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ABSTRACT

We propose a model-based source separation system for use on

single channel speech mixtures where the precise source charac-

teristics are not known a priori. We do this by representing the

space of source variation with a parametric signal model based on

the eigenvoice technique for rapid speaker adaptation. We present

an algorithm to infer the characteristics of the sources present in

a mixture, allowing for significantly improved separation perfor-

mance over that obtained using unadapted source models. The

algorithm is evaluated on the task defined in the 2006 Speech Sep-

aration Challenge [1] and compared with separation using source-

dependent models.

1. INTRODUCTION

Mixed signals containing multiple sources pose a significant prob-

lem for automatic signal analysis such as melody transcription or

speech recognition, as well as for human listeners. Separating

a mixture into its constituent sources is especially difficult when

only a single channel input is available, making it impossible to use

spatial constraints to separate the signals. In this paper we focus

on the model-based approach to source separation which disam-

biguates the mixture based on statistical models for each source

present in the mixture. Most previous work in this area, such as

[2], uses source-specific models for separation (e.g. trained on the

particular speaker to be separated). In [3] Ozerov et al. propose the

idea of beginning with a source-independent model and adapting it

to the target source for monaural singing voice separation. This ap-

proach can separate previously unseen source far better than using

unadapted models, but requires a substantial amount of adaptation

data. We consider adaptation when the data available is much less,

requiring a more constrained model space.

The remainder of this paper is organized as follows: Section

2 reviews the source models used in our system. The technique

for model adaptation is described in section 3. Section 4 describes

the detailed separation algorithm. Finally, sections 5 and 6 contain

experimental results and conclusions.

2. SOURCE MODELS

As shown in [2], incorporating temporal dynamics in source mod-

els can significantly improve separation performance, especially

true when all sources in a speech mixture use the same model,
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in which case separation depends on knowledge of the task gram-

mar. We, however, are interested in creating a more generic speech

model that is not specific to a given grammar, so we follow the

“phonetic vocoder” approach [4], which models temporal dynam-

ics only within each phone.

The log power spectrum of each source is modeled using a hid-

den Markov model (HMM) with Gaussian mixture model (GMM)

emissions. Each of the 35 phones used in the task grammar are

modeled using a standard 3-state forward HMM topology. Each

state emits a GMM with 8 mixture components. The transitions

from each phone to all others have equal probability. This al-

lows us to incorporate some knowledge of speech structure without

modeling the grammar.

The models were trained on the Speech Separation Challenge

training data [1], downsampled to 16kHz and pre-emphasized. Spec-

tral features were derived from a short-time Fourier transform with

40 ms window and 10 ms hop. The training data for all 34 speak-

ers was used to train a speaker-independent (SI) model. We also

constructed speaker-dependent (SD) models for each speaker by

bootstrapping from the SI model; only the GMM means were up-

dated during the SD training process.

3. MODEL ADAPTATION

Because only a single utterance is available for model adaptation,

there is insufficient data to use standard adaptation methods such

as MLLR. We solve this problem by using the SD models de-

scribed above as priors on the space of speaker variation. Adapt-

ing to the observed source involves projecting the source onto the

space spanned by these priors. This is done by first orthogonal-

izing the SD models using principal component analysis (PCA),

allowing each point in the space spanned by the different speakers

to be represented using only a few “eigenvoice” weights [5].

Only the model means are adapted. The mean vectors of each

state in the SD model for speaker j are concatenated into a mean

supervector µj . Performing PCA on the set of 34 supervectors

yields orthonormal basis vectors for the eigenvoice space. The

mean for state s of a speaker-adapted model can be written as a

linear combination of these bases:

µs =
N

X

j=1

wjµj,s + µ̄s (1)

where wj is the weight applied to the jth eigenvoice dimension

and µ̄s is the mean of {µj,s}1≤j≤N . Estimation of the eigenvoice

parameters wj is described in section 4.4. Note that for simplic-

ity all equations in this paper describe the case of HMMs with

Gaussian emissions. The extensions to mixture model emissions

is straightforward.
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4. SPEECH SEPARATION

Without strong temporal constraints, separation performance is poor

when the same model is used for both sources. Separation can be

improved with models matched to each source, but the adaptation

procedure described in [5] requires clean source signals. We solve

the problem of estimating the eigenvoice parameters for the two

sources from the mixture using the following iterative algorithm:

1. Obtain initial model estimates for each source

2. Separate signals using factorial HMM decoding

3. Reconstruct each source

4. Update model parameters

5. Repeat 2-4 until convergence

4.1. Initialization

As with many iterative algorithms, this method can be slow to con-

verge and is vulnerable to local optima. Good initialization is cru-

cial to finding good solutions quickly. We start by projecting the

mixed signal onto the eigenvoice bases to set the parameters for

both sources (see section 4.4). Obviously these parameters will

not be a good match to either isolated source, so further steps are

taken to differentiate the two speakers.

We use the speaker identification component of the Iroquois

speech separation system [2] which chooses the most likely speaker

model based on frames of the mixture that are dominated by a sin-

gle source. This could be used directly to search through a set of

adaptation parameter vectors corresponding to the speakers in the

training set, in which case our system reduces to a variant of Iro-

quois. However this will not work well on sources that are not in

the training set.

Instead we note that by design the eigenvoice dimensions are

decorrelated, which allows each of them to be treated indepen-

dently. So instead of learning the settings for each of 34 speakers,

we quantize each dimension separately (e.g. w1 can be quantized

to -550, -20, or 600) to approximate the training cohort with just

a few values, and then use the speaker identification algorithm de-

scribed above to find the most likely settings of that dimension for

the two sources. This is only done for the 3 eigenvoice dimen-

sions with the highest variance. The remaining parameters are the

same for both sources, set to match the mixture. This technique

is not very accurate, but in most cases it suffices to differentiate

the two sources. It works best at differentiating between male and

female speakers because the eigenvoice dimensions with the most

variance are highly correlated with speaker gender.

4.2. Factorial HMM decoding

The mixed signal is modeled by a factorial HMM constructed from

the two source models as in [6]. Each frame of the mixed signal is

modeled by the combination of one state from each source model.

The joint likelihood of each state combination is derived using the

max approximation [7] which is based on the assumption that each

time-frequency cell will be dominated by a single source. Using

Gaussian emissions with diagonal covariance, this can be com-

puted as follows:

P (o(t)|s1, s2) = N (o(t);max(µ
1,s1

, µ
2,s2

), σ) (2)

where σ = σ1,s1
for dimensions where µ

1,s1
> µ

2,s2
(i.e. where

source 1 dominates the mixture) and σ = σ2,s2
otherwise.

The sources are separated by finding the maximum likelihood

path through this factorial HMM using the Viterbi algorithm. This

process is quite slow since it involves searching through every pos-

sible state combination at each frame of the signal. To speed it up

we prune the number of active state combinations at each frame to

the 200 most likely.

4.3. MMSE source reconstruction

Model updates are performed on estimates of the spectral frames

of each speaker. These are found using the minimum square error

estimate: x̂1(t) = E[x1(t)|s1, s2,o(t)] where s1 and s2 corre-

spond to the active state combination at time t in the Viterbi path

and each dimension d of the conditional mean is found using the

max approximation:

E[xd
1(t)|s1, s2, o

d(t)] =

(

µd
1,s1

, if µd
1,s1

> µd
2,s2

od(t), otherwise
(3)

The estimate for x̂2(t) follows the same derivation.

4.4. Eigenvoice parameter inference

Finally, the speaker models are updated to better match the source

estimates. This is done using an extension of the maximum like-

lihood eigen-decomposition EM algorithm described in [5] that

explicitly models the gain g applied to each source as well as the

eigenvoice parameters wj .

First the posterior probability of the source occupying state s

at time t, γs(t), is computed for all s and t. For increased effi-

ciency, we do not use the dynamics of the HMMs for this compu-

tation (i.e. the models are reduced to GMMs). Given the posteri-

ors, the eigenvoice weights and gain for source i can be found by

solving the following set of simultaneous equations for wj and g:

»

x

a

–

=

»

Y z

z
T b

– »

w

g

–

(4)

where

xj =
X

t

X

s

γs(t)µ
T
j,sΣ

−1

s (x̂i(t) − µ̄s) (5)

Yj,k =
X

t

X

s

γs(t)µ
T
j,sΣ

−1

s µk,s (6)

zj =
X

t

X

s

γs(t)µ
T
j,sΣ

−1

s 1 (7)

a =
X

t

X

s

γs(t)1
T Σ−1

s (x̂i(t) − µ̄s) (8)

b =
X

t

X

s

γs(t)1
T Σ−1

s 1 (9)

and 1 is a vector of ones.

The process is iterated for each source estimate x̂1 and x̂2 until

it converges.

Figure 1 gives an example of the source separation and adap-

tation process. The initial separation does a reasonable job at iso-

lating the target, but it make some errors. For example, the phone

at t = 1 s is initially mostly attributed to the masking source. The

reconstruction improves with subsequent iterations, getting quite

close to the reconstruction based on SD models (bottom pane) by

the fifth iteration.
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Figure 1: Separation using source-adapted models. The top plot

shows the spectrogram of a mixture of female and male speakers.

The middle three show the reconstructed target signal (“set white

in l 2 again”) from the adapted models after iterations 1, 3, and 5.

The bottom plot shows the result of separation using the speaker-

dependent model for target speaker.

5. EXPERIMENTS

The system was evaluated on the test data from the 2006 Speech

Separation Challenge [1]. This data set is composed of 600 arti-

ficial speech mixtures composed of utterances from 34 different

speakers, each mixed at signal to interference ratios varying from

-9 dB to 6 dB. Each utterance follows the pattern command color

preposition letter digit adverb. The task is to determine the letter

and digit spoken by the source whose color is “white”.

The separation algorithm described above was run for five iter-

ations using eigenvoice speech models trained on all 34 speakers in

the data set. The time-domain sources were reconstructed from the

STFT magnitude estimates x̂i and the phase of the mixed signal.

The two reconstructed signals are then passed to a speech recog-

nizer; assuming one transcription contains “white”, it is taken as

the target source. We used the default HTK speech recognizer pro-

vided by the challenge organizers, retrained on 16kHz data. Per-

formance is measured using word accuracy of the letter and digit

spoken by the target speaker.1

Figure 2 compares the performance of the source adaptation

(SA) system to two comparison systems based on SD and SI mod-

els respectively. The SD system identifies the most likely pair of

1Sound examples of reconstructed sources are available at http://
www.ee.columbia.edu/∼ronw/SSC.html
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Figure 2: Separation performance using speaker-dependent (SD),

speaker-adapted (SA), and speaker-independent (SI) models.

speakers present in the mixture by searching the set of SD mod-

els using the Iroquois speaker identification and gain adaptation

technique [2]. The sources are separated by finding the maximum

likelihood path through the factorial HMM composed of those two

source models. We also compare this to performance when using

oracle knowledge of the speaker identities and gains. Finally, we

include baseline performance of the recognizer generating a single

trascript of the original mixed signal.

The performance of the SI system is not sensitive to the dif-

ferent speaker conditions because the same model is used for both

sources. The other separation systems work best on mixtures of

different genders because of the prominent differences between

male and female vocal characteristics, so such sources tend to

have less overlap. On the other hand, the performance on the

same talker task is quite poor. This is because the source mod-

els enforce limited dynamic constraints and the models used for

each source are identical, except for the gain term. The lack of

strong dynamic constraints allows for ambiguity in the Viterbi path

through a factorial HMM composed of identical models [8]. The

state sequences can permute between sources whenever the Viterbi

path passes through the same state in both models at the same time.

Since our models only include basic phonetic constraints, the re-

sulting separated signals can permute between sources whenever

the two sources have (nearly) synchronous phone transitions.

Looking at general trends, we see that the SD models perform

similarly whether using oracle or Iroquois-style speaker informa-

tion. Both of these are significantly better than the SA system,

itself better than the SI system and baseline. The reduced perfor-

mance of the SA system in this task is mainly due to its vulnerabil-

ity to permutations between sources, which reflects the sensitivity

of the initial separation to initialization. The adaptation process is

able to compensate for limited permutations, as in the final second

in figure 1. However when the initialization does not sufficiently
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Figure 3: Separation performance when the target is chosen by

picking the source that is closest to the target transcript.

separate the sources, the system can get stuck in poor local optima

where each of the estimated sources is only a partial match to the

ground truth. This is also why it performs significantly better on

the different gender condition.

Figure 3 shows the performance of the same systems when the

signal that most closely matches the target transcript is chosen as

the target (i.e. a “cheating” condition). This metric is less sen-

sitive to source permutations because it can correctly detect the

estimated target source even when the color “white” is attributed

to the wrong speaker. The performance of the SA and SI systems

are improved under this metric, but the SA system naturally still

falls short of the SD system.

Finally, figure 4 compares the performance of the SD system

and SA system when data from only 10 speakers is used for train-

ing. These experiments were performed on a random subset of

50 mixtures that do not contain any of the subset of 10 speakers

used to train the SD10 and SA10 systems. Performance of both

systems suffers on held-out speakers, but the difference in perfor-

mance between SD34 and SD10 is significantly larger than that

between SA34 and SA10. In fact, SA10 tends to outperform SD10

at lower SNRs despite its problems with permutations. From this

we can conclude that the performance of separation using eigen-

voice speech models degrades more gracefully than SD model-

based separation when presented with unseen data.

6. CONCLUSIONS

We propose a novel monaural source separation system based on

adaptation of a generic source model to match the sources in the

mixed signal. We use “eigenvoice” models to compactly define

the space of speaker variation and use an iterative algorithm to in-

fer the parameters for each source in a mixed signal. The source-

adapted models are used to separate the signal into its constituent
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Figure 4: Performance on 50 mixtures from left-out speakers when

a subset of 10 speakers are used for training compared to models

trained on all 34 speakers.

sources. Source adaptation helps compensate for the limited tem-

poral dynamics used in the speech model, but it does not perform

as well as a system that uses speaker-dependent models, largely

because it is prone to permutations between sources. Despite these

shortcomings, we show that this system generalizes better to held-

out speakers. Future work will address these issues by investigat-

ing better methods for inferring adaptation parameters.
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