Monetary Policy, Factor Substitution, and the Speed of Convergence

Anne Jurkat and Rainer Klump (Goethe University Frankfurt)

Agenda

- Introduction
- The Intertemporal Monetary Growth Model
- Calibration and Sensitivity Analyses
 - Calibration of the Economy
 - Changes in the Parameters
 - Influence of the Normalization Point
- Conclusion

Introduction

We want to bring together three strands of discussion in macroeoconomic growth theory:

- 1. (Optimal) Monetary growth theory
- 2. (Normalized) CES production functions
- 3. Speed of convergence analysis

The most important benchmark papers are:

Turnovsky (JEDC 2002), Gokan (JEDC 2003), Klump/Saam (EL 2008)

Early ideas can already be found in Klump (1999): "Keynes und die Neoklassiker: Verbindungen zwischen Keynesianischer Makroökonomik und Neoklassischer Wachstumstheorie"

The Intertemporal Monetary Growth Model

We let money enter the utility function (Sidrauski 1967) and work with a normalized CES production function (De LaGrandville 1989; Klump and De LaGrandville 2000)

$$u\left(c_{t}, m_{t}\right) = \frac{\left(c^{1-\theta}m^{\theta}\right)^{1-\eta} - 1}{1-\eta} \tag{1}$$

$$f\left(k\right) = C\left(\sigma\right) \left[\alpha\left(\sigma\right)k^{\psi} - \left(1 - \alpha\left(\sigma\right)\right)\right]^{\frac{1}{\psi}} \text{ with } \alpha\left(\sigma\right) = \frac{k_0^{1 - \psi}}{k_0^{1 - \psi} + \mu_0},$$

$$C(\sigma) = y_0 \left[\frac{k_0^{1-\psi} + \mu_0}{k_0 + \mu_0} \right]^{\frac{1}{\psi}}, \ \mu_0 = \frac{F_L}{F_k} = \frac{1-\alpha}{\alpha} k_0^{1-\psi} \quad \text{and} \quad \psi = \frac{\sigma - 1}{\sigma}$$
 (2)

$$y = y_0 \left[\pi_0 \left(\frac{k}{k_0} \right)^{\psi} + (1 - \pi_0) \right]^{\frac{1}{\psi}}.$$
 (3)

$$\frac{dy}{d\sigma} = -\frac{1}{\sigma^2} \frac{1}{\psi^2} y \left\{ \pi \ln \left(\frac{\pi_0}{\pi} \right) + \left(1 - \pi \right) \ln \left(\frac{1 - \pi_0}{1 - \pi} \right) \right\} > 0 \quad with \quad \pi = \frac{f'(k)k}{y}. \tag{4}$$

$$\dot{\mathbf{v}} = f(k) - (\delta + n)k + z - (\Pi + n)m - c \tag{5}$$

The Hamiltonian of the intertemporal optimization problem is:

$$H = u(c,m) + \psi \left[f(k) - (\delta + n)k + z - (\Pi + n)m - c \right]$$
 (6)

We obtain a system of three differential equations:

$$\frac{\dot{c}}{c} = \frac{(f'(k) - (n + \delta + \rho))}{(\eta(1 - \theta) + \theta)} + \frac{\theta(1 - \eta)}{(\eta(1 - \theta) + \theta)} (\phi + f'(k) - n - \delta - \frac{c}{m} \frac{\theta}{1 - \theta}) \tag{7}$$

$$\frac{\dot{\mathbf{k}}}{k} = \frac{f(k)}{k} - (\delta + n) - \frac{c}{k} \tag{8}$$

$$\frac{\dot{m}}{m} = \phi - n - \Pi = \phi + f'(k) - n - \delta - \frac{c}{m} \frac{\theta}{1 - \theta}.$$
 (9)

We obtain the following steady state conditions:

$$f'(k^*) = \delta + \rho + n \tag{10}$$

$$c^* = f(k^*) - (\delta + n)k^*$$
(11)

$$\phi - n = \Pi^* \tag{12}$$

$$\frac{c^*}{m^*} = \frac{1-\theta}{\theta}(\rho + \phi) \tag{13}$$

$$\frac{\partial \pi}{\partial \sigma} = \frac{1}{\sigma^2} (1 - \pi) \pi \ln \left(\frac{k}{k_0} \right) > 0 \quad if \quad k > k_0 . \tag{14}$$

$$\frac{\partial f'}{\partial \sigma} = \frac{y}{k} \frac{\partial \pi}{\partial \sigma} + \frac{\pi}{k} \frac{\partial y}{\partial \sigma} > 0 \quad \text{if } k > k_0.$$
 (15)

In order to derive the speed of convergence we calculate the following Jacobian:

$$J = \begin{pmatrix} \frac{-\theta(1-\eta)(\rho+\phi)}{\theta+\eta(1-\theta)} & \frac{1+\theta(1-\eta)}{\theta+\eta(1-\theta)} k^* f''(k^*) & \frac{\theta(1-\eta)(\rho+\phi)}{\theta+\eta(1-\theta)} \\ -\frac{c^*}{k^*} & \rho & 0 \\ -(\rho+\phi) & k^* f''(k^*) & (\rho+\phi) \end{pmatrix}$$
(16)

$$\det J = \frac{(\phi + \rho)c^* f''(k^*)}{\theta + \eta(1 - \theta)} < 0 \text{ if } f''(k^*) < 0 \text{ and trace } J > 0.$$

$$\tag{17}$$

We can derive the one negative eigenvalue from the following characteristic equation:

$$\mu = -\varepsilon^{3} + \varepsilon^{2} \left(\rho + \frac{\eta(\rho + \phi)}{\theta + \eta(1 - \theta)} \right) - \varepsilon \left(\frac{\eta(\rho + \phi)\rho}{\theta + \eta(1 - \theta)} + c^{*}f''(k^{*}) \frac{(1 + \theta(1 - \eta))}{\theta + \eta(1 - \theta)} \right)$$

$$+ c^{*}f''(k^{*}) \frac{(\rho + \phi)}{\theta + \eta(1 - \theta)}$$

$$(18)$$

$$-\frac{\partial \mu}{\partial \varepsilon} \frac{\partial \varepsilon}{\partial \lambda} \frac{d\lambda}{d\phi} = \frac{\partial \mu}{\partial \phi} \tag{19}$$

with $\lambda = -\varepsilon$ where $\frac{d\varepsilon}{d\lambda} = -1$ and $\frac{d\mu}{d\varepsilon} < 0^2$ so that $\frac{d\lambda}{d\phi} = \frac{d\mu}{d\phi}$.

$$\frac{\partial \mu}{\partial \phi} \left[\theta + \eta \left(1 - \theta \right) - \frac{\eta \left(\rho + \phi \right)}{\varepsilon} \right] = c^* f'' \left(k^* \right) \left(\frac{\left(1 - \eta \right)^2}{\theta + \eta \left(1 - \theta \right)} \right) < 0$$
 (20)

We can analyze the effect of a change in the e. o. s. on the transitional effect of monetary policy:

$$-\frac{\partial \mu}{\partial \varepsilon} \frac{\partial \varepsilon}{\partial \lambda} \frac{d\lambda}{d\phi d\sigma} = \frac{\partial \mu}{\partial \phi \partial \sigma}.$$
 (21)

$$\frac{\partial \mu}{\partial \phi \sigma} \left[\theta + \eta \left(1 - \theta \right) - \frac{\eta \left(\rho + \phi \right)}{\varepsilon} \right] = \left(\frac{dc^* f'' \left(k^* \right)}{d\sigma} \right) \left(\frac{\left(1 - \eta \right)^2}{\theta + \eta \left(1 - \theta \right)} \right). \tag{22}$$

$$\frac{dc^*}{d\sigma}f''(k^*) + \frac{\partial f''(k^*)}{\partial \sigma}c^* = \frac{dc^*}{d\sigma}f''(k^*) + (n+\delta+\rho)(1-\pi^*)\left(\frac{1}{\sigma^2}\right) + \frac{\partial \pi^*}{\partial \sigma}(n+\delta+\rho)\frac{1}{\sigma} > 0 \quad \text{if } k^* > k_0$$
(23)

Equation (23) together with (22) implies that $-\frac{d\lambda}{d\phi d\sigma} = \frac{\partial \mu}{\partial \phi \partial \sigma} > 0$ since $\lambda = -\varepsilon$

where $\frac{\partial \varepsilon}{\partial \lambda} = -1$ and $\frac{\partial \mu}{\partial \varepsilon} < 0$. This means that $\frac{d\lambda}{d\phi d\sigma}$ must be strictly negative.

Calibration of the Economy

For numerical simulations we calibrate the econony with parameters, if possible, close to the ones used by Turnovsky (2002) and Gokan (2003):

benchmark values: point of normalization: $k_0 = y_0 = 1$; $\pi_0 = 1/3$

aggregate elasticity of substitution: $\sigma = 0.8$

key monetary policy parameter: $\phi = 0.03$

weight of money in utility: $\theta = 0.3$

elasticity of marginal utility: $\eta = 2.5$

other parameters: rate of time preference: $\rho = 0.04$

rate of depreciation: $\delta = 0.04$

rate of population growth: n = 0.01.

Changes in the Parameters

- The speed of convergence will increase with the growth rate of the money supply
- This effect is the stronger the lower is the preference for money; however, the acceleration in the speed of convergence is stronger if the preference for money is higher.
- The speed of convergence effect of expansive monetary policy decreases if the e.o.s. increases
- Even with a high baseline profit share we are not able to replicate a 2% speed of convergence with values of the e.o.s. below one.

Table 1: Speed of convergence with low baseline profit share

Speed of convergence in percentage	Θ=0.8		Θ=0.3	
	λ	half time	λ	half time
	k ₀ =y ₀ =1; μ ₀ =2	π ₀ =1/3		•
σ=1.2	π =0.43	c*/y*=0.76	•	•
Ф=0.01	2.75	25.19	3.27	21.21
Ф=0.02	2.85	24.36	3.29	21.01
Ф=0.03	2.92	23.73	3.32	20.84
Ф=0.05	3.03	22.88	3.36	20.61
σ=1	π [*] =1/3	c'/y =0.81		
Ф=0.01	3.69	17.52	4.99	13.87
Ф=0.02	4.13	16.79	5.05	13.73
Ф=0.03	4.26	16.26	5.09	13.61
Ф=0.05	4.47	15.52	5.16	13.44
σ=0.8	$\pi' = 0.26$	c'/y'=0.86		
Ф=0.01	5.39	12.86	7.30	9.49
Ф=0.02	5.67	12.24	7.38	9.39
Ф=0.03	5.89	11.77	7.45	9.31
Ф=0.05	6.23	11.12	7.55	9.18
σ=0.6	π*=0.19	c*/y*=0.89		
Ф=0.01	7.19	9.68	10.59	6.54
Ф=0.02	7.59	9.13	10.69	6.48
Ф=0.03	7.95	8.72	10.79	6.43
Φ=0.05	8.50	8.15	10.93	6.34
σ=0.2	π'=0.12	c'/y'=0.94		
Ф=0.01	13.21	5.25	26.99	2.57
Ф=0.02	14.39	4.81	27.17	2.55
Φ=0.03	15.40	4.5	27.34	2.53
Ф=0.05	17.03	4.07	27.64	2.51

Table 2: Speed of convergence with **high** baseline profit share

Speed of convergence in percentage	Θ:	Θ=0.8		Θ=0.3	
	λ	half time	λ	half time	
	k ₀ =y ₀ =1; μ ₀ =1/2	π_0 =2/3 ¹			
σ=1	π = 2/3	c*/y*=0.63	•	•	
Φ=0.01	1.50	46.04	1.67	41.48	
Φ=0.02	1.54	44.99	1.68	41.16	
Φ=0.03	1.57	44.22	1.69	40.92	
Φ=0.05	1.6	43.17	1.71	40.59	
σ=0.8	π [*] =0.45	c*/y*=0.75			
Φ=0.01	3.32	20.87	4.06	17.06	
Φ=0.02	3.45	20.09	4.10	16.89	
Φ=0.03	3.55	19.52	4.14	16.75	
Ф=0.05	3.70	18.72	4.19	16.55	
σ=0.6	π'=0.29	c*/y*=0.83			
Φ=0.01	5.50	12.60	7.50	9.24	
Φ=0.02	5.79	11.98	7.58	9.15	
Φ=0.03	6.02	11.51	7.64	9.07	
Ф=0.05	6.37	10.87	7.75	896	
σ=0.2	π'=0.13	c*/y*=0.92			
Ф=0.01	12.57	5.52	24.74	2.80	
Ф=0.02	13.66	5.08	24.91	2.78	
Φ=0.03	14.57	4.76	25.07	2.76	
Φ=0.05	16.06	4.32	25.35	2.73	

Influence of the Normalization Point

- Klump and Saam (2008) have shown that the choice of the normalization point has a major impact on the speed of convergence:
- Xue and Yip (2011) have identified two different effects –
 the efficiency and the distribution effect
- The distribution effect can be elimated by normalizing in the steady state

Table 3: Speed of convergence with various baseline points

Speed of convergence in percentage	Θ=0.3		
	λ	half time	
	k ₀ =2, y ₀ =1; μ ₀ =2	π ₀ =1/2	
σ=0.8	k*=8.92	π [*] =0.41	
Ф=0.01	4.57	15.18	
Ф=0.02	4.61	15.03	
Ф=0.03	4.65	14.90	
Φ=0.05	4.70	14.71	
	k ₀ =5, y ₀ =1 ; μ ₀ =2	π ₀ =5/7	
σ=0.8	k*=16.07	π =0.65	
Ф=0.01	2.08	33.26	
Ф=0.02	2.10	32.98	
Ф=0.03	2.12	32.77	
Ф=0.05	2.14	32.26	
	k ₀ =1, y ₀ =0.5; μ ₀ =2	π ₀ =1/3	
σ=0.8	k = 2.05	π =0.29	
Ф=0.01	6.45	10.75	
Ф=0.02	6.51	10.64	
Ф=0.03	6.57	10.55	
Ф=0.05	6.67	10.41	

The higher the baseline point the lower is the speed of convergence

Table 4: Speed of convergence with baseline point in the steady state

Speed of convergence in percentage	Θ=0.3		
	λ	half time	
baseline point in steady state of σ=0.8	$k_0=k_{\sigma=0.8}=4.409,$ $y_0=1.547$	π ₀ =0.26	
σ=1.2			
Ф=0.01	5.77	12.02	
Φ=0.02	5.83	11.89	
Ф=0.03	5.88	11.79	
Ф=0.05	5.96	11.63	
σ=0.8			
Φ=0.01	7.30	9.49	
Φ=0.02	7.38	9.39	
Φ=0.03	7.45	9.31	
Ф=0.05	7.55	9.18	
σ=0.2			
Ф=0.01	15.64	4.43	
Φ=0.02	15.78	4.39	
Ф=0.03	15.89	4.36	
Φ=0.05	16.10	4.30	

The impact of a change in the e.o.s. on the speed of convergence is largely due to the distribution effect

The impact of monetary policy is more channelled via the *efficiency effect*

Conclusion

- By using a normalized CES production function we are able to derive more realistic effects of monetary policy on the speed of convergence than Gokan (2002)
- Monetary policy is the more effective in speeding up convergence, the lower ist the e.o.s. and the lower is the preference for money
- The choice of the normalization point has a particular influence on the result as it determines the interplay between distribution and efficiency effects which can both be induced by changes in the e.o.s.

1 Appendix

Reformulation of the normalized CES production function

$$\begin{split} f(k) &= C(\sigma) \Big[\alpha(\sigma) k^{\Psi} - \left(1 - \alpha(\sigma)\right) \Big]^{\frac{1}{\Psi}} \\ &= y_0 \Bigg[\frac{k_0^{1-\Psi} + \mu_0}{k_0 + \mu_0} \Bigg]^{\frac{1}{\Psi}} \Bigg[\frac{k_0^{1-\Psi}}{k_0^{1-\Psi} + \mu_0} k^{\Psi} - \left(1 - \frac{k_0^{1-\Psi}}{k_0^{1-\Psi} + \mu_0}\right) \Bigg]^{\frac{1}{\Psi}} \\ &= y_0 \Bigg[\frac{k_0^{1-\Psi}}{k_0 + \mu_0} k^{\Psi} - \frac{k_0^{1-\Psi} + \mu_0}{k_0 + \mu_0} + \frac{k_0^{1-\Psi}}{k_0 + \mu_0} \Bigg]^{\frac{1}{\Psi}} \\ &= y_0 \Bigg[\frac{k_0}{k_0 + \mu_0} \frac{k^{\Psi}}{k_0^{\Psi}} - \frac{\mu_0}{k_0 + \mu_0} \Bigg]^{\frac{1}{\Psi}} \\ &= y_0 \Bigg[\pi_0 \bigg(\frac{k}{k_0} \bigg)^{\Psi} + \left(1 - \pi_0\right) \bigg]^{\frac{1}{\Psi}} \end{split}$$

Proof of Equation (4):

$$y = y_0 \left[\pi_0 \left(\frac{k}{k_0} \right)^{\Psi} + (1 - \pi_0) \right]^{\frac{1}{\Psi}}$$

$$\ln y = \ln y_0 + \frac{1}{\Psi} \ln \left[\pi_0 \left(\frac{k}{k_0} \right)^{\Psi} + (1 - \pi_0) \right]$$

$$\frac{1}{y} \frac{dy}{d\sigma} = -\frac{1}{\Psi^2} \frac{1}{\sigma^2} \ln \left[\pi_0 \left(\frac{k}{k_0} \right)^{\Psi} + (1 - \pi_0) \right] + \frac{1}{\Psi} \frac{1}{\sigma^2} \frac{\pi_0 \left(\frac{k}{k_0} \right)^{\Psi} \ln \left(\frac{k}{k_0} \right)}{\pi_0 \left(\frac{k}{k_0} \right)^{\Psi} + (1 - \pi_0)}$$

$$\frac{dy}{d\sigma} = -\frac{1}{\Psi^2} \frac{1}{\sigma^2} y \left\{ \ln \left[\pi_0 \left(\frac{k}{k_0} \right)^{\Psi} + (1 - \pi_0) \right] - \frac{\Psi \pi_0 \left(\frac{k}{k_0} \right)^{\Psi} \ln \left(\frac{k}{k_0} \right)}{\pi_0 \left(\frac{k}{k_0} \right)^{\Psi} + (1 - \pi_0)} \right\}$$

$$\text{applying: } \left(\frac{k}{k_0} \right)^{\Psi} = \frac{\pi(1 - \pi_0)}{\pi_0 (1 - \pi)}$$

$$\frac{dy}{d\sigma} = -\frac{1}{\Psi^2} \frac{1}{\sigma^2} y \left\{ \pi \ln \left(\frac{\pi_0}{\pi} \right) + \ln \left(\frac{1 - \pi_0}{1 - \pi} \right) - \pi \ln \left(\frac{1 - \pi_0}{1 - \pi} \right) \right\}$$

$$\frac{dy}{d\sigma} = -\frac{1}{\Psi^2} \frac{1}{\sigma^2} y \left\{ \pi \ln \left(\frac{\pi_0}{\pi} \right) + (1 - \pi) \ln \left(\frac{1 - \pi_0}{1 - \pi} \right) \right\}$$

The characteristic equation is clearly negative for any negative root as can be seen from the plot below.

Derivation of equation (22)

$$f''(k^*) = -f'(k^*)(1 - \psi)(\frac{\pi_0\left(\frac{k^*}{k_0}\right)^{\psi}}{\pi_0\left(\frac{k^*}{k_0}\right)^{\psi} + (1 - \pi_0)} - 1)\frac{1}{k}$$

$$= -f'(k^*)(1 - \psi)(1 - \pi) = -(n + \delta + \rho)(1 - \pi)\frac{1}{\sigma}$$

$$f'(k^*) = (n + \delta + \rho)$$

$$\frac{dk^*}{d\sigma} f''(k^*) = -\frac{\partial f'(k^*)}{\partial \sigma}$$

$$\frac{dk^*}{d\sigma} = -\frac{\partial f'(k^*)}{\partial \sigma} \frac{1}{f''(k^*)} > 0 \quad \text{sin ce} \quad f''(k^*) < 0 \quad \text{and} \quad \frac{\partial f'(k^*)}{\partial \sigma} > 0$$

$$c^* = f(k^*) - (n + \delta)k^*$$

$$\frac{dc^*}{d\sigma} = \frac{\partial f(k^*)}{\partial \sigma} + f'(k^*) \frac{dk^*}{d\sigma} - (n + \delta) \frac{dk^*}{d\sigma}$$

$$= \frac{\partial f(k^*)}{\partial \sigma} + \frac{dk^*}{d\sigma} (f'(k^*) - (n + \delta))$$

$$= \frac{\partial f(k^*)}{\partial \sigma} + \frac{dk^*}{d\sigma} \rho > 0$$

$$\pi = \frac{f'(k)k}{f(k)} = \pi_0 \left(\frac{k}{k_0}\right)^w \left[\pi_0 \left(\frac{k}{k_0}\right)^w + (1 - \pi_0)\right]^{-1}$$

$$\frac{\partial \pi}{\partial \sigma} = \frac{1}{\sigma^2} (1 - \pi) \pi \ln \left(\frac{k}{k_0}\right) > 0 \quad \text{if} \quad k > k_0$$

$$\frac{dc^*}{d\sigma} f''(k^*) + \frac{\partial f''(k^*)}{\partial \sigma} c^* = \frac{dc^*}{d\sigma} f''(k^*) + (n + \delta + \rho)(1 - \pi^*) \left(\frac{1}{\sigma^2}\right)$$

Influence of elasticity of substitution on the speed of convergence

$$\frac{\partial \mu}{\partial \sigma} = -\varepsilon \frac{\left(1 + \theta(1 - \eta)\right)}{\theta + \eta(1 - \theta)} * \frac{\partial \left(c^* f''(k^*)\right)}{\partial \sigma} + \frac{\partial \left(c^* f''(k^*)\right)}{\partial \sigma} \frac{\left(\rho + \phi\right)}{\theta + \eta(1 - \theta)} < 0 \quad \text{if } \varepsilon < 0$$

 $+\frac{\partial \pi^*}{\partial x}(n+\delta+\rho)\frac{1}{x}>0$ if $k^*>k_0$

$$\frac{\partial \left(c^* f''\left(k^*\right)\right)}{\partial \sigma} = \frac{dc^*}{d\sigma} f''\left(k^*\right) + \frac{\partial f''\left(k^*\right)}{\partial \sigma} c^* > 0$$