

MonALISA : A Distributed Monitoring Service Architecture

H.B. Newman, I.C.Legrand, P. Galvez

California Institute of Technology, Pasadena, CA 91125, USA

R. Voicu, C. Cirstoiu

Polytechnic University Bucharest, Romania

The MonALISA (Monitoring Agents in A Large Integrated Services Architecture) system provides a distributed monitoring service.

MonALISA is based on a scalable Dynamic Distributed Services Architecture which is designed to meet the needs of physics
collaborations for monitoring global Grid systems, and is implemented using JINI/JAVA and WSDL/SOAP technologies. The
scalability of the system derives from the use of multithreaded Station Servers to host a variety of loosely coupled self-describing

dynamic services, the ability of each service to register itself and then to be discovered and used by any other services, or clients that
require such information, and the ability of all services and clients subscribing to a set of events (state changes) in the system to be
notified automatically . The framework integrates several existing monitoring tools and procedures to collect parameters describing
computational nodes, applications and network performance. It has built-in SNMP support and network-performance monitoring

algorithms that enable it to monitor end-to-end network performance as well as the performance and state of site facilities in a Grid.
MonALISA is currently running around the clock on the US CMS test Grid as well as an increasing number of other sites. It is also
being used to monitor the performance and optimize the interconnections among the reflectors in the VRVS system.

1. THE MONALISA SERVICES
ARCHITECTURE

We are developing a globally scalable ``Dynamic

Distributed Services Architecture'' (DDSA) [1], [2] to serve

large physics collaborations. This architecture incorporates

many features that make it suitable for managing and

optimizing workflow through Data Grids composed of

hundreds of sites, with thousands of computing and storage

elements, and thousands of pending tasks, such as those

foreseen by the LHC experiments.

In order to scale and operate robustly in managing global,

resource-constrained Grid systems, the DDSA framework

uses a set of Station Servers, one per facility or site in a

Grid, that host a variety of dynamic, agent-based services.

The services are registered with, and can be mutually

discovered by a lookup service, and they are notified

automatically in case of ``events'' signaling a change of state

anywhere in a large distributed system. This allows the

ensemble of services to cooperate in real time to gather,

disseminate, and process time-dependent state and

configuration information about the site facilities, networks,

and many jobs running throughout the Grid. The monitored

information is reported to higher level services, that in turn

analyze the information, and take corrective action to

improve the overall efficiency of operation of the Grid

(through load balancing, for example) or to mitigate

problems as needed. The DDSA framework is inherently

distributed, ``loosely coupled'' and self-restarting, making it

scalable and robust. Cooperating services and applications

are able to access each other seamlessly, to adapt rapidly to a

dynamic environment (such as worldwide-distributed

analysis by hundreds of physicists in a major HEP

experiment). The services are managed by an efficient

multithreading engine that schedules and oversees their

execution, such that Grid operations are not disrupted if one

or more tasks (threads) are unable to continue. The system

design also provides reliable ``non-stop'' support for large

distributed applications under realistic working conditions,

through service replication, and automatic re -activation of

services. These mechanisms make the system robust against

the failure or inaccessibility of multiple Grid components

(when a key network link goes down, for example).

A service in the DDSA framework is a component that

interacts autonomously with other services through dynamic

proxies or agents that use self-describing protocols. By using

dedicated lookup services, a distributed services registry,

and the discovery and notification mechanisms, the services

are able to access each other seamlessly. The use of dynamic

remote event subscription allows a service to register to be

notified of a selected set of event types, even if there is no

provider to do the notification at registration time. The

lookup discovery service will then automatically notify all

the subscribed services, when a new service, or a new

service attribute, becomes available.

The code mobility paradigm (mobile agents or dynamic

proxies) used in the DDSA extends the remote procedure

call and the client server approach. Both the code and the

appropriate parameters are downloaded dynamically into the

system. Several advantages of this paradigm are: optimized

asynchronous communication and disconnected operation,

remote interaction and adaptability, dynamic parallel

execution and autonomous mobility. The combination of the

DDSA service features and code mobility makes it possible

build an extensible hierarchy of services capable of

managing very large Grids, with relatively little program

code.

We have built a prototype implementation of the DDSA

based on JINI [3] technology. The JINI architecture

federates groups of devices and software components into a

single, dynamic distributed system; functionality that the

future Open Grid Services Architecture (OGSA) [4] will

need to include. JINI enables services to find each other on

a network and allows these services to participate and

cooperate within certain types of operations, while

interacting autonomously with clients or other services [5].

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1 ePrint cs.DC/0306096MOET001

This architecture simplifies the construction, operation and

administration of complex systems by: (1) allowing

registered services to interact in a dynamic and robust

(multithreaded) way; (2) allowing the system to adapt when

devices or services are added or removed, with no user

intervention; (3) providing mechanisms for services to

register and describe themselves, so that services can

intercommunicate and use other services without prior

knowledge of the services' detailed implementation.

We have also included WSDL/SOAP [6], [7] bindings for

all the distributed objects, in order to provide access to the

monitoring information from other types of clients and to

facilitate a possible future migration to the Open Grid

Services Architecture

2. THE MONITORING SERVICE

An essential part of managing a global Data Grid is a

monitoring system that is able to monitor and track the many

site facilities, networks, and the many task in progress, in

real time. The monitoring information gathered also is

essential for developing the required higher level services,

and components of the Grid system that provide decision

support, and eventually some degree of automated decisions,

to help maintain and optimize workflow through the Grid.

We therefore developed the agent-based MonALISA

(Monitoring Agents in A Large Integrated Services

Architecture) [8] system, based on the DDSA framework.

MonALISA is an ensemble of autonomous multi-threaded,

self-describing agent-based subsystems which are registered

as dynamic services and are able to collaborate and

cooperate in performing a wide range of monitoring tasks in

large scale distributed applications, and to be discovered and

used by other services or clients that require such

information.

MonALISA is designed to easily integrate existing

monitoring tools and procedures and to provide this

information in a dynamic, self describing way to any other

services or clients. MonALISA services are organized in

groups and this attribute is used for registration and

discovery.

2.1. The Data Collection Engine

 The system monitors and tracks site computing farms and

network links, routers and switches using SNMP [9], and it

dynamically loads modules that make it capable of

interfacing existing monitoring applications and tools (e.g.

Ganglia [10], MRTG [11], Hawkeye [12]).

The core of the monitoring service is based on a multi-

threaded system used to perform the many data collection

tasks in parallel, independently. The modules used for

collecting different sets of information, or interfacing with

other monitoring tools, are dynamically loaded and executed

in independent threads. In order to reduce the load on

systems running MonALISA, a dynamic pool of threads is

created once, and the threads are then reused when a task

assigned to a thread is completed. This allows one to run

concurrently and independently a large number of

monitoring modules, and to dynamically adapt to the load

and the response time of the components in the system. If a

monitoring task fails or hangs due to I/O errors, the other

tasks are not delayed or disrupted, since they are executing

in other, independent threads. A dedicated control thread is

used to stop properly the threads in case of I/O errors, and to

reschedule those tasks that have not been successfully

completed. A priority queue is used for the tasks that need to

be performed periodically. A schematic view of this

mechanism of collecting data is shown in Figure 1.

Figure 1. A schematic view of the data collection mechanism

based on a multi-threaded engine.

This approach makes it relatively easy to monitor a large

number of heterogeneous nodes with different response

times, and at the same time to handle monitored units which

are down or not responding, without affecting the other

measurements. As an example, we monitored 500 compute

nodes performing a request for ~200 metric values per node

every 60 seconds. This provided a sustained rate of ~1600

metric values per second collected, using an average of 20

active threads. The number of threads necessary to monitor

a complete site is dynamically adjusted, and very dependent

on the response time for each node, which is related to its

load as well as to the quality of the network connections.

2.2. Data Storage

 The collected values are stored in a relational database,

locally for each service. The JDBC framework in JAVA

offers the flexibility to dynamically load any driver and

connect to virtually any relational database. A normalized

scheme is used to store the result objects provided by the

monitoring modules in indexed tables, which are themselves

generated as needed, dynamically. As data are becoming

older, we are compressing the values stored in the database

by evaluating the mean values on larger time intervals and at

the same time keeping the fluctuation range for each

parameter.

Farm

Monitor

Dynamic

Thread Pool

Trap Agent

Trap

Listener

SNMP

Get / trap

or

Specific

protocols
Dynamic loading of

signed modules or agents

Configuration
& Control

Other tools
(Ganglia, MRTG…)

WEB Server

Farm

Monitor

Dynamic

Thread Pool

Trap Agent

Trap

Listener

SNMP

Get / trap

or

Specific

protocols
Dynamic loading of

signed modules or agents

Configuration
& Control

Other tools
(Ganglia, MRTG…)

WEB Server

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2 ePrint cs.DC/0306096MOET001

2.3. Registration and Discovery

Each MonALISA service registers with a set of JINI

Lookup Discovery Services (LUS) [3] as part of a group,

and having a set of attributes. The LUSs are also JINI

services and each one may be registered with the other

LUSs. If two LUSs have common groups any information

related with a change of state detected for a service in the

common group by one is replicated to the other one. In this

way it is possible to build a distributed and reliable network

for registration of services and this technology allows

dynamically adding or removing LUSs from the system.

Any service should also provide for registration the code

base for the proxies that other services or clients need to

instantiate for using it. This approach is used to make sure

that the right proxies are used for each service while

different versions may be used in a distributed organization

at the same time. The registration is based on a lease

mechanism that is responsible to verify periodically that

each service is alive. In case a service fails to renew its

lease, it is removed from the LUSs and a notification is sent

to all the services or clients that subscribed for such events.

Any monitor client services is using the Lookup

Discovery Services to find all the active MonALISA

services running as part of one or several group

“communities”. It is possible to select the services based on

a set of matching attributes. The discovery mechanism is

used for notification when new services are started or when

services are no longer available. The communication

between interested services or clients is based on a remote

event notification mechanism which also supports

subscription.

The client application connects directly with each service

it is interested in for receiving monitoring information. To

perform this operation, it first downloads the proxies for the

service it is interested in from a list of possible URLs

specified as an attribute of each service, and than it

instantiate the necessary classes to communicate with the

service. This procedure allows each service to correctly

interact with other services.

2.4. Predicates, Filters and Alarm
Agents

The clients can get any real-time or historical data by

using a predicate mechanism for requesting or subscribing to

selected measured values. These predicates are based on

regular expressions to match the attribute description of the

measured values a client is interested in. They may also be

used to impose additional conditions or constrains for

selecting the values . In case of requests for historical data,

the predicates are used to generate SQL queries into the

local database. The subscription requests will create a

dedicated thread, to serve each client. This thread will

perform the matching test for all the predicates submitted by

a client with the measured values in the data flow. The same

thread is responsible to send the selected results back to the

client as compressed serialized objects. Having an

independent thread per client allows sending the information

they need, fast, in a reliable way and it is not affected by

communication errors which may occur with other clients.

In case of communication problems these threads will try to

reestablish the connection or to clean-up the subscriptions

for a client or a service which is not anymore active.

Monitoring data requests with the predicate mechanism is

also possible using the WSDL/SOAP binding from clients or

services written in other languages. The class description

for predicates and the methods to be used are described in

WSDL and any client can create dynamically and instantiate

the objects it needs for communication. Currently, the Web

Services technology does not provide the functionality to

register as a listener and to receive the future measurements

a client may want to receive.

Other applications or clients may also use the Agent

Filters to receive the information they need. The Agent

Filter is a java module which can be dynamically deployed

to any MonALISA service, and is design to perform a

dedicated data processing task on local data (by subscribing

with a predicate to the data flow) and returns back the

processed information periodically. The MonALISA service

provides the run time environment for these agents which

must be digitally signed by a trusted certificate. As an

example, such filters are used to compute the aggregate IO

traffic in a farm, or to provide the number of nodes which

are free. The same thread used for handling the predicate

subscription is used for sending the filtered results back to

each client.

Dynamically loadable alarm agents, and agents able to

take actions when abnormal behavior is detected, are

currently being developed to help with managing and

improving the working efficiency of the facilities, and the

overall Grid system being monitored.

2.5. Graphical Clients

We developed a global graphical client which is using the

discovery mechanism to find all the active services from a

list of user defined groups. This graphical client is

developed as a Web Start [13] application and it can be

easily started and used from any browser.

A MonALISA service can provide its own GUI to any

client as a complex proxy which contains the marshaled

components as an attributed to the service [3]. This GUI is

used to communicate back with each service from which the

user wants detailed information and can plot the requested

values. MonALISA provides a flexible access to real-time

or historical monitoring values, by using a predicate

subscription mechanism or dynamically loadable filter

agents. These mechanisms are used by any interested client

to query and subscribe to only the information it needs, or to

generate specific aggregate values in an appropriate format.

When a client subscribes with a predicate to certain values ,

the GUI will be automatically updated every time a new

value matching the subscription is collected.

Graphical user interfaces allow users to visualize global

parameters from multiple sites [8], as well as detailed

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3 ePrint cs.DC/0306096MOET001

tracking of parameters for any component in the entire

system. The graphical clients also use the remote notification

mechanism, and are able to dynamically show when new

services are started, or when services become unavailable.

Dedicated filers are used to provide global views with real

time updates for all the running services.

In Figure 2, we present a few examples in how real-time

and historical data are presented in MonALISA.

A generic framework for building “pseudo-clients” for the

MonALISA services was developed [14]. This has been used

for creating dedicated Web service repositories with selected

information from specific groups of MonALISA services.

The “pseudo-clients” use the same LUSs approach to find

all the active MonALISA services from a specified set of

groups and subscribes to these services with a list of

predicates and filters. These predicates or filters specify the

information the pseudo-client wants to collect from all the

services. A “pseudo-client” stores all the values received

from the running services in a local MySQL database, and is

using procedures written as Java threads to compress old

data.

A Tomcat [15] based servlet engine is used to provide a

flexible way to present global data and to construct on the

fly graphical charts for current or customized historical

values, on demand. Dedicated servlets are used to generate

Wireless Access Protocol (WAP) [16] pages containing the

same information for mobile phone users. Multiple Web

Repositories can easily be created to globally describe the

services running in a distributed environment.

2.6. Administration of Services

MonALISA also provides a secure mechanism (SSL with

X.509 certificates) for dynamic configuration, using a

dedicated GUI, of farms / network elements, and support for

other higher level services that aim to manage a distributed

set of facilities and/or optimize workflow.

It allo ws reconfiguring any monitoring services by adding

new nodes, network elements or clusters and at the same

time to dynamically loaded into the system any new

monitoring module as needed. It also allows stopping or

suspending any monitoring module. Adding dynamically

new monitoring modules is important for debugging and

understanding the way certain applications perform.

The Administration interface connects to a service using

Remote Method Invocation over SSL. X.509 certificates for

trusted administrators are imported in the keystore of each

service and they are used to establish a SSL connection

based on a client authentification procedure.

The administrative GUI can be stated automatically from the

global web start client if it used by a trusted

administrator. When the administrator loads is private key

into the global GUI client it automatically gets

administrative rights on the services that imported his

certificate in the trust keystore.

2.7. Automatic update for services

MonaALISA is currently deployed on many sites and

maintaining and updating such applications may require a

significant effort. For this reason we developed a mechanism

in MonALISA that allows us to automatically update the

monitoring service. A dedicated thread is used to

Figure 2. The main GUI in MonALISA: it provides global views of the system as well as real time and historical plots for any

parameter monitored by the system. Active services are automatically shown on the world map indicating the global load of the

farms and real time traffic on selected major international connections. The user can plot any set of parameters measured in the

entire system.

IEPM -

@ CALTECH

DataTAG
-

-

Production Traffic CERN-US

Real-time

Traffic from CERN into DataTAG

Traffic from CERN into Geant

Load on the Farm Nodes
@ CALTECH

IEPM- BW Measurements @ SLAC

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4 ePrint cs.DC/0306096MOET001

periodically check for updates of the distribution.

Alternatively a remote event notification can be used to

notify only selected services to perform an update. When

such an event is detected, the running service will trigger a

restart operation. When a MonALISA service is started, it is

using the web start mechanism [13] to describe an

application and all its dependencies and constrains into a

XML file (jnpl). This will perform an automatic download

of all the packages which were updated and will check all

the necessary constrains to run the application. All the files

downloaded in this way must be digitally signed by a

developer for which the certificate is imported in the trust

keystore. This can be done when the MonALISA service is

used for the first time.

All the running services, as well as the services which may

be stated after an update was done will run the last

“published” version and this is done in a secure way.

Users may start a MonALISA service with the auto update

flag switch off.

3. MONITORING DATA PROCESSING FARMS

MonALISA is now deployed and operating round the

clock monitoring the US CMS Test Grid and an increasing

number of other sites. The MonALISA Web repository is

now accumulating historical data for the US CMS Tie r1 and

Tier2 centers at Fermilab, Caltech, UCSD, and the

University of Florida, as well as the production farms at

CERN, at the Academia Sinica in Taiwan (ATLAS), and at

the Polytechnic University in Bucharest. As an example, the

number of nodes loaded on the US-CMS farms during a

week is presented in Figure 3.

 We also monitor the network traffic on the US-CERN

production link, and the distribution of the traffic into the

major networks and links with which we peer: EsNet,

Abilene, Mren, StarTAP, the US-CERN DataTAG link, the

CERN-Geant link, Taiwan-Chicago, and Bucharest-

Budapest. In addition to the directed measurements

performed on routers, we interfaced MonALISA to provide

access to the Internet End to End Performance

Measurements (IEPM-BW) [17].

We are currently monitoring the batch queuing systems at

CERN (LSF) and at Caltech (PBS). From these modules

Figure 3. A global plot of the US-CMS farms showing the number

of nodes with load higher than 0.5 during a period of one week.
These plots are created with the web service repository [14].

 we can report the number of (selected types) jobs running,

pending or those which exit with errors.

4. MONITORING THE VRVS SYSTEM

The Virtual Rooms VideoConferencing System (VRVS)

[18] is an enhanced web based video conferencing system

which is using a set of reflectors distributed world wide for

an efficient real-time distribution of the audio and video

streams.

For each VRVS reflector, a MonALISA service is running

using an embedded Database, for storing the results locally,

and runs in a mode that aims to minimize the reflector

resources it uses (typically less than 16MB of memory and

practically without affecting the system load). Dedicated

modules to interact with the VRVS reflectors were

developed: to collect information about the topology of the

system; to monitor and track the traffic among the reflectors

and report communication errors with the peers; and to track

the number of clients and active virtual rooms. In addition,

overall system information is mo nitored and reported in real

time for each reflector: such as the load, CPU usage, and

total traffic in and out.

A dedicated GUI for the VRVS version was developed as

a java web-start client. This GUI provides real time

information dynamically for all the reflectors which are

monitored. If a new reflector is started it will automatically

appear in the GUI and its connections to its peers will be

shown. Filter agents to compute an exponentially mediated

quality factor of each connection are dynamically deployed

to every MonALISA service, and they report this

information to all active clients who are subscribed to

receive this information.

It provides real-time information about the way the VRVS

system is used (number of conferences or clients) the

topological connectivity of the reflectors and the quality of it

and system related information (IO traffic CPU load).

Clients can also get historical data for any of these

parameters.

The subscription mechanism allows one to monitor in

real time any measured parameter in the system as all the

updates are dynamically displayed on the open windows.

Examples of some of the services and information available,

visualizing the number of clients and the active virtual

rooms, the traffic in and out of all the reflectors, as well as

problems such as lost packets between reflectors are

presented in Figure 4.

In addition to dedicated monitoring modules and filters for

the VRVS system, we developed agents able to supervise the

running of the VRVS reflectors automatically. This will be

particularly important when scaling up the VRVS system

further.

In case a VRVS reflector stops or does not answer

correctly to the monitoring requests, the agent will try to

restart it.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5 ePrint cs.DC/0306096MOET001

If this operation fails twice the Agent will send an email to

a list of administrators. These agents are the first generation

of modules capable of reacting and taking well defined

actions when errors occur in the system. These agents,

capable to take action in the system, may be dynamically

loaded. For security reasons such agents

Figure 4. Monitoring the VRVS Reflectors.

must be digitally signed by developers with trusted

certificates, declared for each running service.

4.1. Optimized Dynamic Routing

We developed agents able to provide an optimized

dynamic routing of the videoconferencing data streams.

These agents require information about the quality of the

alternative connections in the system and they solve, in real-

time, a minimum spanning tree problem to optimize the data

flow at the global level.

To evaluate the connection quality with possible peer

reflectors we developed monitoring agents performing ping

like measurements using UDP packages, which are deployed

on all the MonALISA services. These agents perform

continuously (every 2s) such measurements with a selected

set of possible peers, which can be dynamically

reconfigured, for each reflector. We are using small UDP

packages to evaluate the Round Trip Time (RTT), its jitter

and the percentage of lost packages.

The reflectors and all these possible peer connections we

are measuring define a graph (Figure 5). The best routing

path for reapplication of the multimedia streams is defined

as a Minimum Spanning Tree (MST) [19]. This means that

we need to find the tree that contains all the reflectors

(vertices in the graph G) for which the total connection

“cost” is minimized:

The “cost” of the connection between two reflectors (w) is

evaluated using the UDP measurements from both sides.

This cost function is build with an exponentially mediated

RTT and if lost packages are detected or the jitter of the

RTT is high the cost function will increase rapidly.

 Based on these values provided by the deployed agents ,

the MST is calculated nearly in real - time. We implemented

the Baruvka‘s Algorithm [19], as it is well suited for a

parallel/distributed implementation. Once a link is part of

the MST a momentum factor is attached to that link. This is

to avoid triggering reconnections for small fluctuations in

the system. Such cases may occur when two possible peers

have very similar parameters (or they may be at the same

location). In Figure 5 an example of a dynamically MST for

connecting the VRVS reflectors is presented.

 This is an example of a high level service developed to

optimize a real-time world wide distributed application and

to help in operating such complex systems. These

developments are transforming the VRVS system into a new

class of large scale distributed systems with real time

constraints.

))),((min(
),(

∑
∈

=
Guv

uvwMST

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6 ePrint cs.DC/0306096MOET001

Figure 5. The Minimum Spanning Tree connections and peers

quality for a set of VRVS reflectors

The MonALISA framework is a means of carrying out the

development of this system, both in terms of its operational

characteristics (heuristic, self-discovering, autonomous) and

the relatively short development time required for

implementing a distributed monitoring and management

system of this scale and complexity.

5. STATUS AND FUTURE PLANS

Deploying these monitoring services on many sites and

interfacing it with other monitoring tools (SNMP, Ganglia,

MRTG, IEPM-BW) as well as with batch queuing systems

(Condor, LSF, PBS) has provided very useful experience,

and has enabled us to begin building reliable and scalable

distributed services.

This experience also has been important in enabling us to

start building higher level services, to perform job

scheduling and data replication tasks effectively; service that

adapt themselves dynamically to respond to changing load

patterns in large Grids.

Through the Internet2 End-to-End Performance Initiative

[20] MonALISA is also going to be used to monitor and help

manage the Internet2 Abilene backbone. We are working to

enhance the end-to-end measurements provided by

MonALISA to meet the needs of Internet2, as well as the

proposed UltraLight next -generation optical network [21].

6. SUMMARY

These developments have a broader range of applications,

to the global distributed Grid-based systems required for

major HENP experiments, and other data-intensive project.

This real time system also includes much of the functionality

required of the OGSA standardized services planned by the

Global Grid Forum in the future.

Effective and robust integrated applications require higher

level service components able to adapt to a wide range of

requests, and changes in the state of the system (such as

changes in the available resources, for example).

These services should be capable of ``learning'' from

previous experience, and apply ``self-organizing neural

network'' [22] or other heuristic algorithms to the

information gathered, to optimize dynamically the system,

by minimizing a set of ``cost functions''.

Acknowledgments

The authors wish to thank to S. Ravot, S. Singh and V.

Litvin form Caltech, Richard J. Cavanaugh from University

of Florida, Lothar Bauerdick, Ian Fisk, Greg Graham and

Yujun Wu from Fermilab, N. Tapus from the Polytechnic

University Bucharest, Les Cottrel and Warren Matthews

from SLAC for their help and support in deploying and

developing MonALISA as a real distributed service.

References

[1] H.B. Newman, I.C. Legrand, J.J. Bunn, “A

Distributed Agent-based Architecture for Dynamic

Services” CHEP 2001, Beijing, Sept 2001,

http://clegrand.home.cern.ch/clegrand/CHEP01/chep0

1_10-010.pdf

[2] Julian Bunn and Harvey Newman

Data Intensive Grids for High Energy Physics Grid

Computing: Making the Global Infrastructure a

Reality, edited by Fran Berman, Geoffrey Fox and

Tony Hey, March 2003 by Wiley

[3] Jini web page , http://www.jini.org

[4] OSGA , http://www.globus.org/

[5] The Openwings Project, http://www.openwings.org/

[6] World Wide Web Consortium, http://www.w3.org

[7] The Glue Web Services Pacakage

http://www.themindelectric.com/

[8] MonALISA web page

http://monalisa.carc.caltech.edu

[9] The Net-Snmp Web Page, http://www.net-snmp.org/

[10] Ganglia Monitoring tool,

http://ganglia.sourceforge.net/

[11] MRTG monitoring tool. http://www.mrtg.org

[12] Hawkeye monitoring tool,

http://www.cs.wisc.edu/condor/hawkeye/

[13] Java Web Start,

http://java.sun.com/products/javawebstart/

[14] MonaLISA web repository,

http://monalisa.carc.caltech.edu:8080/

[15] The Jakarta Project, http://jakarta.apache.org/

[16] WAP Forum, http://www.wapforum.org/

[17] Internet End-to-end Performance Monitoring

http://www-iepm.slac.stanford.edu/

[18] The VRVS Web Page, http://www.vrvs.org

[19] Nancy A. Lynch, Distributed Algorithms, Morgan

Kauffman Publishers, 1996

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

7 ePrint cs.DC/0306096MOET001

[19] Michael T. Goodrich, Roberto Tamassia, Algorithm

Design, John Wiley & Sons, 2001

[20] Internet2 End-to-End Performance Initiative,

http://www.internet2.edu/e2epi

[21] The Ultralight Project, http://ultralight.caltech.edu

[22] H.B. Newman, I.C. Legrand

A Self-Organizing Neural Network for Job

Scheduling in Distributed Systems

CMS NOTE 2001/009, January 8, 2001

http://clegrand.home.cern.ch/clegrand/SONN/note01_

009.pdf

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

8 ePrint cs.DC/0306096MOET001

