ≥ 0, is the least set

that satisfies the following conditions.

• For all ψ ∈ ΨA, map ψ to a unique element leaf(ψ) such that,
for every ψ ∈ ΨA, if [[ψ]]A = [[φ]]A then leaf(ψ) = leaf(φ).

• If ψ ∈ ΨA, then leaf(ψ) ∈ Ψ(0).

• If k ≥ 1, 0 ≤ i, j < k, ψ ∈ Ψ(i), ϕ ∈ Ψ(j), and ψ 6= ϕ, then
node(k, ψ, ϕ) ∈ Ψ(k).

A predicate leaf(ψ) is called a leaf or a terminal. We discuss in
Section 4 how leaf(ψ) can be implemented using a predicate trie.
Accordingly, a predicate node(k, ψ, ϕ) is a nonleaf or a nontermi-
nal, and k is its position. The position of a leaf is 0.

We now define the denotation of a predicate in Ψ. For n ≥ 0,
k ≥ 1, we define Bit(k, n) ⇔ (n ÷ 2k−1) mod 2 = 1, where ÷
denotes integer division. In other words, Bit(k, n) holds iff the k’th
bit of the binary representation of n is 1, e.g., Bit(2, 6) and Bit(3, 6)
are true (as a convention we start counting from 1). The denotation

of a terminal leaf(ψ) is [[leaf(ψ)]]
def
= [[ψ]]A × N. The denotation of

a non-terminal node(k, ψ1, ψ0) is defined as

[[node(k, ψ1, ψ0)]]
def
= {(a, n) ∈ [[ψ1]] | Bit(k, n)}
∪ {(a, n) ∈ [[ψ0]] | ¬Bit(k, n)}.

Observe that the positions of ψ1 and ψ0 are strictly smaller than

k. Let ⊥
def
= leaf(⊥A) and ⊤

def
= leaf(⊤A). Clearly, [[⊥]] = ∅

and [[⊤]] = UBDD〈A〉. The Boolean operations of BDD〈A〉 can be
implemented as shown in [11, Section 4.3] as an extension of [8,
Section 4.3] and the binary operators satisfy [11, Theorem 4.1]. Let
& be ∧A and let − be ¬A. For leaves, complement and conjunction
are defined as follows:

¬leaf(ψ)
def
= leaf(−ψ), leaf(ψ) ∧ leaf(ϕ)

def
= leaf(ψ & ϕ)

EXAMPLE 1. [Classic BDDs] BDD〈B1〉 corresponds to the clas-
sic case of BDDs [8], i.e., ADDs with terminals 1 or 0 but with
an unbounded (open-ended) number of Boolean variables. So each
ψ ∈ ΨBDD〈B1〉 represents a subset of N rather than a subset of

{0, 1}k for some finite k.5 We assume, without loss of generality,
that for any set S, S×{()}={()}×S=S. So UBDD〈B1〉 = N. ⊠

Since we are dealing with predicates in ΨA rather than concrete
sets, a new terminal leaf(φ) (where φ is ψ & ϕ or −ψ above)
should be created only if, so far, there has been no terminal leaf(φ′)
such that [[φ]]A = [[φ′]]A. Otherwise the already existing equivalent
terminal should be used to keep the constructed ADD canonical.
In general, the number of possible distinct terminals is unbounded
and terminals themselves may denote infinite sets. To this end we
introduce the new notion of predicate tries in Section 4.

4 Typically, in BDDs, as well as ADDs, the number of bits is restricted by a
fixed bound.
5 Semantically, BDD〈B1〉 is isomorphic to the countable atomless Boolean

algebra also called the countable Cantor algebra (cf. [10]). In this case for
example ¬leaf(1) = leaf(0) and ¬leaf(0) = leaf(1).

1 class Tree
2 k : int // depth of the node (distance from the root)
3 ψ : Ψ // representative predicate
4 t0 : Tree = null
5 t1 : Tree = null
6 IsLeaf : bool
7 return t0==null and t1==null
8
9 class PredicateTrie

10 tree = new Tree(0, ⊥, new Tree(1, ⊥), new Tree(1, ⊤))
11 v = (Atom(⊤))
12
13 SEARCH(ϕ : Ψ) : Ψ
14 return SEARCH(ϕ, tree)
15
16 SEARCH(ϕ : Ψ, t : Tree) : Ψ
17 let k = t.k
18 let ψ = t.ψ
19 if (t.IsLeaf)
20 if (k ≤ |v|) // use v[k] to distinguish ψ from ϕ
21 if v[k] ∈ ψ
22 t.t1 = new Tree(k + 1, ψ)
23 if v[k] ∈ ϕ
24 return SEARCH(ϕ, t.t1)
25 else
26 t.t0 = new Tree(k + 1, ϕ)
27 return ϕ
28 else
29 t.t0 = new Tree(k + 1, ψ)
30 if v[k] ∈ ϕ
31 t.t1 = new Tree(k + 1, ϕ)
32 return ϕ
33 else
34 return SEARCH(ϕ, t.t0)
35 else // compute symmetric difference
36 let ∆ = ϕ< ψ
37 if not Sat(∆)
38 return ψ
39 else // extend v to distinguish ψ from ϕ
40 let α = Atom(∆)
41 v = v · α
42 if α ∈ ϕ
43 t.t0 = new Tree(k + 1, ψ)
44 t.t1 = new Tree(k + 1, ϕ)
45 else
46 t.t0 = new Tree(k + 1, ϕ)
47 t.t1 = new Tree(k + 1, ψ)
48 return ϕ
49 else // proceed recursively on internal nodes
50 if v[k] ∈ ϕ
51 if t.t1==null
52 t.t1 = new Tree(k + 1, ϕ)
53 return ϕ
54 else
55 return SEARCH(ϕ, t.t1)
56 else
57 if t.t0==null
58 t.t0 = new Tree(k + 1, ϕ)
59 return ϕ
60 else
61 return SEARCH(ϕ, t.t0)

Figure 2. Predicate trie algorithm.

4. Predicate Trie

The goal of a predicate trie is to maintain a set S of pairwise in-
equivalent predicates from ΨA so that new terminals of predicates
in ΨBDD〈A〉 are created only for predicates that are inequivalent to
all the predicates seen so far. In other words, all the elements of S
are representatives of distinct equivalence classes of formulas. The
naive algorithm for accomplishing this task, when receiving a new
predicate ϕ, checks the equivalence of ϕ against all the predicates
already in S and only adds ϕ to S if no predicate in S is equiv-
alent to ϕ. For this algorithm, adding a new predicate has linear
complexity in the size of S. We describe a different algorithm for
which, under some assumptions, adding a new predicate to S has
logarithmic complexity in the size of S.

A sufficient condition for the following algorithm to work is
that the algebra A is atomic. A is atomic if it is possible to create
predicates in ΨA that denote singleton sets. An atomic effective
Boolean algebra A has the additional component

Atom : ΨA → ΨA

such that [[Atom(ϕ)]] ⊆ [[ϕ]], and if Sat(ϕ) then |[[Atom(ϕ)]]| = 1.
For example, SMTτ is atomic but BDD〈B1〉 is not atomic.

Atoms allow us to efficiently check satisfiability of formulas of
the form α∧ψ by treating atoms α as concrete values. For example,
given a predicate λx.ψ(x) and an atom α with denotation {a},
we can simply evaluate the formula ψ(a) instead of performing a
general satisfiability check. In the following, we write α ∈ ψ for
a ∈ [[ψ]] to emphasize the special case of α being an atom.

The main idea behind our algorithm is to maintain the following
invariant. Given a fixed sequence v = (vi)

n
i=1 where each element

vi is an atom and a finite set S ⊆ ΨA of pairwise inequivalent
predicates, for every two predicates ψ,ϕ ∈ S there is some vi such
that vi ∈ ψ ⇔ vi /∈ ϕ. To efficiently maintain this invariant we
order the predicates in S with respect to the following order.6

ψ ≺v ϕ
def
= ∃i ∈ [1; |v|](vi ∈ ϕ\ψ ∧ ∀j<i(vj ∈ ϕ⇔ vj ∈ ψ))

Intuitively, ψ ≺v ϕ, or ψ ≺ ϕ when v is clear, means that if vi
is the first element of the sequence v that distinguishes ψ from ϕ
then vi occurs in ϕ. It follows in particular that ⊥ ≺ ϕ and ϕ ≺ ⊤
for all ϕ other than ⊥ and ⊤. Using the order ≺, we can perform a
binary search for efficiently inserting new predicates into S, and if
need be, extend v in the process.

A key property of our algorithm is that, when the sequence
v does not suffice to distinguish a new predicate from the ones
already in S, appending a new atom at the end of v does not affect
the relative ordering among the predicates already in S.

PROPOSITION 1. If ψ ≺v ϕ and α /∈ v then ψ ≺v·α ϕ

We design a predicate trie data structure for representing S in
≺-order and illustrate its operations in Figure 2. A concrete pred-
icate trie PredicateTrie(t,v) contains two attributes: the sequence
v of atoms, and a binary tree t of depth |v|. The leaves of t are the
elements of S and the internal nodes of t have two subtrees, called
the 1-subtree and the 0-subtree, respectively The 1-subtree t1 and
the 0-subtree t0 are such that, for all leaves ψ0 in t0 and ψ1 in t1,
we have that ψ0 ≺ ψ1. The linear order ≺ determined by v is just
lexicographic order on branches to leaves ψ in t as represented by
binary valuation sequences (b1, b2, . . . , bm) where m ≤ |v| and
bi = 1 if v(i) ∈ ψ, and bi = 0 if v(i) /∈ ψ. For example, a
branch (1,0,0) to ψ represents the valuation v1 ∈ ψ, v2 /∈ ψ, and
v3 /∈ ψ. The algorithm for searching for a predicate ϕ in a trie is
given in Figure 2 as the method SEARCH.

The trie is initialized as follows. The initial sequence v has
length one and contains an atom (α). The binary tree has two

6 Formula ϕ\ψ stands for ϕ ∧ ¬ψ.

leaves that are ⊥ and ⊤, respectively. Trivially α /∈ ⊥ and α ∈ ⊤.
This ensures that valid predicates will always be mapped to ⊤ and
unsatisfiable predicates to ⊥.

When a predicate ϕ is searched in the trie, ϕ is searched in
the tree of the trie. In the case of a leaf (lines 20–48), there are
two possibilities depending on whether the depth k of the leaf
is within the limits of the sequence v (k ≤ |v|) or not. In the
former case (lines 21–34) the predicate ψ of the leaf and the
predicate ϕ are compared by checking whether the symbol in the
atom v(k) distinguishes them and the leaf is expanded to a subtree
incorporating both ψ and ϕ. In the case k > |v| (lines 36–48), the
sequence v was not enough to distinguish ψ from ϕ.

The algorithm then proceeds to evaluate the symmetric differ-
ence ∆ of ψ and ϕ, which is the most costly operation of the al-
gorithm. The two possible outcomes are that either, ψ and ϕ are
equivalent, in which case ψ is returned (line 38) as the chosen rep-
resentative, or they are not equivalent, in which case a representa-
tive α is chosen from ∆ to distinguish the predicates, the leaf is
expanded to a subtree, the sequence v is extended accordingly with
α, and ϕ is returned.

In the case of a nonleaf (lines 50–61) the predicate is searched
recursively in the subtrees depending on whether v(k) ∈ ϕ or not.
If the corresponding subtree is null (lines 52 and 58), it means that
there is yet no predicate with the corresponding valuation sequence,
the tree is updated to have a new leaf whose predicate is ϕ, and ϕ
is returned.

Using values (or atoms) in v to distinguish predicates exploits
the assumption that evaluating a predicate with respect to a concrete
value (or atom) is cheaper than a general satisfiability check. The
algorithm works obviously also for effective Boolean algebras that
directly support checking that a ∈ [[ϕ]] and use concrete values
instead of atoms.

4.1 Complexity

In the following we argue that, under certain assumptions, the
expected depth of the trie constructed by the search algorithm is
logarithmic in the number of inequivalent predicates (leaves in the
trie). Notice that distinct duplicate but equivalent predicates do not
count. We show that the problem of constructing a trie with n leaves
is similar to the problem of constructing a binary search tree or BST
with approximately the same height and size.

In this analysis we assume that UA is the interval [0;K) for
some finite K and that each predicate ϕ is a number in ΨA =
[0; 2K) representing the set of all b ∈ UA such that bit b of ϕ is

one, i.e., ϕ ÷ 2b mod 2 = 1. An atom 2b represents the set {b}.
When constructing a trie from a sequence (ϕi)

n
i=1 of predicates, we

assume that all predicates have been chosen uniformly at random
from ΨA, so all n! permutations are equally probable. The test
Sat(ϕ< ψ) is the test ϕ 6= ψ. The function Atom(ϕ) is defined as

0 if ϕ = 0, else 2b where b is the least bit such that 2b ∈ ϕ.
Consider a trie that has been constructed from (ϕi)

n
i=1. The

trie orders the predicates according to ≺v .7 One can systematically
map the trie into a ≺-ordered BST, say BST≺, such that for any
subtree t with root r, for all nodes x in the left subtree of t
we have x ≺ r and for all nodes x in the right subtree of t
we have r ≺ x. BST≺ is constructed, roughly, by shifting, for
each subtree t of the trie, the largest (rightmost) leaf from the left
subtree of t into its root. This transformation induces a reordering
(ϕ′
i)
n
i=1 of the original input sequence (ϕi)

n
i=1 such that inserting

the elements ϕ′
1, ϕ

′
2, . . .with respect to ≺-order produces the same

BST≺. The expected height of a random BST constructed from a
random equiprobable permutation of n values isO(log n), cf. [37].

7 Observe that the standard order < is the special case ≺(20,21,...,2K−1).

EXAMPLE 2. Consider A as in Section 4.1 with K = 128. One
can think of UA as the set of all ASCII characters and a set of
characters is represented by a 128-bit number. In this case let the
regex character classes \d of digits, \w of word letters, and \s of
white-space characters, be predicates that denote the following sets:

[[\d]] = [48; 57]
[[\w]] = [48; 57] ∪ [65; 90] ∪ {95} ∪ [97; 122]
[[\s]] = [9; 13]

Moreover, let \D = ¬\d, \W = ¬\w, and \S = ¬\s. Consider
the input sequence (\w, \d, \S, \D) of predicates. The trie evolves
as follows where the leaves are shown as boxed predicates, and
internal nodes at depth i− 1 for i ∈ [1; |v|] have labels a such that
v(i) = 2a. The root has label 0 because Atom(⊤) = 20.

0

⊥ ⊤ \w

=⇒

0

48

⊥ \w

⊤

\d

=⇒

0

48

⊥ 65

\d \w

⊤

\S

=⇒

0

48

⊥ 65

\d \w

48

null 65

null 9

\S ⊤

\D

=⇒

0

48

⊥ 65

\d \w

48

\D 65

null 9

\S ⊤

In the end v = (20, 248, 265, 29) and \d ≺ \w ≺ \D ≺ \S. ⊠

5. Symbolic Weak Monadic Second Order Logic

of One Successor

We define symbolic weak monadic second-order logic of one suc-
cessor on finite sequences (S-M2L-STR) together with its abstract
syntax and semantics. The syntax of symbolic weak monadic
second-order logic of one successor (S-M2L-STR) formulas operat-
ing on words over an effective Boolean algebra A, or M2L-STR〈A〉,
is defined by the grammar

ϕ := ¬ϕ | ϕ ∧ ϕ | ∃x(ϕ) | ∃X(ϕ) | x < y | X(x) | [α](x)

where α ∈ ΨA. First-order variables are denoted by lower case
letters x, y, z and range over positions (i.e., positive integers), and
second-order variables are denoted by upper case letters X,Y, Z
and range over finite sets of positions. We write X for a variable
that is either first-order or second-order. Universal quantification as
well as other logical connectives are defined as usual, e.g., ψ ⇒ ϕ
is defined as ¬ψ ∨ϕ. Table 1 shows a set of complex formulas that
can be derived from the basic syntax.

Derived formulas Description

x = y
def
= ¬(x < y) ∧ ¬(y < x) x and y are the same positions

|X| = 1
def
= ∃x(X(x) ∧ ¬∃y(X(y) ∧ x 6= y)) X is a singleton set

succ(x, y)
def
= x < y ∧ ¬∃z(x < z ∧ z < y) y is the successor of x

first(x,X)
def
= X(x) ∧ ¬∃y(X(y) ∧ y < x) x is the first position in the set X

last(x,X)
def
= X(x) ∧ ¬∃y(X(y) ∧ x < y) x is the last position in the set X

range(x, y,X)
def
= ∀z((x ≤ z ∧ z ≤ y) ⇔ X(z)) the set X is the range [x; y]

range(X)
def
= ∃x∃y(range(x, y,X)) the set X is a range

[α](X)
def
= ∀x(X(x) ⇒ [α](x)) the labels of all positions in X satisfy α

range(α,X)
def
= range(X) ∧ [α](X) the set X is an α-range

X ⊆ Y
def
= ∀x(X(x) ⇒ Y (x)) X is a subset of Y

X ⊂ Y
def
= X ⊆ Y ∧ ¬(Y ⊆ X) X is a strict subset of Y

maxrange(α,X)
def
= range(α,X) ∧ ∀Y (X ⊂ Y ⇒ ¬range(α, Y)) X is a maximal α-range

Table 1. S-M2L-STR formulas derived from the basic syntax.

The operator that differentiates S-M2L-STR from M2L-STR is
the unary predicate [α](x). In M2L-STR predicates are not really
used or even needed. Instead, if there is a finite signature Σ of size
at most 2k with the intent of being used as labels, then the cor-
responding formula will encode each label using k free variables
each corresponding to one bit of information about the label when
represented as a natural number in binary format. A concrete ex-
ample is the (extended) ASCII alphabet, where 8 bits are needed to
represent one character, as illustrated in [29, Section 6.6]. In con-
trast, in S-M2L-STR the predicate α can be an arbitrary predicate of
the Boolean algebra A.

EXAMPLE 3. Given the predicate ψ(r) = r > 0 over the theory
of linear integer arithmetic, the formula

∃x1.∃x2.[ψ(r)](x1) ∧ [ψ(r)](x2) ∧ x1 < x2

is true for all the strings a1 . . . an ∈ N
∗ for which there exists two

positions i, j ∈ [1;n] such that the symbols ai and aj are both
numbers greater than 0 and i appears before j (i.e. i < j). ⊠

Moreover, while in M2L-STR any position x in the string over
Σ satisfies exactly one predicate in Σ (i.e. each character is a fixed
element of Σ, when encoded as a binary number), in our case, since
no encoding is needed, each position can satisfy any subset of the
unary predicates appearing in the formula.

EXAMPLE 4. For example the character r = 6 satisfies ψ(r)
above but also even(r). Moreover, since for every two predicates
ψ1, ψ2 ∈ ΨA the predicate ψ1 ∧A ψ2 is in ΨA, it follows that if ψ1

and ψ2 are unary predicates in S-M2L-STR then so is ψ1 ∧A ψ2. ⊠

Semantics We formally define the semantics of M2L-STR〈A〉.
Intuitively, words are elements of U∗

A, i.e., the Kleene closure or
the set of all finite sequences over UA. First-order variables in the
formulas refer to positions of individual letters of words (elements
of UA) and second-order variables refer to finite sets of positions.
Predicates α in formulas [α](x) refer to the letter in position x.

Let {xj}j≥1 and {Xj}j≥1 be fixed enumerations of first-order
and second-order variables. Let ϕ be a M2L-STR〈A〉 formula such
that FV(ϕ) ⊆ {xj}j≥1 ∪ {Xj}j≥1 and, for any j, at most one of
xj or Xj is free in ϕ, otherwise ϕ is ill-formed.

Let J = {j | Xj ∈ FV(ϕ)} be the set of all free variable
indices in ϕ. Let w ∈ U∗

A and let θ be a finite sequence of subsets
of positions of w (subsets of [1; |w|]) such that, for all j ∈ J , θ(j)
is defined, i.e., j ≤ |θ|. Moreover, if Xj is a free first-order variable
in ϕ then θ(j) must be a singleton set. We define the semantics

using judgements of the form w, θ � ϕ:

w, θ � ¬ϕ ⇔ w, θ 2 ϕ

w, θ � ϕ1 ∧ ϕ2 ⇔ w, θ � ϕ1 and w, θ � ϕ2

w, θ � ∃x(ϕ(x)) ⇔
there exists i ∈ [1; |w|] such that
w, θ · {i} � ϕ(x|θ|+1)

w, θ � ∃X(ϕ(X)) ⇔
there exists I ⊆ [1; |w|] such that
w, θ · I � ϕ(X|θ|+1)

w, θ � xi = xj ⇔ θ(i) = θ(j)

w, θ � xi < xj ⇔ ε(θ(i)) < ε(θ(j))

w, θ � Xj(xi) ⇔ θ(i) ⊆ θ(j)

w, θ � [α](xi) ⇔ w(ε(θ(i))) ∈ [[α]]A

A formula is closed if it has no free variables and it is open
otherwise. Let ϕ be a closed formula. We write w � ϕ for w, () �
ϕ. The language of ϕ is the following subset of U∗

A,

L(ϕ)
def
= {w ∈ U∗

A | w � ϕ}.

EXAMPLE 5. Define the following formulas, where the subformu-
las over positions and sets are defined as usual, e.g., y = x + 1
stands for x < y ∧ ¬∃z(x < z ∧ z < y).

OddEven(X,Y)
def
= X∪Y = all ∧X∩Y = ∅ ∧

∃x(first(x) ∧X(x)) ∧
∀x∀y((y = x+ 1 ∧ Y (y)) ⇒ X(x)) ∧
∀x∀y((x = y + 1 ∧X(x)) ⇒ Y (y))

Odd(x)
def
= ∃X ∃Y (OddEven(X,Y) ∧X(x))

Even(x)
def
= ∃X ∃Y (OddEven(X,Y) ∧ Y (x))

Consider A to be integer linear arithmetic with even as the pred-
icate λx.xmod 2 = 0 and odd as the predicate λx.xmod 2 = 1.
Let ϕ be the following closed M2L-STR〈A〉 formula

∀x((Odd(x) ⇒ [even](x)) ∧ (Even(x) ⇒ [odd](x))).

The language of ϕ, L(ϕ), consist of all finite sequences w of
integers such that for all i, 1 ≤ i ≤ |w|, w(i) is odd iff i is even
and w(i) is even iff i is odd. ⊠

5.1 S-M2L-STR vs M2L-STR

The classic decision procedure for M2L-STR modifies formulas
by replacing first-order variables with second-order variables and
by adding additional constraints. This can be done using two ap-
proaches. The first approach represents first-order variables as

second-order variables that always contain singleton sets—i.e., the
element of the first-order variable. The second approach represents
the value of each first-order variables using the minimal element
of the non-empty set of a corresponding second order variable.
The second approach has been taken in Mona, with the motiva-
tion that it provides slightly better performance for the automata
translation [29, Section 3.2].

When dealing with formulas in M2L-STR〈A〉 there are new con-
cerns and possibilities for optimizations that do not arise for M2L-
STR. Therefore, both of the above approaches should be revisited
and evaluated before committing to either one. It is also important
to maintain the distinction between first-order and second-order
variables as illustrated by the following two cases.

Let & denote ∧A and let − denote ¬A. The formula [α](xi) ∧
[β](xi) is equivalent to [α & β](xi) because, using |θ(i)| = 1,

w, θ � [α](xi) ∧ [β](xi) ⇐⇒ w(ε(θ(i))) ∈ [[α]]A ∩ [[β]]A
⇐⇒ w(ε(θ(i))) ∈ [[α & β]]A ⇐⇒ w, θ � [α & β](xi).

The formula ¬[α](xi) is equivalent to [−α](xi). This is because,
using |θ(i)| = 1,

w, θ � ¬[α](xi) ⇐⇒ w, θ 2 [α](xi) ⇐⇒
w(ε(θ(i))) /∈ [[α]]A ⇐⇒ w(ε(θ(i))) ∈ (UA \ [[α]]A) ⇐⇒
w(ε(θ(i))) ∈ [[−α]]A ⇐⇒ w, θ � [−α](xi).

Such transformations may be beneficial when the ability to push
the negation into the alphabet theory can imply further simplifica-
tions. For example, if α has the form −β then ¬[α](xi) simplifies
to [β](xi). A closer study of such transformations and implied sim-
plifications is future work.

6. From S-M2L-STR to Symbolic Finite Automata

The classic decision procedure for M2L-STR relies on the fact that
any formula ϕ(X1, . . . , Xk) with k free variables and over a finite
alphabet Σ can be compiled into a deterministic finite automaton
M that accepts strings over the alphabet Γ = Σ × {0, 1}k. Any

occurrence of a character c = (a, (bj)
k
j=1) ∈ Γ in position i of

a word w encodes the property: i ∈ Xj ⇔ bj = 1, meaning
that position i is an element of the set Xj . Thus, every string

w = (ci)
n
i=1 accepted by M , where ci = (ai, (bi,j)

k
j=1), has

the following property: if for each variable Xj we let Ij = {i ∈
[1..n] | bi,j = 1}, then

(ai)
n
i=1, (Ij)

k
j=1 � ϕ(X1, . . . , Xk).

Our decision procedure uses the same idea and transforms a
M2L-STR〈A〉 formula into a symbolic finite automaton, which
is a finite automaton in which edge labels are replaced by pred-
icates. Given a M2L-STR〈A〉 our algorithm constructs a symbolic
finite automaton over the alphabet UA × N. By using N instead
of {0, 1}k we do not need to know in advance the exact number
of variables appearing in the formula. Technically this simplifies
some of the constructs as we do not need to change the alphabet
when k changes.

To represent the composite alphabet UA × N we consider two
approaches. First we show how we can use BDD〈A〉. We then
discuss an alternative way to construct a product algebra A ⊠

BDD〈B1〉 that is also based on a variation of Shannon expansions.

6.1 Symbolic Finite Automata

A symbolic finite automaton (s-FA) M is a tuple (A, Q, q0, F,∆)
where A is an effective Boolean algebra, called the alphabet alge-

bra, Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q
is the set of final states, and ∆ ⊆ Q × ΨA × Q is a finite set of

transitions. A transition (p, ϕ, q) ∈ ∆ is also denoted by p
ϕ
−→M q

(or p
ϕ
−→ q).

q0

¬βi

q1

¬βi

βi

(a) Singlei

q0

βi ⇒ βj

(b) Subseti,j

q0

¬βi∧¬βj

q1 q2
βi∧¬βj ¬βi∧βj

¬βi∧¬βj ¬βi∧¬βj

(c) Lessi,j

q0

¬βi

q1

¬βi

βi∧Pα

(d) Labelα,i

βi ⇒ Pα

q0

(e) Label∀α,i

q0

¬βi

q1

¬βi

βi∧βj

(f) Memberi,j

q0

¬βi∧¬βj

q1
βi∧βj

¬βi∧¬βj

(g) Equali,j

q0

(βi∧βj)∨(¬βi∧¬βj)

(h) Equal∀i,j

Figure 3. Basic s-FAs used as building blocks when translating
M2L-STR〈A〉 formulas into s-FAs. The corresponding formula be-
hind the s-FA is: a) |Xi| = 1; b) Xi ⊆ Xj ; c) xi < xj ; d) [α](xi);
e) ∀x(Xi(x) ⇒ [α](x)); f) Xj(xi); g) xi = xj ; h) Xi = Xj .

A word w = (ai)
k
i=1 ∈ U∗

A, is accepted from state p of M ,
denoted w ∈ Lp(M), if either w = ǫ and p ∈ F , or there exist

pi−1
ϕi−→M pi, ai ∈ [[ϕi]], for 1 ≤ i ≤ k, such that p0 = p, and

pk ∈ F . The language of M is L(M)
def
= Lq0(M).

s-FAs are closed under Boolean operations [42] and we use

⊕,⊗, and ∁ to denote their union, intersection, and complement
operations, respectively. We will use these Boolean operations over
s-FAs when translating S-M2L-STR formulas to s-FAs.

6.2 From S-M2L-STR to s-FA using the Generic BDD
Algebra

We define a translation sFA(·) from M2L-STR〈A〉 to s-FAs over
BDD〈A〉 = (UA × N,Ψ, [[]],⊥,⊤,∨,∧,¬). Let

βi
def
= node(i,⊤,⊥), Pα

def
= leaf(α).

Pα means that for all (a, n) ∈ [[Pα]], a satisfies α, and βi means
that for all (a, n) ∈ [[βi]], bit i of n is 1. Recall our convention that
the lowest bit is 1. Observe that ¬βi = node(i,⊥,⊤).

The s-FAs used for constructing the core basic formulas are
shown in Figure 3. For example, the s-FA depicted in Figure 3(e)
describes all the words over the alphabetUA×N such that for every
character (a, n) either a satisfies α and the i-th bit of n is 1, or the
i-th bit of n is 0.

We define a transformation to restrict the number of relevant
bits in the domain of an s-FA M over BDD〈A〉 and we use it for
correctly modelling existential quantifier in our translation. The
transformation behaves as follows: for k ≥ 1, it restricts the
number of relevant bits of N of all guards to at most k − 1, and
for k = 0, it projects away the BDD component completely. First,

q0 q1
β1 ∧ ¬Pα

¬β1¬β1

(a) sFA(¬[α](x1))

q0 q1
β1∧¬Pα

⊤¬β1

q2

¬β1

β1β1∧Pα

(b) sFA([α](x1))∁

Figure 4. Sample s-FAs.

we define the restriction for predicates in ΨBDD〈A〉:
8

leaf(α)↾0
def
= α, leaf(α)↾k

def
= leaf(α) (if k > 0),

node(i, ϕ, ψ)↾k
def
=

node(i, ϕ, ψ), if i < k;
ϕ ∨ ψ, if i = k;
ϕ↾k ∨ ψ↾k, otherwise.

Observe that, for k = 0 the restriction operation produces a predi-
cate in ΨA. For 0 and k ≥ 1, the restriction operation is lifted to all
M ∈ ΨM〈BDD〈A〉〉.

M↾0
def
=(A, QM , q

0
M , FM , {(p, ϕ↾0, q) | (p, ϕ, q)∈∆M}),

M↾k
def
=(BDD〈A〉,QM ,q

0
M ,FM ,{(p, ϕ↾k, q) | (p, ϕ, q)∈∆M}).

We can now define the translation of the formulas as follows,
where the atomic formulas use the s-FAs from Figure 3. We only
consider normalized formulas, where a formula ϕ is normalized
if: 1) all variables in ϕ belong to {xi}i≥1 ∪ {Xi}i≥1; 2) there is
no i and subformula ψ of ϕ such that xi, Xi ∈ FV(ψ); 3) for all

subformulas ∃Xiψ of ϕ we have i = max{j | Xj ∈ FV(ψ)}.9

sFA(xi = xj)
def
= Equali,j

sFA(ϕ1 ∧ ϕ2)
def
= sFA(ϕ1)⊗ sFA(ϕ2)

sFA(Xj(xi))
def
= Memberi,j

sFA(¬ϕ)
def
= sFA(ϕ)∁ ⊗

⊗

xi∈FV(ϕ) Singlei

sFA([α](xi))
def
= Labelα,i

sFA(∃Xiϕ)
def
= sFA(ϕ)↾i

sFA(xi < xj)
def
= Lessi,j

In the ∃-case, i = max{j | Xj ∈ FV(ϕ)}, so all transition guards
in sFA(ϕ) have position ≤ i. Therefore, sFA(ϕ)↾i eliminates
constraints only on i.

Only four of the eight basic SFAs in Figure 3 are needed by the
core transformation rules of sFA(·). The implementation uses the
other basic SFAs as shortcuts in translation rules of common cases
such as sFA(Xi = Xj)

def
= Equal∀i,j instead of the equivalent

sFA(¬∃x¬((Xi(x) ∧Xj(x)) ∨ (¬Xi(x) ∧ ¬Xj(x)))).

EXAMPLE 6. Figure 4 compares sFA(¬[α](x1)) to sFA([α](x1))
∁

to illustrate why the additional singleton restriction Single1 is

needed: sFA([α](x1))
∁ treats x1 as if it was second-order. ⊠

We need the following additional definitions to state the cor-
rectness theorem of the translation and to precisely relate the lan-
guage of a formula to the language accepted by the corresponding

8 Observe that both “i = k” and “otherwise” are needed, the latter (i > k)
is the recursive case of restriction whereas the former stops the restriction.
9 Normalization is a simple syntactic variable renaming procedure.

s-FA. We first define the language of normalized open formulas

ϕ. To this end, given a judgement w, θ � ϕ we let w(θ) denote
the following subset of (UA × N)∗. Let w = ā = (ai)

n
i=1 and

θ = X̄ = (Xj)
k
j=1.

ā(X̄) def
= {((a1,m1), . . . , (an,mn)) |

for all i ∈ [1..n], j ∈ [1..k] : Bit(j,mi) ⇔ i ∈ Xj}

The intuition is that w(θ) is a lifting of the word w from the
alphabet UA to the alphabet UA × N such that, for each position
i of w, letter ai = w(i) in potion i is lifted to (ai,mi) where mi

is a number that encodes which variables Xj include i and which
don’t. If the j’th bit ofmi is 1 (resp. 0) then this means that i ∈ Xj
(resp. i /∈ Xj). All bits above k are irrelevant and can have any
value. For example, if there is a single variable X1 (k = 1) then
what matters is only the first bit of mi, then, if mi is odd then
i ∈ X1 else i /∈ X1. Let

Lopen(ϕ)
def
=

⋃

{w(θ) | w, θ � ϕ}.

The following lemma relates the language of an open formula to
the language of the corresponding s-FA and it is proved by case
analysis and induction over the structure of M2L-STR〈A〉 formulas.

LEMMA 1. For normalized ϕ, Lopen(ϕ) = L(sFA(ϕ)).

We can now state our main theorem, which follows from Lemma 1
and the property that the guards of all transitions in sFA(ϕ) have
the form leaf(α) when ϕ is closed.

THEOREM 1. For closed ϕ, L(ϕ) = L(sFA(ϕ)↾0).

Nonempty set semantics The s-FAs that are shown in Figure 3
are based on the singleton-set semantics of first-order variables. An
alternative is to consider first-order variables as minimal elements
of nonempty sets. With such minimum-of-nonempty-set semantics
some of the s-FAs would be different, e.g., in Figure 3(g) the
predicate on the q1-loop would be ⊤, because (with respect to the
assumption that we only care about the minimal elements) xi = xj
would be interpreted as min(Xi) = min(Xj), so the positions
occurring in either Xi or Xj after state q1 do not matter. Other
s-FAs involving first-order variables would be affected similarly.

The overall translation is affected so that Singlei is replaced
by Nonemptyi, the latter is a modification of the former from
Figure 3(a) with the label of the q1-loop replaced by ⊤. Observe
that Nonemptyi checks precisely that the minimum position exists
in Xi and does not care about any other positions (thus the label ⊤
after state q1). Mona uses this latter approach [29].

6.3 From S-M2L-STR to s-FA using a Product Algebra

Given two effective Boolean algebras A and B, a Cartesian product
for (A,B) is any effective Boolean algebra C, withUC = UA×UB,
that is associated with effective predicate transformers D (decom-
pose) and C (compose) such that for all ψ ∈ ΨC the sum of prod-
ucts decomposition D(ψ) is a finite subset of ΨA × ΨB and con-
versely, for every finite F ⊆ ΨA ×ΨB we have C(F) ∈ ΨC where

[[ψ]]C =
⋃

{[[α]]A × [[β]]B | (α, β) ∈ D(ψ)} = [[C(D(ψ))]]C

For example, it is easy to see from the definitions that we can
effectively transform any predicate in ψ ∈ ΨBDD〈A〉 into D(ψ) =

{(αi, βi)}
k
i=1 where all αi ∈ ΨA and βi ∈ ΨBDD〈B1〉. Thus,

BDD〈A〉 is (a particular implementation of) a Cartesian product
for (A,BDD〈B1〉).

An abstract (and highly impractical) definition of a Carte-
sian product for (A,B), denoted A×B, can be given as fol-
lows: UA×B = UA × UB, ΨA×B contains all finite nonempty
subsets of ΨA × ΨB representing sums of products or DNFs

ϕ ∧ ψ
def
= MERGE(ϕ, ψ, ⊤A)

MERGE(ϕ : ΨA⊠B, ψ : ΨA⊠B, π : ΨA) : ΨA⊠B

1 match ϕ
2 case ⌊α, ϕ1, ϕ2⌋
3 let ψ1 = MERGE(ϕ1, ψ, π ∧A α)
4 let ψ2 = MERGE(ϕ2, ψ, π ∧A ¬Aα)
5 return ⌊α, ψ1, ψ2⌋
6 case ⌊β⌋
7 match ψ
8 case ⌊α, ψ1, ψ2⌋
9 let π1 = π ∧A α

10 let π2 = π ∧A ¬Aα
11 if not SatA(π1)
12 return MERGE(ϕ,ψ2, π)
13 else if not SatA(π2)
14 return MERGE(ϕ,ψ1, π)
15 else
16 let φ1 = MERGE(ϕ,ψ1, π1)
17 let φ2 = MERGE(ϕ,ψ2, π2)
18 return ⌊α, φ1, φ2⌋
19 case ⌊γ⌋
20 if SatB(β ∧B γ)
21 return ⌊β ∧B γ⌋
22 else
23 return ⌊⊥B⌋

Figure 5. Conjuction ϕ ∧ ψ in A⊠ B.

(disjunctive normal forms), and for ψ ∈ ΨA×B, [[ψ]]A×B =
⋃

(α,β)∈ψ [[α]]A × [[β]]B. The definition of ⊥AxB follows the well-

formedness convention (used later) that the first component is al-
ways satisfiable: ⊥A×B is {(⊤A,⊥B)}; ⊤A×B is {(⊤A,⊤B)};
∨A×B is the union of the two sets, ¬A×B applies De Morgans laws
and computes the DNF, and ∧A×B is defined in terms of ∨A×B

and ¬A×B. The following proposition is immediate.

PROPOSITION 2. If A and B are effective Boolean algebras then
so is A× B.

In the following, we consider another implementation of a
Cartesian product algebra for (A,B), denoted by A⊠ B, that does
not rely on B being BDD〈B1〉. In Section 6.4 we discuss the key
differences between these two implementations, as Cartesian prod-
uct algebras for (A,BDD〈B1〉).

Algebra A ⊠ B. For an efficient implementation of predicates in
ΨA⊠B we use If-Then-Else expressions or ITEs. An ITE for (A,B)
is either

• a terminal ⌊β⌋ with β ∈ ΨB, or

• a nonterminal ⌊α, ϕ1, ϕ2⌋ where α ∈ ΨA and ϕ1, ϕ2 are ITEs.

In other words, an ITE for (A,B) is a Shannon expansion whose
terminal predicates belong to ΨB and whose nonterminal predicates

belong to ΨA. We have ⊤A⊠B
def
= ⌊⊤B⌋ and ⊥A⊠B

def
= ⌊⊥B⌋.

Let ψ ∈ ΨA⊠B. We define the path condition to a node in ψ as
a predicate in ΨA as follows: the path condition to the root of ψ is
⊤A, and if the path condition to a node ⌊α, ϕ1, ϕ2⌋ in ψ is π, then
the path condition to ϕ1 is π ∧A α and the path condition to ϕ2 is
π ∧A ¬Aα.

The pair (π, β) where π is the path condition to a terminal ⌊β⌋
of ψ is called a branch of ψ. Define D(ψ) as the set of all branches
of ψ. We say that ψ is reduced if for all (π, β) ∈ D(ψ):

• SatA(π), and

• either β ∈ {⊥B,⊤B} or both SatB(β) and SatB(¬Bβ).

For example, the ITE ⌊⊤A, ⌊⊥B⌋, ⌊⊤B⌋⌋ is not reduced because,
in the branch (¬A⊤A,⊤B), the path condition ¬A⊤A is unsatisfi-
able. Observe that both ⌊⊤B⌋ and ⌊⊥B⌋ are trivially reduced.

The two key operations over ITEs, much like for BDDs, are
negation and conjunction. Negation ¬ = ¬A⊠B is defined as
follows.

¬⌊β⌋
def
= ⌊¬Bβ⌋, ¬⌊α, t, f⌋

def
= ⌊α,¬t,¬f⌋

Trivially, negated ITEs are also reduced, provided that ¬B⊥B is
⊤B and ¬B⊤B is ⊥B. Conjunction is defined in Figure 5 and uses
satisfiability checks in A and B to maintain the property that the
output formula is reduced if the inputs are reduced.

The denotation function [[ψ]] for ψ ∈ ΨA×B is defined in the
obvious way, as well as the composition operator, so that [[ψ]] =
[[C(D(ψ))]].

6.4 BDD〈A〉 vs A⊠ BDD〈B1〉

The main structural difference between BDD〈A〉 and A⊠BDD〈B1〉
is the following: in BDD〈A〉 the leaves are predicates from ΨA

while the internal nodes are bit-branches, but in A⊠BDD〈B1〉 the
internal nodes are predicates from ΨA and the leaves are BDDs.
Essentially, the representations are turned upside-down (relatively
to each other).10

For the effective Boolean algebra C = A⊠BDD〈B1〉 we define
the restriction operation ↾ as follows, let ψ ∈ ΨC and k ≥ 1; ψ is
either a leaf ⌊β⌋ or a node ⌊α, t, f⌋,

⌊β⌋↾k
def
= ⌊β↾k⌋, ⌊α, t, f⌋↾k

def
= ⌊α, t↾k, f↾k⌋

So in C we have that ψ↾k restricts the positions of all the terminal
predicates in ψ to < k for k ≥ 1. As the special case, for k = 0,
ψ↾k is defined as a predicate in A:

⌊β⌋↾0
def
=

{

⊤A, if β↾0 = 1;
⊥A, otherwise.

⌊α, t, f⌋↾0
def
= (α ∧A t↾0) ∨A (¬Aα ∧A f↾0),

where β↾0 is always either 0 or 1 (recall the definition of B1 from
Section 3.1).

While in BDD〈A〉 the predicate trie algorithm is used to keep
the representation canonical, in C the leaves are canonical by virtue
of BDD〈B1〉 but the predicates are in general not canonical. In-
stead, the main effort in constructing the predicates in C goes into
keeping them reduced. Efficiency of the restriction operation ↾ is
critical in both cases. For C, let

βi
def
= ⌊node(i,1,0)⌋, Pα

def
= ⌊α,⊤C ,⊥C⌋.

In the translation from M2L-STR〈A〉 to s-FA over A ⊠ BDD〈B1〉,
if we replace the predicates βi and Pα in Figure 3 with the ones
defined above, the algorithm sFA(·) remains identical to the case
of BDD〈A〉. Lemma 1 and Theorem 1 carry over to C.

EXAMPLE 7. Let ϕ be the predicate β5 ∧ ¬β8 ∧ Pα for some
α ∈ ΨA. As a predicate of A ⊠ BDD〈B1〉, ϕ has the following
ITE representation where leaves are BDDs:

⌊α, ⌊node(8, leaf(0), node(5, leaf(1), leaf(0)))⌋, ⌊leaf(0)⌋⌋

As a predicate of BDD〈A〉, ϕ has the following representation:

node(8, leaf(⊥A), node(5, leaf(α), leaf(⊥A)))

where the terminals (of this ADD) are predicates of A. ⊠

10 Formally, one may also consider BDD〈B1〉 ⊠ A, but this would devoid
the benefits of structural sharing in BDD〈A〉.

7. Implementation

Our S-M2L-STR solver is implemented in C# and it uses the Mi-
crosoft Automata library [5] for building the necessary s-FAs. The
solver provides an interface for specifying custom Boolean alge-
bras and it can be easily integrated with externally specified al-
phabet theories. The implementation is already integrated with the
SMT solver Z3 [19] and can therefore handle all the complex theo-
ries Z3 supports.

Generic BDDs We implemented our own version of binary and
algebraic decision diagrams for the generic BDD algebra. One of
the core differences to existing implementations is that the number
of bits in BDD〈A〉 is unbounded which makes the Boolean algebra
atomless and, while unboundedness simplifies some aspects of
the implementation, it also limits the application of some of the
optimizations available when the number of bits is bounded (the
classical case) and the algebra is atomic. Another core difference
is the use of the predicate trie in the leaf algebra. The problem
of having to check for equivalence of terminals does not occur
in algebraic decision diagrams where the terminals are concrete
elements, and not predicates.

Product algebras Both the algebra BDD〈A〉 and the algebra A⊠

BDD〈B1〉 implement the interface of the abstract product algebra
A×B (where B is BDD〈B1〉) and the restriction operation. The lat-
ter is used for “forgetting” bits for ∃-elimination. The implementa-
tion of the s-FA translation sFA(·) is solely based on that interface,
thus hiding the internal differences between the two algebras. This
separation of concerns was crucial for fast experimentation and for
dismissing some of our earlier attempts, such as a naive implemen-
tation of A × B outlined in Section 6.3, and, we believe, will also
be useful for future experiments.

s-FA operations The s-FA operations admit a whole range of op-
timizations that we have not discussed. Classically, the favoured ap-
proach for implementing automata translations fuses predicates and
transitions into a single system of multi-terminal BDDs or MTB-
DDs where the terminals are the states of the automaton. Mona,
for example, uses this approach [29, 30]. This means that the un-
derlying automaton must always be deterministic. One advantage
is that, for a single start state, there may be multiple target states,
which admits predicate sharing (from given source states); one dis-
advantage is that if the same predicate occurs for different target
states, its structure is not shared. In contrast to Mona, for example,
we cannot share predicates from the same state, but we do share
predicates on different transitions, because the target state is not an
integrated part of the predicate.

Minimizations plays a key role in our implementation and we
determinize and minimize all the s-FAs using the algorithm pre-
sented in [16]. Our translation does not require the s-FAs to be de-
terministic and can potentially work with nondeterministic s-FAs.
Determinization is only needed for complementation and, as part of
our ongoing work, we are investigating ways to apply minimization
directly to nondeterminisic s-FAs as it is done for NFAs in [1].

8. Experiments

We evaluate our decision procedure using both the representations
of UA × N we described in Section 6. We perform the following
three experiments.

1. We compare our solver against the M2L-STR solver Mona [25]
using more than 10,000 M2L-STR formulas taken from papers
on M2L-STR [16, 22] and program verification [21]. This ex-
periment shows that, even though our algorithm is general and
handles complex alphabets, it has comparable expressiveness
to existing M2L-STR solvers when considering formulas over
finite alphabets (Section 8.1).

2. We check satisfiability of S-M2L-STR formulas over BDD〈B1〉
containing unary predicates with large sets of satisfiable Boolean
combinations.11 This experiment shows how the symbolic al-
gorithms for S-M2L-STR are in certain cases preferable to using
a reduction to M2L-STR that builds the set of all maximal satis-
fiable Boolean combinations of the unary predicates appearing
in the formula (Section 8.2).

3. We check satisfiability of randomly generated S-M2L-STR for-
mulas over the theory of linear integer arithmetic. This experi-
ment shows how, in the presence of complex alphabet theories,
even if the set of maximal satisfiable Boolean combinations of
the unary predicates appearing in the formula is relatively small,
our decision procedure can be faster the reduction to M2L-STR

that builds the set of all maximal satisfiable Boolean combi-
nations of the unary predicates appearing in the formula (Sec-
tion 8.3).

In the following we use generic-BDD to refer to the algebra
BDD〈A〉 presented in Section 6.2 and product to refer to the alge-
bra A ⊠ BDD〈B1〉 presented in Section 6.3. All the experiments
were run on iMac 5K, 4GHz Intel Core i7, with 32 GB of mem-
ory. Since the code is written in C# the experiments were run on a
Windows Virtual Machine with 22 GB of memory.

8.1 M2L-STR Benchmarks

The goal of this experiment is to show whether how our prototype
solver, which can handle complex theories and the logic S-M2L-
STR, has comparable performances to existing M2L-STR solvers in
the case of finite alphabets. In particular, do the proposed algebras
introduce overhead when dealing with small finite alphabets?

We compare our solver against the M2L-STR solver Mona [25].
While new M2L-STR solvers have recently been investigated [22],
Mona, which was introduced in the late 90s, remains competitive
on many benchmarks, is still maintained, and is adopted in many
verification applications [33].

We consider three classes of M2L-STR formulas from the liter-
ature.

• 126 M2L-STR formulas over small finite alphabets used in Sec-
tion 6.5 of [16] to measure how different minimization algo-
rithms affect the classic decision procedure for M2L-STR over
a finite alphabet.

• 48 M2L-STR formulas generated in [22] to evaluate the effec-
tiveness of antichain-based algorithm in solving M2L-STR for-
mulas.

• 10,048 LTL formulas used to evaluate antichain-based algo-
rithms for Buchi automata in [21]. While the semantics of LTL

is typically defined over infinite strings, recently there has also
been interest in the interpretation of LTL over finite traces [18]
as this variant can be used in applications such as program mon-
itoring. We use LTL-F to refer to the interpretation of LTL over
finite traces. LTL-F has been proven to be equivalent to first-
order logic over strings and in this experiment we use the en-
coding proposed in [18] for our experiments.

In total we evaluate our algorithm on approximately 10,200 for-
mulas which we are further described in Table 2. Given the large
number of experiments, we set the timeout at 5 seconds. The results
are shown in Fig. 7.

Results Mona is overall faster than our solver on most instances,
but in most cases the performance difference is relatively small.
The S-M2L-STR algorithms are faster than Mona on the first three
classes of formulas described in Table 2 and on some of the random

11 Notice that the alphabet of BDD〈B1〉 is N and is therefore infinite.

Name Formula Parameters

[1
6

]

t1 ∃x1, . . . , xk. x1 < x2 ∧ . . . ∧ xk−1 < xk k ∈ {2, . . . , 40}
t2 ∃x1, . . . , xk. x1 < x2 ∧ . . . ∧ xk−1 < xk ∧ a(x1) ∧ . . . ∧ a(xk) k ∈ {2, . . . , 40}
t3 ∃y.c(y) ∨ ∃x1, . . . , xk. x1 < x2 ∧ . . . ∧ xk−1 < xk ∧ a(x1) ∧ . . . ∧ a(xk) k ∈ {2, . . . , 40}
t4 ∃x1, . . . , xk.((x1 < x2 ∧ a(x1)) ∨ c(x1)) ∨ . . . ∨ ((xk−1 < xk ∧ a(xk−1)) ∨ c(xk−1)) k ∈ {2, . . . , 12}

[2
2

]

horn sub ∃Y ∀X1∃X2 . . . ∀Xk∃Xk+1, . . . , Xk+9.
∧

1≤i≤k+9(Xi ⊆ Y ∧Xi ⊂ Xi+1) → Xi+1 ⊆ Y k ∈ {1, . . . , 6}
horn trans ∀Y ∃X1, . . . , Xk.¬

∧

1≤i,j,l≤kXi ⊆ Y ∧ (Xi ⊆ Xj ∧Xj ⊆ Xl) → Xi ⊆ Xl k ∈ {3, . . . , 20}
set obvious ∃X1, . . . , Xk∀Y.

∧

1≤i≤k(Y ⊂ Y) → Xi 6⊆ X k ∈ {1, . . . , 12}
set singletons ∃X1, . . . , Xk∀x, y.

∧

1≤i≤k(x ∈ Xi ∧ y ∈ Xi) → x = y k ∈ {1, . . . , 7}
set closed ∃X1, . . . , Xk∀x∃y, z.¬

∧

1≤i≤k(x ∈ Xi ∧ x ≤ y ∧ y ≤ z ∧ z ∈ Xi) → y ∈ Xi k ∈ {1, . . . , 5}

L
T

L
-F

[2
1

]

counter binary counter of length k [38] k ∈ {2, . . . , 16}
counter-l binary counter of length k, version 2 [38] k ∈ {2, . . . , 16}

lift linear encoding of a lift system with k floors [24] k ∈ {2, . . . , 9}
lift-b logarithmic encoding of a lift system with k floors [24] k ∈ {2, . . . , 9}

szymanski liveness properties of increasing size for the Szymanski mutual exclusion protocol [39] k ∈ {1, . . . , 4}
random randomly generated LTL formulas of size varying between 10 and 100 [15] 10,000 total

Table 2. M2L-STR benchmark formulas.

Figure 6. Comparison against Mona on the M2L-STR formulas from Table 2. The legend for the first 14 plots is at the bottom of the figure.
Notice that for some plots the y-axis denotes seconds while for others it denotes milliseconds. The last two plots show the difference in
runtime between our solver and Mona in the case of random LTL formulas. A point above 0 means that Mona was faster than our solver by
the indicated number of seconds. In these two plots the x-axis denotes the size of the LTL formula. In the case of horn trans, formulas with
k ≥ 11 caused our prototype parser to throw stack overflow exceptions due to the deep nesting of the formulas.

Figure 7. S-M2L-STR to s-FA running times for f1, f2, and
minterm generation. The y-axes are in log-scale. The missing val-
ues are due to the algorithms running out of memory or timing out
at 60s.

LTL formulas. In particular, the solver based on the product alge-
bra (Section 6.3) is faster than Mona on 0.5% of all the instances
while the one based on generic BDDs (Section 6.2) is faster than
Mona on 4% of all the instances. The generic BDD algebra is gen-
erally faster than the product algebra and we observe this trend in
approximately 90% of the instances. This experiment shows that
our decision procedure for S-M2L-STR adds generality and support
for different theories without sacrificing too much performance in
the case of finite alphabets. Despite the many tuned optimizations
that are implemented in Mona and not in our tool, our solver can
handle most practical M2L-STR formulas appearing in verification
applications.

8.2 Formulas with Large Sets of Minterms

In our introduction we explained how every S-M2L-STR formula
can be transformed into an equisatisfiable M2L-STR one. However,
to perform this reduction, one needs compute the set of all satisfi-
able Boolean combinations of all the unary predicates (minterms)
appearing in the original S-M2L-STR formula. In the worst case,
the set of minterms can have exponential size in the number of
given predicates and this reduction can be impractical. In this ex-
periment, we evaluate our decision procedure against the running
time of computing the set of minterms.

We consider the following two classes of S-M2L-STR formulas
over BDD〈B1〉, where the predicate βi(x) is true iff the i-th bit of
a bit-vector x is 1, and we let k vary between 2 and 40.

f1 ∃x1, . . . , xk.first(x1)
∧

i<k succ(xi, xi+1)
∧

i≤k βi(xi).

f2 ∃x1, . . . , xk.
∧

i≤k βi(xi).

Intuitively, the formulas in the class f1 describe strings in which the
symbol at the i-th position, for 1 ≤ i ≤ k, satisfies the predicate
βi, while the formulas in the class f2 describe strings in which for
every 1 ≤ i ≤ k there exists some position in the string for which
the corresponding symbol satisfies the predicate βi. Although these
two classes of formulas are similar and contain the same set of
unary predicates, the equivalent automata are drastically different.
While the s-FAs for the formulas in the class f1 have k+1 states, the
automata for the formula in the class f2 have 2k states. Regardless
of the decision procedure, solving the formulas in f2 has to be at
least as hard as computing the set of minterms.

The running times are shown in Figure 7. We report the running
time of the minterm computation but DO NOT measure the perfor-
mance of solving the M2L-STR formula over the resulting minterm
alphabet; the resulting M2L-STR formulas are exponentially larger
than the original ones and impractical for any solver.

Results As expected, the minterm computation shows an expo-
nential behaviour. For the formulas in the class f1, the S-M2L-

Figure 8. Minterm generation vs S-M2L-STR solving time for ran-
domly generated formulas over the theory of linear integer arith-
metic. The x-axis indicates the number of minterms in the formula.
Timeout at 5 seconds.

STR algorithms perform linearly are exponentially faster than the
minterm computation. This is because, on such formulas, our deci-
sion procedure does not need to explore all the possible minterms.
As expected, for the formulas in the class f2, the S-M2L-STR al-
gorithms perform exponentially and are slower than the minterm
computation. Indeed, the minterm computation is performed by the
algorithm whenever, upon removing a quantifier, the obtained s-FA
needs to be determinized. Hence, the performance overhead. Sim-
ilarly to what we observed in Section 8.1, using the generic BDD
algebra is faster than using the product algebra on approximately
70% of the instances.

Even though some of the existing M2L-STR solver [25] could
be tailored to handle the theory of bit-vectors, this example shows
how computing the set of all minterms is in general impractical.
Our experiments also highlight how, on certain types of formulas,
the S-M2L-STR solver does not necessarily explore the set of all
minterms and achieves exponential speedup when compared to the
minterm computation.

8.3 Formulas Over the Theory of Linear Integer Arithmetic

The examples in Section 8.2 are somewhat pathological and should
not appear too often in practice. In particular, it is rarely the case
that all the Boolean combinations of the predicates appearing in
the input formulas are indeed satisfiable and the set of minterms is
impractically large. In this experiment we show how the number
of minterms is not the only limiting factor in reducing S-M2L-
STR formulas to M2L-STR ones. We show that, when considering
formulas over complex alphabet theories for which it is expensive
to check satisfiability, the minterm computation can be expensive
even when the number of minterms is not prohibitively large.

We randomly generate 75 S-M2L-STR formulas over the unary
theory of linear integer arithmetic satisfying the following require-
ments.

• Unary predicates are of the form ax mod b = c with a, b, c ∈
{−3,−2,−1, 0, 1, 2, 3} and are satisfiable.

• Formula have size smaller than 15.

• Formulas contain at least 3 unary predicates.

We used the SMT solver Z3 [19] to represent the algebra of the
alphabet theory. We compare the time taken by our S-M2L-STR

solver against the time to compute the set of minterms. The results
are shown in Figure 8.

Results The minterm computation is slower than the S-M2L-STR

algorithm which uses the generic BDD algebra on approximately
75% of the instances, slower than the algorithm which uses the
product algebra on 55% of the instances, and already times out (5
seconds) or runs out of memory for instances with fewer than 30
minterms. These results are due to the following two reasons: (1)
the S-M2L-STR solver rarely needs to compute all the satisfiable
Boolean combinations of the given predicates, (2) each minterm is
a Boolean combination of all the unary predicates and therefore a
potentially large formula.

In line with the former experiments, the generic BDD algebra
is faster than the product algebra on 86% of the instances. In this
experiment the difference is more noticeable and the solver based
on the product algebra is on average 10 times slower than the one
based on generic BDDs.

This experiment clearly illustrates the need for a specialized
solver for S-M2L-STR. While practical for very simple theories, in
the presence of more complex alphabet theories such as linear inte-
ger arithmetic, the minterm generation procedure can be prohibitive
already for very small formulas.

9. Related Work

Logic M2L-STR. Every regular string language can be expressed as
an M2L-STR formula and vice versa. This relation was first discov-
ered by Büchi [9]. Since then, similar results have been proven for
tree languages, infinite string languages, and transductions [14, 40].
M2L-STR has non-elementary complexity and the tightness of this
bound was proven in [35]. Our symbolic extension, S-M2L-STR is
strictly more expressive than M2L-STR and retains decidable satis-
fiability.

Solvers for M2L-STR. The first practical solver for M2L-STR

was Mona [25], which used multi-terminal BDDs to efficiently
encode the automata corresponding to M2L-STR. Recently, novel
approaches to solving M2L-STR using anti-chain [22] and co-
algebras [41] have been proposed. The benefits of these algorithms
have only been demonstrated on restricted classes of formulas.
However, applying the recent advances in M2L-STR solving to im-
prove our decision procedures S-M2L-STR is a promising direction.

In general our solver has comparable performance to such tools
when operating over finite domains, but it also directly supports
arbitrary theories. This aspect allows S-M2L-STR to be easily inte-
grated with existing SMT solvers as we did in our tool with Z3.

Decision diagrams. Binary decision diagrams [2, 3, 32] have
been used as efficient and succinct data-structures for over 40 years.
BDDs, or more precisely, Reduced Ordered BDDs, are a canoni-
cal data structure for Boolean functions that was introduced in [8]
and have had an immense success in many areas of computer sci-
ence, such as model checking of both hardware [13] and soft-
ware [34]. Extended BDDs or Multi-Terminal BDDs or MTBDDs,
also known as Algebraic Decision Diagrams or ADDs, allow multi-
ple terminals with associated terminal algebras [6, 11, 12, 23]. Here
we specialize ADDs to have effective Boolean algebras as their ter-
minals and call this model generic BDDs. Our use of ITE expres-
sions (or DAGs) for representing predicates in Cartesian products
of Boolean algebras explores another form of Shannon expansions,
that unlike generic BDDs, are not canonical but depend ultimately
on the representation of predicates in the given algebras. ITE DAGs
are standard data structures in SMT tools [20]. ITE DAGs have also
been studied as an alternative to BDDs in [28]. We do not know of
prior work that has studied Shannon expansions for representing
Cartesian products of Boolean algebras.

Applications. Thanks to the advances in solving practical in-
stances, M2L-STR has found application in many domains such as
hardware verification [7], personalized education [4], and pointer
analysis [27]. In particular, the last application could greatly benefit

from the symbolic logic S-M2L-STR. When reasoning about linked
data-structures such a lists, the content of the nodes is abstracted to
enable decidable analysis (e.g., the node is nil or not nil). In pre-
vious approaches, these abstractions have been separated from the
logic that reasons about the list structure (e.g., M2L-STR). S-M2L-
STR separates the alphabet theory from the sequence predicates and
provides an elegant way to jointly reason about the list structure and
its content.

Symbolic automata. The concept of automata with predicates
instead of concrete symbols was first mentioned in [43], then
in [31], and further formalized in [16]. Symbolic automata provide
an elegant framework for separating the structure of the alphabet
from the structure of the automaton. This separation of concerns
has proven to be beneficial in many applications and checking sat-
isfiability of S-M2L-STR is yet another one. It is important to stress
out that, thanks to symbolic automata, implementing the algorithms
described in this paper only required us to design novel Boolean
algebras rather than designing novel data-structures or efficient
representations for the automata themselves as it was done in [25].

10. Conclusions

We introduced the monadic second-order logic of one successor
on finite sequence (S-M2L-STR) for describing sets of sequences
drawn from arbitrary domains. S-M2L-STR extends M2L-STR by
allowing character predicates to range over a decidable background
theory instead of a finite domain. We presented a decision proce-
dure for S-M2L-STR that reduces a formula to a symbolic finite au-
tomaton operating over an alphabet consisting of pairs of symbols.
The first element of the pair is a symbol in the original formula’s
alphabet, while the second element is a bit-vector. We then propose
two implementations of the Boolean algebras that are necessary to
efficiently manipulate predicates of the alphabet of pairs. Our pre-
liminary implementation of the S-M2L-STR decision procedure is
integrated with the SMT solver Z3 and can therefore support arbi-
trary SMT theories as alphabet theories. Despite this generality, our
implementation has comparable performance with the state-of-the-
art M2L-STR solver Mona.

Acknowledgements We thank Nikolaj Bjørner, who suggested
the order ≺ that led to the predicate trie data structure.

References

[1] P. Abdulla, J. Deneux, L. Kaati, and M. Nilsson. Minimization of
non-deterministic automata with large alphabets. In Implementation

and Application of Automata, volume 3845 of LNCS, pages 31–42.
Springer, 2006.

[2] S. B. Akers. On a theory of boolean functions. Journal of the Soci-

ety for Industrial and Applied Mathematics, 7(4):487–498, December
1959.

[3] S. B. Akers. Binary decision diagrams. IEEE Transactions on Com-

puters, 27(6):509–516, June 1978.

[4] R. Alur, L. D’Antoni, S. Gulwani, D. Kini, and M. Viswanathan.
Automated grading of DFA constructions. In Proceedings of the

Twenty-Third International Joint Conference on Artificial Intelligence,
IJCAI ’13, pages 1976–1982. AAAI Press, 2013.

[5] Automata. https://github.com/AutomataDotNet/Automata,
2015.

[6] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii,
A. Pardo, and F. Somenzi. Algebraic decision diagrams and their
applications. Formal Methods in Systems Design, 10(2/3):171–206,
1997.

[7] D. Basin and N. Klarlund. Automata based symbolic reasoning in
hardware verification. Formal Methods In System Design, 13:255–
288, 1998. Extended version of: “Hardware verification using
monadic second-order logic,” CAV ’95, LNCS 939.

[8] R. E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Transactions on Computers, 35(8):677–691, 1986.

[9] J. Buchi. Weak second-order arithmetic and finite automata. Zeit.

Math. Logik und Grundl. Math., 6:66–92, 1960.

[10] C. C. Chang and H. J. Keisler. Model Theory, volume 73 of Studies

in Logic and the Foundation of Mathematics. North Holland, third
edition, 1990.

[11] E. Clarke, M. Fujita, P. McGeer, K. McMillan, and J. Yang. Multi-
terminal binary decision diagrams: An efficient data structure for ma-
trix representation. In IWLS93: International Workshop on Logic Syn-

thesis, pages 6a:1–15, Lake Tahoe, CA, May 1993.

[12] E. Clarke, K. McMillan, X. Zhao, M. Fujita, and J. Yang. Spectral
transforms for large boolean functions with applications to technology
mapping. In Design Automation, 1993. 30th Conference on, pages 54–
60, June 1993.

[13] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT
Press, 1999.

[14] B. Courcelle. Monadic second-order definable graph transductions: a
survey. Theoretical Computer Science, 126(1):53 – 75, 1994.

[15] M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata
generation for linear temporal logic. In Proceedings of the 11th

International Conference on Computer Aided Verification, CAV ’99,
pages 249–260, London, UK, UK, 1999. Springer-Verlag.

[16] L. D’Antoni and M. Veanes. Minimization of symbolic automata. In
POPL’14. ACM, 2014.

[17] L. D’antoni, M. Veanes, B. Livshits, and D. Molnar. Fast: A
transducer-based language for tree manipulation. volume 38, pages
1:1–1:32, New York, NY, USA, Oct. 2015. ACM.

[18] G. De Giacomo and M. Y. Vardi. Linear temporal logic and linear
dynamic logic on finite traces. In Proceedings of the Twenty-Third

International Joint Conference on Artificial Intelligence, IJCAI ’13,
pages 854–860. AAAI Press, 2013.

[19] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In
TACAS’08, LNCS. Springer, 2008.

[20] L. de Moura and N. Bjørner. Satisfiability modulo theories: Introduc-
tion and applications. Comm. ACM, 54(9):69–77, 2011.

[21] M. De Wulf, L. Doyen, N. Maquet, and J. F. Raskin. TACAS 2008,
chapter Antichains: Alternative Algorithms for LTL Satisfiability and
Model-Checking, pages 63–77. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008.

[22] T. Fiedor, L. Holı́k, O. Lengál, and T. Vojnar. Nested antichains for
WS1S. In TACAS 2015, pages 658–674, 2015.

[23] M. Fujita, P. McGeer, and J.-Y. Yang. Multi-terminal binary decision
diagrams: An efficient data structure for matrix representation. Formal

Methods in System Design, 10:149–169, 1997.

[24] A. Harding. Symbolic strategy synthesis for games with LTL winning
conditions. Technical report, 2005.

[25] J. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe,
and A. Sandholm. Mona: Monadic second-order logic in practice. In
TACAS ’95, volume 1019 of LNCS. Springer, 1995.

[26] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes. Fast
and precise sanitizer analysis with Bek. In USENIX Security, August
2011.

[27] J. L. Jensen, M. E. Joergensen, N. Klarlund, and M. I. Schwartzbach.
Automatic verification of pointer programs using monadic second-
order logic. In PLDI ’97, 1997.

[28] K. Karplus. Using if-then-else DAGs for multi-level logic minimiza-
tion. In Proceedings of the Decennial Caltech Conference on VLSI on

Advanced Research in VLSI, pages 101–117. MIT Press, 1989.

[29] N. Klarlund and A. Møller. MONA Version 1.4 User Manual. BRICS,
Department of Computer Science, University of Aarhus, January
2001.

[30] N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA implemen-
tation secrets. International Journal of Foundations of Computer Sci-

ence, 13(4):571–586, 2002.
[31] D. Kozen. Automata on guarded strings and applications. Matématica

Contemporânea, 24:117–139, 2003.

[32] C. Y. Lee. Representation of switching circuits by binary-decision
programs. Bell Systems Technical Journal, 38:985–999, 1959.

[33] P. Madhusudan and X. Qiu. Efficient Decision Procedures for Heaps

Using STRAND, pages 43–59. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.

[34] K. L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[35] A. R. Meyer. Weak monadic second order theory of successor is not
elementary-recursive. Technical report, Cambridge, MA, USA, 1973.

[36] F. Neven, T. Schwentick, and V. Vianu. Finite state machines for
strings over infinite alphabets. ACM Trans. Comput. Logic, 5(3):403–
435, 2004.

[37] B. Reed. The height of a random binary search tree. Journal of the

ACM, 50(3):306–332, May 2003.

[38] K. Y. Rozier and M. Y. Vardi. LTL Satisfiability Checking, pages 149–
167. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[39] R. Sebastiani, S. Tonetta, and M. Y. Vardi. Symbolic systems, ex-
plicit properties: on hybrid approaches for LTL symbolic model check-
ing. International Journal on Software Tools for Technology Transfer,
13(4):319–335, 2011.

[40] W. Thomas. Languages, automata, and logic. In Handbook of Formal

Languages, pages 389–455. Springer, 1996.

[41] D. Traytel. A coalgebraic decision procedure for WS1S. In 24th

EACSL Annual Conference on Computer Science Logic, CSL 2015,

September 7-10, 2015, Berlin, Germany, pages 487–503, 2015.

[42] M. Veanes. Implementation and Application of Automata: 18th In-

ternational Conference, CIAA 2013, Halifax, NS, Canada, July 16-

19, 2013. Proceedings, chapter Applications of Symbolic Finite Au-
tomata, pages 16–23. Springer Berlin Heidelberg, Berlin, Heidelberg,
2013.

[43] B. W. Watson. Implementing and using finite automata toolkits. In
Extended finite state models of language, pages 19–36, New York, NY,
USA, 1999. Cambridge University Press.

