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What is a decision tree?



Example: Classification tree

¢ Hierarchical axis-aligned binary partitioning of input space
¢ Rule for predicting label within each block

Lo > 0.5

@ Q 0 _______ zy O 1

T list of nodes, feature-id + location of splits for internal nodes
6: Multinomial parameters at leaf nodes




Prediction using decision tree

Example:
— Multi-class classification: 6 = [0,, 6, 4]

Prediction = smoothed empirical histogram in node j

Label counts in left node [n, = 2,np, = 0,y = 0]

0 ~ Dirichlet(«/3, /3, a/3)

Prediction = Posterior mean of 6 = [

24+a/3 /3 a/S]
24+a 7 24+’ 24«



Prediction using decision tree

Example:

— Multi-class classification: 6 = [0,, 6, 4]
Prediction = smoothed empirical histogram in node j
Label counts in left node [n, = 2,np, = 0,y = 0]
0 ~ Dirichlet(«/3, /3, a/3)
Prediction = Posterior mean of § = [ e Tra Bia
Likelihood for n' data point = p(yn|0;) assuming x, lies in
leaf node j of T
Prior over 6;: independent or hierarchical
Prediction for x. falling in j = Eqg 7 x,v [p(y:6;)], where

2+a/3 «/3 a/S]

p(6;1 T, X, ¥) o p(6]..) 11 p(mi6)
o neNG)

N —
likelihood of data points in node j

Smoothing is done independently for each tree
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Random forest (RF)

Generate randomized trees {Tm}Q”
Prediction for x,:

Pyl X:) = MZP YeelXe; Tm)

Model combination and not Bayesian model averaging

Advantages of RF
— Excellent predictive performance (test accuracy)
— Fast to train (in batch setting) and test
— Trees can be trained in parallel



Disadvantages of RF

¢ Not possible to train incrementally

— Re-training batch version periodically is slow O(N?log N)
— Existing online RF variants
[Saffari et al., 2009, Denil et al., 2013] require
— lots of memory / computation or
— need lots of training data before they can deliver good test
accuracy (data inefficient)
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¢ Not possible to train incrementally

— Re-training batch version periodically is slow O(N?log N)
— Existing online RF variants
[Saffari et al., 2009, Denil et al., 2013] require

— lots of memory / computation or
— need lots of training data before they can deliver good test
accuracy (data inefficient)

Mondrian forests = Mondrian process + Random forests
e Can operate in either batch mode or online mode
e Online speed O(Nlog N)

e Data efficient (predictive performance of online mode
equals that of batch mode!)



Outline

Mondrian Forests
Randomization mechanism



Popular batch RF variants

How to generate individual trees in RF?

o Breiman-RF [Breiman, 2001]: Bagging + Randomly
subsample features and choose best location amongst
subsampled features



Popular batch RF variants

How to generate individual trees in RF?

o Breiman-RF [Breiman, 2001]: Bagging + Randomly
subsample features and choose best location amongst
subsampled features

¢ Extremely Randomized Trees [Geurts et al., 2006]
(ERT-k): Randomly sample k (feature-id, location) pairs
and choose the best split amongst this subset

— no bagging
— ERT-1 does not use labels Y to guide splits!



Mondrian process [Roy and Teh, 2009]

e MP(\, X) specifies a distribution over hierarchical
axis-aligned binary partitions of X (e.g. R?, [0, 1]P)
e )\ is complexity parameter of the Mondrian process
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e MP(\, X) specifies a distribution over hierarchical
axis-aligned binary partitions of X (e.g. R?, [0, 1]P)
e )\ is complexity parameter of the Mondrian process

Figure: Mondrian Composition Il in Red, Blue and Yellow (Source: Wikipedia)
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1. Draw A from exponential with rate uy — 41 + u» — o
2. IF A > ) stop, ELSE, sample a split

— split dimension: choose dimension d with prob oc uy — ¢4
— split location: choose uniformly from [¢4, Ug]
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Generative process: MP(\, {[¢1, u1], [l2, Us]})

1. Draw A from exponential with rate uy — ¢1 + us — 0>
2. IF A > ) stop, ELSE, sample cut

— Choose dimension d with probability oc uy — ¢4
— Choose cut location uniformly from [¢g, ug]
— Recurse on left and right subtrees with parameter A — A

U2




Self-consistency of Mondrian process

e Simulate 7 ~ MP(A, [¢1, u1], [¢2, u2])
U2

61 U1



Self-consistency of Mondrian process

e Simulate 7 ~ MP(X, [¢1, u1], [(2, ua])
* Restrict 7 to a smaller rectangle [¢}, Uj] x [(5, u5]

U2




Self-consistency of Mondrian process

e Simulate 7 ~ MP(X, [¢1, u1], [(2, ua])
* Restrict 7 to a smaller rectangle [¢}, Uj] x [(5, u5]

U2

%)

lq Ui

e Restriction has distribution MP(, [¢}, u}], [¢5, u5])!



Mondrian trees

e Use X to define lower and upper limits within each node
and use MP to sample splits



Mondrian trees

e Use X to define lower and upper limits within each node
and use MP to sample splits
¢ Difference between Mondrian tree and usual decision tree
— split in node j is committed only within extent of training
data in node j
— node j is associated with ‘time of split’ t; > 0 (split time
increases with depth and will be useful in online training)
— splits are chosen independent of the labels Y
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0.7 1+
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Mondrian Forests

Online training

Outline



Mondrian trees: online learning

¢ As dataset grows, we extend the Mondrian tree 7 by
simulating from a conditional Mondrian process MTx
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Mondrian trees: online learning

As dataset grows, we extend the Mondrian tree 7 by
simulating from a conditional Mondrian process MTx

T ~ MT (>\7 D1 :ﬂ)

= T' ~MT (), Dy.
T | T, D1.pgt ~ MTx()\,T7 Dn—H) ( 1.n+1)

Distribution of batch and online trees are the same!
Order of the data points does not matter

MTx can perform one or more of the following 3 operations

— insert new split above an existing split
— extend existing split to new range
— split leaf further

Computational complexity MTx is linear in depth of tree



Start with data points aand b

T2

Online training cartoon

F—_—_ - - - = - = - = - = = =

2.42 1 T2 > 0.23




Online training cartoon

Adding new data point c: update visible range

T2

F—_—_ - - - = - = - = - = = =

2.42 Tz > 0.23




Online training cartoon

Adding new data point c: introduce new split (above an existing
split). New split in R4, should be consistent with Ry,

1l r——— - — - - -
| c | 0
| 9 |
| I 1.01 xy > 0.75
| |
| |
| | 2.42 + xy > 0.23
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Online training cartoon

Examples of splits that are not self-consistent.

1

1
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Online training cartoon

Adding new data point d: traverse to left child and update range

T2

F—_—_ - - - = - = - = - = = =

1.01 +

2.42 1

Tz > 0.23



Online training cartoon

Adding new data point d: extend the existing split to new range

T2

F—_—_ - - - = - = - = - = = =

1.01 +

2.42 1

Tz > 0.23



Online training cartoon

Adding new data point d: split leaf further

T2

F—_—_ - - - = - = - = - = = =

1.01 +

2.42 1

3.97 1

e o




Key differences between Mondrian forests and
existing online random forests

¢ Splits extended in a self-consistent fashion
¢ Splits not extended to unobserved regions

¢ New split can be introduced anywhere in the tree (as long
as it’s consistent with subtree below)



Prediction and Hierarchical smoothing

e Extend Mondrian to range of test data
— Test data point can potentially branch off and form separate
leaf node of its own!
— Points far away from range of training data are more likely
to brach off
— We analytically average over every possible extension
 Hierarchical smoothing for posterior mean of 6|7
— Independent prior would predict from prior if test data
branches off into its own leaf node
— Interpolated Kneser Ney approximation: fast
— Can be interpreted as approximate posterior inference
assuming Hierarchical Normalized Stable process prior
— Smoothing done independently for each tree

20



Mondrian Forests

Experiments

Outline
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Experimental setup

e Competitors

— Periodically retrained RF, ERT
— Online RF [Saffari et al., 2009]

22



Experimental setup

e Competitors

— Periodically retrained RF, ERT
— Online RF [Saffari et al., 2009]

e Datasets:
Name D | #Classes | #Train | #Test
Satellite images | 36 6 3104 | 2000
Letter 16 26 15000 | 5000
USPS 256 10 7291 2007
DNA 180 3 1400 | 1186

¢ Training data split into 100 mini batches (unfair to MF)
e Number of trees = 100

22
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Figure: Test accuracy

e Data efficiency: Online MF very close to batch RF (ERT,
Breiman-RF) and significantly outperforms ORF-Saffari
e Speed: MF much faster than periodically re-trained batch

RF and ORF-Saffari
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USPS
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Satellite Images
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So, what'’s the catch?

26
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e Irrelevant features: Choosing splits independent of labels
(MF, ERT-1) harmful in presence of irrelevant features

e Removing irrelevant features (use only the 60 most
relevant features') improves test accuracy (MFf, ERT-1T)

'https://www.sgi.com/tech/mlic/db/DNA.names
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Conclusion

MF: Alternative to RF that supports incremental learning

Computationally faster compared to existing online RF and
periodically re-trained batch RF

Data efficient compared to existing online RF

Future work

— Mondrian forests for regression
— Mondrian forests for high dimensional data with lots of
irrelevant features

28



Thank you!

code, paper: http://www.gatsby.ucl.ac.uk/~balaji

Questions?
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Hierarchical prior over 6

G; parametrizes p(y|x) in BY @
Normalized stable process :
(NSP): special case of PYP o ¥ .

where concentration = 0

d; € (0, 1) is discount for node j

G.|H ~ NSP(d., H),
Gjo|G; ~ NSP(djo, Gj),

Gj1|G; ~ NSP(djy, G))

E[Ge(s)] = H(s)

Var[G,(s)] = (1 — du)H(s)(1 — H(s))
Closed under Marginalization: Go|H ~ NSP(d.dy, H)

d; = e 7% where Aj = t; — yareny(j) (time difference
between split times)
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Posterior inference for NSP

¢ Special case of approximate inference for PYP [Teh, 2006]
e Chinese restaurant process representation

¢ Interpolated Kneser-Ney smoothing

— fast approximation
— Restrict number of tables serving a dish to at most 1
— popular smoothing technique in language modeling

34



Interpolated Kneser-Ney smoothing

¢ Prediction for x, lying in node j is given by

ij = p(y* = k|X* € Bj)'(,X, Y>T)
Cik— dj tab,;k n dj tabjy. —

C';parent(j),k ¢.>0
Gparent(j),k ¢.=0

e Cjx = hnumber of points in node j with label k
o tab; x = min(cjx, 1) and d; = exp(—(f — tparent(j)))
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