
Mondrian Forests:
Efficient Online Random Forests

Balaji Lakshminarayanan

Joint work with Daniel M. Roy and Yee Whye Teh

1

Outline

Background and Motivation

Mondrian Forests
Randomization mechanism
Online training
Experiments

Conclusion

2

Introduction

• Input: attributes X = {xn}Nn=1, labels Y = {yn}Nn=1 (i.i.d)
• xn ∈ X and yn ∈ {1, . . . ,K} (classification)
• Goal: Predict y∗ for test data x∗

• Recipe for prediction: Use a random forest
– Ensemble of randomized decision trees
– State-of-the-art for lots of real world prediction tasks
– ‘An empirical comparison of supervised learning

algorithms’ [Caruana and Niculescu-Mizil, 2006]
– ‘Do we Need Hundreds of Classifiers to Solve Real World

Classification Problems?’ [Fernández-Delgado et al., 2014]

• What is a decision tree?

3

Introduction

• Input: attributes X = {xn}Nn=1, labels Y = {yn}Nn=1 (i.i.d)
• xn ∈ X and yn ∈ {1, . . . ,K} (classification)
• Goal: Predict y∗ for test data x∗
• Recipe for prediction: Use a random forest

– Ensemble of randomized decision trees
– State-of-the-art for lots of real world prediction tasks

– ‘An empirical comparison of supervised learning
algorithms’ [Caruana and Niculescu-Mizil, 2006]

– ‘Do we Need Hundreds of Classifiers to Solve Real World
Classification Problems?’ [Fernández-Delgado et al., 2014]

• What is a decision tree?

3

Introduction

• Input: attributes X = {xn}Nn=1, labels Y = {yn}Nn=1 (i.i.d)
• xn ∈ X and yn ∈ {1, . . . ,K} (classification)
• Goal: Predict y∗ for test data x∗
• Recipe for prediction: Use a random forest

– Ensemble of randomized decision trees
– State-of-the-art for lots of real world prediction tasks
– ‘An empirical comparison of supervised learning

algorithms’ [Caruana and Niculescu-Mizil, 2006]
– ‘Do we Need Hundreds of Classifiers to Solve Real World

Classification Problems?’ [Fernández-Delgado et al., 2014]

• What is a decision tree?

3

Introduction

• Input: attributes X = {xn}Nn=1, labels Y = {yn}Nn=1 (i.i.d)
• xn ∈ X and yn ∈ {1, . . . ,K} (classification)
• Goal: Predict y∗ for test data x∗
• Recipe for prediction: Use a random forest

– Ensemble of randomized decision trees
– State-of-the-art for lots of real world prediction tasks
– ‘An empirical comparison of supervised learning

algorithms’ [Caruana and Niculescu-Mizil, 2006]
– ‘Do we Need Hundreds of Classifiers to Solve Real World

Classification Problems?’ [Fernández-Delgado et al., 2014]

• What is a decision tree?

3

Example: Classification tree

• Hierarchical axis-aligned binary partitioning of input space
• Rule for predicting label within each block

x1 > 0.37

x2 > 0.5

 , �,�F,F

�

�

F

F
x2

x10

1

1

Bj

T : list of nodes, feature-id + location of splits for internal nodes
θ: Multinomial parameters at leaf nodes

4

Prediction using decision tree

• Example:
– Multi-class classification: θ = [θr , θb, θg]
– Prediction = smoothed empirical histogram in node j
– Label counts in left node [nr = 2,nb = 0,ng = 0]
– θ ∼ Dirichlet(α/3, α/3, α/3)

– Prediction = Posterior mean of θ =
[2+α/3

2+α , α/3
2+α ,

α/3
2+α

]

• Likelihood for nth data point = p(yn|θj) assuming xn lies in
leaf node j of T

• Prior over θj : independent or hierarchical
• Prediction for x∗ falling in j = Eθj |T ,X ,Y

[
p(y∗|θj)

]
, where

p(θj | T ,X ,Y) ∝ p(θj |...)︸ ︷︷ ︸
prior

∏
n∈N(j)

p(yn|θj)︸ ︷︷ ︸
likelihood of data points in node j

• Smoothing is done independently for each tree

5

Prediction using decision tree

• Example:
– Multi-class classification: θ = [θr , θb, θg]
– Prediction = smoothed empirical histogram in node j
– Label counts in left node [nr = 2,nb = 0,ng = 0]
– θ ∼ Dirichlet(α/3, α/3, α/3)

– Prediction = Posterior mean of θ =
[2+α/3

2+α , α/3
2+α ,

α/3
2+α

]
• Likelihood for nth data point = p(yn|θj) assuming xn lies in

leaf node j of T
• Prior over θj : independent or hierarchical
• Prediction for x∗ falling in j = Eθj |T ,X ,Y

[
p(y∗|θj)

]
, where

p(θj | T ,X ,Y) ∝ p(θj |...)︸ ︷︷ ︸
prior

∏
n∈N(j)

p(yn|θj)︸ ︷︷ ︸
likelihood of data points in node j

• Smoothing is done independently for each tree
5

Random forest (RF)

• Generate randomized trees {Tm}M1
• Prediction for x∗:

p(y∗|x∗) =
1
M

∑
m

p(y∗|x∗, Tm)

• Model combination and not Bayesian model averaging

• Advantages of RF
– Excellent predictive performance (test accuracy)
– Fast to train (in batch setting) and test
– Trees can be trained in parallel

6

Random forest (RF)

• Generate randomized trees {Tm}M1
• Prediction for x∗:

p(y∗|x∗) =
1
M

∑
m

p(y∗|x∗, Tm)

• Model combination and not Bayesian model averaging

• Advantages of RF
– Excellent predictive performance (test accuracy)
– Fast to train (in batch setting) and test
– Trees can be trained in parallel

6

Disadvantages of RF

• Not possible to train incrementally
– Re-training batch version periodically is slow O(N2 log N)
– Existing online RF variants

[Saffari et al., 2009, Denil et al., 2013] require
– lots of memory / computation or
– need lots of training data before they can deliver good test

accuracy (data inefficient)

Mondrian forests = Mondrian process + Random forests
• Can operate in either batch mode or online mode
• Online speed O(N log N)

• Data efficient (predictive performance of online mode
equals that of batch mode!)

7

Disadvantages of RF

• Not possible to train incrementally
– Re-training batch version periodically is slow O(N2 log N)
– Existing online RF variants

[Saffari et al., 2009, Denil et al., 2013] require
– lots of memory / computation or
– need lots of training data before they can deliver good test

accuracy (data inefficient)

Mondrian forests = Mondrian process + Random forests
• Can operate in either batch mode or online mode
• Online speed O(N log N)

• Data efficient (predictive performance of online mode
equals that of batch mode!)

7

Outline

Background and Motivation

Mondrian Forests
Randomization mechanism
Online training
Experiments

Conclusion

8

Popular batch RF variants

How to generate individual trees in RF?
• Breiman-RF [Breiman, 2001]: Bagging + Randomly

subsample features and choose best location amongst
subsampled features

• Extremely Randomized Trees [Geurts et al., 2006]
(ERT-k): Randomly sample k (feature-id, location) pairs
and choose the best split amongst this subset

– no bagging
– ERT-1 does not use labels Y to guide splits!

9

Popular batch RF variants

How to generate individual trees in RF?
• Breiman-RF [Breiman, 2001]: Bagging + Randomly

subsample features and choose best location amongst
subsampled features

• Extremely Randomized Trees [Geurts et al., 2006]
(ERT-k): Randomly sample k (feature-id, location) pairs
and choose the best split amongst this subset

– no bagging
– ERT-1 does not use labels Y to guide splits!

9

Mondrian process [Roy and Teh, 2009]

• MP(λ,X) specifies a distribution over hierarchical
axis-aligned binary partitions of X (e.g. RD, [0,1]D)

• λ is complexity parameter of the Mondrian process

Figure: Mondrian Composition II in Red, Blue and Yellow (Source: Wikipedia)

10

Mondrian process [Roy and Teh, 2009]

• MP(λ,X) specifies a distribution over hierarchical
axis-aligned binary partitions of X (e.g. RD, [0,1]D)

• λ is complexity parameter of the Mondrian process

Figure: Mondrian Composition II in Red, Blue and Yellow (Source: Wikipedia)

10

Generative process: MP(λ, {[`1,u1], [`2,u2]})
1. Draw ∆ from exponential with rate u1 − `1 + u2 − `2
2. IF ∆ > λ stop,

�1 u1

u2

�2

11

Generative process: MP(λ, {[`1,u1], [`2,u2]})
1. Draw ∆ from exponential with rate u1 − `1 + u2 − `2
2. IF ∆ > λ stop, ELSE, sample a split

– split dimension: choose dimension d with prob ∝ ud − `d
– split location: choose uniformly from [`d ,ud]

�1 u1

u2

�2

12

Generative process: MP(λ, {[`1,u1], [`2,u2]})
1. Draw ∆ from exponential with rate u1 − `1 + u2 − `2
2. IF ∆ > λ stop, ELSE, sample cut

– Choose dimension d with probability ∝ ud − `d
– Choose cut location uniformly from [`d ,ud]
– Recurse on left and right subtrees with parameter λ−∆

�1 u1

u2

�2

13

Self-consistency of Mondrian process

• Simulate T ∼ MP(λ, [`1,u1], [`2,u2])

�1 u1

u2

�2

• Restriction has distribution MP(λ, [`′1,u
′
1], [`′2,u

′
2])!

14

Self-consistency of Mondrian process

• Simulate T ∼ MP(λ, [`1,u1], [`2,u2])
• Restrict T to a smaller rectangle [`′1,u

′
1]× [`′2,u

′
2]

�1 u1

u2

�2

• Restriction has distribution MP(λ, [`′1,u
′
1], [`′2,u

′
2])!

14

Self-consistency of Mondrian process

• Simulate T ∼ MP(λ, [`1,u1], [`2,u2])
• Restrict T to a smaller rectangle [`′1,u

′
1]× [`′2,u

′
2]

�1 u1

u2

�2

• Restriction has distribution MP(λ, [`′1,u
′
1], [`′2,u

′
2])!

14

Mondrian trees

• Use X to define lower and upper limits within each node
and use MP to sample splits

• Difference between Mondrian tree and usual decision tree
– split in node j is committed only within extent of training

data in node j
– node j is associated with ‘time of split’ tj > 0 (split time

increases with depth and will be useful in online training)
– splits are chosen independent of the labels Y

x1 > 0.37

x2 > 0.5

 , �,�F,F

−

−

−

−

0

0.42

0.7

∞

�

�

F

F
x2

x10

1

1

Bx
j

15

Mondrian trees

• Use X to define lower and upper limits within each node
and use MP to sample splits

• Difference between Mondrian tree and usual decision tree
– split in node j is committed only within extent of training

data in node j
– node j is associated with ‘time of split’ tj > 0 (split time

increases with depth and will be useful in online training)
– splits are chosen independent of the labels Y

x1 > 0.37

x2 > 0.5

 , �,�F,F

−

−

−

−

0

0.42

0.7

∞

�

�

F

F
x2

x10

1

1

Bx
j

15

Outline

Background and Motivation

Mondrian Forests
Randomization mechanism
Online training
Experiments

Conclusion

16

Mondrian trees: online learning

• As dataset grows, we extend the Mondrian tree T by
simulating from a conditional Mondrian process MTx

T ∼ MT (λ,D1:n)

T ′ | T ,D1:n+1 ∼ MTx(λ, T ,Dn+1)
=⇒ T ′ ∼ MT (λ,D1:n+1)

• Distribution of batch and online trees are the same!
• Order of the data points does not matter
• MTx can perform one or more of the following 3 operations

– insert new split above an existing split
– extend existing split to new range
– split leaf further

• Computational complexity MTx is linear in depth of tree

17

Mondrian trees: online learning

• As dataset grows, we extend the Mondrian tree T by
simulating from a conditional Mondrian process MTx

T ∼ MT (λ,D1:n)

T ′ | T ,D1:n+1 ∼ MTx(λ, T ,Dn+1)
=⇒ T ′ ∼ MT (λ,D1:n+1)

• Distribution of batch and online trees are the same!
• Order of the data points does not matter

• MTx can perform one or more of the following 3 operations
– insert new split above an existing split
– extend existing split to new range
– split leaf further

• Computational complexity MTx is linear in depth of tree

17

Mondrian trees: online learning

• As dataset grows, we extend the Mondrian tree T by
simulating from a conditional Mondrian process MTx

T ∼ MT (λ,D1:n)

T ′ | T ,D1:n+1 ∼ MTx(λ, T ,Dn+1)
=⇒ T ′ ∼ MT (λ,D1:n+1)

• Distribution of batch and online trees are the same!
• Order of the data points does not matter
• MTx can perform one or more of the following 3 operations

– insert new split above an existing split
– extend existing split to new range
– split leaf further

• Computational complexity MTx is linear in depth of tree

17

Online training cartoon

Start with data points a and b

x2

x10

1

1

a

 b
x2 > 0.23

a b

−

−

−

0

2.42

∞

18

Online training cartoon

Adding new data point c: update visible range

x2

x10

1

1

a

 b

 c

x2 > 0.23

a b

−

−

−

0

2.42

∞

18

Online training cartoon

Adding new data point c: introduce new split (above an existing
split). New split in Rabc should be consistent with Rab.

x2

x10

1

1

a

 b

 c

x1 > 0.75

x2 > 0.23

a b c

−

−

−

−

0

1.01

2.42

∞

18

Online training cartoon

Examples of splits that are not self-consistent.

x2

x10

1

1

a

 b

 c

x2

x10

1

1

a

 b

 c

18

Online training cartoon

Adding new data point d : traverse to left child and update range

x2

x10

1

1

a

 b

 c

 d
x1 > 0.75

x2 > 0.23

a b c

−

−

−

−

0

1.01

2.42

∞

18

Online training cartoon

Adding new data point d : extend the existing split to new range

x2

x10

1

1

a

 b

 c

 d
x1 > 0.75

x2 > 0.23

a b c

−

−

−

−

0

1.01

2.42

∞

18

Online training cartoon

Adding new data point d : split leaf further

x2

x10

1

1

a

 b

 c

 d
x1 > 0.75

x2 > 0.23

x1 > 0.47

a b cd

−

−

−

−

−

0

1.01

2.42

3.97

∞

18

Key differences between Mondrian forests and
existing online random forests

• Splits extended in a self-consistent fashion
• Splits not extended to unobserved regions
• New split can be introduced anywhere in the tree (as long

as it’s consistent with subtree below)

19

Prediction and Hierarchical smoothing

• Extend Mondrian to range of test data
– Test data point can potentially branch off and form separate

leaf node of its own!
– Points far away from range of training data are more likely

to brach off
– We analytically average over every possible extension

• Hierarchical smoothing for posterior mean of θ|T
– Independent prior would predict from prior if test data

branches off into its own leaf node
– Interpolated Kneser Ney approximation: fast
– Can be interpreted as approximate posterior inference

assuming Hierarchical Normalized Stable process prior
– Smoothing done independently for each tree

20

Outline

Background and Motivation

Mondrian Forests
Randomization mechanism
Online training
Experiments

Conclusion

21

Experimental setup

• Competitors
– Periodically retrained RF, ERT
– Online RF [Saffari et al., 2009]

• Datasets:

Name D #Classes #Train #Test
Satellite images 36 6 3104 2000

Letter 16 26 15000 5000
USPS 256 10 7291 2007
DNA 180 3 1400 1186

• Training data split into 100 mini batches (unfair to MF)
• Number of trees = 100

22

Experimental setup

• Competitors
– Periodically retrained RF, ERT
– Online RF [Saffari et al., 2009]

• Datasets:

Name D #Classes #Train #Test
Satellite images 36 6 3104 2000

Letter 16 26 15000 5000
USPS 256 10 7291 2007
DNA 180 3 1400 1186

• Training data split into 100 mini batches (unfair to MF)
• Number of trees = 100

22

Letter

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

MF
ERT-k
ERT-1
ORF-Saffari
Breiman-RF*

101 102 103 104 1050.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

MF
ERT-k
ERT-1
ORF-Saffari

Fraction of training data Time (s)

Figure: Test accuracy

• Data efficiency: Online MF very close to batch RF (ERT,
Breiman-RF) and significantly outperforms ORF-Saffari

• Speed: MF much faster than periodically re-trained batch
RF and ORF-Saffari

23

USPS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

MF
ERT-k
ERT-1
ORF-Saffari
Breiman-RF*

101 102 103 104 1050.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

MF
ERT-k
ERT-1
ORF-Saffari

Fraction of training data Time (s)

Figure: Test accuracy

24

Satellite Images

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

MF
ERT-k
ERT-1
ORF-Saffari
Breiman-RF*

101 102 103 1040.75

0.80

0.85

0.90

0.95

1.00

1.05

MF
ERT-k
ERT-1
ORF-Saffari

Fraction of training data Time (s)

Figure: Test accuracy

25

So, what’s the catch?

26

DNA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

MF
MF†

ERT-k
ERT-1
ERT-1†

ORF-Saffari
Breiman-RF*

101 102 103 1040.5

0.6

0.7

0.8

0.9

1.0

1.1
MF
MF†

ERT-k
ERT-1
ERT-1†

ORF-Saffari

Fraction of training data Time (s)

Figure: Test accuracy

• Irrelevant features: Choosing splits independent of labels
(MF, ERT-1) harmful in presence of irrelevant features

• Removing irrelevant features (use only the 60 most
relevant features1) improves test accuracy (MF†, ERT-1†)

1https://www.sgi.com/tech/mlc/db/DNA.names 27

https://www.sgi.com/tech/mlc/db/DNA.names

Conclusion

• MF: Alternative to RF that supports incremental learning
• Computationally faster compared to existing online RF and

periodically re-trained batch RF
• Data efficient compared to existing online RF
• Future work

– Mondrian forests for regression
– Mondrian forests for high dimensional data with lots of

irrelevant features

28

Thank you!

code, paper: http://www.gatsby.ucl.ac.uk/∼balaji

Questions?

29

http://www.gatsby.ucl.ac.uk/~balaji

References I

Breiman, L. (2001).
Random forests.
Mach. Learn., 45(1):5–32.

Caruana, R. and Niculescu-Mizil, A. (2006).
An empirical comparison of supervised learning algorithms.
In Proc. Int. Conf. Mach. Learn. (ICML).

Denil, M., Matheson, D., and de Freitas, N. (2013).
Consistency of online random forests.
In Proc. Int. Conf. Mach. Learn. (ICML).

Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D.
(2014).
Do we need hundreds of classifiers to solve real world classification
problems?
Journal of Machine Learning Research, 15:3133–3181.

30

References II

Geurts, P., Ernst, D., and Wehenkel, L. (2006).
Extremely randomized trees.
Mach. Learn., 63(1):3–42.

Roy, D. M. and Teh, Y. W. (2009).
The Mondrian process.
In Adv. Neural Inform. Proc. Syst. (NIPS).

Saffari, A., Leistner, C., Santner, J., Godec, M., and Bischof, H. (2009).
On-line random forests.
In Computer Vision Workshops (ICCV Workshops). IEEE.

Teh, Y. W. (2006).
A hierarchical Bayesian language model based on Pitman–Yor
processes.
In Proc. 21st Int. Conf. on Comp. Ling. and 44th Ann. Meeting Assoc.
Comp. Ling., pages 985–992. Assoc. for Comp. Ling.

31

Extra slides

32

Hierarchical prior over θ

• Gj parametrizes p(y |x) in Bx
j

• Normalized stable process
(NSP): special case of PYP
where concentration = 0

• dj ∈ (0,1) is discount for node j
• Gε|H ∼ NSP(dε,H),

Gj0|Gj ∼ NSP(dj0,Gj),
Gj1|Gj ∼ NSP(dj1,Gj)

H

Gε

G0 G1

G10 G11

0 1

0 1

• E[Gε(s)] = H(s)

• Var[Gε(s)] = (1− dH)H(s)
(
1− H(s)

)
• Closed under Marginalization: G0|H ∼ NSP(dεd0,H)

• dj = e−γ∆j where ∆j = tj − tparent(j) (time difference
between split times)

33

Posterior inference for NSP

• Special case of approximate inference for PYP [Teh, 2006]
• Chinese restaurant process representation
• Interpolated Kneser-Ney smoothing

– fast approximation
– Restrict number of tables serving a dish to at most 1
– popular smoothing technique in language modeling

34

Interpolated Kneser-Ney smoothing

• Prediction for x∗ lying in node j is given by

Gjk = p(y∗ = k |x∗ ∈ Bx
j ,X ,Y , T)

=


cj,k − dj tabj,k

cj,·
+

dj tabj,·
cj,·

Gparent(j),k cj,· > 0

Gparent(j),k cj,· = 0

• cj,k = number of points in node j with label k
• tabj,k = min(cj,k ,1) and dj = exp

(
−γ(tj − tparent(j))

)

35

	Background and Motivation
	Mondrian Forests
	Randomization mechanism
	Online training
	Experiments

	Conclusion

