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Abstract

This paper proposes a novel method for conducting policy analysis with potentially

misspecified dynamic stochastic general equilibrium (DSGE) models and applies it to

a New Keynesian DSGE model along the lines of Christiano, Eichenbaum, and Evans

(JPE 2005) and Smets and Wouters (JEEA 2003). Specifically, we are studying the

effects of coefficient changes in interest-rate feedback rules on the volatility of output

to assumptions on the policy invariance of model misspecifications.

Key Words: Bayesian Analysis, DSGE Models, Model Misspecification

growth, inflation, and nominal rates. The paper illustrates the sensitivity of the results

JEL Classification: C32
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Non-Technical Summary

Despite recent successes in improving the empirical performance of dynamic stochastic gen-

eral equilibrium (DSGE) models, e.g., Frank Smets and Raf Wouters (JEEA 2003), even

large-scale DSGE models suffer to some extent from misspecification. By misspecification

we mean that the DSGE model potentially imposes invalid cross-coefficient restrictions on

the moving-average representation of the macroeconomic time series that it aims to explain.

One typically observes that the forecasting performance of DSGE models is worse than

that of vector autoregressions (VARs) estimated with well-calibrated shrinkage methods.

On the other hand, DSGE models have the advantage that one can explicitly assess the

effect of policy regime changes on expectation formation and decision rules of private agents.

Thus, policy analysis with DSGE models is robust to the Lucas critique and potentially more

reliable than conclusions drawn from VARs. This trade-off poses a challenge to policymakers

who want to use DSGE models in practice.

Our paper proposes a novel method for conducting policy analysis with potentially

misspecified DSGE models. DSGE model restrictions are neither completely ignored as

in the unrestricted estimation of VARs, nor are they dogmatically imposed as in the direct

estimation of DSGE models. We allow for discrepancies between the data generating process

and the DSGE model. We specify a prior distribution over the discrepancies with the

property that large deviations have low probability, capturing the notion that DSGE models

are good albeit not perfect approximations of reality.

Our framework can be viewed as a Bayesian alternative to the robust control and mini-

max approaches that recently have been proposed to cope with model misspecification (see,

for instance the monograph by Lars Hansen and Thomas Sargent (2005) and the papers in

the February 2002 special issue of Macroeconomic Dynamics). In our setup, the policymaker

can learn from past observations about the extent of the DSGE model misspecification, and

adjust her policies accordingly. We propose a variety of procedures that differ with respect

to the assumptions about the policy invariance of model misspecifications.

We study the effects of changing coefficients in an interest-rate feedback rule on the

volatility of inflation, output growth, and nominal interest rates by considering a large-scale

DSGE model with capital accumulation as well as various nominal and real frictions along

the lines of Frank Smets’ and Raf Wouters’ (JEEA 2003) model. We illustrate how con-

clusions about the effects of changing the response to inflation are affected by assumptions

about the policy invariance of observed discrepancies between model and reality.
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While the particular values of the posterior expected loss differentials are sensitive to

the misspecification assumptions considered, a fairly robust policy recommendation emerges

from our analysis: the central bank should avoid strong responses to output growth move-

ments and not react weakly to inflation fluctuations.
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1 Introduction

Despite recent successes in improving the empirical performance of dynamic stochastic gen-

eral equilibrium (DSGE) models, e.g., Smets and Wouters (2003), even large-scale DSGE

models suffer to some extent from misspecification. In this paper misspecification means

that the DSGE model potentially imposes invalid cross-coefficient restrictions on the moving-

average representation of the macroeconomic time series that it aims to explain. As a con-

sequence, one typically observes that the forecasting performance of DSGE models is worse

than that of vector autoregressions (VARs) estimated with well-calibrated shrinkage meth-

ods. On the other hand, DSGE models have the advantage that one can explicitly assess

the effect of policy regime changes on expectation formation and decision rules of private

agents. Thus, policy analysis with DSGE models is robust to the Lucas critique and poten-

tially more reliable than conclusions drawn from VARs. This trade-off poses a challenge to

policymakers who want to use DSGE models in practice.

Del Negro and Schorfheide (2004) proposed a framework that combines VARs and DSGE

models, extending earlier work by Ingram and Whiteman (1994). In this framework DSGE

model restrictions are neither completely ignored as in the unrestricted estimation of VARs,

nor are they dogmatically imposed as in the direct estimation of DSGE models. Instead

the VAR estimates are tilted toward the restrictions implied by the DSGE model, where

the degree of tilting is determined by a Bayesian data-driven procedure that trades off

model fit against complexity. Starting from the same DSGE model that is used in this

paper, Del Negro, Schorfheide, Smets, and Wouters (2004) show that relaxing the DSGE

model restrictions leads to a substantial improvement of in-sample-fit (adjusted for model

complexity) and more accurate pseudo-out-of-sample predictions.

This paper extends our earlier work and further develops procedures that are suitable to

study the effects of rare regime shifts with potentially misspecified DSGE models. Monetary

policy is modelled through an interest-rate feedback rule. While our earlier work relaxes all

DSGE model restrictions simultaneously, this paper assumes that the monetary policy rule

in the DSGE model is correctly specified and strictly imposes the associated restrictions.

We consider the following policy experiment. Between time t = T and t = T + 1 the

monetary policy maker seeks to replace an existing interest-rate feedback rule with one that

minimizes her loss function. We make the simplifying assumption that the public believes

the new policy to be in place indefinitely after being announced credibly. The loss function

is defined in terms of expected squared deviations of output growth, inflation, and interest
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rates from their respective target levels. At time t = 0 the policy maker places a prior

distribution on the parameters that characterize the misspecification of the DSGE model

restrictions and subsequently updates this prior based on time T information. We then

consider a variety of assumptions on the policy invariance of the misspecification parameters

and calculate posterior expected losses as a function of the policy parameters.

A key feature of our analysis is that we treat model misspecification as non-structured.

By “non-structured” we mean the following: Once the restrictions derived from the DSGE

model are relaxed there is no formal interpretation of the resulting specification in terms

of a fully specified general equilibrium model. We view this analysis as a complement to

a structured misspecification analysis in which model misspecification is phrased in terms

of omitted or wrongly specified structural components, such as, for instance, omitted capi-

tal adjustment costs or the use of Calvo-style nominal rigidities instead of state-dependent

pricing rules. The DSGE model analyzed in this paper is based on work by Christiano,

Eichenbaum, and Evans (2005), Altig, Christiano, Eichenbaum, and Linde (2002), and

Smets and Wouters (2003). Compared to the benchmark New Keynesian models discussed,

for instance, in Woodford (2003), our model has been subjected to a number of modifica-

tions, all designed to improve its empirical fit. Nevertheless, as documented in Del Negro,

Schorfheide, Smets, and Wouters (2004) misspecification is still a concern and we believe

that this concern should be reflected in policy recommendations derived from this model.1

The procedures developed in this paper can be viewed as a Bayesian alternative to ro-

bust control and minimax approaches that recently have been proposed to cope with model

misspecification, e.g., Hansen and Sargent (2005), Giannoni (2002), Levin, Wieland, and

Williams (1999), and Onatski and Stock (2002). Rather than placing a prior distribution on

the misspecification parameters, the robustness literature specifies either a static or dynamic

two-player zero-sum game in which a malevolent “nature” chooses the misspecification pa-

rameters to harm the policy maker. The disadvantage of this approach is that the resulting

policy performs well in the worst-case but possibly poorly on average. In our setup, un-

like in most formulations of minimax problems, the policy maker uses the data to learn

about the model misspecification. To compare our analysis to a risk-sensitive approach, we

compute posterior expected losses for an exponential transformation of our loss function.

The resulting risk can be interpreted as the Nash-equilibrium of a zero-sum game in which

“nature” distorts the probability distribution of the misspecification parameters subject to

1In Del Negro and Schorfheide (2005) we applied the approach developed in this paper to a simple

three-equation New Keynesian model without capital accumulation and wage rigidities.
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a penalty that is a function of the Kullback-Leibler distance between the distorted and the

non-distorted probabilities.

The empirical analysis is based on quarterly U.S. output, inflation, and interest data

from 1983 to 2004. We estimate the state-space representation of the log-linearized DSGE

model and its vector autoregressive approximation. The estimation is implemented with

a Markov Chain Monte Carlo algorithm that allows us to generate draws from the joint

posterior distribution of the DSGE model and the misspecification parameters. We then

compute expected policy loss differentials relative to the estimated interest rate feedback

rule. We consider four scenarios that differ with respect to assumptions on the effect of

policy changes on the beliefs about model misspecification. The first scenario – used as a

benchmark – simply ignores misspecification, and computes the loss assuming the DSGE

model correctly describes the data. The second scenario assumes that the policy maker

is willing to learn from historical data about the overall degree of model misspecification,

but not about its precise nature. In computing the expected loss from a given policy she

therefore draws the misspecification parameters from her prior distribution. When coupled

with the risk-sensitive transformation of the loss function, policy analysis under this scenario

is close in spirit to that obtained under robust control. In the remaining two scenarios the

policy maker learns from the data about the misspecification parameters, that is, uses the

posterior distribution of the misspecification parameters in computing the loss. In the third

scenario the policy maker assumes that misspecification is policy invariant, while in the forth

scenario she uses the conditional distribution of the misspecification and policy parameters

to condition the posterior distribution of the misspecification parameters on the new policy

parameters.

We find that the the particular values of the loss differentials are sensitive to the mis-

specification assumptions considered. Both the risks and the gains associated with deviating

from the historical Volcker-Greenspan policy are very different depending on the assump-

tions on misspecification. Also, risks and gains differ whether the policy maker uses the

risk-neutral or the risk-sensitive approach. However, a fairly robust policy recommendation

emerges from our analysis: the central bank should avoid strong responses to output growth

movements and not react weakly to inflation fluctuations. Also, we find that the gains asso-

ciated with deviating from the historical Volcker-Greenspan policy, whenever positive, are

generally not very large. This suggests that the historical rule, if not always optimal among

those we consider, has been reasonably good at least from the perspective of this sticky-

prices DSGE model, even taking misspecification into account. A caveat to this conclusion
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is that here we only analyze alternative policies that conform to our interest feedback rule,

as opposed to a more general class of policies.

The paper is organized as follows. The DSGE model is presented in Section 2. Section 3

discusses the estimation of potentially misspecified DSGE models. The framework for policy

analysis is introduced in Section 4. Section 5 describes the data set, Section 6 discusses

our empirical findings, and Section 7 concludes. The posterior simulator that is used to

implement the empirical analysis is described in the Appendix.

2 Model

This section describes the DSGE model, which is a slightly modified version of the DSGE

model developed and estimated for the Euro area in Smets and Wouters (2003). In particu-

lar, we introduce stochastic trends into the model, so that it can be fitted to unfiltered time

series observations. The DSGE model, largely based on the work of Christiano, Eichen-

baum, and Evans (2005), contains a large number of nominal and real frictions. Next, we

describe each of the agents that populate the model economy and the decision problems

they face.

2.1 Final goods producers

The final good Yt is a composite made of a continuum of intermediate goods Yt(i), indexed

by i ∈ [0, 1]:

Yt =

[∫ 1

0

Yt(i)
1

1+λf di

]1+λf

. (1)

The final goods producers are perfectly competitive firms that buy intermediate goods,

combine them to the final product Yt, and resell the final good to consumers. The firms

maximize profits

PtYt −
∫

Pt(i)Yt(i)di

subject to (1). Here Pt denotes the price of the final good and Pt(i) is the price of inter-

mediate good i. From their first order conditions and the zero-profit condition we obtain

that:

Yt(i) =

(
Pt(i)

Pt

)
−

1+λf,t
λf,t

Yt and Pt =

[∫ 1

0

Pt(i)
1

λf,t di

]λf,t

. (2)
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2.2 Intermediate goods producers

Good i is made using the technology:

Yt(i) = max

{
Z1−α

t Kt(i)
αLt(i)

1−α, 0

}
, (3)

where the technology shock Zt (common across all firms) follows a unit root process. We

define technology growth zt = log(Zt/Zt−1) and assume that zt follows the autoregressive

process:

(zt − γ) = ρz(zt−1 − γ) + σzǫz,t. (4)

All firms face the same prices for their inputs, labor and capital. Hence cost minimization

implies that the capital/labor ratio is the same for all firms, and equal to:

Kt

Lt
=

α

1 − α

Wt

Rk
t

., (5)

where Wt is the nominal wage and Rk
t is the rental rate of capital. Following Calvo (1983)

we assume that in every period a fraction of firms ζp is unable to re-optimize their prices

Pt(i). These firms adjust their prices mechanically according to

Pt(i) = (πt−1)
ιp(π∗)1−ιp , (6)

where πt = Pt/Pt−1 and π∗ is the steady state inflation rate of the final good. In our

empirical analysis we will restrict ιp to be either zero or one. Those firms that are able to

re-optimize prices choose the price level P̃t(i) that solves:

maxP̃t(i)
IEt

∑
∞

s=0 ζs
pβsΞp

t+s

(
P̃t(i)

(
Πs

l=1π
ιp

t+l−1π
1−ιp

∗

)
− MCt+s

)
Yt+s(i)

s.t. Yt+s(i) =


 P̃t(i)

(
Πs

l=1π
ιp

t+l−1π
1−ιp

∗

)

Pt+s




−
1+λf,t

λf,t

Yt+s, MCt+s =
α−αW 1−α

t+s
Rk α

t+s

(1−α)(1−α)Z1−α
t+s

.

(7)

where βsΞp
t+s is today’s value of a future dollar for the consumers and MCt reflects marginal

costs. We consider only the symmetric equilibrium where all firms will choose the same P̃t(i).

Hence from (2) we obtain the following law of motion for the aggregate price level:

Pt = [(1 − ζp)P̃
1

λf,t

t + ζp(π
ιp

t−1π
1−ιp

∗ Pt−1)
1

λf,t ]λf,t . (8)

2.3 Labor packers

There is a continuum of households, indexed by j ∈ [0, 1], each supplying a differentiated

form of labor, L(j). The “labor packers” are perfectly competitive firms that hire labor
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from the households and combine it to labor services Lt that are offered to the intermediate

goods producers:

Lt =

[∫ 1

0

Lt(j)
1

1+λw di

]1+λw

, (9)

where λw ∈ (0,∞). From first-order and zero-profit conditions of the labor packers we obtain

the labor demand function and an expression for the price of aggregated labor services Lt:

Lt(j) =

(
Wt(j)

Wt

)
−

1+λw
λw

Lt and Wt =

[∫ 1

0

Wt(j)
1

λw di

]λw

. (10)

2.4 Households

The objective function for household j is given by:

IEt

∞∑

s=0

βs

[
log(Ct+s(j) − hCt+s−1(j)) −

ϕ

1 + νl
Lt+s(j)

1+νl +
χ

1 − νm

(
Mt+s(j)

Zt+sPt+s

)1−νm

]

(11)

where Ct(j) is consumption, Lt(j) is labor supply, and Mt(j) are money holdings. House-

hold’s preferences display habit-persistence. We depart from Smets and Wouters (2003) in

assuming separability in the utility function for a reason that will be discussed later. Real

money balances enter the utility function deflated by the (stochastic) trend growth of the

economy, so to make real money demand stationary.

The household’s budget constraint written in nominal terms is given by:

Pt+sCt+s(j) + Pt+sIt+s(j) + Bt+s(j) + Mt+s(j) ≤ Rt+sBt+s−1(j) + Mt+s−1(j)

+ Πt+s + Wt+s(j)Lt+s(j) +
(
Rk

t+sut+s(j)K̄t+s−1(j) − Pt+sa(ut+s(j))K̄t+s−1(j)
)
,

(12)

where It(j) is investment, Bt(j) is holdings of government bonds, Rt is the gross nominal

interest rate paid on government bonds, Πt is the per-capita profit the household gets from

owning firms (households pool their firm shares, and they all receive the same profit), and

Wt(j) is the nominal wage earned by household j. The term within parenthesis represents

the return to owning K̄t(j) units of capital. Households choose the utilization rate of their

own capital, ut(j). Households rent to firms in period t an amount of “effective” capital

equal to:

Kt(j) = ut(j)K̄t−1(j), (13)

and receive Rk
t ut(j)K̄t−1(j) in return. They however have to pay a cost of utilization in

terms of the consumption good equal to a(ut(j))K̄t−1(j). Households accumulate capital
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according to the equation:

K̄t(j) = (1 − δ)K̄t−1(j) +

(
1 − S

(
It(j)

It−1(j)

))
It(j), (14)

where δ is the rate of depreciation, and S(·) is the cost of adjusting investment, with

S′(·) > 0, S′′(·) > 0.

The households’ wage setting is subject to nominal rigidities á la Calvo (1983). In

each period a fraction ζw of households is unable to re-adjust wages. For these households,

the wage Wt(j) will increase at a geometrically weighted average of the steady state rate

increase in wages (equal to steady state inflation π∗ times the growth rate of the economy

eγ) and of last period’s inflation times last period’s productivity (πt−1e
zt−1). The weights

are 1 − ιw and ιw, respectively. Those households that are able to re-optimize their wage

solve the problem:

maxW̃t(j)
IEt

∑
∞

s=0(ζwβ)sbt+s

[
− ϕt+s

νl + 1Lt+s(j)
νl+1

]

s.t. (12) for s = 0, . . . ,∞, (10a), and

Wt+s(j) =
(
Πs

l=1(π∗e
γ)1−ιw(πt+l−1e

z∗

t+l−1)ιw

)
W̃t(j).

(15)

We again consider only the symmetric equilibrium in which all agents solving (15) will

choose the same W̃t(j). From (10b) it follows that:

Wt = [(1 − ζw)W̃
1

λw

t + ζw((π∗e
γ)1−ιw(πt−1e

z∗

t−1)ιwWt−1)
1

λw ]λw . (16)

Finally, we assume there is a complete set of state contingent securities in nominal

terms, which implies that the Lagrange multiplier Ξp
t (j) associated with (12) must be the

same for all households in all periods and across all states of the world. This in turn implies

that in equilibrium households will make the same choice of consumption, money demand,

investment and capital utilization. Since the amount of leisure will differ across households

due to the wage rigidity, separability between labor and consumption in the utility function

is key for this result.

2.5 Government policies

The central bank follows a nominal interest rate rule by adjusting its instrument in response

to deviations of inflation and output from their respective target levels:

Rt

R∗
=

(
Rt−1

R∗

)ρR

[(
πt

π∗

)ψ1
(

Yt

eγYt−1

)ψ2
]1−ρR

σReǫR,t , (17)
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where R∗ is the steady state nominal rate, Y s
t is the target level of output, and the parameter

ρR determines the degree of interest rate smoothing. In our formulation of the policy rule,

the central bank responds to output growth rather than some measure of the output gap.

The government budget constraint is of the form

PtGt + Rt−1Bt−1 + Mt−1 = Tt + Mt + Bt, (18)

where Tt are nominal lump-sum taxes (or subsidies) that also appear in household’s budget

constraint. Government spending is given by:

Gt = (1 − 1/gt)Yt, (19)

where gt follows the process:

ln gt = (1 − ρg) ln g + ρg ln gt−1 + σgǫg,t (20)

2.6 Resource constraint

The aggregate resource constraint:

Ct + It + a(ut)K̄t−1 =
1

gt
Yt. (21)

can be derived by integrating the budget constraint (12) across households, and combining

it with the government budget constraint (18) and the zero profit conditions of both labor

packers and final good producers.

2.7 Model solution and State-Space Representation

As in Altig, Christiano, Eichenbaum, and Linde (2002) our model economy evolves along

stochastic growth path. Output Yt, consumption Ct, investment It, the real wage Wt/Pt,

physical capital Kt and effective capital K̄t all grow at the rate Zt. Nominal interest

rates, inflation, and hours worked are stationary. The model can be rewritten in terms

of detrended variables. We find the steady states for the detrended variables and use the

method in Sims (2002) to construct a log-linear approximation of the model around the

steady state.

Our empirical analysis is based on data on nominal interest rates (annualized), inflation

rates (annualized), and quarterly output growth rates. Hence, let yt = [Ra
t , πa

t , ∆ln Yt]
′.

14
ECB
Working Paper Series No. 475
April 2005



The relationships between the steady-state deviations R̃t, π̃t, Ỹt and the observables are

given by the following measurement equations:

y1,t = ln r∗a + lnπ∗

a + 4R̃t, (22)

y2,t =


 lnπ∗

a + 4π̃t

ln γ + ∆x̃t + z̃t


 .

Here, y1,t denotes the policy-maker’s instrument (the interest rate), and y2,t is a vector

that includes the remaining two endogenous variables. We collect all the DSGE model

parameters in the vector θ and stack the structural shocks in the vector ǫt.

3 Setup and Inference

In the subsequent analysis it is assumed that the DSGE model generates a covariance-

stationary distribution of the sequence {yt} for all θ ∈ Θ. Expectations under this dis-

tribution are denoted by IED
θ [·]. We will derive an (approximate) vector autoregressive

representation for the DSGE model and introduce model misspecifications as deviations

from this representation.2 Unlike in Del Negro and Schorfheide (2004) and Del Negro,

Schorfheide, Smets, and Wouters (2004), we assume that the interest rate feedback rule in

the DSGE model is correctly specified and do not relax the restriction generated by the

policy rule. Finally, a prior distribution for these model misspecifications is specified and

posterior inference and policy analysis are discussed.

3.1 A VAR Representation of the DSGE Model

Let us rewrite Eq. (17), which describes the policy-maker’s behavior, in more general form

as:

y1,t = x′

tM1β1(θ) + y′

2,tM2β2(θ) + ǫ1,t, (23)

where yt = [y1,t, y
′

2,t]
′ and the k× 1 vector xt = [y′

t−1, . . . , y
′

t−p, 1]′ is composed of the first p

lags of yt and an intercept. The shock ǫ1,t corresponds to the monetary policy shock σRǫR,t

in the DSGE model. The matrices M1 and M2 select the appropriate elements of xt and y2,t

to generate the policy rule. In our application the vector M1 selects the intercept and the

lagged nominal interest rate and the matrix M2 extracts inflation, and output growth. The

2We are working with vector autoregressive approximations rather than with state-space models to

simplify the simulation of the posterior distributions.
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functions β1(θ) and β2(θ) can be easily derived from (17) and the measurement equation (22)

for Rt.

The remainder of the system for yt is given by the following reduced form equations:

y′

2,t = x′

tΨ
∗(θ) + u′

2,t. (24)

In general, the VAR representation (24) is not exact if the number of lags p is finite. We

define ΓXX(θ) = IED
θ [xtx

′

t] and ΓXY2(θ) = IED
θ [xty

′

2,t] and let

Ψ∗(θ) = Γ−1
XX(θ)ΓXY2

(θ). (25)

Since the system is covariance stationary, the VAR approximation of the autocovariance

sequence of y2,t can be made arbitrarily precise by increasing the number of lags p. If

in addition, the moving-average (MA) representation of the DSGE model in terms of the

structural shocks ǫt is invertible, then u2,t can also be expressed as a function of ǫt for large

p. Conditions for invertibility and results on the accuracy of this VAR approximation can

be found in Fernandez-Villaverde, Rubio-Ramirez, and Sargent (2004).

The equation for the policy instrument (23) can be rewritten by replacing y2,t with

expression (24):

y1,t = x′

tM1β1(θ) + x′

tΨ
∗(θ)M2β2(θ) + u1,t, (26)

where u1,t = u′

2,tM2β2(θ) + ǫ1,t. Define u′

t = [u1,t, u
′

2,t], B1(θ) = [M1β1(θ), 0k×(n−1)],

B2(θ) = [M2β2(θ), I(n−1)×(n−1)], and let

Φ∗(θ) = B1(θ) + Ψ∗(θ)B2(θ). (27)

Hence, we obtain a restricted VAR for yt

y′

t = x′

tΦ + u′

t, IE[utu
′

t] = Σ∗(θ) (28)

with

Φ = Φ∗(θ), Σ = Σ∗(θ) = ΓY Y (θ) − ΓY X(θ)Γ−1
XX(θ)ΓXY (θ).

Here the population covariance matrices are ΓY Y (θ) = IED
θ [yty

′

t] and ΓXY (θ) = Γ′

Y X(θ) =

IED
θ [xty

′

t]. The following Lemma will be useful for the subsequent analysis and can be

verified by straightforward matrix manipulations. Let IEV AR
Ψ,Σ [·] denote expectations under

the probability distribution generated by (28).

Lemma 1 (i) The VAR coefficient matrix Φ∗(θ) = Γ−1
XX(θ)ΓXY (θ). (ii) IEV AR

Ψ∗(θ),Σ∗(θ)[xtx
′

t] =

IED
θ [xtx

′

t] = ΓXX(θ).
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Since the monetary policy rule (17) in the DSGE model is specified so that it can be

exactly reproduced by the VAR, see Eq. (23), Φ∗(θ) equals the population least squares

coefficients associated with (28), and the covariance matrix of xt under the DSGE model

and its VAR approximation are identical. For the ease of exposition we will subsequently

ignore the error made by approximating the state space representation of the DSGE model

with the finite-order VAR or, in other words, treat (28) as the structural model that imposes

– potentially misspecified – cross-equation restrictions on the matrices Φ and Σ.

3.2 Misspecification and Bayesian Inference

We make the following assumptions about misspecification of the DSGE model. There is

a vector θ and matrices Ψ∆ and Σ∆ such that the data are generated from the VAR in

Eq. (28)

Φ = B1(θ) + (Ψ∗(θ) + Ψ∆)B2(θ), Σ = Σ∗(θ) + Σ∆ (29)

and there does not exist a θ̃ ∈ Θ such that

Φ = B1(θ̃) + Ψ∗(θ̃)B2(θ̃), Σ = Σ∗(θ̃).

We refer to the resulting specification as DSGE-VAR. A stylized graphical representation of

our notion of misspecification can be found in Figure 1. Our econometric analysis is casted

in a Bayesian framework in which initial beliefs about the DSGE model parameter θ and

the model misspecification matrices Ψ∆ and Σ∆ are summarized in a prior distribution.

In order to compare the Bayesian approach to model misspecification pursed in this paper

to minimax and robust control approaches, the reader might find it helpful to think of

a fictitious other, “nature”, that draws the misspecification matrices Ψ∆ and Σ∆ from a

distribution – the prior – rather than maximizing the loss function to harm the policy maker.

The remainder of this section describes the choice of this prior.

Our prior is based on the idea that “nature” is more likely to draw smaller than larger

misspecification matrices, reflecting the belief that the DSGE model provides a good albeit

not perfect approximation of reality. Specifically, we assume that the prior density decreases

the larger the size of the discrepancies Ψ∆ and Σ∆. In the spirit of Hansen and Sargent’s

(2005) approach to model misspecification and robust control, the size of the discrepancies

is determined by the ease with which they can be detected via likelihood ratios. This metric

determines the shape of the prior contours (see Figure 1). The mass placed on these contours

is determined by the parameter λ. Large values of λ imply that large discrepancies are less
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likely to occur. Hence, the parameter λ measures the overall degree of misspecification. We

will now further motivate and explain the prior distribution using a thought experiment,

where for ease of exposition we set Σ∆ = 0 and fix the DSGE model parameter vector θ.

Suppose that a sample of λT observations is generated from the DSGE model (that is,

from equation (28), where Φ = Φ∗). Suppose that you use these observations to tell the

DSGE (Ψ = Ψ∗) and the misspecified model (Ψ = Ψ∗ + Ψ∆) apart using a likelihood ratio.

Since the likelihood ratio is decreasing in the number of observations λT for fixed Ψ∆, the

misspecification is re-scaled as follows. Let

Ψ∆ =
1√
λT

Ψ̃∆.

The log-likelihood ratio is

ln

[ L(Ψ∗,Σ∗, θ|Y, X)

L(Ψ∗ + Ψ∆,Σ∗, θ|Y, X)

]
= −1

2
tr

[
Σ∗−1

(
B′

2Ψ
∗
′

X ′XΨ∗B2 − 2B′

2Ψ
∗
′

X ′(Y − XB1)

−B′

2(Ψ
∗ + (λT )−1/2Ψ̃∆)′X ′X(Ψ∗ + (λT )−1/2Ψ̃∆)B2

+2B′

2(Ψ
∗ + (λT )−1/2Ψ̃∆)′X ′(Y − XB1)

)]
.

Here Y denotes the λT × n matrix with rows y′

t and Xt is the λT × k matrix with rows x′

t.

After replacing Y by X(B1 + (Ψ∗ + Ψ∆)B2) + U the log likelihood ratio simplifies to

ln

[ L(Ψ∗, Σ∗, θ|Y, X)

L(Ψ∗ + Ψ∆, Σ∗, θ|Y, X)

]
(30)

= −1

2
tr

[
Σ∗−1

(
B′

2Ψ̃
∆′

(λT )−1X ′XΨ̃∆B2 − 2B′

2Ψ̃
∆′

(λT )−1/2X ′U

)]

Taking expectations over X and U using the distribution induced by the data generating

process yields (minus) the Kullback-Leibler distance between the data generating process

and the DSGE model:

IEV AR
Ψ∗,Σ∗

[
ln

L(Ψ∗,Σ∗, θ|Y, X)

L(Ψ∗ + Ψ∆,Σ∗, θ|Y, X)

]
= −1

2
tr

[
Σ∗−1

(
B′

2Ψ̃
∆′

ΓXXΨ̃∆B2

)]
. (31)

Here we have used Lemma 1(ii). We choose a prior density for Ψ∆ that is proportional (∝)

to the Kullback-Leibler discrepancy:

p(Ψ∆|Σ∗, θ) ∝ exp

{
− λT

2
tr

[
Σ∗−1

(
B′

2Ψ̃
∆′

ΓXXΨ̃∆B2

)]}
(32)

The hyperparameter λ determines the length of the hypothetical sample as a multiple of the

actual sample size T . This hyperparameter “scales” the overall degree of misspecification.

For high values of λ, it is easy to tell the misspecified model and the DSGE model apart

even for small values of the misspecification Ψ∆. Hence the prior density places most of its
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mass near the restrictions imposed by the DSGE model when λ is large, and for λ = ∞ the

misspecification disappears altogether. On the contrary, if λ is close to zero the Kullback-

Leibler distance can be small even for relatively large values of the discrepancy Ψ∆. Hence

the prior is fairly diffuse. For computational reasons it is convenient to transform this prior

into a prior for Ψ. Using standard arguments we deduce that this prior is multivariate

normal

Ψ|Σ∗, θ ∼ N
(

Ψ∗(θ),
1

λT

[
(B2(θ)Σ

∗−1B2(θ)
′) ⊗ ΓXX(θ)

]
−1

)
. (33)

In practice we also have to take potential misspecification of the covariance matrix

Σ∗(θ) into account. Hence, we will use the following, slightly modified, prior distribution

conditional on θ in the empirical analysis:

Ψ|Σ, θ ∼ N
(

Ψ∗(θ),
1

λT

[
(B2(θ)Σ

−1B2(θ)
′) ⊗ ΓXX(θ)

]
−1

)
(34)

Σ|θ ∼ IW
(

λTΣ∗(θ), λT − k, n

)
, (35)

where IW denotes the inverted Wishart distribution. The latter induces a distribution for

the discrepancy Σ∆ = Σ − Σ∗.

The Appendix provides a characterization of the following conditional posterior densi-

ties:

p(Ψ|Σ, θ, Y ), p(Σ|Ψ, θ, Y ), and p(θ|Ψ, Σ, Y ).

Unfortunately, it is not possible to give a characterization of all conditional distributions

in terms of well-known probability distributions. To implement the Gibbs sampler we have

to introduce two Metropolis steps that generate draws from the conditional distributions

p(Σ|Ψ, θ, Y ) and p(θ|Ψ,Σ, Y ). The resulting Markov-Chain-Monte-Carlo (MCMC) algo-

rithm is known as Metropolis-within-Gibbs sampler and allows us to generate draws from

the joint posterior distribution of θ, Ψ, and Σ. In addition to the posterior distribution of

the parameters we are also interested in evaluating marginal data densities of the form

p(Y ) =

∫
p(Y |θ, Σ, Φ)pλ(θ, Σ,Φ)d(θ, Σ, Φ) (36)

for various choices of the hyperparameter λ and restrictions on the parameter space of the

DSGE model. Based on the marginal data densities we can compute Bayes factors and

posterior probabilities for the various specifications of our model. Under the assumption of

equal prior probabilities, ratios of marginal likelihoods can be interpreted as model odds.
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4 Policy Analysis

Between time t = T and t = T + 1 the policymaker seeks to replace the existing policy rule

with one that minimizes a loss function that will be defined subsequently. We make the

simplifying assumption that the public believes the new policy to be in place indefinitely

after being announced credibly. The policymaker does not exploit the fact that the public

has formed its time T expectations based on the T policy rule. This assumption is a short-

cut to a more realistic scenario in which there are two types of policy shifts - normal policy

making and rare regime shifts (using the terminology of Sims, 1982).

4.1 Loss Function

To simplify the exposition we begin by abstracting from parameter uncertainty. Suppose

that prior to the policy the economy operates according to the parameters θ0, Ψ∆
0 , and

Σ∆
0 . We assume that under this parameterization the VAR is non-explosive with long-run

mean ȳ. Define ỹt = yt − ȳ. Let M̃ be the (k − 1) × k matrix with zeros in the last

column and a (k − 1)× (k − 1) identity matrix in the remaining columns. Moreover, define

x̃t = [ỹt−1, . . . , ỹt−p]
′. Then the VAR can be rewritten in terms of deviations from the mean

as follows:

ỹ′

t = x̃′

tM̃ [B1(θ) + (Ψ∗(θ) + Ψ∆)B2(θ)] + u′

t. (37)

We assume the mean ȳ is invariant to changes in the policy parameters3 and that the policy

maker considers the following loss function

LT (θp, θs, Ψ
∆, Σ∆) = (1 − δ)IET

[
T+h∑

t=T+1

δt−T−1tr[W ỹtỹ
′

t]

]
, (38)

where the law of motion of ỹ is given by (37). δ is a discount factor, θ is partitioned into

policy rule parameters θp and taste-and-technology parameters θs, and tr[·] denotes the trace

operator. The expectation in (38) is taken conditional on post-intervention parameters θ,

Ψ∆, and Σ∆ and the pre-intervention observations ỹT−p+1, . . . , ỹT .

The loss function can be rewritten as

LT (θp, θs,Ψ
∆, Σ∆) = (1 − δ)

T+h∑

t=T+1

δt−T−1

(
tr[WVT (ỹt)] + tr[WIET [ỹt]IET [ỹt]

′]

)
. (39)

3This assumption is consistent with the DSGE model, in which the policy parameters ψ1, ψ2, and ρR do

not affect steady state output growth, inflation, and interest rates.
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Here VT (·) denotes the conditional covariance matrix of ỹt. The loss function LT (θp, θs, Ψ
∆, Σ∆)

is well defined, even if the post intervention VAR is explosive, as long as the horizon h is

finite or the reciprocal of the discount factor exceeds the largest eigenvalue of the vector

autoregressive system. Since the loss is obtained by taking a conditional expectation it

depends on the state of the economy in time T , summarized by x̃T+1. To remove this

time dependence a common approach in the literature, see for instance Woodford (2003), is

to integrate over x̃T+1 using the distribution implied by the VAR, provided the system is

stationary. Hence we define

L(θp, θs, Ψ
∆, Σ∆) = IE

[
LT (θp, θs, Ψ

∆,Σ∆)
]

= (1 − δh)tr[WV(ỹT+1)], (40)

where V(·) is now the unconditional variance.

We truncate the loss function L at the level B. This truncation ensures that the expected

loss is well defined, even if some of the parameter configurations in the support of the

posterior imply explosive behavior of the vector autoregressive system. Let4

L(θp, θs, Ψ
∆, Σ∆) = min

{
B,LT (θp, θs, Ψ

∆,Σ∆)
}

. (41)

4.2 Taking Misspecification into Account

The policymaker minimizes the loss L(θp, θs, Ψ
∆, Σ∆) as a function of the policy parameter

θp. She has imperfect knowledge about: (i) the policy invariant private sectors’ taste and

technology parameters θs; and (ii) the degree of model misspecification captured by λ, Ψ∆

and Σ∆. The uncertainty is summarized in the posterior distribution.

We consider four different scenarios for the policy invariance of the misspecification ma-

trices Φ∆ and Σ∆. Then we calculate the posterior expected loss associated with different

policies according to each scenario. If the DSGE model does not suffer from serious mis-

specification all scenarios collapse to Scenario 1. At this point we have no theory that lets

us determine which of the scenarios will provide the most accurate prediction of the policy

effects. The goal of the subsequent empirical analysis is to illustrate the sensitivity of policy

predictions to assumptions on (un-structured) model misspecification.

4Truncated losses are being used elsewhere in the literature, for instance, Brock, Durlauf, and West

(2004). In our empirical analysis (not reported in this paper) we also calculated posterior expected losses

for the loss function (1 − δ)
PT+h

t=T+1 δt−T−1tr[WVT (eyt)] for h = 80 (20 years) and δ = 0.99. Even though

the expected losses are strictly speaking finite, the posterior risk was greater than 1010 for those values of θp

that with some probability lead to explosive behavior of the resulting VAR, and less than 20 for the other

values of θp.
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Scenario 1: The DSGE model is estimated directly and its potential misspecification is

ignored. The policymaker does, however, take the uncertainty with respect to the non-policy

parameters into account when calculating the expected loss. This scenario dates back at

least to Brainard (1967) and serves as a benchmark. More recent examples in the context

of DSGE models include Laforte (2003) and Onatski and Williams (2004).

Scenario 2: The policymaker believes that the sample (hence the posterior) provides

no information about potential misspecification after a regime shift has been implemented.

This skepticism about the relevance of sample information is shared by the robust control

approaches of Hansen and Sargent (2005) and Onatski and Stock (2002). Here, instead

of using a minimax argument, our Bayesian policymaker relies on her prior distribution

p(Ψ∆, Σ∆|θ, λ) to cope with uncertainty about model misspecification. She still uses the

sample to learn about θs and λ, however.

Scenario 3: Ψ∆ and Σ∆ are assumed to be invariant to changes in policy. The sample

information is used to learn about the model misspecification via the posterior distribution.

Looking forward, the information is used to adjust the policy predictions derived from the

DSGE model. To implement the analysis, we generate draws from the marginal posterior

distribution of θs, Ψ∆, and Σ∆, combine θ̃ = [θ̃′p, θ
′

s]
′, and calculate Ψ∗(θ̃)+Ψ∆ and Σ∗(θ̃)+

Σ∆. Here, θ̃p is the new set of policy parameters. The choice of θ̃p does not affect beliefs

about the misspecification matrices.

Scenario 4: “Nature” generates a new set of draws from the posterior distribution of Ψ∆

and Σ∆ conditional on the post-intervention DSGE model parameters θ̃. To implement the

risk calculation we take a draw from the marginal posterior distribution of θs, combine it with

the policy parameter to obtain θ̃ = [θ̃′p, θ
′

s]
′, and generate a draw from p(Ψ∆, Σ∆|Y T , θ̃, λ).

As before, we then calculate Ψ∗(θ̃)+Ψ∆ and Σ∗(θ̃)+Σ∆. In this scenario, the policy maker

revises her beliefs about the misspecification matrix as she contemplates different values of

the policy parameters. For small values of λ the conditional posterior distribution of Ψ and

Σ given θ is is effectively insensitive to θ. In this case Scenario 4 corresponds to analyzing

policy effects with a VAR by simply changing the coefficients in the policy rule, ignoring

any changes in private-sector behavior that the policy shift might induce.
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4.3 Risk-Sensitivity

So far, we placed a probability distribution over the misspecification parameters and mini-

mized posterior expected loss. There is a growing literature in economics5 that studies the

robustness of decision rules to model misspecification. Underlying this robustness analysis

is typically a static or dynamic two-person zero-sum game. The decision maker, in our

case the central bank, is minimizing her loss function while a malevolent fictitious other,

“nature”, chooses the misspecification to harm the decision maker. “Nature’s” choice, in

our notation Ψ∆ and Σ∆, is either limited to a bounded set or it is subject to a penalty

function that is increasing in the size of the misspecification. The policy maker’s decision

is robust, if it corresponds to a Nash equilibrium in the two-person game.

In the Bayesian framework the risk sensitivity that is inherent in the robust control

approach can be introduced by transforming the loss function. Instead of minimizing the

expected value of L(θp, θs,Ψ
∆, Σ∆), the policy maker is equipped with an exponential utility

function. She considers the transformed loss eτL, and solves

min
θp

1

τ
ln

∫
exp{τL(θp, θs, Ψ

∆,Σ∆)}p(θs,Ψ
∆, Σ∆)d(θs,Ψ

∆, Σ∆), (42)

where p(θs, Ψ
∆,Σ∆) denotes the joint density of θs, Ψ∆, Σ∆. A positive τ makes the policy

maker risk averse. It can be shown that the optimization of (42) is the solution to the

following zero-sum game

min
θp

max
q(θs,Ψ∆,Σ∆)

∫
L(θp, θs,Ψ

∆, Σ∆)p(θs, Ψ
∆,Σ∆)q(θs, Ψ

∆, Σ∆)d(θs, Ψ
∆, Σ∆) (43)

−1

τ

∫ (
ln q(θs,Ψ

∆, Σ∆)

)
p(θs, Ψ

∆,Σ∆)q(θs, Ψ
∆,Σ∆)d(θs, Ψ

∆, Σ∆).

The maximization with respect to q(·) is subject to the constraints

∫
p(θs, Ψ

∆,Σ∆)q(θs, Ψ
∆,Σ∆)d(θs, Ψ

∆, Σ∆) = 1, q(θs, Ψ
∆,Σ∆) ≥ 0.

The interpretation of this game is that “nature” chooses the function q(·) to distort the

probabilities from which the model (misspecification) parameters are drawn. Notice that

∫
[ln q(·)]p(·)q(·)d(θs,Ψ

∆, Σ∆)

=

∫
[ln p(·)q(·)]p(·)q(·)d(θs, Ψ

∆, Σ∆) −
∫

[ln p(·)]p(·)q(·)d(θs, Ψ
∆, Σ∆)

5See for instance, the monograph by Hansen and Sargent (2005) or the February 2002 special issue of

Macroeconomic Dynamics.
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is the Kullback-Leibler distance between the distorted and the undistorted probabilities. The

larger τ , the larger the penalty for deviating from p(·). The link between the exponential

transformation of the loss function and the zero-sum game representation was pointed out

by Jacobsen (1973) in one of the first studies of optimization under a risk-sensitive criterion.

In the subsequent empirical analysis we will also compute posterior expected losses under

the four scenarios for the risk sensitive version of the policy problem. Hence, “nature” is not

only drawing misspecification matrices Ψ∆ and Σ∆, but at the same time also distorting

the probabilities.6

5 The Data

In our empirical analysis we use observations on interest rates, inflation, and output growth.

All data are obtained from Haver Analytics (Haver mnemonics are in italics). Real output is

obtained by dividing the nominal series (GDP) by population 16 years and older (LF+LH),

and deflating using the chained-price GDP deflator (JGDP). Growth rates are computed

using log-differences from quarter to quarter, and are in percent. Inflation is computed

using log-differences of the GDP deflator, in percent. The nominal rate corresponds to the

effective Federal Funds rate (FFED), also in percent. The results reported subsequently are

based on a sample from 1983:Q3 to 2004:Q1.

6 Empirical Application

The setup in the empirical application reflects some of the the findings contained in our

previous research. In Del Negro, Schorfheide, Smets and Wouters (2004), henceforth DSSW,

we did not find evidence in favor of price indexation. Therefore, we let ιp = ιw = 0. Unlike in

DSSW, we do not use observations on consumption and investment, which makes it difficult

to identify the capital share and the depreciation rate. Therefore, we let α = 0.25 and

δ = 0.025. Since we are not extracting information from wage and money data we fix the

wage-markup parameter λw = 0.3, and the money demand elasticity νm = 2. In a log-linear

approximation the Calvo parameter is typically not separately identifiable from the price

6Strictly speaking only Ψ∆ and Σ∆ capture misspecification. This suggests that one should integrate

out θs from L(θp, θs, Ψ∆, Σ∆) with respect to p(θs|θp, Ψ∆, Σ∆) prior to the exponential transformation.

However, this integration is numerically cumbersome and we decided to apply the notion of robustness not

only to the misspecification parameters but also to θs.
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markup parameter λf , which we fix at 0.3. Finally, since the model is to some extent able

to endogenously generate persistence in real variables, we impose that technology growth

shocks are serially uncorrelated, that is, ρz = 0.

6.1 Model Estimation

We begin with a direct estimation of the state-space representation of the DSGE model

using Bayesian techniques described in Schorfheide (2000). Table 1 reports prior mean

and standard deviations, as well as posterior means and 90% probability intervals for the

structural parameters. The estimates for the inflation and output growth coefficients in

the monetary policy rule are 1.43 and 0.36, respectively. Our estimate of the smoothing

coefficient is fairly high compared to estimates reported elsewhere in the literature: ρ̂r =

0.83. The Calvo parameters for wages and prices are 0.72, and 0.79, respectively. Thus,

agents change their prices on average every 4 quarters. We estimate a large degree of habit

persistence, whereas the data seem to be fairly uninformative with respect to the labor

supply elasticity µl and the cost of capital utilization a′′.

We proceed by estimating DSGE-VARs for values of λ between 0.25, i.e., large prior

variance of the misspecification matrices Ψ∆ and Σ∆, and 5, i.e., small potential misspecifi-

cation.7 Importantly, λ is in principle a continuous parameter. However, for computational

convenience we consider only values of λ lying on a grid. Specifically, the values of λ we

consider are 0.25, .50, .75, 1, 1.50, 2, and 5. The subsequent results are based on p = 4 lags.

Table 2 describes the posterior of the misspecification parameter λ. The table reports log

marginal data densities for the directly estimated DSGE model and DSGE-VARs based on

different values of λ. Differences of log marginal densities across model specifications can

be interpreted as log posterior odds, under the assumption that the prior odds are equal to

one. The odds reported in the last column of Table 2 are relative to λ = 0.75, which is the

specification with the largest marginal data density and, according to this likelihood-based

criterion, the best fit. The posterior of λ has an inverted U -shape. There is little variation

in the marginal data densities for λ values between 0.50 and 2, whereas values outside of

this interval lead to a substantial deterioration in fit. We conclude that over the range of the

historical sample the DSGE model is strongly dominated by DSGE-VARs with intermediate

7In principle λ ranges from
(k+n)

T
to ∞, where λ = ∞ corresponds to the estimation of the VAR

approximation of the DSGE model. However, we found that the loss for λ = 5 is already close to that

computed under the DSGE model, hence we do not consider higher values.
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values of λ indicating that the structural model is to some extent misspecified and that its

policy predictions should be interpreted with care.

Table 3 compares the posterior means of the structural parameters obtained from the

estimation of DSGE-VAR specifications for various values of λ. The DSGE-VAR generates

Bayesian instrumental variable estimates of the policy rule parameters ψ1, ψ2, and ρR.

For large values of λ the instruments are very similar to the scores of the DSGE models’

likelihood function. For values of λ near zero the instruments essentially correspond to

lagged values of interest rates, inflation, and output growth. While the estimates of ψ2 and

ρR are fairly insensitive to the choice of λ, the estimate of the inflation coefficient rises from

1.43 to 1.99 as the prior variance of the discrepancies Ψ∆ and Σ∆ increases. As shown in

Del Negro and Schorfheide (2004) the estimates of the remaining DSGE model coefficients

can be interpreted as minimum distance estimates, in which the estimator of Ψ is projected

onto the restricted subspace generated by Ψ∗(θ).

6.2 Policy Analysis

Based on the parameter estimates we calculate expected policy losses. The loss is based on

Eq. (41) where the weighting matrix W is diagonal with elements 1
4 (interest rates, annual-

ized), 1 (inflation, annualized), and 1
4 (output growth, quarter-to-quarter). Our weight on

output growth is somewhat larger than in Woodford (2003, Table 6.1) reflecting a larger

estimate of κ. Moreover, we place considerable weight on the nominal interest rate, which

could be justified by a large interest elasticity of money demand and an important role of

real money balances for transactions. The upper bound B of the loss is set to 50, which is

more than 20 times larger than the weighted sample variance of the three series. As a basis

for comparison, the variances of annualized output growth, inflation, and interest rates are

approximately 5, 2, and 6 percent respectively.

We evaluate the expected loss as a function of all the parameters characterizing the

Taylor rule (17): ψ1 and ψ2, the central bank’s response to inflation and output, respectively,

and ρR, the interest rate smoothing parameter. Specifically, we compute the expected loss

for each point of a three dimensional grid. In this grid, ψ1 takes 11 different values obtained

by equally subdividing the interval [1.1, 2.5]; ψ2 takes 6 different values obtained by equally

subdividing the interval [0, 1], and ρr takes 5 different values obtained by equally subdividing

the interval [0, 0.8]. The results are summarized in Figures 2 and 3. Both figures depict

expected loss differentials relative to the benchmark ψ1 = 1.8, ψ2 = 0.4, ρR = 0.8. The
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benchmark is chosen by selecting the point in the grid that are, roughly, closest to the sample

estimates of the parameters. Negative differentials indicate an improvement relative to the

benchmark. Figure 2 is a three-dimensional plot showing the expected loss as a function

of ψ1 and ψ2 with ρR fixed at the benchmark value 0.8. Figure 3 depicts a slice of this

three-dimensional plot, obtained by further fixing ψ2 to its benchmark value of 0.4.

Every figure contains four charts, one for each of the scenarios described in Section 4.2.

Scenario 1 shows the loss differential computed according to the state-space representation

of the DSGE model. For Scenarios 2 trough 4, the charts display the results obtained from

the DSGE-VAR for values of λ equal to 0.25, .50, .75, 1, 1.50, 2, and 5. Surfaces (or lines,

in case of Figure 3) have colors ranging from very light grey for λ equal to .25 to black

for λ equal to 5, with the darkness of the surface being directly proportional to λ, that is,

inversely proportional to the amount of misspecification.

In Scenario 1 the policymaker calculates the policy loss with the DSGE model, ignoring

misspecification. Figure 2 shows that the loss decreases as the value of ψ1 increases, re-

gardless of the value of ψ2. The increase in the response of interest rates to inflation in the

Taylor rule results in a drop of inflation variability, which in turn implies a lower volatility

of interest rates as well. The drop in the loss is particularly steep as ψ1 increases from 1.1 to

1.5, but flattens thereafter, as can be appreciated from the two dimensional plot in Figure 2.

While Figure 2 reports only the expected loss differential, we also computed (but did not

display) 90 percent probability bands in order to characterize the dispersion in the distri-

bution. These bands show that there is substantial uncertainty regarding the magnitude of

the drop in the loss when ψ1 increases from 1.1 to 1.5, but very little uncertainty in the loss

differential for values of ψ1 larger than 1.5.

The loss differential increases as ψ2 varies from 0 to 1. The higher variance of output

resulting from a low response in the Taylor rule is more than out-weighted by the lower

variability of inflation and the interest rate. Overall, the changes in loss as a function of

ψ2 are roughly one order of magnitude smaller than those resulting from changes in ψ1: in

Figure 2 the surface looks nearly flat along the ψ2 dimension. For the sake of brevity we do

not show how the loss differential changes as a function of ρR. We find that for all Scenarios

the optimal value of ρR is essentially determined by the value of ψ1, and independent from

ψ2. For low values of ψ1 it is optimal to have very low interest rate persistence (ρR = 0). For

high values of ψ1 it is optimal to make the interest rate process very persistent (ρR = 0.8).

In conclusion, the policy analysis conducted using the DSGE model suggests that the policy

maker should choose high values of ψ1 and low values of ψ2, although quantitatively the
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differences in the expected loss are small as long as ψ1 is larger than 1.5. The inference

about the misspecification parameter λ in Table 2 casts some doubts on the reliability of

DSGE model predictions, however. Hence we move to take potential misspecification into

account.

In Scenario 2 the policymaker still uses the DSGE model to compute the mean response

of the endogenous variables to the change in the policy parameters, but recognizes that

“nature” may be injecting noise around these mean responses using the prior distribution.

Under this scenario the policymaker learns from the data about the overall amount of noise

(λ) but refuses to learn about the precise nature of the misspecification: She therefore uses

the prior to generate draws of Ψ∆ and Σ∆ rather than the posterior. Again, dark shades

of grey in Figure 2 correspond to a small amount of noise (large values of λ), whereas

lighter shades of grey are associated with a larger variance of the noise (small values of

λ). Not surprisingly when the misspecification is small (say, λ = 5) the shape of the loss

does not change substantially relative to Scenario 1. But as the amount of misspecification

increases the loss profile becomes flatter. In particular, the large drop in the expected loss

differential that characterized the increase in ψ1 from 1.1 to 1.5 under the DSGE model

nearly disappears under Scenario 2 with low values of λ, as can be easily appreciated from

Figure 3.

Under the DSGE model the mechanics of the rational expectations equilibrium imply

that high values of ψ1 help to anchor inflationary expectations. Since in equilibrium inflation

moves less than under low values of ψ1, interest rates need to move less as well. The presence

of substantial misspecification changes these dynamic responses. A decomposition of the loss

into its three components indicates that for small values of λ interest rate variability actually

rises as the central bank responds more strongly to inflation, albeit slightly. However this

rise is roughly off-set by the drop in inflation variability. The overall minimum for the loss

differential is still achieved for high values of ψ1 and low values in ψ2, as in Scenario 1.

But the most important policy implication under Scenario 1, namely to stay away from low

values of ψ1, loses much of its strength under the misspecification considered in Scenario 2.

In Scenario 3 the policymaker uses sample information to learn about the precise nature

of misspecification, unlike in the previous scenario. In addition, she believes that the histor-

ically observed discrepancies Ψ∆ and Σ∆ are policy invariant. Figure 2 shows that under

this Scenario the loss surface is quite different than under Scenarios 1 and 2 whenever the

amount of misspecification is non-negligible. First of all, there is much more curvature with

respect to ψ2. Second, the loss profile is no longer strictly decreasing in ψ1 for values of λ
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less than 1.5, as can be seen from Figure 3. For small λs the loss differential is a U-shaped

function of ψ1, with the minimum attained at the value of roughly 1.8.

In order to understand this finding, it is useful to look at Figure 4, which shows under

each scenario the fraction of draws for which either the linearized DSGE model does not

have a unique stable rational expectations solution (indeterminacy) or the resulting vector

autoregressive system is explosive (explosiveness). The figure shows that this fraction is

virtually zero under Scenario 1 (of course here only indeterminacy is possible), very small

under Scenarios 2 and 4, but quite large under Scenario 3 particularly for small values of

λ. This is particularly true for large values of ψ2, but also for either small or large values

of ψ1. Specifically, the fraction increases the further we move away from the estimated

policy parameters, which roughly coincide with the benchmark. In Scenario 3 this fraction

is mainly composed by draws that generate explosiveness, rather than indeterminacy.

To see why this happens, recall that the estimated VAR parameters Ψ̂ can be decom-

posed into the sum of the parameters implied by the DSGE restrictions Ψ∗(θ) and of the

misspecification Ψ∆. Roughly speaking, under Scenario 3, the new set of VAR parameters

is computed as the sum of Ψ∗(θ̃), which changes with policy, and Ψ∆, which is assumed to

be invariant. If the policy parameters are close to estimated ones, the sum of Ψ∗(θ̃) and Ψ∆

returns the estimated VAR parameters, which generally do not have explosive roots. But as

we move away from the estimated policy parameters, for small values of λ the sum of Ψ∗(θ̃)

and Ψ∆ often delivers new VAR parameters whose roots are explosive. Whenever λ is large,

however, Ψ∆ is negligible and the new VAR parameters roughly coincide with Ψ∗(θ̃), which

is non explosive. Hence, for small λ the policy recommendation under Scenario 3 implies

that the policymaker should not stray away too much from the estimated policy parameters,

for this increases the risk of encountering explosive behavior when the misspecification is

large. Cogley and Sargent (2005) also present results where the policy recommendation

coming from their model is largely driven by the concern for explosiveness. However, not

all deviations from the estimated policy parameters matter equally: i) changes in ψ2 matter

more than changes in ψ1, and ii) decreases in ψ2 are far less harmful than increases.

Finally, under Scenario 4 the policymaker again uses sample information to learn about

potential model misspecification. Unlike in Scenario 3, the policymaker now asks the ques-

tion: What would the estimates of the discrepancies Ψ∆ and Σ∆ be if the new policy had

been in place during the sample period? Figure 2 shows that under this Scenario the loss

surface is similar to that computed under Scenarios 2. Namely, when the misspecification is

small (say, λ = 5) the shape of the loss does not change substantially relative to Scenario 1.
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But as the amount of misspecification increases the loss profile becomes flatter. As we see

from Figure 4, explosiveness is no longer an overriding concern in Scenario 4, as it was

in Scenario 3. The reason for this result is that now as θ̃ changes both Ψ∗(θ̃) and Ψ∆(θ̃)

change in such a way that the sum of the two is not too different from the estimated VAR

parameters. Indeed, for very small values of λ the dynamics for all equations other than the

Taylor rule are approximately independent of the policy parameters. This explains why the

loss surface is nearly flat whenever the misspecification is high.

At this point we have no theory that lets us determine which of the scenarios will provide

the most accurate prediction of the policy effects. We show that the results of the policy

analysis depend on: (i) whether the policymaker relies on the data to assess the degree of

misspecifications, i.e., learns about λ; and (ii) the assumption she makes on the process

driving the discrepancies between the DSGE model and the data in the aftermath of the

policy intervention. According to our analysis, the risks associated with straying away from

the historical policy parameters are very different depending on both the overall size of

the misspecification and the assumptions on how the nature of the misspecification changes

with policy. Nevertheless, a fairly robust policy recommendation emerges from our analysis:

the central bank should avoid strong responses to output growth movements and not react

weakly to inflation fluctuations.

The results in Figures 2 and 3 depend on the somewhat arbitrary choice of the bound.

For this reason, we have recomputed all figures using a bound that is double (100) or

ten times larger (500) than the one used so far. Although the loss differentials change

substantially with the bound, particularly in Scenario 3, we find that the the overall shape

of the contours, and hence the gist of our conclusions, stay roughly the same.

Finally, Figure 5 compares the loss differentials that we just analyzed with those ob-

tained under the risk-sensitive version of our problem. For each scenario the Figure shows

the risk-sensitive loss (black) as well as the risk-neutral loss (light grey). For Scenarios 2

through 4 the loss-differentials are computed for λ equal to 0.75 (best-fitting model). A

caveat of our analysis so far is that we do not distinguish between uncertainty in the deep

parameters θ and in the misspecification parameters Ψ∆ and Σ∆. In principle we want to

be robust gains the latter, but not necessarily the former.

For Scenario 1, where the risk-sensitivity is only with respect to the deep parameters θs,

we find that the risk sensitive loss is generally not too different from the plain-vanilla one.

The only major difference is that risk-sensitivity suggests to stay away from low values of

ψ2. These are the values that minimize the risk-neutral loss . In Scenario 2, risk-sensitivity
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would induce the policymaker to avoid low values of ψ1 (as well as ψ2). Interestingly, risk-

sensitivity re-instates the large drop in loss related to increasing ψ1 from 1.1 to 1.5, which

in absence of risk-sensitivity is no longer there for λ = .75. In Scenario 3 the surface is

much flatter under the risk-sensitive loss than under the expected loss. Tentatively, we

explain this finding as follows: for most grid-points there is a non-negligible probability

of encountering explosive draws. A perverse “nature” would tilt the distribution precisely

toward this outcome. Hence, under Scenario 3, the policy maker is “doomed no-matter-

what.” Lastly, also under Scenario 4 the slope is flatter under risk-sensitivity than under the

expected loss. While so far Scenarios 2 and 4 have looked fairly similar, under risk-sensitivity

the two scenarios deliver very different implications. In particular, Scenario 4 suggests that

the risk-sensitive policymaker should choose low values of ψ1 (and ψ2), although the loss

differential is not very large.

7 Conclusion

Current DSGE models are to some extent misspecified, even large-scale models such as

the one in Smets and Wouters (2003). While they allow policymakers to assess the effects

of rare policy changes on the expectation formation and decision rules of private agents,

their fit is typically worse than the fit of alternative econometric models, such as VARs

estimated with well-calibrated shrinkage methods. The DSGE-VARs studied in Del Negro

and Schorfheide (2004) and Del Negro, Schorfheide, Smets, and Wouters (2004) provide a

framework that allows researchers to account for model misspecification. In this paper we

developed techniques to conduct policy analysis with potentially misspecified DSGE models

and applied them to a New Keynesian DSGE model with capital accumulation and several

real and nominal frictions. We studied the effect of changing the response to inflation under

an ad-hoc loss function that penalizes inflation, output growth, and interest rate variability.

We view our framework as an attractive alternative to robust control approaches to model

misspecification that deserves to be explored in future research.

We find that the particular values of the loss differentials are sensitive to the misspec-

ification assumptions considered. Both the risks and the gains associated with deviating

from the historical Volcker-Greenspan policy are very different depending on the assump-

tions on misspecification. Also, risks and gains differ whether the policy maker uses the

risk-neutral or the risk-sensitive approach. However, a fairly robust policy recommendation

emerges from our analysis: the central bank should avoid strong responses to output growth
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movements and not react weakly to inflation fluctuations. Also, we find that the gains

associated with deviating from the historical Volcker-Greenspan policy, whenever positive,

are generally not very large. This suggests that the historical rule, if not always optimal

among those we consider, has been reasonably good at least from the perspective of this

sticky-prices DSGE model, even taking misspecification into account.
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A Implementation of the Posterior Simulation

A.1 Draws from the Posterior

We adopt the notation that Ỹ (θ) = Y − XB1(θ) which leads to the definitions

ΓỸ Ỹ = ΓY Y − ΓY XB1(θ) − B1(θ)
′ΓXY − B1(θ)

′ΓXXB1(θ), ΓXỸ = ΓXY − ΓXXB1(θ).

Let etr[A] = exp[− 1
2 tr[A]]. The likelihood function for the VAR representation is given by

p(Y |Ψ,Σ, θ) (A.1)

∝ |Σ|−T/2etr

[
Σ−1

(
Y − X(B1(θ) + ΨB2(θ))

)
′
(

Y − X(B1(θ) + ΨB2(θ))

)]
.

Using Lemma 1(i) we can rewrite the prior mean of Ψ as

Ψ∗(θ) = Ψ̄(Σ, θ) = Γ−1
XX(θ)ΓXỸ (θ)Σ−1B′

2(θ)[B2(θ)Σ
−1B′

2(θ)]
−1.

The prior density for Ψ conditional on Σ is of the form

p(Ψ|Σ, θ) ∝ etr

[
Σ−1λT

(
− 2B′

2Ψ
′ΓXỸ (θ) + B′

2Ψ
′ΓXX(θ)ΨB2

)]
. (A.2)

The prior density for Σ is given by

p(Σ|θ) ∝ |Σ|− 1
2 (λT−k+n+1)etr

[
Σ−1λTΣ∗(θ))

]
(A.3)

To simplify notation the (θ)-argument of the functions B1, B2, Ỹ , ΓXY , ΓXX , and ΓY Y is

omitted.

Conditional Posterior of Ψ: Combining the the prior density (A.2) with the likelihood

function (A.1) yields

p(Ψ|Σ, θ, Y )

∝ p(Y |Ψ,Σ, θ)p(Ψ|Σ, θ) (A.4)

∝ etr

[
Σ−1λT

(
ΓY Y − 2B′

2Ψ
′ΓXỸ + B′

2Ψ
′ΓXX(θ)ΨB2

)
+ (Ỹ − XΨB2)

′(Ỹ − XΨB2)

]

∝ etr

[
Σ−1

(
− 2B′

2Ψ
′(λTΓXỸ + X ′Ỹ ) + B′

2Ψ
′(λTΓXX + X ′X)ΨB2

)]

Define

Ψ̃(Σ, θ) = (λTΓXX + X ′X)−1(λTΓXỸ + X ′Ỹ )Σ−1B′

2(B2Σ
−1B′

2)
−1.

The previous calculations show that

Ψ|Σ, θ, Y ∼ N
(

Ψ̃(Σ, θ),

[
(B2Σ

−1B′

2) ⊗ (λTΓXX + X ′X)

]
−1)

. (A.5)
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Conditional Posterior of Σ: Combining the the prior densities (A.2) and (A.3) with the

likelihood function (A.1) yields

p(Σ|Ψ, θ, Y ) ∝ p(Y |Ψ, Σ, θ)p(Ψ|Σ, θ)p(Σ|θ) (A.6)

∝ |Σ|− 1
2 ((λ+1)T−k+n+1)|(B2Σ

−1B′

2)
−1|− k

2

etr

[
Σ−1

(
λT (ΓỸ Ỹ − ΓỸ XΓ−1

XXΓXỸ ) + (Ỹ − XΨB2)
′(Ỹ − XΨB2)

)

+λT (B2Σ
−1B′

2)(Ψ − Ψ̄)′ΓXX(Ψ − Ψ̄)

]
.

Using the definition of Ψ̄, the last term can be manipulated as follows

etr

[
λTB2Σ

−1B′

2(Ψ − Ψ̄)′ΓXX(Ψ − Ψ̄)

]

= etr

[
λTΣ−1

(
B′

2Ψ
′ΓXXΨB2 − 2B′

2Ψ
′ΓXỸ

)

+λTΣ−1B′

2(B2Σ
−1B′

2)
−1B2Σ

−1Γ′

XỸ
Γ−1

XXΓXỸ

]

Hence,

p(Σ|Ψ, θ, Y ) ∝ |Σ|− 1
2 ((λ+1)T−k+n+1)|(B2Σ

−1B′

2)
−1|− k

2 (A.7)

× etr

[
Σ−1

(
λTΓỸ Ỹ + Ỹ ′Ỹ − 2B′

2Ψ
′(λTΓXỸ + X ′Ỹ )

+B′

2Ψ
′(λTΓXX + X ′X)ΨB2

)]

× etr

[
λT (Σ−1B′

2(B2Σ
−1B′

2)
−1B2Σ

−1 − Σ−1)Γ′

XỸ
Γ−1

XXΓXỸ

]
.

If the DSGE model satisfies Eq. (23) and the error u1,t is orthogonal to xt then

ΓXỸ = ΓXXΨ0(θ)B2

and

(Σ−1B′

2(B2Σ
−1B′

2)
−1B2Σ

−1 − Σ−1)Γ′

XỸ
Γ−1

XXΓXỸ = 0. (A.8)

While the conditional posterior distribution of Σ given our prior distribution is not of

the IW form use an IW distribution as proposal distribution in a Metropolis-Hastings step.

Define

S̃(Ψ, θ) = λTΓỸ Ỹ + Ỹ ′Ỹ − (λTΓXỸ + X ′Ỹ )′ΨB2 − B′

2Ψ
′(λTΓXỸ + X ′Ỹ ) (A.9)

+B′

2Ψ
′(λTΓXX + X ′X)ΨB2

Our proposal distribution for Σ is

IW(S̃(Ψ, θ), (λ + 1)T, n).
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Conditional Posterior of θ: The posterior distribution of θ is irregular. Its density is

proportional to the joint density of Y , Ψ, Σ, and θ, which we can evaluate numerically since

the normalization constants for p(Ψ|Σ, θ) and p(Σ|θ) are readily available.

p(θ|Ψ, Σ, Y ) ∝ p(Y,Ψ,Σ, θ) = p(Y |Ψ, Σ, θ)p(Ψ|Σ, θ)p(Σ|θ)p(θ). (A.10)

To obtain a proposal density for p(θ|Ψ,Σ, Y ) we (i) maximize the posterior density of the

DSGE model with respect to θ and (ii) calculate the inverse Hessian at the mode, denoted

by Vθ̄,DSGE . (iii) We then use a random-walk Metropolis step with proposal density

N (θ(s−1), cVθ̄,DSGE)

where θ(s−1) is the value of θ drawn in iteration s − 1 of the MCMC algorithm, and c is a

scaling factor that can be used to control the rejection rate in the Metropolis step.
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Table 1: DSGE Model – Parameter Estimation Results

Parameter Prior Posterior

Mean Stdd Mean 90% Interval

ψ1 1.500 0.250 1.433 1.131 1.770

ψ2 0.125 0.100 0.361 0.102 0.596

ρr 0.500 0.200 0.834 0.800 0.869

r∗a 1.000 1.000 0.577 0.000 1.298

π∗

a 3.000 2.000 4.602 3.085 6.073

γa 2.000 1.000 1.945 1.358 2.518

h 0.800 0.100 0.987 0.979 0.997

νl 2.000 0.750 2.464 1.131 3.684

ζw 0.750 0.100 0.721 0.538 0.957

ζp 0.750 0.100 0.794 0.725 0.868

s′ 4.000 1.500 6.274 3.734 8.725

a′ ′ 0.200 0.075 0.225 0.109 0.332

g∗ 0.150 0.050 0.131 0.057 0.200

ρg 0.800 0.050 0.904 0.867 0.943

σz 0.400 2.000 2.086 1.234 2.958

σg 0.300 2.000 0.551 0.470 0.634

σr 0.200 2.000 0.142 0.121 0.162

Notes: The table reports prior means and standard deviations, and posterior means and

90 percent probability intervals for the estimated parameters. See Section 2 for a definition

of the DSGE model’s parameters, and Section 5 for a description of the data. We are

reporting annualized values for π∗, r∗, and γ (a-subscript). The following parameters were

fixed: α = 0.25, δ = 0.025, ιp = ιw = 0, F = 0, λf = λw = 0.3, χ = 0, νm = 2, ρz = 0. All

shocks other than ǫz, ǫR, ǫg are equal to zero.
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Table 2: Log Marginal Data Densities and Posterior Odds

Specification ln p(Y ) Post Odds

DSGE Model -313.58 4E-11

DSGE-VAR, λ = 5.0 -297.01 6E-04

DSGE-VAR, λ = 2.0 -293.96 0.012

DSGE-VAR, λ = 1.5 -292.83 0.039

DSGE-VAR, λ = 1.0 -290.88 0.270

DSGE-VAR, λ = .75 -289.58 1.000

DSGE-VAR, λ = .50 -289.78 0.816

DSGE-VAR, λ = .25 -298.50 1E-04

Notes: The marginal data densities are obtained by integrating the likelihood function with

respect to the model parameters, weighted by the prior density conditional on λ. The

difference of log marginal data densities can be interpreted as log posterior odds under the

assumption of that the two specifications have equal prior probabilities.
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Table 3: DSGE-VAR – Parameter Estimation Results

Parameter Prior Mean Posterior Mean (λ)

0.25 0.5 0.75 1.0 1.5 2.0 5.0 DSGE

ψ1 1.500 1.990 1.788 1.774 1.714 1.824 1.669 1.650 1.433

ψ2 0.125 0.275 0.278 0.263 0.259 0.285 0.296 0.315 0.361

ρr 0.500 0.836 0.845 0.849 0.857 0.861 0.855 0.856 0.834

r∗a 1.000 0.537 0.378 0.346 0.378 0.498 0.419 0.515 0.577

π∗

a 3.000 3.596 3.392 3.442 3.431 3.782 3.704 3.980 4.602

γa 2.000 1.925 1.879 2.081 1.943 2.214 2.044 2.218 1.945

h 0.800 0.944 0.882 0.919 0.970 0.982 0.984 0.987 0.987

νl 2.000 2.043 2.161 2.097 2.245 2.326 2.501 2.451 2.464

ζw 0.750 0.726 0.728 0.732 0.755 0.727 0.739 0.745 0.721

ζp 0.750 0.699 0.618 0.640 0.688 0.739 0.746 0.773 0.794

a′ ′ 0.200 0.204 0.203 0.220 0.207 0.197 0.214 0.208 0.225

s′ 4.000 4.296 4.429 4.503 4.565 4.540 4.500 5.091 6.274

g∗ 0.150 0.149 0.158 0.139 0.142 0.141 0.142 0.136 0.131

ρg 0.800 0.813 0.823 0.822 0.826 0.823 0.831 0.836 0.904

σz 0.400 0.956 0.912 1.033 1.322 1.689 1.837 2.139 2.086

σg 0.300 0.303 0.339 0.365 0.369 0.376 0.390 0.424 0.551

σr 0.200 0.123 0.129 0.132 0.128 0.132 0.134 0.137 0.142

Notes: The table reports prior and posterior means for the DSGE-VAR as a function of λ

and the DSGE model. See Section 2 for a definition of the DSGE model’s parameters, and

Section 5 for a description of the data. We are reporting annualized values for π∗, r∗, and

γ (a-subscript). The following parameters were fixed: α = 0.25, δ = 0.025, ιp = ιw = 0,

F = 0, λf = λw = 0.3, χ = 0, νm = 2, ρz = 0. All shocks other than ǫz, ǫR, ǫg are equal to

zero.
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Figure 1: Stylized View of DSGE Model Misspecification
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Notes: Φ = [φ1, φ2]
′ can be interpreted as the VAR parameters, and Φ∗(θ) is the restriction

function implied by the DSGE model.
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Figure 2: Expected Policy Loss Differentials - As a function of ψ1 and ψ2
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Notes: Mean policy loss differentials as a function of ψ1 and ψ2 relative to baseline policy

rule ψ1 = 1.8, ψ2 = 0.4, ρR = 0.80. All numbers are computed fixing the value of ρR at the

benchmark. Negative differentials signify an improvement relative to baseline rule. Scenario

1 shows the loss differential computed according to the DSGE model. Scenarios 2, 3 , and

4 (see section 4.2) take misspecification into account. For Scenarios 2 through 4, the charts

display the results obtained for values of λ equal to 0.25, .50, .75, 1, 1.50, 2, and 5. Surfaces’

color ranges from very light grey (λ = .25) to dark grey (λ = 5), with the darkness of the

surface being directly proportional to λ.
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Figure 3: Expected Policy Loss Differentials - As a function of ψ1
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Notes: Mean policy loss differentials as a function of ψ1 relative to baseline policy rule

ψ1 = 1.8, ψ2 = 0.4, ρR = 0.80. All numbers are computed fixing the values of ψ2 and ρR

at the benchmark. Negative differentials signify an improvement relative to baseline rule.

Scenario 1 shows the loss differential computed according to the DSGE model. Scenarios 2,

3, and 4 (see section 4.2) take misspecification into account. For Scenarios 2 through 4, the

charts display the results obtained for values of λ equal to 0.25, .50, .75, 1, 1.50, 2, and 5.

Surfaces’ color ranges from very light grey (λ = .25) to dark grey (λ = 5), with the darkness

of the surface being directly proportional to λ.
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Figure 4: Fraction of Draws Featuring Explosiveness/Indeterminacy
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Notes: Fraction of draws for which either the linearized DSGE model does not have a unique

stable rational expectations solution (indeterminacy) or the resulting vector autoregressive

system is explosive (explosiveness), computed as a function of ψ1 and ψ2. All numbers are

computed fixing the value of ρR at the benchmark. at the benchmark. Negative differentials

signify an improvement relative to baseline rule. Scenario 1 shows the loss differential

computed according to the DSGE model. Scenarios 2, 3, and 4 (see section 4.2) take

misspecification into account. For Scenarios 2 through 4, the charts display the results

obtained for values of λ equal to 0.25, .50, .75, 1, 1.50, 2, and 5. Surfaces’ color ranges

from very light grey (λ = .25) to dark grey (λ = 5), with the darkness of the surface being

directly proportional to λ.
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Figure 5: Expected Policy Loss Differentials - Risk-Neutral versus Risk-Sensitive
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Notes: Policy loss differentials relative to baseline policy rule ψ1 = 1.8, ψ2 = 0.4, ρR = 0.80.

All numbers are computed fixing the value of ρR at the benchmark. Negative differentials

signify an improvement relative to baseline rule. Scenario 1 shows the loss differential

computed according to the DSGE model. Scenarios 2, 3 , and 4 (see section 4.2) take

misspecification into account. For each scenario, the expected loss differential is shown in

light grey, and the risk-sensitive loss differential in black.
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