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Abstract—In recent research, deep neural network (DNN) has
been used to solve the monaural source separation problem. Ac-
cording to the training objectives, DNN-based monaural speech
separation is categorized into three aspects, namely masking,
mapping and signal approximation (SA) based techniques. How-
ever, the performance of the traditional methods is not robust due
to variations in real-world environments. Besides, in the vanilla
DNN-based methods, the temporal information cannot be fully
utilized. Therefore, in this paper, the long short-term memory
(LSTM) neural network is applied to exploit the long-term speech
contexts. Then, we propose the complex signal approximation
(cSA) which is operated in the complex domain to utilize the
phase information of the desired speech signal to improve the
separation performance. The IEEE and the TIMIT corpora are
used to generate mixtures with noise and speech interferences to
evaluate the efficacy of the proposed method. The experimental
results demonstrate the advantages of the proposed cSA-based
LSTM RNN method in terms of different objective performance
measures.

Index Terms—Deep neural networks, Monaural speech sepa-
ration, Long short-term memory, Complex signal approximation

I. INTRODUCTION

Source separation has attracted a remarkable amount of

attention due to its potential use in several real-world appli-

cations such as automatic speech recognition (ASR), assisted

living systems and hearing aids [1]–[6]. In these applications,

well separated signals are required for the system to work

properly. According to the number of channels, the source

separation problem is classified into multichannel, binaural-

channel and single-channel (monaural) categories. The monau-

ral source separation problem still remains an important re-

search challenge, because only one recording is available and

the spatial information that can be extracted is limited [7].

Many approaches have been developed to address the

monaural source separation problem. For example, in signal

processing-based methods, Loizou estimated the ideal Wiener

filter and reconstructed the target signal in the minimum

mean squared error (MMSE) sense [8]. While in model-based

methods, the non-negative matrix factorization (NMF) [9] is

exploited to separate signals from a single channel mixture
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[10]. Grais and Erdogan modelled the noisy observations based

on weighted sums of non-negative sources [11]. However,

these methods are limited when dealing with acoustic mixtures

captured in real environments, for instance, in low signal-

to-noise ratio (SNR) conditions, with unseen noises in the

mixture and limited computational resources. Therefore, in

real-environment scenarios, it is difficult to obtain the target

speech signal with high quality consistently by using the above

mentioned methods [12].

Recently, the DNN-based techniques have been introduced,

where the trained neural network model is used to reconstruct

the desired speech signals. According to the training objec-

tives, DNN-based monaural speech separation is categorized

into three aspects, namely masking, mapping and signal ap-

proximation (SA) based techniques.

In masking-based DNN approach, the ideal time-frequency

(T-F) mask is applied as the training target of the neural

network models. The T-F mask predicted by the trained model

is applied to the mixture to reconstruct the desired speech

signal. The predicted T-F mask can be categorized as a binary

or soft mask. In the binary mask, each T-F unit of the mask

was assigned as 1 or 0 according to the criterion for the

active source [13], [14]. For example, Jin and Wang exploited

an ideal binary mask (IBM) as training target, and obtained

promising separation results [15]. However, due to the hard

decisions from the IBM, the separated speech signal of the

IBM-based method is distorted. In the soft mask, also known

as ideal ratio mask (IRM), the T-F unit was assigned as

the ratio of target source energy to mixture energy [12]. By

using the IRM, Zhang and Wang proposed a deep ensemble

method to further improve the performance of the IRM [12].

Compared with the IBM, the desired speech signal separated

by IRM often has better quality, e.g. with less musical noise

artefacts. Although these DNN-based techniques offer state-

of-the-art performance, the masks including the IBM and the

IRM do not utilize the phase information of the target signal

when synthesizing the clean speech signal. Wang and Lim

considered phase information to be unimportant in speech

enhancement [16], but Erdogan et al. have shown that the

phase information is beneficial to predict an accurate mask and

the estimated source [17]. Consequently, in [18], Williamson et

al. employed both the magnitude and phase spectra to estimate

the complex IRM (cIRM) by operating in the complex domain.

In mapping-based DNN approach, the training target is the

spectrum of the clean speech signal and the neural network

model is trained to estimate the clean spectrum of desired

speech signal. In [19], the DNN model was trained to learn the
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relationship between the spectrum of the mixture and the clean

spectrum of the target signal to address the dereverberation and

denoising problems. However, compared with the masking-

and SA-based approaches, it is more difficult to obtain a well

trained neural network model, due to the large value ranges

in the spectrum of the clean speech signal at each T-F point.

In the SA-based DNN approach, the training target is

the spectrum of the clean speech signal, which is indirectly

obtained by the T-F mask estimated by a trained model which

minimizes the discrepancy between the estimated spectrum

and the spectrum of the clean speech signal. The original SA-

based (oSA) DNN method does not utilize the phase infor-

mation to reconstruct the target signal [20]. Moreover, with

different environmental noises, the separation performance of

the DNN-based methods, which are trained with either an IRM

or clean signal spectra, are not robust.

In this architecture, the temporal information cannot be fully

used, hence, the recurrent neural network (RNN) is introduced

as the framework of the monaural source separation. Huang et

al. have shown that the recurrent unit is beneficial to predict

an accurate mask and improve separation performance [1].

By using the LSTM block instead of the regular network

units, Chen and Wang utilized the LSTM neural network in

the monaural source separation and the evaluations confirmed

the improvement of the separation performance [21]. Sun et

al. compared the mapping- and masking-based LSTM RNN

methods in speech enhancement with different SNR levels and

background noise [22]. However, these LSTM-based methods

are applied with SA or IRM, where the clean phase informa-

tion was not used.

To address the above mentioned issues, we propose an

improved method where the LSTM neural network is used

to estimate the cIRM, and then a cSA-based LSTM RNN

method is presented to recover the desired speech signal from

the cIRM.

In summary, the contributions of this paper are:

(1) A Y-shaped LSTM RNN is exploited to predict the cIRM

as the training target, in order to utilize the phase information

of the clean speech signal.

(2) The cSA-based LSTM RNN method is proposed, where

both real and imaginary components of the spectrum are used

as the training targets.

(3) Several complex domain separation methods with dif-

ferent neural network architectures are compared.

The rest of the paper is organized as follows. In Section

II, the background knowledge related to the training targets in

recent monaural source separation methods is described. Sec-

tion III introduces the LSTM-based method and the proposed

cSA-based source separation method. Section IV presents the

experimental settings and results with the IEEE and the TIMIT

corpora [23], [24]. The conclusions and future work are given

in Section V.

II. MONAURAL SOURCE SEPARATION WITH NEURAL

NETWORKS

Recently, neural networks have been adopted as a regression

model to solve the source separation problem, especially, in

the monaural case. In this section, some background of the

network architectures and training targets will be described.

A. Network Architectures

Generally, there are three fundamental and commonly used

neural network architectures: DNN, RNN and convolutional

neural network (CNN) [25]. All the above mentioned methods

are based on the vanilla DNN, which is a feed-forward neural

network model, and in this paper, all the DNNs are referred

to the vanilla DNN. In monaural source separation, most of

the approaches are based on DNNs or RNNs due to their

relatively low complexities and effectiveness in solving the

source separation problem. In addition, some advanced archi-

tectures have also been investigated, such as deep recurrent

neural network (DRNN) [1], [26] and LSTM RNN [21], [22],

[27]. Huang et al. applied the DRNN as neural network model

to solve the monaural source separation problem where only

specified hidden layers have connected units [1]. Compared

with the DNN and RNN, the DRNN has a better trade-off

between computational cost, storage space and the ability to

employ temporal information. The LSTM RNN is able to

store information in memory cells over a long period and

the temporal information can be utilized more efficiently than

the vanilla RNN [28]. By using the LSTM RNN, the speaker

generalization ability of the source separation method can be

improved, which is confirmed in [21]. Hence, the LSTM RNN

is used as the framework of the proposed method.
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Fig. 1. The Y-shaped neural network architecture, which has two sub-output
layers. The sub-output layer 1 and the sub-output layer 2 yield the real and
imaginary components of the estimation, respectively.

If the training targets are given in the complex domain

i.e. cIRM, the outputs of the DNN or the LSTM RNN are

dual, with two sub-output layers, one for the real component

and the other for the imaginary component of the estimation.

Therefore, the shapes of DNN and the LSTM RNN will be

changed with the types of training objectives. The architecture

of the Y-shaped neural network is depicted in Figure 1, where

the output predictions are jointly optimized [29].
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B. Training Targets

Based on the training targets, the monaural source separa-

tion technique can be divided into three categories: masking-,

mapping- and signal approximation (SA)-based, respectively.

Both mapping- and SA-based approaches use the spectrum of

the clean speech signal as a training target. In mapping-based

approach, the value range of the spectrum at each T-F point

is large, i.e. [0, +∞). In SA-based approach, however, the

spectrum of clean speech signal is obtained by the predicted

T-F mask, with a value range in [0, 1]. In comparison, the

SA-based approach can lead to more accurate neural network

model than the mapping-based method.

There are two differences between SA- and masking-based

approaches. First, the training target of the masking-based

approach is an ideal T-F mask, which is calculated by using

the target signal and the speech mixture, while in the SA-

based approach, the training target is the spectrum of the clean

speech signal. Second, although the T-F mask is estimated

in both SA- and masking-based approaches, in SA-based

approach, the estimated T-F mask is exploited to minimize

the discrepancy between estimated spectrum and the spectrum

of the clean speech signal. The T-F mask is not directly used as

the training target which is the main difference between the

SA- and masking-based approaches. In this subsection, two

state-of-the-art T-F masks are described. The IRM and the

cIRM are the two training targets often chosen in masking-

based approach.

1) Ideal Ratio Mask: Assume at discrete time m, the clean

speech signal is s(m), the interference is i(m), and the mixture

is y(m) = s(m)+ i(m). After applying the short time Fourier

transform (STFT), the mixture is expressed as:

Y (t, f) = S(t, f) + I(t, f) (1)

where f is the index of the frequency bins and t is the index of

the time frames; Y (t, f), S(t, f) and I(t, f) are the Fourier

transforms of the mixture, clean signal and interference, re-

spectively. Besides, employing the ideal T-F mask M(t, f),
the spectrum of the clean speech can be reconstructed as:

S(t, f) = Y (t, f)M(t, f) (2)

The M(t, f) as an IRM can be defined as:

MIRM (t, f) =

( |S(t, f)|2
|S(t, f)|2+|I(t, f)|2

)β

(3)

where β is a tunable parameter to scale the mask, |S(t, f)|
denotes the magnitude spectrum of the clean speech signal and

|I(t, f)| denotes the magnitude spectrum of the interference

signal, respectively.

In IRM, only magnitude information is exploited, however,

phase information is also important [30].

2) Complex Ideal Ratio Mask: Since the phase information

of the spectrum is important, the cIRM was proposed [18],

[31]. To calculate the cIRM, the STFTs of the mixture, clean

signal and the cIRM are written as:

Y (t, f) = Yr(t, f) + jYc(t, f) (4)

S(t, f) = Sr(t, f) + jSc(t, f) (5)

McIRM (t, f) = McIRMr
(t, f) + j·McIRMc

(t, f) (6)

where j ,
√
−1 and the subscripts ‘r’ and ‘c’ indicate the real

and the imaginary components in the STFTs, respectively. The

McIRM (t, f) is the T-F unit of the cIRM, which is defined

as:

McIRM (t, f) =
Yr(t, f)Sr(t, f) + Yc(t, f)Sc(t, f)

Y 2
r (t, f) + Y 2

c (t, f)

+j
Yr(t, f)Sc(t, f)− Yc(t, f)Sr(t, f)

Y 2
r (t, f) + Y 2

c (t, f)
(7)

The cost function of the cIRM-based DNN is expressed as:

JcIRM =
∑

t

∑

f

[(

M̂cIRMr
(t, f)−McIRMr

(t, f)
)2

+
(

M̂cIRMc
(t, f)−McIRMc

(t, f)
)2]

(8)

where the M̂cIRM (t, f) is the T-F unit of the estimated cIRM.

In the cIRM-based approach, both the magnitude and phase

responses are obtained to recover the target signal [18].

III. ALGORITHM DESCRIPTION

A. Complex Signal Approximation

In the mapping-based approach, the training target is the

spectrum of the clean speech signal. The cost function of the

mapping-based approach is written as:

Jmapping =
∑

t

∑

f

(|Ŝ(t, f)| − |S(t, f)|)2 (9)

where Ŝ(t, f) is the STFT of the estimated source. Hence,

the clean spectrum of the target signal can be estimated by

minimizing the error between the estimated spectrum and the

spectrum of clean speech signal. While, due to the large value

range of the T-F points in the spectrum, the network model is

difficult to train [18].

The SA-based approach combines the mapping- and

masking-based approaches. The training target in the oSA-

based method is the spectral magnitude of clean speech, which

is equivalent to the mapping-based approach. The cost function

in the oSA-based method can be written as:

JoSA =
∑

t

∑

f

(|Y (t, f)M̂oSA(t, f)| − |S(t, f)|)2 (10)

where the predicted T-F mask in the oSA-based method is

M̂oSA(t, f), which is used to obtain the estimated spectrum

Ŝ(t, f). The T-F mask is predicted in the oSA-based neural

network to minimize the discrepancy between the magnitude

spectrum of mixture and that of the clean speech signal,

which is similar to masking-based approaches. Hence, using

the magnitude spectrum of the clean signal as the training

target can increase the accuracy of the estimated T-F mask

and improve separation performance.

However, the oSA-based method has the same problem as

the IRM-based method where the phase information of the

target signal is not used when reconstructing the desired signal.

Therefore, inspired by the cIRM, the cSA-based method is

proposed, which replaces the IRM by cIRM in the training
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process to estimate both real and imaginary components of the

clean speech signal. One could use the magnitude and phase

information, instead of the real and imaginary components,

as training targets, are exploited. However, our empirical

tests show that using the real and imaginary components as

trainning targets offers better separation performance. Hence,

in the cSA-based method, the real and imaginary components

of the desired clean speech signal are used as training targets.

In the cSA-based method, the estimated spectrum of the

clean signal is obtained by applying the predicted complex

T-F mask, defined as M̂cSA.

Similarly, the real component of the estimated clean spec-

trum in the cSA is expressed as:

Ŝr(t, f) = M̂cSAr
(t, f)Yr(t, f)− M̂cSAc

(t, f)Yc(t, f) (11)

The imaginary component of the estimated clean spectrum is

calculated as:

Ŝc(t, f) = M̂cSAr
(t, f)Yc(t, f) + M̂cSAc

(t, f)Yr(t, f) (12)

In the proposed cSA-based LSTM RNN method, when the

Y-shaped neural network model is used, the shared weights in

the hidden layers cannot be fully used for both components,

and this may have negative impacts on the estimations, and

thus the separation performance. Our empirical tests show

that using two networks performs better than stacking the

two components in one network. In the cSA-based method,

the real and imaginary components are estimated separately

and two neural network models are trained with real and

imaginary components of the cIRM. The cost functions can be

expressed in the complex domain with the real and imaginary

components. According to (11) and (12), the expanded cost

functions of the cSA-based method are:

J1 =
∑

t

∑

f

[(

M̂cSAr
(t, f)Yr(t, f)

−M̂cSAc
(t, f)Yc(t, f)

)

− Sr(t, f)
]2

(13)

J2 =
∑

t

∑

f

[(

M̂cSAr
(t, f)Yc(t, f)+

M̂cSAc
(t, f)Yr(t, f)

)

− Sc(t, f)
]2

(14)

The architecture of the neural network model for the cSA-

based method is shown in Figure 2, it has two output layers,

the T-F mask is obtained in the additional output layer and

the estimated component of the clean spectrum is obtained

with the final output layer. If the training target is the imag-

inary component, the T-F mask is employed to estimate the

imaginary component.

However, in the vanilla DNN, the temporal information

cannot be fully used, which impacts on the separation per-

formance. To address this limitation, the vanilla RNN and its

improved version e.g. the LSTM RNN, which uses the LSTM

block in the vanilla RNN, has been used for the challenging

monaural source septation problem [27], [28]. In the cIRM-

and the proposed cSA-based methods, the LSTM RNN is

applied in this work for monaural source separation. The

Input Layer

Hidden Layers

Additional 

Output Layer

Final Output 

Layer

Fig. 2. Proposed neural network architecture, where a linear output layer is
added before the final output layer to obtain the estimated speech signal. The
output of the neural network model is related to the training target.

frameworks of the cIRM- and the cSA-based LSTM RNN

methods are discussed in the following subsection.

B. LSTM RNN-based Methods in the Complex Domain

Different from the vanilla DNN, which can only use context

window to capture temporal dependencies, the LSTM RNN

stores the temporal information in the cell, therefore, the long

temporal dependencies can be utilized. In the DNN-based

method, the neural network model is trained with backward

propagation algorithm [18] but in the LSTM RNN-based

method, the backward propagation through time algorithm is

exploited [28]. The LSTM block in the proposed method is

composed of a cell, an input gate, an output gate and a forget

gate, similar to the structure in [21].

After the hidden states are obtained from the LSTM blocks,

the output layer is added to generate the output of the LSTM

RNN. The activation function of the output layer is selected

as a linear function. For complex domain monaural source

separation, the estimated phase information of clean speech

signal is used to recover the desired speech signal. Then,

by introducing the LSTM RNN, the temporal information is

utilized. Besides, if the training target of the LSTM RNN is

the cIRM, the neural network is Y-shape and two sub-output

layers are added as shown in Figure 1. In the cSA-based LSTM

RNN method, two LSTM RNNs are exploited to predict the

real and imaginary components in parallel and both LSTM

RNNs have the same configuration.

In the proposed cSA-based LSTM RNN method, inspired by

[18], [25] and vanilla DNN methods, the feature combination

is given to the input layer to increase the efficiency of the

networks and system. The amplitude modulation spectrogram
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(AMS) [33], relative spectral transform and perceptual linear

prediction (RASTA-PLP) [34], mel-frequency cepstral coef-

ficients (MFCC), cochleagram response and their deltas are

extracted by a 64-channel gammatone filterbank to obtain the

compound feature [35]. Furthermore, in the oSA- and the cSA-

based methods, the spectra of the mixture and the clean signal

are given to calculate the spectrograms of the predicted clean

signal and the training objective, respectively.

The flow diagram of the proposed cSA-based LSTM RNN

method is shown in Figure 3.

Targets 
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Mixture

Speech

Source

Real Component of 

STFT of speech source
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Extraction

Training Stage

Imaginary 
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RNN 1

Training LSTM 

RNN 2
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Trained LSTM 

RNN 1

Trained LSTM 
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Reconstruction ModuleSeparated Speech 
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Extraction

Compound Module
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Mixture
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Training LSTM

RNRR N 1

Training LSTM
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Fig. 3. The block diagram of the proposed complex signal approximation
(cSA)-based LSTM RNN method. Two LSTM RNNs are trained with the
separate training targets, e.g. the real and the imaginary components of the
STFT of clean speech signal.

In the training stage, by using the targets calculation mod-

ule, the STFTs of speech source and mixture are obtained.

Then, the real and imaginary components of STFT of the

speech source are used as the training targets for LSTM RNN

1 and LSTM RNN 2, respectively. The outputs of the LSTM

RNN models are obtained by multiplying the estimated T-F

mask with the STFT of the mixture. After each iteration, the

estimated T-F mask is trained to minimize the discrepancy

between the spectrum of the clean speech signal and that of

the estimated source signal.

In the testing stage, the trained LSTM RNNs can output

the real and imaginary components of the estimated speech

signal when the feature combination of the mixture is used

as input. Then, the STFT of the separated speech is obtained

in the compound module and the separated speech signal is

reconstructed in the reconstruction module.

Compared with the oSA-based DNN method, the proposed

cSA-based LSTM RNN method has two advantages:

(1) In traditional oSA-based DNN method, the noisy phase

information is used to synthesise the desired speech signal.

However, in the proposed cSA-based LSTM RNN method,

both clean magnitude and phase information are estimated.

(2) The LSTM blocks are introduced with the RNN, the

temporal information can be better utilized and the trained

LSTM RNN models have better generalization ability.

IV. EVALUATIONS AND RESULTS

In this section, we evaluate the cIRM- and oSA-based

method with the vanilla DNN and the LSTM RNN to show

the advantage of LSTM RNN over the vanilla DNN. Then,

we show the results of the proposed cSA-based LSTM RNN

method. Firstly, the interference is selected as the noise, in

both seen and unseen scenarios. Then, the interference is

chosen as the undesired speech signal which is unseen in the

training stage. Therefore, the generalization ability of these

methods can be evaluated.

A. Experimental Settings

1) Datasets: The speech sources are selected randomly

from the IEEE and the TIMIT corpora [23], [24]. The IEEE

corpus has 720 clean utterances spoken by a single male

speaker and the TIMIT database has 6300 utterances, 10

utterances spoken by each of 630 speakers. Therefore, using

both the IEEE and the TIMIT corpora can demonstrate that

the proposed method is speaker-independent. We randomly

select 1000, 100 and 200 clean utterances from the IEEE and

the TIMIT corpora to generate the training, development and

testing datasets.

The interferences are categorized into two aspects, the noise

interference and the undesired speech interference. In the seen

noise interference cases, these clean speech utterances are

mixed with five different noise types at three different SNR

levels (-3 dB, 0 dB and 3 dB). These five noise scenes are

named as factory, babble, cafe, f16 and tank. The names

of these noise signals indicate their recording situations. The

above mentioned noise signals are selected from the NOISEX

database [36]. Each noise sequence is four minutes long, which

is truncated randomly from the first two minutes to match the

lengths of the speech signals to generate the training mixtures.

The last two minutes are used to generate the development and

testing mixtures. In this case, although the noise interference

in the testing dataset is unseen, the noise type is known.

In the unseen noise interference cases, 50 different noise

signals are used to generate the training, development and

testing datasets and 50 noise signals are only used to generate

the testing data. These non speech sounds contain many differ-

ent types of noise, e.g. animal sounds, tooth brushing sounds

and machine noise [37]. Finally, the number of mixtures in

training, development and testing data is 12,000, 1200 and

2400, respectively. The training speech duration is around 10

hours and 100 types of different noise signals are used in the

unseen cases.

In our evaluation studies where the interference is undesired

speech signal, in both training and testing stages, the target

speech signals are randomly selected from the TIMIT dataset.

Then, interfering speech signals are randomly selected from

the remaining signals in the dataset to ensure the speakers

of the target speech and the interfering speech signals are

different. At the testing stage, the desired speech signals are

unseen in the training stage, but the interfering speech signals

are seen in the training stage. Therefore, the trained neural
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TABLE I
SEPARATION PERFORMANCE COMPARISON IN TERMS OF STOI WITH DIFFERENT TRAINING TARGETS, NOISES AND NEURAL NETWORK ARCHITECTURES,
THE SNR OF THESE MIXTURES IS -3 dB. EACH RESULT IS THE AVERAGE VALUE OF 200 EXPERIMENTS. Italic SHOWS THE PROPOSED METHODS. BOLD

INDICATES THE BEST RESULT.

STOI Unprocessed cIRM-DNN [18] cIRM-LSTM oSA-DNN [1] oSA-LSTM cSA-LSTM

Factory 60.35% 68.31% 70.59% 70.21% 72.42% 73.57%
Babble 57.04% 69.22% 70.00% 68.33% 74.12% 76.70%
Cafe 58.07% 65.45% 68.62% 66.11% 69.03% 75.44%
F16 62.54% 71.11% 72.58% 72.02% 74.17% 75.20%
Tank 70.93% 75.48% 79.04% 76.11% 85.35% 86.77%

Averaged 61.79% 69.91% 72.17% 70.56% 75.01% 77.54%

TABLE II
SEPARATION PERFORMANCE COMPARISON IN TERMS OF STOI WITH DIFFERENT TRAINING TARGETS, NOISES AND NEURAL NETWORK ARCHITECTURES,

THE SNR OF THESE MIXTURES IS 0 dB. EACH RESULT IS THE AVERAGE VALUE OF 200 EXPERIMENTS. Italic SHOWS THE PROPOSED METHODS. BOLD

INDICATES THE BEST RESULT.

STOI Unprocessed cIRM-DNN [18] cIRM-LSTM oSA-DNN [1] oSA-LSTM cSA-LSTM

Factory 67.42% 74.20% 77.92% 76.33% 78.92% 79.59%
Babble 64.22% 73.87% 76.81% 72.91% 78.99% 79.47%
Cafe 63.21% 70.36% 75.38% 71.38% 75.44% 77.61%
F16 65.31% 74.20% 77.26% 74.87% 79.77% 80.13%
Tank 75.34% 80.92% 83.75% 81.25% 87.51% 88.03%

Averaged 67.10% 74.74% 78.22% 75.35% 80.12% 80.96%

TABLE III
SEPARATION PERFORMANCE COMPARISON IN TERMS OF STOI WITH DIFFERENT TRAINING TARGETS, NOISES AND NEURAL NETWORK ARCHITECTURES,

THE SNR OF THESE MIXTURES IS 3 dB. EACH RESULT IS THE AVERAGE VALUE OF 200 EXPERIMENTS. Italic SHOWS THE PROPOSED METHODS. BOLD

INDICATES THE BEST RESULT.

STOI Unprocessed cIRM-DNN [18] cIRM-LSTM oSA-DNN [1] oSA-LSTM cSA-LSTM

Factory 70.36% 81.39% 83.94% 81.95% 84.89% 85.99%
Babble 71.22% 80.01% 82.99% 80.03% 85.28% 86.03%
Cafe 70.47% 79.20% 81.14% 79.30% 80.97% 82.06%
F16 72.45% 81.34% 82.62% 81.66% 84.02% 84.71%
Tank 79.66% 84.37% 87.77% 84.66% 89.20% 89.26%

Averaged 72.83% 81.26% 83.69% 81.52% 84.87% 85.61%

network is able to differentiate the target and undesirable

speech signals. Similarly, the SNR levels are -3 dB, 0 dB and

3 dB and the number of mixtures in training, development and

testing data is 12,000, 1200 and 2400, respectively.

2) Network Architecture: Both the DNNs of the comparison

group and the LSTM RNN have three hidden layers and

each hidden layer has 512 units. The dimension for the

input layer is 1722 (246×(3×2+1)). In terms of the DNN,

according to [18], the activation function for each hidden unit

is selected as the rectified linear unit (ReLU) to avoid the

gradient vanishing problem and the output layer has linear

units [31]. In the LSTM RNN, the activation function for

each hidden unit is selected as the sigmoid and the output

layer has linear units. When the training target is the cIRM,

the corresponding neural network outputs the estimates of real

and imaginary components of the predicted cIRM. When the

training target is the clean spectrum of the desired speech

signal, two LSTM RNNs are trained separately. The DNN and

the LSTM RNN are trained by using the RMSprop algorithm

[38] with a learning rate of 0.001. The number of epochs is 100

and the batch size is 1024. Auto-regressive moving average

(ARMA) filtering is applied to reduce the interference from

the background noise, as in [39].

3) Comparisons and Performance Measures: In the experi-

ments, the proposed cIRM- and cSA-based LSTM RNN meth-

ods are compared with DNN-based approaches: the cIRM [18]

and the oSA estimation [20]. In the oSA-based method, the

T-F mask is an IRM, which is estimated by minimizing the dis-

crepancy between the estimated spectrum and the spectrum of

the target speech signal. In oSA-based DNN and LSTM RNN

methods, the target signal is reconstructed without using the

phase information of the clean speech signal, meanwhile, the

cIRM- and the cSA-based methods utilize both the amplitude

and phase information from the clean signal. The proposed

methods are shown in italics. The separation performance is

evaluated with three measurements. The short-time objective

intelligibility (STOI) [40], the perceptual evaluation of speech

quality (PESQ) [41] and the SDR [42]. The values of the STOI

are in the range of [0, 1] and the PESQ are in the range of [-0.5,

4.5]. The STOI and the PESQ indicate the intelligibility scores

and human speech quality scores, respectively. The SDR is

exploited to evaluate the overall separation performance. In

this paper, we use SDR value of the separated speech signal

and the SDR value of the unprocessed speech mixture to

calculate the improvement of the SDR.
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TABLE IV
SEPARATION PERFORMANCE COMPARISON IN TERMS OF PESQ WITH DIFFERENT TRAINING TARGETS, NOISES AND NEURAL NETWORK

ARCHITECTURES, THE SNR OF THESE MIXTURES IS -3 dB. EACH RESULT IS THE AVERAGE VALUE OF 200 EXPERIMENTS. Italic SHOWS THE PROPOSED

METHODS. BOLD INDICATES THE BEST RESULT.

PESQ Unprocessed cIRM-DNN [18] cIRM-LSTM oSA-DNN [1] oSA-LSTM cSA-LSTM

Factory 1.63 2.07 2.33 2.11 2.30 2.41

Babble 1.76 2.05 2.12 2.03 2.22 2.28

Cafe 1.75 2.03 2.16 2.10 2.14 2.38

F16 1.64 2.13 2.25 2.10 2.27 2.38

Tank 1.92 2.29 2.49 2.33 2.72 2.74

Averaged 1.74 2.11 2.27 2.13 2.33 2.44

TABLE V
SEPARATION PERFORMANCE COMPARISON IN TERMS OF STOI WITH DIFFERENT TRAINING TARGETS, NOISES AND NEURAL NETWORK ARCHITECTURES,

THE SNR OF THESE MIXTURES IS 0 dB. EACH RESULT IS THE AVERAGE VALUE OF 200 EXPERIMENTS. Italic SHOWS THE PROPOSED METHODS. BOLD
INDICATES THE BEST RESULT.

PESQ Unprocessed cIRM-DNN [18] cIRM-LSTM oSA-DNN [1] oSA-LSTM cSA-LSTM

Factory 1.80 2.34 2.54 2.41 2.50 2.59

Babble 1.89 2.19 2.37 2.14 2.49 2.51

Cafe 1.95 2.27 2.38 2.29 2.32 2.49

F16 1.79 2.30 2.47 2.25 2.49 2.61

Tank 2.01 2.58 2.67 2.59 2.88 2.91

Averaged 1.88 2.34 2.49 2.37 2.54 2.62

TABLE VI
SEPARATION PERFORMANCE COMPARISON IN TERMS OF STOI WITH DIFFERENT TRAINING TARGETS, NOISES AND NEURAL NETWORK ARCHITECTURES,

THE SNR OF THESE MIXTURES IS 3 dB. EACH RESULT IS THE AVERAGE VALUE OF 200 EXPERIMENTS. Italic SHOWS THE PROPOSED METHODS. BOLD

INDICATES THE BEST RESULT.

PESQ Unprocessed cIRM-DNN [18] cIRM-LSTM oSA-DNN [1] oSA-LSTM cSA-LSTM

Factory 1.98 2.61 2.73 2.63 2.71 2.81

Babble 1.96 2.40 2.56 2.29 2.69 2.76

Cafe 2.01 2.46 2.58 2.48 2.55 2.62

F16 1.97 2.42 2.64 2.37 2.67 2.77

Tank 2.19 2.69 2.88 2.70 3.12 3.17

Averaged 2.02 2.51 2.67 2.49 2.75 2.82

B. Experimental Results and Analysis

1) Experimental Results with Seen Noise Interference in

terms of the STOI and PESQ: The separation results based

on the STOI are shown in Tables I, II and III. The results

based on PESQ are shown in Tables IV, V and VI. Each

experimental result in Tables I - VI is the average value over

200 testing mixtures. In total, 43,200 tests are performed. The

baseline is calculated by using the unprocessed mixture and

the clean speech signal.

It can be observed in Tables I - VI that the performance

of LSTM RNN-based methods is better than the DNN-based

methods. This is because the memory component in the LSTM

RNN can better exploit the temporal information. In addition,

the phase information is also beneficial and cSA-based LSTM

RNN method outperforms all other methods. Besides, both

values of the STOI and PESQ are increased when the SNR

level changes from -3 dB to 3 dB.

2) Experimental Results with Noise Interference in terms

of the SDR: These experiments aim to evaluate how the

variations of the training targets, types of neural network

models and SNR levels affect the SDR. The experimental

settings are consistent with Section IV-A. The SDR values

with different training targets and SNR levels are shown in

Figure 4. It is shown in Figure 4 that the proposed cSA-based

Fig. 4. Average SDR improvement (dB) for different training targets and
neural network models with five types of seen noise. Each result is the average
value of 200 experiments.

LSTM RNN method achieves the largest SDR improvement in

all scenarios. When the vanilla DNN is trained, the cIRM- and

oSA-based methods offer almost the same SDR improvement.

While comparing the cIRM- and oSA-based methods with

DNN and LSTM RNN, the performance of the LSTM RNN

is again better than the DNN. By using the proposed LSTM

RNN, the oSA-based method can gain 3.08, 3.11 and 2.58

dB more SDR improvements at -3, 0, and 3 dB SNR levels,
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TABLE VII
SEPARATION PERFORMANCE COMPARISON IN TERMS OF STOI AND PESQ WITH DIFFERENT METHODS AND THE UNSEEN NOISES, THE SNR LEVELS OF

THESE MIXTURES ARE -3, 0, AND 3 dB. EACH RESULT IS THE AVERAGE VALUE OF 200 EXPERIMENTS. Italic SHOWS THE PROPOSED METHODS. BOLD
INDICATES THE BEST RESULT.

STOI PESQ

SNR level -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB

Unprocessed 59.50% 66.16% 73.00% 1.61 1.80 2.01

cIRM-DNN [18] 64.33% 70.68% 76.92% 2.07 2.22 2.37

cIRM-LSTM 65.56% 72.78% 79.43% 2.17 2.34 2.53

oSA-DNN [1] 63.17% 69.06% 75.81% 2.09 2.25 2.36

oSA-LSTM 66.30% 75.99% 81.02% 2.24 2.35 2.47

cSA-LSTM 75.14% 78.87% 83.52% 2.29 2.47 2.60

respectively. In addition, the phase information of clean speech

signal in complex domain provides further SDR improvement,

e.g. by comparing with the oSA- and the cSA-based LSTM

RNN methods.

3) Experimental Results with Unseen Noise Interference in

terms of the STOI and PESQ: In the real-world environments

where the situations varies, it is important to provide the

generalization ability of the proposed methods. Therefore, the

evaluation results based on the STOI and PESQ are shown in

Table VII for unseen noise cases.

It can be known from Table VII that when the noise in-

terference is unseen, the separation performance is decreased,

compared with the seen noise interference case. It is difficult

to obtain the accurate estimate in the testing stage with unseen

noise interference. For example, when the noise interference

is seen, in 0 dB SNR level, the cIRM-based DNN method can

gain 7.64% improvement in terms of the STOI. However, if

the noise interference is unseen, the improvement decreases to

4.83%.

Besides, in the unseen noise interference case, when the

SNR level is increased, the separation performance is im-

proved and the best separation performance is given by the

proposed cSA-based LSTM RNN method. For instance, in -

3 dB SNR level case, the cSA-based LSTM RNN method

achieves 75.14% and 2.29 in STOI and PESQ, respectively.

While the oSA-based DNN method only achieves 63.17% and

2.09, respectively.

Hence, if LSTM RNN is selected as the neural network

model, the generalization of the related methods is enhanced,

which has been confirmed by our experimental results similar

to [21].

4) Experimental Results with Unseen Noise Interference in

terms of the SDR: These experiments aim to evaluate how the

variations of the SNR levels affect the SDR performance in

terms of the proposed methods with unseen noise interference.

Besides, the generalization ability is further evaluated. Figure

5 gives the SDR improvement with different training targets

and neural network models.

It can be seen from Figure 5 that in the unseen noise case,

compared with the cIRM-based DNN method, the cIRM-based

LSTM RNN method gives more SDR improvement from -

3 dB to 3 dB SNR levels. Similarly, the oSA-based LSTM

RNN method achieves a higher SDR improvement than the

oSA-based method by using the vanilla DNN. It is clear

to observe that when the SA approach is operated in the

Fig. 5. Average SDR improvement (dB) for different training targets and
neural network models with 100 types of unseen noise. Each result is the
average value of 200 experiments.

complex domain and the LSTM RNNs are trained to predict

the corresponding training targets, the separation performance

outperforms others. For example, in the scenario, when the

SNR level is -3 dB, the separation performance of oSA-based

DNN method is 6.68 dB and the cSA-based LSTM RNN

method gives 7.77 dB SDR improvement.

From Tables I - VII and Figures 4 & 5, the best separation

performance in noise interference case is given by the pro-

posed cSA-based LSTM RNN method. There are two main

reasons: (1) The phase information of clean speech signal

is used to recover the desired speech signal; (2) the LSTM

RNN exploits the temporal information and the generalization

ability is enhanced. Besides, it can be seen from Table VII
that by using the proposed cSA-based LSTM method, the best

performance in terms of the STOI and PESQ is obtained in

all SNR levels, although there are some discrepancies in the

level of improvements across these performance metrics. One

possible reason is that when the SNR level is low, by using the

proposed cSA-based LSTM method, the intelligibility of the

separated speech, as assessed by the STOI, is better improved,

due to the time-frequency weighting of the speech spectrum. In

a high SNR level, less processing is enforced on the separated

speech signal. As a result, the level of artefacts introduced by

the proposed cSA-based LSTM method is lower, as shown by

the PESQ measure.

In summary, in the seen noise interference case, the sepa-

ration performance is better than the unseen case. When the

SNR level is changed from -3 dB to 3 dB, all of the methods

achieve better separation performance. Moreover, compared
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TABLE VIII
SEPARATION PERFORMANCE COMPARISON IN TERMS OF STOI AND PESQ WITH DIFFERENT METHODS AND THE SPEECH INTERFERENCE, THE SNR

LEVELS OF THESE MIXTURES ARE -3, 0, AND 3 dB. EACH RESULT IS THE AVERAGE VALUE OF 200 EXPERIMENTS. Italic SHOWS THE PROPOSED

METHODS. BOLD INDICATES THE BEST RESULT.

STOI PESQ

SNR level -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB

Unprocessed 64.84% 69.03% 76.62% 1.63 1.92 2.01

cIRM-DNN [18] 69.27% 73.82% 80.16% 2.02 2.23 2.37

cIRM-LSTM 69.13% 73.11% 80.33% 2.05 2.19 2.39

oSA-DNN [1] 70.84% 74.37% 81.79% 2.02 2.30 2.38

oSA-LSTM 72.84% 76.54% 82.25% 2.14 2.36 2.48

cSA-LSTM 75.80% 79.26% 82.59% 2.32 2.54 2.57

with the vanilla DNN, using the LSTM RNN as the neural

network model, the proposed method provides improvement

in all performance measures.

5) Experimental Results with Speech Interference in terms

of the STOI and PESQ: When the interference is the undesired

speech signal, the task is more difficult to address because the

speech signals are highly non-stationary. In this subsection,

the evaluations with undesired speech interferences are shown

in Table VIII and Figure 6.

From Table VIII, it can be observed that when the interfer-

ence is the undesired speech signal, compared with the noise

interference cases, the separation performance decreases in all

cases. The proposed cSA-based LSTM RNN method provides

the highest values of both STOI and PESQ. Compared with

the noise interference, when the interference is speech signal,

because the indeterminacy of the speech interference, the

related neural network model is more difficult to train, which

effects on the overall separation performance.

After introducing the LSTM RNN, the separation perfor-

mance is improved. For example, when the speech interference

is used, in 0 dB SNR level, the oSA-based DNN method can

gain 5.34% improvement in terms of the STOI, the oSA-based

LSTM RNN method gives 7.51% improvement. In general, the

phase information is beneficial and it can be observed that in

-3 dB SNR level, the PSEQ value of oSA-based LSTM RNN

method is 2.14 and cSA-based LSTM RNN method achieves

2.32.

Fig. 6. Average SDR improvement (dB) for different training targets and
neural network models with speech interferences. Each result is the average
value of 200 experiments.

6) Experimental Results with Speech Interference in terms

of the SDR: The variations of the SNR levels affect the

SDR performance in terms of the proposed methods with

speech interference is shown in Figure 6. It can be seen

from Figure 6 that in the speech interference case, the cSA-

based LSTM RNN method gives the largest SDR improvement

over the other methods and SNR levels. It is shown that

because the strong ability of using temporal information, the

SDR improvement of the LSTM RNN-based method is always

larger than the DNN-based methods. For instance, when the

SNR level is -3 dB, the SDR improvement of the oSA-based

DNN method is 4.11 dB and the improvement of the oSA-

based LSTM RNN method is 6.24 dB.

However, in cIRM-based methods, due to the indeterminacy

of the undesired speech signal, and the corresponding neural

network is Y-shape, the T-F mask in the complex domain

cannot be accurately estimated sometimes. For example, in

Figure 6, when the SNR level is -3 dB, the cIRM-based

DNN achieves higher SDR improvement than the cIRM-based

LSTM RNN method. To address this issue, in the proposed

cSA-based LSTM RNN method, two individual LSTM RNNs

are used to estimate the real and imaginary components

separately. It can be observed from Figure 6, when the SNR

level is -3 dB, the performance of the proposed cSA-based

LSTM RNN method is 8.91 dB, which confirms the efficacy

of the proposed method.

In summary, in the speech interference case, the separation

performance is less than the noise interference case. When

the SNR level varies from -3 dB to 3 dB, all of these

methods achieve better separation performance in both noise

interference and speech interference cases. From Tables I to

VIII and Figures 4 to 6, it is confirmed that the LSTM RNN is

a better neural network model to utilize the long-term temporal

information, which helps the trained model to obtain better

separation performance.

It should be noted that although the phase information is

helpful to improve the separation performance, which can be

observed by comparing the results of the oSA-based method

with those of the cSA-based method, the major improvement

actually comes from the use of the SA-base method, which can

be observed by comparing the performance of the oSA-based

method with that of the cIRM-based method. The proposed

cIRM-based LSTM RNN method not only has the benefits

from the SA formulation but also the clean phase information.
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V. CONCLUSIONS

In this paper, the cSA-based method with LSTM RNN was

proposed to address the monaural source separation problem.

By introducing cIRM, both real and imaginary components

can be calculated and estimated in the cSA-based LSTM RNN

method. Compared with oSA-based method, if the complex

domain training targets were exploited, the phase information

can be used in the SA-based approach. Hence, in the cSA-

based method, both clean magnitude and phase information

were utilized and the separation performance was further

improved. The proposed method was evaluated using STOI,

PESQ and SDR with two interfering cases. The unseen noise

interference and undesired speech signal interference cases

were evaluated to show the generalization ability of the pro-

posed cSA-based LSTM RNN method. All the experimental

results confirmed that the proposed method outperformed the

oSA- and the cIRM-based approaches in all tested scenarios.
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