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Abstract 

We propose a novel identification-robust test for the null hypothesis that an estimated new-

Keynesian model has a reduced form consistent with the unique stable solution against the 

alternative of sunspot-driven multiple equilibria. Our strategy is designed to handle 

identification failures as well as the misspecification of the relevant propagation mechanisms. 

We invert a likelihood ratio test for the cross-equation restrictions (CER) that the new-

Keynesian system places on its reduced form solution under determinacy. If the CER are not 

rejected, sunspot-driven expectations can be ruled out from the model equilibrium and we 

accept the structural model. Otherwise, we move to a second-step and invert an Anderson and 

Rubin-type test for the orthogonality restrictions (OR) implied by the system of Euler 

equations. The hypothesis of indeterminacy and the structural model are accepted if the OR 

are not rejected. We investigate the finite sample performance of the suggested identification-

robust two-steps testing strategy by some Monte Carlo experiments and then apply it to a 

new-Keynesian AD/AS model estimated with actual U.S. data. In spite of some evidence of 

weak identification as for the ‘Great Moderation’ period, our results offer formal support to 

the hypothesis of a switch from indeterminacy to a scenario consistent with uniqueness which 

occurred in the late 1970s. Our identification-robust full-information confidence set for the 

structural parameters computed on the ‘Great Moderation’ regime turns out to be more 

precise than the intervals previously reported in the literature through ‘limited-information’ 

methods. 
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1 Introduction

The U.S. in�ation and output growth processes have experienced dramatic
breaks in the post-WWII. In particular, a marked reduction of the U.S.
macroeconomic volatilities has been documented by Stock andWatson (2002),
who coined the popular term �Great Moderation�to indicate this stylized fact.
A possible explanation for such phenomenon hinges upon the hypothesis of
the switch to an aggressive monetary policy conduct occurred with the ap-
pointment of Paul Volcker as Chairman of the Federal Reserve at the end of
the 1970s. With his appointment, the argument goes, the Fed moved from a
weakly aggressive reaction to in�ation to a much stronger one. Such a switch
anchored private sector�s in�ation expectations, therefore leading the U.S.
economy to move from an indeterminate equilibrium to determinacy. This
story, popularized by Clarida et al. (2000), has subsequently been supported
by Lubik and Schorfheide (2004), Boivin and Giannoni (2006), Benati and
Surico (2009), Mavroeidis (2010), and Inoue and Rossi (2011a).
The above mentioned contributions implicitly assume the new-Keynesian

model one works with to be correctly speci�ed and, with the remarkable
exception of Mavroeidis (2010), to feature identi�able parameters. As con-
cerns the �rst issue, albeit new-Keynesian models can display several types
of misspeci�cation (An and Schorfheide, 2007), the omission of propaga-
tion mechanisms from the structural equations is a major concern in the
empirical assessment of determinacy/indeterminacy. As discussed by Lubik
and Schorfheide (2004) and Fanelli (2012), indeterminacy generally entails a
richer correlation structure of the data. Therefore, the risk run by an econo-
metrician is to confound a determinate case in which relevant propagation
mechanisms are not embedded by the structural model at hand with the
indeterminate scenario. In conducting their Bayesian analysis, Lubik and
Schorfheide (2004) tackle this issue by analyzing versions of a small-scale
new-Keynesian model featuring di¤erent dynamic structures, while Fanelli
(2012) proposes a frequentist test of determinacy/indeterminacy that explic-
itly controls for the omission of propagation mechanisms from the speci�ed
system of structural Euler equations.
As concerns the identi�ability of the structural parameters, aside from

Mavroeidis (2010), who adopts a single-equation �limited-information� ap-
proach, all existing empirical contributions in which the determinacy/indeterminacy
issue of U.S. monetary policy is investigated assume that the structural pa-
rameters are identi�able. In general, both �nite sample and asymptotic dis-
tributions for estimators and tests can be strongly a¤ected if identi�cation
conditions are not satis�ed, see e.g. Sargan (1983), Phillips (1989), Staiger
and Stock (1997) and Stock and Wright (2000). Many authors have re-
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cently argued that estimated new-Keynesian systems like or similar to the
one considered in this paper can be a¤ected by �weak identi�cation�issues.
Identi�cation problems in a system of variables featuring highly nonlinear
restrictions may involve the rank condition of the information matrix or
suitable transformation of moments (Iskrev, 2008, 2010; Komunjer and Ng,
2011), or the relationship between the structural parameters and the sample
objective function, which may display �small�curvature in certain regions of
the parameter space, see e.g. Canova and Sala (2009). The former concept
of identi�cation is also referred to as �population identi�cation�, as opposed
to the latter, often termed �sample identi�cation�, because it is speci�c to a
particular dataset and sample size (for proponents of this terminology, see
Canova and Sala, 2009). Our paper is concerned with this second phenom-
enon, which we characterize as the situation in which the criterion used to
estimate the structural parameters and test hypotheses on these parameters
exhibit �little curvature�in all or some directions of the parameter space, with
the consequence of being nearly uninformative about these parameters. Weak
identi�cation of all or part of the estimated parameters can a¤ect negatively
the �nite sample performances of the testing procedures commonly used by
�frequentist�practitioners. Robust inference under possible identi�cation fail-
ure has received increasing attention by the literature on dynamic stochastic
general equilibrium (DSGE) models, see e.g. Canova and Sala (2009), Du-
four et al. (2009, 2013), Kleibergen and Mavroeidis (2009), Mavroeidis (2005,
2010), Guerron-Quintana et al. (2013) and Andrews and Mikusheva (2014),
among others.1

This paper�s contribution is twofold. On the methodological side, we
propose a novel identi�cation-robust test for the null hypothesis that an esti-
mated new-Keynesian model has a reduced form consistent with the unique
stable solution, against the alternative of sunspot-driven multiple equilib-
ria. The test (i) can be applied regardless of the strength of identi�cation of
the model�s structural parameters, and (ii) controls for the case of �dynamic
misspeci�cation�, where by this term we mean the omission of relevant prop-
agation mechanisms from the speci�ed system of structural Euler equations.
On the empirical side, we use the small scale new-Keynesian model discussed
in Benati and Surico (2009) and apply the proposed method to post-WWII
U.S. data to investigate indeterminacy issues in the conduct of monetary
policy on our selected �pre-Volcker�and �Great Moderation�samples.
As regards the methodological contribution, the proposed testing strategy

is based on two steps. In the �rst-step, we use an identi�cation-robust �full-

1Inoue and Rossi (2011b) and Andrews and Cheng (2012) tackle the issue from a more
general perspective but their analysis can be adapted to the context of DSGE models.

4



information�method to test the cross-equation restrictions (CER) that the
new-Keynesian model places on its unique stable reduced form solution under
determinacy. This requires the (numerical) inversion of a likelihood-ratio test
for the CER implied by the new-Keynesian model along the lines recently
suggested by Guerron-Quintana et al. (2013) and Dufour et al. (2013). If the
CER are not rejected, we can rule out the occurrence of sunspot-driven ex-
pectations and arbitrary nuisance parameters from the model�s equilibrium.
Importantly, in this case we cannot rule out the possibility of a Minimum
State Variable (MSV) equilibrium (McCallum, 1983), i.e. a solution nested
within the class of indeterminate equilibria observationally equivalent to the
determinate reduced form, see Evans and Honkapohja (1986), Lubik and
Schorfheide (2004) and Fanelli (2012). Notably, the non-rejection of the
CER amounts to an implicit acceptance of the hypothesis of correct speci-
�cation of the new-Keynesian system. If instead the CER are rejected, we
move to a second-step to determine whether the outcome obtained in the
�rst-step depends on the multiple equilibria hypothesis, or to the omission
of relevant propagation mechanisms from the speci�ed structural equations.
We apply an identi�cation-robust �limited-information�method and invert a
test for the orthogonality restrictions (OR) implied by the system of Euler
equations under the rational expectations hypothesis (and the assumption of
correct speci�cation). In principle, if the new-Keynesian system is correctly
speci�ed, the OR are valid irrespective of whether the implied equilibrium
is determinate or indeterminate. However, conditional on the result in �rst-
step, the non-rejection of the OR is in our framework evidence of indeter-
minacy, while their rejection suggests that the speci�ed structural equations
do not capture the dynamic of the data su¢ ciently well. The test inverted
in this second-step is an Anderson Rubin-type test (Anderson and Rubin,
1949) that can be implemented in the multivariate framework along the lines
suggested by Dufour et al. (2009, 2013).2

The tests computed in both steps are based on asymptotically pivotal test
statistics regardless of the strength of identi�cation of the model�s structural
parameters. The overall testing strategy is asymptotically correctly sized.
We investigate its �nite sample performance by some Monte Carlo experi-
ments, using the new-Keynesian model by Benati and Surico (2009) as data
generating process.
As regards the empirical contribution, the application of our testing strat-

egy on U.S. quarterly data using Benati and Surico�s (2009) model as bench-

2Alternatively, one can apply the �S-test�approach by Stock and Wright (2000) or the
�K-LM test� approach by Kleibergen (2005), which require the evaluation of the crite-
rion function associated with the continuos-updating version of the generalized method of
moments.
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mark, leads us to the following �ndings. The identi�cation-robust test for
the CER computed in the �rst-step implies the rejection of the hypothesis
of determinacy on the �pre-Volcker�sample. Conditional on this �rst-step,
our identi�cation-robust test for the OR computed in the second-step does
not reject the new-Keynesian framework at hand. Therefore, our results
support the multiple equilibria scenario, which acknowledges a role for self-
ful�lling expectations as a driver of the U.S. macroeconomic dynamics dur-
ing the 1970s. Instead, when considering our �Great moderation� sample,
the identi�cation-robust test for the CER computed in the �rst-step clearly
supports the CER implied by the hypothesis of determinacy. While being
unable to interpret this result as conclusive evidence of determinacy (recall
the observational equivalence between the determinate and the indeterminate
MSV solution), the case of sunspot shocks-driven expectations is clearly ruled
out by the data. In line with Mavroeidis (2010), the �limited-information�
approach we implement in the second-step delivers wider projected con�-
dence intervals for the policy parameters during the �Great Moderation�, as
opposed to those computed for the �Great In�ation�period. If taken in iso-
lation, the projected con�dence intervals of the policy parameters would be
considered as uninformative as for the issue of determinacy. Di¤erently, our
�full-information�inferential approach enables us to interpret such evidence
as consistent with an economic system under determinacy, hence not a¤ected
by sunspot shocks. Therefore, our testing procedure is inherently more in-
formative than a single-equation approach (even when the latter is designed
to deal with weak identi�cation), in that it allows the econometrician to go
a step further in assessing (and, in this case, ruling out) the role of sunspot
�uctuations as possible drivers of the U.S. economic dynamics.
The remained of this paper is organized as follows. Section 2 introduces

the reference small scale new-Keynesian structural model, reports the time
series representations of its reduced form solutions under determinacy (Sub-
section 2.1) and indeterminacy (Sub-section 2.2), and analyzes the conditions
under which observational equivalence occurs (Sub-section 2.3). Section 3
discusses how inference can be conducted under identi�cation failure in a
�full-information�framework (Sub-section 3.1) and in a �limited-information�
(Sub-section 3.2) framework, and then combines these two approaches in a
coherent testing strategy (Sub-section 3.3). Section 4 investigates the �nite
sample performance of the suggested testing strategy by some simulation
experiments. Section 5 presents our empirical results obtained on U.S. quar-
terly data. Section 6 relates our work to the existing literature, and Section
7 contains some concluding remarks. Our Supplementary Material derives
(i) the time series representations of the reduced form solutions associated
with the new-Keynesian model, (ii) some asymptotic properties of the testing
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strategy and (iii) provides further Monte Carlo results on the �nite sample
properties of the testing strategy.

2 Structural model and reduced form solu-
tions

This section presents the reference small-scale new-Keynesian business cy-
cle model, summarize its time series representations under determinacy and
indeterminacy, and discusses the conditions which give rise to observational
equivalence. This is useful to understand the mechanics of the testing ap-
proach presented next.
Our reference new-Keynesian model is taken from Benati and Surico

(2009). It features the following three equations:

~yt = 
Et~yt+1 + (1� 
)~yt�1 � �(Rt � Et�t+1) + !~y;t (1)

�t =
�

1 + ��
Et�t+1 +

�

1 + ��
�t�1 + �~yt + !�;t (2)

Rt = �Rt�1 + (1� �)('��t + '~y~yt) + !R;t (3)

where

!x;t = �x!x;t�1 + "x;t , -1<�x<1 , "x;t �WN(0; �2x) , x = ~y; �;R (4)

and expectations are conditional on the information set Ft, i.e. Et�:=E(� j
Ft). The variables ~yt, �t, and Rt stand for the output gap, in�ation, and
the nominal interest rate, respectively; 
 is the weight of the forward-looking
component in the intertemporal IS curve; � is price setters�extent of indexa-
tion to past in�ation; � is households�intertemporal elasticity of substitution;
� is the slope of the Phillips curve; �, '�, and '~y are the interest rate smooth-
ing coe¢ cient, the long-run coe¢ cient on in�ation, and that on the output
gap in the monetary policy rule, respectively; �nally, !~y;t, !�;t and !R;t in eq.
(4) are the mutually independent, autoregressive of order one disturbances
and "~y;t, "�;t and "R;t are the structural (fundamental) shocks. This or simi-
lar small-scale models have successfully been employed to conduct empirical
analysis concerning the U.S. economy. Clarida et al. (2000) and Lubik and
Schorfheide (2004) have investigated the in�uence of systematic monetary
policy over the U.S. macroeconomic dynamics; Boivin and Giannoni (2006),
Benati and Surico (2009), and Lubik and Surico (2010) have replicated the
U.S. Great Moderation, Benati (2008) and Benati and Surico (2008) have
investigated the drivers of the U.S. in�ation persistence; Castelnuovo and
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Surico (2010) have replicated the VAR dynamics conditional on a monetary
policy shock in di¤erent sub-samples; Inoue and Rossi (2011a) have analyzed
the role of parameter instabilities as drivers of the Great Moderation.
We compact the system composed by eq.s (1)-(4) in the representation

�0Xt = �fEtXt+1 + �bXt�1 + !t (5)

!t = �!t�1 + "t , "t �WN(0;�") (6)

�:=dg(�~y; ��; �R) , �":=dg(�
2
~y; �

2
�; �

2
R)

where Xt:=(~yt; �t; Rt)0, !t:=(!~y;t; !�;t; !R;t)0, "t:=("~y;t; "�;t; "R;t)0 and

�0:=

0@ 1 0 �
�� 1 0

�(1� �)'~y �(1� �)'� 1

1A , �f :=
0@ 
 � 0

0 �
1+��

0

0 0 0

1A , �b:=
0@ 1� 
 0 0

0 �
1+��

0

0 0 �

1A :

Let �:=(
; �; �; �; �; �; '~y; '�; �~y; ��; �R; �
2
~y; �

2
�; �

2
R)
0 be the m � 1 vector

of structural parameters (m:=dim(�)). The elements of the matrices �0, �f ,
�b and � depend nonlinearly on � and, without loss of generality, the matrix
��0 :=(�0+��f ) is assumed to be non-singular. The space of all theoretically
admissible values of � is denoted by P.
For future uses, we consider the partition �:=(�0s, �

0
")
0, where �" contains

the non-zero elements of vech(�") and �s all remaining elements. The �true�
value of �, �0:=(�

0
0;s, �

0
0;")

0, is assumed to be an interior point of P : Given
the partition �:=(�0s, �

0
")
0, we also consider the corresponding partition of the

parameter space P:=P�s �P�". This distinction is important for two related
reasons. First, the determinacy/indeterminacy of the system depends only
on the values taken by �s, and not by �". Second, the sub-vector �" is not
directly recoverable (identi�able) from the estimation of the system of Euler
equations (5)-(6) through �limited-information�methods, and our procedure
for testing determinacy/indeterminacy also relies on the direct estimation of
�s from system (5)-(6).
Throughout the paper, we use the notations �M(�)�and �M :=M(�)�to

indicate that the elements of the matrix M depend nonlinearly on the struc-
tural parameters �, hence in our setup �0:=�0(�), �f :=�f (�), �b:=�b(�) and
�:=�(�): Moreover, we call �stable�a matrix that has all eigenvalues inside
the unit disk and �unstable�a matrix that has at least one eigenvalue outside
the unit disk. Thus, denoted with �max(�) the absolute value of the largest
eigenvalue of the matrix in the argument, we have �max(M(�)) < 1 for stable
matrices and �max(M(�)) > 1 for unstable ones.
The solution properties of the system of Euler equations (5)-(6) depend

on whether �s lies in the determinacy or indeterminacy region of the pa-
rameter space. Thus, the theoretically admissible parameter space P�s is
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decomposed into two disjoint subspaces, the determinacy region, PD�s , and its
complement PI�s :=P�snP

D
�s
. We assume that 8�s 2 P�s , an asymptotically

stationary (stable) reduced form solution to system (5)-(6) exists, hence the
case of non stationary and �explosive�(unstable) indeterminacy is automati-
cally ruled out. Since we consider only stationary solutions, PI�s contains only
values of �s that lead to multiple stable solutions. The whole set of regularity
conditions assumed to hold in the speci�ed structural system are reported
in our supplementary material, where we show that the stability/instability
of the matrix G(�s):=(��0 � �f�1)�1�f , where ��0 :=(�0 + ��f ), and �1 is
a matrix that will be discussed below, can be associated with the determi-
nacy/indeterminacy of the system.
Determinacy/indeterminacy is a system property that depends on all el-

ements in �s. There are cases in which the new-Keynesian system is highly
restricted and it becomes relatively simple to identify the region PD�s (P

I
�s
) of

the parameter space. For instance, if system (1)-(4) is restricted such that

:=1; �:=0, and �:=0, �x:=0, x = ~y; �;R, the model collapses to a �purely
forward-looking�model. In this particular case, it can be shown that the
inequality

'� +
1� �

�
'~y > 1 (7)

is su¢ cient and �generically�necessary (Woodford, 2003, Proposition 4.3, p.
254) for determinacy. Consequently, the determinacy region of the parameter
space is given by
PD�s :=

�
�s 2 P�s , '� + 1��

�
'~y > 1

	
. However, it is in general not possible to

work out a set of closed-form inequality constraints from system (5)-(6) that
are both necessary and su¢ cient for determinacy (indeterminacy) and that
can potentially be used to test whether �0;s lies in PD�s or P

I
�s
:3

2.1 Time series representation under determinacy

For values of �s such that the matrix G(�s):=(��0 � �f�1)�1�f is stable, i.e.
�max(G(�s))<1, the system (5)-(6) has a unique stable reduced form solution
that can be represented as the �nite-order VAR

(I3 � �1(�s)L� �2(�s)L2)Xt = ut , ut:=�(�s)�1"t (8)

3The following example shows that the condition in eq. (7) is not su¢ cient for determi-
nacy, if the structural model in eq.s (1)-(4) involves lags of the variables, other than leads.
Consider the system based on �:=0:99, �:=0:085, �:=0:40, 
:=0:25, �:=0:05, �:=0:95,
'~y:=2, '�:=0:77, �~y:=��:=�R:=0:9: In this case, the condition '� +

1��
� '~y > 1 is valid

but the rational expectation-solution to system (1)-(4), while being stable, is not unique.
Recall that we assume the existence of at least a solution under rational expectations.
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where L is the lag/lead operator (LhXt:=Xt�h), X0 and X�1 are �xed initial
conditions, �1(�s), �2(�s) and�(�s) are 3�3matrices whose elements depend
nonlinearly on �s and embody the cross-equation restrictions implied by the
small new-Keynesian model (Hansen and Sargent, 1980, 1981). As shown
in the Supplementary Material, the matrices �1(�s) and �2(�s) in eq. (8)
are obtained as the unique solution to the second-order quadratic matrix
equation

��=(��0 ���f��)�1��b (9)

where ��f , ��0, ��b and the stable matrix �� are respectively given by

��0:=
�
��0 03�3
03�3 I3

�
, ��f :=

�
�f 03�3
03�3 03�3

�
, ��b:=

�
��b;1 ��b;2
I3 03�3

�
, ��:=

�
�1 �2
I3 03�3

�
;

and ��b;1:=(�b + ��0), �
�
b;2:=���b and �(�):=(�0 � �f�1(�)). The matrix

�1:=�1(�s) is the one entering the de�nition of G(�s). The constrained
covariance matrix of the reduced form disturbances ut, denoted with ~�u, is
given by

~�u(�)=�(�s)�1�"(�")�(�s)0�1: (10)

Equations (9) and (10) de�ne the CER implied by our new-Keynesian struc-
tural model on its reduced form solution under determinacy.

2.2 Time series representation under indeterminacy

For values of �s such that the matrixG(�s):=(��0��f�1)�1�f is unstable, i.e.
�max(G(�s))>1,4 the class of reduced form solutions associated with the new-
Keynesian system (5)-(6) becomes more involved from a dynamic standpoint,
see Lubik and Schorfheide (2003, 2004) and Fanelli (2012).
In particular, when �max(G(�s))>1, the matrix G(�s) can be decomposed

in the form

G(�s)=P (�s)
�

�1 0n1�n2
0n2�n1 �2

�
P�1(�s)

where P (�s) is a 3�3 non-singular matrix, �1 is the n1�n1 (n1 < 3) Jordan
normal block that collects the eigenvalues of G(�s) that lie inside the unit
disk and �2 is the n2 � n2 (n2 � 3) Jordan normal block that collects the
eigenvalues of G(�s) that lie outside the unit disk. Notice that n1 + n2=3,
where n2:=dim(�2) determines the �degree of multiplicity�of solutions, see

4The case in which the matrix G(�s) has eigenvalues equal to one is deliberately ignored
because it can be associated with the case of non-stationary processes.
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below. In the Supplementary Material we prove that in this case the reduced
form solutions can be given the VARMA-type representation:

(I3��(�s)L)(I3��1(�s)L��2(�s)L2)Xt = (M(�s;  )��(�s)L)V (�s;  )�1"t+� t
(11)

� t:=(M(�s;  )� �(�s)L)V (�s;  )�1P (�s)�t + P (�s)�t: (12)

In this system, the matrices �1(�s) and �2(�s) are de�ned as in the case of
determinacy, see eq. (9), while the matrices �(�s), M(�s;  ) and V (�s;  )
are given by

�(�s):=P (�s)
�
0n1�n1 0n1�n2
0n2�n1 ��12

�
P�1(�s) , M(�s;  ):=P (�s)

�
In1 0n1�n2
0n2�n1 	

�
P�1(�s)

V (�s;  ):=(�0(�s)� �f (�s)�1(�s))� �(�s)�f (�s)(I3 �M(�s;  )):

In this framework, 	 is a n2�n2 matrix (n2 � 3) containing a set of arbitrary
auxiliary parameters unrelated to �s. We collect these parameters in the
vector  :=vec(	). The �additional�moving average term � t which enters
system (11)-(12) depends on a 3 � 1 martingale di¤erence sequence (MDS)
vector �t which collects the �sunspot shocks�, and may be unrelated to the
fundamental shocks. We assume �t has a time-invariant covariance matrix
�� . The speci�c features of the �t component are discussed in detail in the
Supplementary Material.
While the determinate equilibrium in eq. (8) depends only on the state

variables of the structural system (5)-(6), there are two sources of indetermi-
nacy featured by the equilibria in eq.s (11)-(12). First, there is the �paramet-
ric indeterminacy�that springs from the auxiliary parameters in the vector
 . Such parameters index solution multiplicity and may amplify or dampen
the �uctuations of Xt governed by the VMA part of the reduced form so-
lution. Second, there is the �stochastic indeterminacy�that stems from the
term � t, which in turn depends on the sunspot shocks �t (when �� 6= 03�3).
These shocks may arbitrarily alter the dynamics and volatility of the new-
Keynesian system, see Lubik and Schorfheide (2003, 2004) and Lubik and
Surico (2009) for discussions.

2.3 Observational equivalence

The structure of the two reduced form solutions reported above reveals that,
under indeterminacy, the parameter space associated with the new-Keynesian
model is wider compared to the case of determinacy. Indeed, in addition to
the structural parameters �, the dynamics of the system is also governed by
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 and �+� , where �
+
� collects the free elements of the covariance matrix �� .

Both  and �+� are unrelated to � and are not identi�ed under determinacy.
Let N be the open sub-space of R(n2)2 of all possible values taken by  ,

and let Z be the open sub-space of R6 of all possible values taken by the ele-
ments in �+� ; the �complete�parameter space associated with indeterminacy
is5

I:=
�
��:=(�0;  0; �+0� )

0, �s 2 PI�s ,  2 N , �
+
� 2 Z

	
: (13)

In the special case in which  and �+� ful�l the conditions

 =vec(I(n2)2) ()M(�s;  )=I3) , �+� =06�1 () � t=03�1 a.s. 8 t), (14)

system (11)-(12) collapses to a MSV solution (McCallum, 1983), i.e., a re-
duced form solution which has the same time series representation as the
determinate VAR solution in eq. (8), and it is subject to the same set of
cross-equation restrictions, see Evans and Honkapohja (1986), Lubik and
Schorfheide (2003, 2004), and Fanelli (2012).6 This observational equiva-
lence re�ects on the properties of the testing strategy we present below.

3 Inferential issues

Let X1, ..., XT be a sample of T observations that are supposed to be gener-
ated by a solution of the new-Keynesian system (5)-(6). Our task is to decide
whether the observations X1, ..., XT are consistent with the case of a unique
stable equilibrium, or the case of multiple stable equilibria, controlling for
two factors: (i) the possible identi�cation failures, where by this term we de-
note the case in which the objective functions used to estimate the structural

5For given a �s 2 PI�s , the auxiliary parameters  might in principle lie in a region of N
such that the VMA components of system (11)-(12) are non-invertible. Under this scenario,
the possibility of recovering the structural shocks from the history of Xt is compromised
even when the econometrician can observe all components of Xt. Thus, indeterminacy
can be a further source of �non-fundamentalness�in business cycle analysis.

6Observational equivalence between determinate and indeterminate reduced form so-
lutions may be also obtained from system (5) when the vector of fundamental shocks is
absent, i.e. when �"=03�3 ("t=03�1 a.s. 8 t). In this case, under a set of restrictions,
including �=0n�n, the structural model can be solved and represented as in eq. (8).
Thus, there exists an intrinsic identi�cation problem once we consider also �exact�DSGE
models: an indeterminate equilibrium of an �exact�model (i.e. featuring "t=03�1 and
�=0n�n), can be observationally equivalent to the determinate equilibrium of an DSGE
model with "t 6= 03�1 but richer dynamic structure, see Beyer and Farmer (2007) and
Fanelli (2012) for a comprehensive discussion. While being interesting from a theoreti-
cal standpoint, the case of absence of fundamental shocks in the structural equations is
empirically unpalatable, and it will not be considered in our analysis.
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parameters and derive the test statistics may be poorly informative about
� or some of its components; (ii) the possible �dynamic misspeci�cation�,
where by this term we denote the situation in which the system (5)-(6) omits
relevant propagation mechanisms.
An ideal test for the null H0 : �0;s 2 PD�s against the alternative H1 :

�0;s 2 PI�s should be based on testing the set of inequality restrictions that
identify the region PD�s (P

I
�s
) of the parameter space. For instance, Mavroei-

dis (2010) uses the standard �Taylor principle�condition in eq. (7) to address
the determinacy/indeterminacy issue in U.S. monetary policy by estimating a
Taylor-type monetary policy rule in isolation from other structural equations.
The typical risk with this �single-equation�approach is that the �Taylor prin-
ciple�holds with certainty in the form of eq. (7) only if the structural system
(5)-(6) ful�lls e.g. the restrictions 
:=1; �:=0, and �:=0, �x:=0, x = ~y; �;R.
Our estimates reported in Section 5 show that these restrictions are invalid.
In our framework, a �generic�characterization of the indeterminacy region
of the parameter space PI�s is given by P

I
�s
:=f�s 2 P�s , �max(G(�s))>1g ; see

Section 2 and the Supplementary Material. Unfortunately, even under strong
identi�cation, the condition �max(G(�s))>1 can hardly be used for testing
purposes. Indeed, aside from very special cases, it is not easy to map the in-
equalities restrictions that characterize the unstable eigenvalues of the G(�s)
matrix onto a set of �manageable�restrictions on the elements of �s.7 Even
working out the inequalities associated with the condition �max(G(�s))>1 on
a case-by-case basis, the resulting testing problem would involve nonstandard
inference, see e.g. Silvapulle and Sen (2005) and references therein.
To circumvent the above mentioned di¢ culties, we address the testing

problem from another viewpoint. We consider the following hypotheses:

H 0
0 : Xt is generated by the VAR system (8) under the CER in eq.s (9)-(10)

(15)
H 0
1 : Xt is generated by the VARMA-type system (11)-(12), with ��2I0 (16)

where I0 is a subset of I in eq. (13), de�ned by

I0:=
�
��:=(�0;  0; �+0� )

0, �s 2 PI�s ,  2 N n
�
vec(I(n2)2)

	
, �+� 2 Zn f06�1g

	
� I:

(17)
Under H 0

0, the new-Keynesian system admits the same time series represen-
tation as the unique stable solution but is observationally indistinguishable
from the indeterminate MSV equilibrium obtained from the system (11)-(12)

7Farmer and Guo (1995) use the inequality restriction that identify the indeterminacy
region of the parameter space in their stylized business cycle model, and show that their
point estimates of the structural parameters ful�l the restriction. However, no inference
is provided is such paper.
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when  and �+� satisfy the conditions in eq. (14). Under H
0
1, instead, the

new-Keynesian system generates indeterminate non-MSV equilibria. A key
observation is that the null of determinacy, H0: �0;s 2 PD�s , implies the hy-
pothesis H 0

0, while the converse is not true. Hence, the rejection of H
0
0 is

evidence against determinacy, while the non-rejection of H 0
0 can not be con-

sidered conclusive evidence of determinacy. Indeed, the non-rejection of H 0
0

is only su¢ cient to rule out the case of �parametric indeterminacy�generated
by the presence of the auxiliary parameters  , and the �stochastic indeter-
minacy�generated by the sunspot shocks (�+� 6= 06�1), but is not su¢ cient
to rule out the case of a MSV solution nested in the class of models in eq.s
(11)-(12).
To build our identi�cation-robust test for H 0

0 against H
0
1, we exploit the

well known fact that the construction of con�dence sets is a dual problem
to hypothesis testing, i.e. con�dence sets are obtained by inverting tests,
see e.g. Aitchison (1964).8 In turn, inverting a test means considering all
parameter values that are not rejected by the test at a pre-�xed signi�cance
level. Our robust testing strategy combines the information deriving from two
types of identi�cation-robust inferential approaches. The former, presented
in Sub-section 3.1, is a �full-information�identi�cation-robust approach which
allow us to build a con�dence set for �s exploiting the CER implied by the
new-Keynesian system under determinacy. The latter, summarized in Sub-
section 3.2, is a �limited-information� identi�cation-robust approach which
allow us to build a con�dence set for �s exploiting the OR implied by the
new-Keynesian system system under the rational expectations hypothesis.
These two methods are condensed in Sub-section 3.3 in a coherent testing
strategy for H 0

0 against H
0
1:

3.1 Full-information approach for the CER

We consider the reduced form �nite-order VAR solution of the new-Keynesian
model in eq. (8), and the vector of reduced form coe¢ cients �:=(��0; vech(�u)0)0,
where ��:=vec(�u), and the matrix �u:=[�1;�2] collects the VAR coe¢ -
cients. In our setup, � is assumed to be strongly identi�ed. This assumption
valid when all components of Xt are observed. For cases in which Xt fea-
tures unobserved components, it is necessary to refer to the minimal state-
space representation associated with the new-Keynesian system under de-
terminacy on a model-by-model basis, see Komunjer and Ng (2011) and

8This approach has been used in the recent literature on inference in weakly identi-
�ed DSGE models, see Dufour et al. (2009, 2013), Kleibergen and Mavroeidis (2009),
Mavroeidis (2010), Qu (2011), Andrews and Mikusheva (2012) and Guerron-Quintana et
al. (2013).
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Guerron-Quintana et al. (2013) for examples and discussion. We denote
with logLT (�) the log-likelihood function associated with the �nite-order
VAR in eq. (8) before imposing the CER.
The CER that the new-Keynesian model places on its determinate re-

duced form solution in eq.s (9)-(10) can conveniently be compacted in the
expression

f(�; �) = 0dim(�)�1 (18)

where f(�; �) is a continuous, twice di¤erentiable, vector function. By the
implicit function theorem, the restrictions in eq. (18) can also be written in
explicit form as follows (see Iskrev, 2008):

�=g(�) (19)

where g(�) is a nonlinear twice di¤erentiable function and the mapping from
� to � is valid in a neighborhood of the true parameter values. Under the
CER in eq. (19), the VAR log-likelihood depends on � and is denoted with
logLT (g(�)). In our setup, the shape of logLT (g(�)) may be poorly infor-
mative (or uninformative) about � or some of its components, violating one
of the standard regularity conditions behind ML estimation, see, inter alia,
Andrews and Mikusheva (2012). Throughout the paper we maintain that �"
in �:=(�0s; �

0
")
0 is strongly identi�ed, and that identi�cation failure may solely

a¤ect �s or some of its components. This assumption re�ects the situation
we typically observe in practice, where weak identi�cation or unidenti�cation
typically involve the elements in �s and not the elements in �".9 Under this
assumption, for any given value of �s=��s 2 P�s , the log-likelihood function
logLT (g(��s; �")) depends on �" alone, and ful�lls the regularity conditions
discussed in e.g. Guerron-Quintana et al. (2013).
Keeping these observations in mind, we face the problem of computing a

LR test for the null hypothesis that there exists a �" such that

H0;cer: ���s=g(
��s; �") , �s=��s 2 P�s (20)

(against the alternative H1;cer : ���s 6= g(��s; �")). The hypothesis H0;cer in
eq. (20) is composite: it specializes the CER in eq. (19) to the �guess��s=��s
about the parameters value. The notation ����s�used in eq. (19) remarks
that under the CER, the VAR reduced form coe¢ cients depend on the choice
�s=��s. When H0;cer is valid, also the hypothesis H 0

0 in eq. (15) is valid for
�s=��s. Likewise, when H 0

0 in eq. (15) is valid for some �s=��s, the hypothesis

9This assumption might be relaxed without changing the logic of the proposed testing
strategy.
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H0;cer in eq. (20) will be automatically valid. However, while H 0
0 is accepted

if there exists at least one �s=��s such that H0;cer holds, it is rejected if and
only if H0;cer is rejected for all possible parameter values.
Let LRT (�̂��s):=�2(logLT (�̂��s) � logLT (�̂)) be the likelihood-ratio test

statistic for the hypothesisH0;cer, where the vector �̂��s is de�ned by �̂��s :=g(
��s; �̂

��s

" ),

and �̂
��s

" is the ML estimate of �" obtained for �s=��s. UnderH0;cer, the asymp-
totic null distribution of LRT (�̂��s) is pivotal and �

2
d1
, where d1:=dim(�) �

dim(�"), regardless of whether �s is identi�ed or not, see e.g. Guerron-
Quintana et al. (2013). In practice, there might be many possible choices
�s=��s not rejected by the test LRT (�̂��s). Since the components of �s typically
lie within bounded (theoretically admissible) intervals, one can test H0;cer for
many possible choices of ��s within a �ne grid G�s in P�s , giving rise to a �grid
testing�procedure. The numerical inversion of the test LRT (�̂��s) for H0;cer

gives rise to the identi�cation-robust con�dence set (or acceptance region of
the test):

CLR1��1:=
�
��s 2 G�s , LRT (�̂��s) < c

�1
�2d1

�
(21)

where c�1
�2d1

is the �1-level cut-o¤ point associated with the �
2
d1
distribution,

and 0<�1<1 is the pre-�xed nominal level of signi�cance (or type-I error)
of the test.10 The identi�cation-robust con�dence set CLR1��1 has asymptotic
coverage 100(1 � �1) (see Supplementary Material). A point estimate of �s
can be obtained from the (nonempty) con�dence set CLR1��1 by

�̂s;ML := argmin
��s2CLR1��1

LRT (�̂��s); (22)

i.e. considering the parameter point within CLR1��1 with associated largest
p-value (or the �least rejected�models at the pre-�xed level �1).

11

The identi�cation-robust con�dence set CLR1��1 in eq. (21) is built in a �full-
information�framework, in the sense that inverting the test for the null in
eq. (20) requires computing the determinate rational expectations solution
associated with the new-Keynesian system.

10Dufour et al. (2013) have proposed another identi�cation-robust �full-information�
approach for the structural parameters of DSGE models based on the (numerical) inversion
of a test for zero coe¢ cients in the multivariate regression of the quantity ut(��s):=(I3 �
�1(��s)L��2(��s)L2)Xt (which correspond to the disturbance of the VAR system (8) under
the CER) on the regressors Zt:=(X 0

t�1; X
0
t�2)

0.
11The point estimates in eq. (22) can be interpreted as �Hodges-Lehmann�estimates of

�s, see e.g. Dufour et al. (2006, 2009, 2010).
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3.2 Limited-information approach for the system of
structural Euler equations

We now focus on the system of Euler equations (5)-(6), and consider the
problem of testing the simple hypothesis

H0;spec: �s=��s , ��s 2 P�s (23)

against the alternative H1;spec: �s 6= ��s, abstracting from the knowledge of
the reduced form solution of the model. H0;spec is the hypothesis that the
system of Euler equations (5)-(6) is valid in correspondence of the �guess�
�s=��s about the parameters value.
Following Dufour et al. (2013), a test for H0;spec can be computed as

follows. By simple algebraic manipulations, we re-write system (5)-(6) in the
form

��0Xt = �fXt+1 + �
�
b;1Xt�1 + �

�
b;2Xt�2 + ��f�t + "t � �f�t+1;

where �t:=Xt � Et�1Xt is a vector MDS, and then de�ne the 3 � 1 vector
function

v(Xt; �s):=��0Xt��fXt+1���b;1Xt�1���b;2Xt�2 = ��f�t+"t��f�t+1: (24)

Under H0;spec, the term v(Xt; ��s) follows a VMA(1)-type process and ful�lls
the OR:

E
�
v(Xt; ��s) j Ft�1

�
= 03�1: (25)

Therefore, we can associate the multivariate linear regression model:

v(Xt; ��s) = ���sZt + �t , Zt 2 Ft�1 , t = 1; :::; T (26)

to the hypothesis H0;spec: In eq. (26), ���s is a 3�r matrix of coe¢ cients, Zt
is a r � 1 vector of regressors selected from the information set Ft�1, and
�t is a disturbance term whose covariance matrix, ��, can possibly be non-
diagonal. The notation ����s�for the regression coe¢ cients remarks that we
have a multivariate regression system like that in eq. (26) for each choice
�s=��s. Under H0;spec, additional information from predetermined variables
should be irrelevant, hence the associated problem

H�
0;spec : ���s=03�r vs H�

1;spec : ���s 6= 03�r (27)

should lead us to accept H�
0;spec: We have thus transformed the problem of

testing the hypothesis H0;spec (against H1;spec) into the problem of testing
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the hypothesis H�
0;spec (against H

�
1;spec) in the multivariate linear regression

system (26). Standard asymptotic theory applies for the testing problem in
eq. (27) irrespective of whether �s is identi�able or not.
Let ART (��s) be any asymptotically pivotal test statistic for the problem

in eq. (27). In practice, ART (��s) can be a Wald-type, a Lagrange Multiplier
or (quasi-)LR test, and can be interpreted as an Anderson Rubin-type test
(Anderson and Rubin, 1949).12 Under H0;spec, the asymptotic null distrib-
ution of ART (��s) is �2d2, d2:=3r and also in this case there might be many
choices �s=��s not rejected by the test ART (��s). The numerical inversion of
the test ART (��s) for H0;spec leads to the identi�cation-robust con�dence set
(or acceptance region):

CAR1��2 :=
�
��s 2 D�s , ART (��s) < c

�2
�2d2

�
(28)

where D�s is a �ne grid in P�s , c
�2
�2d2
is the �2-level cut-o¤point associated with

the �2d2 distribution, and 0<�2<1 is the pre-�xed nominal level of signi�cance
(or type-I error) of the test. The identi�cation-robust con�dence set CAR1��2 has
asymptotic coverage 100(1��2) (see Supplementary Material) and de�nes the
set of parameter points in P�s which are consistent with the new-Keynesian
model at the signi�cance level �2 regardless of the multiplicity/uniqueness of
its solutions. A point estimate of �s can be obtained from the (nonempty)
con�dence set CAR1��2 by

�̂s;LI := argmin
��s2CAR1��2

ART (��s): (29)

It is worth observing that both methods discussed in this and in the previ-
ous sub-section refer to estimation of the full system of equations. However,
while the �full-information�method presented in Sub-section 3.1 imposes the
additional restriction that the reduced form is a �nite-order VAR and exploits
the CER implied by the structural model, the �limited-information�approach
summarized here ignores, by construction, any information stemming from
the reduced form solutions. Mavroeidis et al. (2014), Section 3, discuss the

12Since the �t term follows a VMA-type process in system (26), HAC-type versions of
the tests can be applied as suggested by Dufour et al. (2013). Alternatively, one can use
the �S-test�method by Stock and Wright (2000), or the �K-LM test�by Kleibergen (2005),
both based on the evaluation of the criterion function corresponding to the continuos-
updating version of generalized method of moments. Some computational issues make
us prefer the approach in Dufour et al. (2009, 2013). Kleibergen and Mavroeidis (2009)
discuss weak instrument robust statistics for testing hypotheses on �s or its subset in the
GMM framework, and then apply these methods to the new-Keynesian Phillips curve.
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di¤erence between the two approaches in the context of a single structural
equation.

3.3 Testing strategy

The two estimation/testing methods discussed in the previous sub-sections
form the basis of our identi�cation-robust testing strategy for H 0

0 in eq. (15)
against H 0

1 in eq. (16).
Our approach is based on the following two steps:

Step 1: LR test for the CER. Invert the test LRT (�̂��s) for H0;cer dis-
cussed in Sub-section 3.1 at the level �1, considering points �s=��s taken
from a �ne grid G��s in P�s . This yields the identi�cation-robust con�-
dence set

C�LR1��1:=
�
��s 2 G��s , LRT (�̂��s) < c

�1
�2d1

�
(30)

whose asymptotic coverage is at least 1� �1 (see Supplementary Mate-
rial). If C�LR1��1 is nonempty, the null H

0
0 is accepted and the analysis is

stopped. If instead C�LR1��1 is empty, i.e. the hypothesis H0;cer is rejected
for all possible parameter values in the grid implying the rejection of
H 0
0, we move to the next step.

Step 2: Anderson-Rubin test for the OR. Conditional on the con�dence
set CLR1��1 being empty, we invert the test ART (��s) for H0;spec discussed

in Sub-section 3.2 at the level �2, considering points �s=��s taken from a

�ne grid D��s such that D
�
�s
:=
n
��s 2 P�s , �max(G(��s))>1

o
. This yields

the identi�cation-robust con�dence set

C�AR1��2:=
�
��s 2 D��s , ART (��s) < c

�2
�2d2

�
(31)

whose asymptotic coverage is at least 1��2 (see Supplementary Mate-
rial). If C�AR1��2 is nonempty, we accept the hypothesis H

0
1 in eq. (16). If

instead C�AR1��2 is empty, i.e. H0;spec is rejected for all possible parameter
values in the grid, we reject H 0

1 and conclude that the new-Keynesian
system (5)-(6) omits relevant propagation mechanisms.

Hereafter, we conventionally denote the testing strategy obtained by com-
bining the two steps described above with the symbol �LRT ! ART�. Several
remarks are in order.
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Remark 1. The idea underlying the �LRT ! ART�approach is that
if the identi�cation-robust con�dence set C�LR1��1 computed in the �rst-step is
nonempty, there exists at least one point in the parameter space consistent
withH 0

0: This means that the time series representation of the new-Keynesian
model summarized in eq.s (8)-(10) is supported by the data for some �. If
instead the identi�cation-robust con�dence set C�LR1��1 is empty, H

0
0 is rejected

and a second-step is run to decide between H 0
1 and the dynamic misspeci-

�cation of the structural new-Keynesian system (5)-(6). The second-step is
therefore run conditionally on the rejection of the CER in the �rst-step. If
the identi�cation-robust con�dence set C�AR1��2 computed in the second-step
is nonempty, there exists at least one � in the parameter space consistent
with H 0

1. Finally, when both C�LR1��1 and C
�AR
1��2 are empty, the new-Keynesian

system omits relevant propagation mechanisms and is rejected.

Remark 2. The procedure is asymptotically valid irrespective of the
strength of identi�cation, hence it can be applied also when � is strongly
identi�ed. Notably, it does not require the identi�cation of the set of para-
metric inequality restrictions that de�ne the sub-regions PD�s (P

I
�s
) of the

parameter space. The practitioner is therefore not committed to the use of
nonstandard asymptotic inference. Moreover, it is not necessary to specify
prior distributions for � and the auxiliary parameters  (and �+� ) that govern
solution multiplicity in eq.s (11)-(12). In this respect, the suggested approach
can be regarded as an identi�cation-robust alternative to the test proposed
by Fanelli (2012) assuming strongly identi�ed models.

Remark 3. Many NK-DSGE models feature unobserved states and
reliable proxies for these states are not always available. In these situations,
we can still compute the LR test in the �rst-step along the lines suggested
by Guerron-Quintana et al. (2013), but the implementation of the Anderson
Rubin-type test in the second-step may become problematic. Thus, if LR
test for the CER rejects H 0

0 in the �rst-step, then it is not possible to decide
whether the rejection is due to the occurrence of multiple equilibria (H 0

1), or
to the omission of relevant propagation mechanisms. The extension of the
�LRT ! ART�testing strategy towards this direction is the subject for future
research.

Remark 4. The hypothesis of no dynamic speci�cation of the NK-DSGE
model is given by the composite hypothesis H� = H 0

0 _ H 0
1. In the Supple-

mentary Material we prove that as a test forH�, the �LRT ! ART�sequential
procedure has signi�cance level which is bounded above by the maximum of
the nominal type-I errors used for the LRT (�̂��s) test in the �rst-step and
the the ART (��s) test in the second-step. Thus, if e.g. �1 = �2:=0.10, the
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signi�cance level of the procedure as a test for H� is asymptotically no larger
than 10%.

4 Monte Carlo simulations

In this section, we use Benati and Surico�s (2009) new-Keynesian system in
eq.s (1)-(4) to investigate the �nite sample size performance of the �LRT !
ART� testing strategy through some Monte Carlo experiments. Further
Monte Carlo results about the rejection frequency of the testing strategy
under indeterminate equilibria that belong to the class of models de�ned by
H 0
1, and the case of �dynamic misspeci�cation�are con�ned in the Supple-

mentary Material.
It is worth noting that we work with a �semi-structural�expression for the

NKPC in eq. (2). Such expression features a slope parameter, �. According
to the new-Keynesian theory of the business cycle, � is a composite parame-
ter in�uenced by the Calvo-price stickiness parameter, the discount factor,
households�risk aversion, and the elasticity of labor. Identi�cation issues are
likely to be (even) more severe when referring to such a �fully-microfounded�
version of the NKPC, see Fuka�c and Pagan (2006, p.17). Our focus on eq.
(2) is justi�ed by our willingness to work with a representative version of the
NKPC. This is intended to maximize the comparability of our results to the
vast literature dealing with speci�cations similar to ours.13

Arti�cial data sets are generated from the reduced form solutions dis-
cussed in Section 2. In all experiments, we consider M = 1; 000 replications
and samples of length T = 100 (not including initial lags). The chosen
sample size corresponds roughly to the number of quarterly observations
we consider for the �pre-Volcker� (1954q1-1979q2) and �Great Moderation�
(1985q1-2008q2) samples in the empirical section (see Section 5). For each
generated data set, we treat the output gap as observable, reproducing the
situation we face in Section 5.
To evaluate the empirical size of the �LRT ! ART�test for the hypoth-

esis H 0
0, the Monte Carlo design is calibrated to match the model estimated

by Benati and Surico (2009) using U.S. data with Bayesian methods. The

13The same choice is adopted by e.g. Mavroeidis et al. (2014) in their recent review of
the NKPC empirical literature. Moreover, severe identi�cation issues a¤ect even the �semi-
structural�version of the NKPC we focus on (at least in the widely adopted uni-equational
context), as documented and discussed by, among others, Kleibergen and Mavroeidis
(2009) and Mavroeidis et al. (2014). Hence, while not fully exploiting the restrictions
coming from the theory, our version of the NKPC and the chosen new-Keynesian system
in general, represents an interesting data generating process to investigate the properties
of the proposed identi�cation-robust testing strategy.
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discount factor �:=0.99 is treated as known and estimation involves 13 free
parameters, 10 of which are collected in the sub-vector �s, and 3 in the sub-
vector �". The true vector of parameters �0:=(�

0
0;s; �

0
0;")

0 is calibrated to the
medians of the 90% coverage percentiles of the posterior distribution reported
in Table 1 of Benati and Surico (2009) (see the �After the Volcker stabiliza-
tion�column). The data are generated from the reduced form VAR solution
in eq. (8) subject to the CER in eq.s (9)-(10), using a Gaussian distribution
for the structural shocks "t and a diagonal covariance matrix �" (hence the
elements of the sub-vector �0;" correspond to the diagonal components of �").
With this calibration, �max(G(�0;s))=0.964.
The numerical inversion of the LRT (�̂��s) test (�rst-step) is obtained on

each simulated dataset by using a grid of points described in detail in Table
1. We refer to Andrews and Mikusheva (2014) for practical details about the
implementation of grid-testing methods.14 The log-likelihood maximization
algorithm under the CER is adapted from the grid-search numerical method
discussed in Bårdsen and Fanelli (2014). The empirical size of the test for H 0

0

is evaluated by �xing the type-I error of the test at the level �1=0.10. The re-
sults are reported in Table 1, where we summarize the rejection frequency of
the LRT (�̂�̂s;ML

) test and the average point estimates of the structural para-
meters (along with the corresponding Monte Carlo standard errors) obtained
from the problem in eq. (22) by replacing CLR1��1 with C

�LR
0:90 . For complete-

ness, Table 1 also reports the empirical size of the LRT (�̂�0;s) test for the

hypothesis H0;cer in eq. (20) evaluated at the speci�c point ��s = �s;0, see the
Supplementary Material for details.
The inverted LRT (�̂��s) test for H

0
0 tends to be slightly conservative, as

the empirical size is 7.9% as opposed to the nominal size of 10% (instead
the empirical size of the test LRT (�̂�0;s) for H0;cer: ���s=g(

��s; �"), ��s = �s;0
is 12.1%). Moreover, the grid-testing procedure delivers point estimates of
the structural parameters relatively close to the true values. Table 1 also
reports the average projected 90% con�dence intervals for the individual

14To invert the LRT (�̂��s) test numerically, we should consider a multi-dimensional grid

search for the log-likelihood logLT (g(��s; �")) on a large number of evenly spaced parameter
points. Since in our setup dim(�s)=10 is relatively large, this approach is computationally
cumbersome. For instance, if one considers only 10 evenly spaced points within each of
the 10 intervals that de�ne the admissibe parameter space (see the last column of Table
1), then it is necessary to evaluate the log-likelihood 1010 times for each simulated dataset.
To speed up computation time and line with what suggested by Andrews and Mikusheva
(2014), we decided to select only 300 points randomly (using the uniform distribution)
from the rectangle formed by the Cartesian products of the 10 intervals. Of course, the
employment of more sophisticated and e¢ cient algorithms could lead to an even more
satisfactorily empirical size-control of the test.
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structural parameters (fourth column), and these intervals are contrasted
with the actual intervals used to de�ne the parametric grid (�fth column).

5 Empirical evidence

In this section, we apply the �LRT ! ART�testing strategy to post-WWII
U.S. monetary policy. We employ quarterly data, sample 1954q3-2008q3,
and three observable variables, Xt:=(~yt; �t; Rt)0. The output gap ~yt is com-
puted as percent log-deviation of the real GDP with respect to the potential
output estimated by the Congressional Budget O¢ ce. The in�ation rate �t
is the quarterly growth rate of the GDP de�ator. For the short-term nomi-
nal interest rate Rt we consider the e¤ective Federal funds rate expressed in
quarterly terms (averages of monthly values). The source of the data is the
Federal Reserve Bank of St. Louis�web site. The beginning of the sample
is due to data availability (in particular, of the e¤ective Federal Funds rate.
The end of the sample is justi�ed by our intention to avoid dealing with the
�zero-lower bound�phase began in December 2008, which triggered a series of
non-standard policy moves by the Federal Reserve whose e¤ects are hardly
captured by our standard new-Keynesian framework.
Our reference structural model is given by the new-Keynesian system (1)-

(4). Following most of the literature on the �Great Moderation�, we divide
the post-WWII U.S. era in two periods, roughly corresponding to the �Great
In�ation�and the �Great Moderation�samples. We take the advent of Paul
Volcker as Chairman of the Federal Reserve to identify our �rst sub-sample,
i.e. 1954q3-1979q2, which we call �pre-Volcker�sample. As for the �Great
Moderation�sample, we consider the period 1985q1-2008q3. McConnell and
Pérez-Quirós (2000) �nd a break in the variance of the U.S. output growth
in 1984q1. Our empirical investigation deals with a measure of the output
gap, in�ation, and the federal funds rate. Signs of the �Volcker disin�ation�
are still evident in 1984. This is possibly due to the �credibility build-up�
undertaken by the Federal Reserve in the early 1980s, a period during which
private agents gradually changed their view on the Federal Reserve�s ability to
deliver low in�ation (Goodfriend and King, 2005). Moreover, the �rst years
of Volcker�s tenure (until October 1982) were characterized by non-borrowed
reserves targeting. Hence, the �t of our policy rule would substantially worsen
if we included the Volcker disin�ation (Estrella and Fuhrer, 2003; Mavroeidis,
2010), a fact that would carry consequences on the estimates of all parameters
of the system. To circumvent this problem, we postpone the beginning of our
second sub-sample to 1985q1. A similar choice is undertaken by Christiano
et al. (2013). Thus, our �Great Moderation�sample is given by the period
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1985q1-2008q3 and will be denoted as �post-1985� sample throughout this
section.
The �rst-step of the �LRT ! ART�testing strategy requires computing

the �full-information�LRT (�̂��s) test discussed in Sub-section 3.1. As is com-
mon in the literature, we pre-�x the nominal level of signi�cance at the 10%
level (�1=0.10). The log-likelihood maximization algorithm is inspired to
the grid-search approach discussed in Bårdsen and Fanelli (2014). Table 2
summarizes the results of the LRT (�̂��s) test on the �pre-Volcker�and �post-
1985�samples, respectively. In the upper panel of Table 2, we summarize
the projected 90% con�dence intervals for the individual elements of �s de-
rived from the identi�cation-robust con�dence set C�LR0:90 (see eq. (21)) and
the point estimate of �s. The projected con�dence intervals are computed
using Dufour�s (1997) method. In the lower panel, we indicate whether the
grid-testing procedure leads to an empty or nonempty identi�cation-robust
con�dence set, and report the value of LRT (�̂��s) associated with

��s;ML and
corresponding p-value.
Table 2 suggests two important facts. First, the CER that the new-

Keynesian system implies under determinacy are �rmly rejected on the �pre-
Volcker� sample (the set C�LR0:90 is empty), and are �rmly accepted on the
�post-1985�sample by the data (the set C�LR0:90 is nonempty and the p-value
associated with the �least rejected�model is 0.36). We reject the hypothesis
of determinacy on the �pre-Volcker�sample and do not reject the hypothesis
H 0
0 in eq. (15) on the �post-1985�sample. Despite we can not interpret the

result relative to the chosen �Great Moderation� regime as conclusive evi-
dence of determinacy (see the discussions in Sub-section 2.3 and Sub-section
3.3), our inference is su¢ cient to rule out the scenario according to which
the U.S. business cycle was driven by sunspot expectations extraneous to
fundamental shocks. Interestingly, the fact that the CER entailed by the
hypothesis of determinacy are not rejected on the period 1985q1-2008q3,
suggests an implicit non-rejection of the new-Keynesian system (1)-(4) on
that sample. Second, the 90% projected identi�cation-robust con�dence in-
tervals for the policy (feedback) parameters '~y and '� are surprisingly tighter
than the con�dence sets documented by e.g. Mavroeidis (2010). In partic-
ular, the estimation of the value of the parameter '�, which captures the
systematic reaction of the Federal Reserve to in�ation, has attracted a lot of
attention. The debate has been intense also because of the lack of precision
surrounding the estimates of such parameter. A prominent example in the
literature is represented by Mavroeidis (2010). He convincingly shows that,
in a single-equation context, the estimation of '� tends to be imprecise, and
the formal evidence in favor of an aggressive systematic policy response to
in�ation is scant. Possible reasons include (a) the absence of sunspot shocks

24



under determinacy, which implies a lower volatility of in�ation and output
and, therefore, a harder identi�cation of the systematic relationship between
the policy rate and the policy relevant-macroeconomic variables, and (b) a
higher degree of interest rate smoothing, which limits the reaction of the
policy rate in presence of shocks hitting in�ation and output. Interestingly,
our empirical analysis allows us to formally rule out any role for sunspot
�uctuations in the �post-1985�period on the one hand, and a fair amount
of interest rate smoothing (ranging from 0.569 to 0.697, according to our
90% con�dence interval) by the Federal Reserve, on the other hand. Im-
portantly, our identi�cation-robust approach does not lead us to reject the
correct speci�cation of the speci�ed new-Keynesian model during the �Great
Moderation�. Our �ndings are particularly important in light of a recent pa-
per by Cochrane (2011), who argues that the parameters of Taylor-type rules
like that in eq. (3) are not identi�able in prototypical new-Keynesian models.
Cochrane (2011), however, considers formulations of the new-Keynesian sys-
tem which are �less involved�, from a dynamic standpoint, than our �hybrid�
model in eq.s (1)-(4). Table 2 shows that the �full-information� approach
delivers relatively tight con�dence sets not only for '~y and '�, but also for
� (intertemporal elasticity of substitution), � (indexation to past in�ation),
and � (slope of the NKPC), which are notoriously di¢ cult to estimate pre-
cisely from the data.15

We then proceed with the �limited-information�second-step of the �LRT !
tRT� testing strategy, which requires the inversion of the Anderson and
Rubin-type ART (��s) test for the OR implied by the system of Euler equations
(1)-(4) on the �pre-Volcker�sample. Recall, indeed, that the CER implied
by the new-Keynesian model under the hypothesis of determinacy have been
rejected by the data on the �pre-Volcker�sample. The second-step is con-
ducted to establish whether the rejection of the hypothesis of determinacy
can be ascribed to the multiple equilibria hypothesis, or to the inability of
the estimated system to capture the propagation mechanisms at work in the
data. For completeness, we invert the ART (��s) test not only on the �pre-
Volcker�sample, but also on the �post-1985�sample, albeit this calculation
would not be required by our testing strategy (recall that we have accepted
the new-Keynesian system on the �post-1985�sample in the previous step).
We pre-�x the nominal type-I error �2 at the level �2=0.10.
The results of this second-step are summarized in Table 3. In the upper

panel, we report the projected con�dence intervals for the individual elements

15It can be noticed that some of the elements of �̂s;ML (�fth column of Table 2) lie
exactly on the boundaries of the corresponding intervals used to de�ne the grid (e.g. the
point estimate of �). This is perfectly consistent with the identi�cation-robust inference
approach, see, e.g., Dufour et al. (2006, 2009, 2010, 2013).
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of �s derived with Dufour�s (1997) method from the identi�cation-robust
con�dence set C�AR0:90 , along with the point estimate obtained from the problem
in eq. (29) replacing CAR1��2 with C

�AR
0;90 . In the lower panel, we indicate whether

the grid-testing procedure leads to an empty or nonempty identi�cation-
robust con�dence set and, in the second case, we report the value of the test
statistic associated with the point estimate �̂s;LI and corresponding p-value.
Table 3 shows that the new-Keynesian model is not rejected by the

ART (��s) test on the �pre-Volcker� sample (the set C�AR0:90 is nonempty and
the p-value associated with the �least rejected�model is 0.14). As expected,
we also �nd that the new-Keynesian model is not rejected by the ART (��s)
test on the �post-1985�sample (the set C�AR0:90 is nonempty and the p-value as-
sociated with the �least rejected�model is 0.37). This is a �reassuring�result,
as it corroborates the outcome obtained with the LRT (�̂��s) test in the �rst-
step. Moreover, if we compare the projected identi�cation-robust con�dence
intervals built with the �full-information�method (sixth column of Table 2)
with the corresponding intervals built with the �limited-information�method
(sixth column of Table 3), we �nd that the former are remarkably more infor-
mative than the latter. This result con�rms that �full-information�methods
designed to deal with identi�cation failure provide more precise information
than �limited-information�approaches.
By combining the evidence in Table 3 with that in Table 2, we argue that if

one interprets the U.S. business cycle through the lens of the estimated (and
not rejected) new-Keynesian system (1)-(4), any inference based on �nite-
order structural VARs on the �pre-Volcker�sample is inherently misspeci�ed.
Indeed, our test suggests that the �right�time series model forXt:=(~yt; �t; Rt)0

on the �pre-Volcker�period belongs to the class of VARMA-type systems in
eq.s (11)-(12). Accordingly, any �nite-order VAR for Xt would represent a
truncated approximation to the actual equilibrium and might in principle
return largely incorrect estimates of the impulse response function and the
parameters of interest; see e.g. Ravenna (2007) for a similar point.
Overall, we can conclude that the �LRT ! ART�testing strategy leads

us to accept the hypothesis of indeterminacy (H 0
1 in eq. (16)) on the �pre-

Volcker�sample, for which the set C�LR0:90 is empty and the set C�AR0:90 is nonempty,
and not to reject the hypothesis H 0

0 in eq. (15) on the �Great Moderation�
sample, for which the set C�LR0:90 is nonempty. Our conclusions are consis-
tent with the occurrence of a policy switch in the late 1970s. Our prior-free
approach maximizes the role attached to the data in determining these re-
sults.16

16An approximate and purely indicative measure of the extent of the change charac-
terizing the parameters of the model across the two regimes can be broadly obtained by
comparing the identi�cation-robust con�dence intervals and the point estimates reported
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6 Relation to the literature

Our paper has several connections with the literature. On the methodologi-
cal side, our analysis is related to the recent works of Guerron-Quintana et al.
(2013) and Dufour et al. (2013) on identi�cation-robust frequentist inference
in DSGE models. The �rst-step of our testing procedure is essentially based
on the pointwise inversion of the likelihood ratio test proposed by Guerron-
Quintana et al. (2013) as a tool to build identi�cation-robust con�dence sets
for the structural parameters. Our methodology is also connected to the con-
tributions by Stock andWright (2000), Kleiberger and Mavroeidis (2009) and
Dufour et al. (2006, 2009, 2010, 2013), among others. Indeed, conditional on
the �rst-step, the second-step of the suggested testing strategy requires the
pointwise inversion of an Anderson Rubin-type test for the OR implied by
the system of Euler equations. Compared to Fanelli (2012), who proposes a
test for determinacy/indeterminacy in new-Keynesian models controlling for
the omission of propagation mechanisms, our procedure is robust to identi�-
cation failures and can be applied regardless of the strength of identi�cation.
Moreover, the logic of the test and its properties are completely di¤erent:
while we test the OR in the system of Euler equations only if the CER ob-
tained under determinacy are rejected in the �rst-step, in Fanelli (2012) the
CER obtained under determinacy are tested in a second-step, conditionally
on the OR implied by the system of Euler equations not being rejected in
the �rst-step.
Finally, it worth stressing that our testing approach is not related to

situations in which the agents know that an economy �uctuates between
determinate and indeterminate states driven by a Markov-switching process
as in e.g. Farmer et al. (2009).
On the empirical side, Lubik and Schorfheide (2004) test for determinacy

in the U.S. economy with a model similar to ours, by undertaking a Bayesian
investigation in which posterior weights for the determinacy and indetermi-
nacy regions of the parameter space are constructed and compared. Our
paper implements a frequentist approach, which neither requires the use of
a-prior distributional assumptions, nor the commitment to non-standard in-

in Table 2 and Table 3. For instance, we �nd that as for the parameters � (intertemporal
elasticity of substitution) � (indexation to past in�ation), '� (long run reaction to in�a-
tion) and �� (in�ation shock persistence), the �full-information�point estimates computed
on the �post-1985�sample (see the �fth column of Table 2) do not lie within (or lie on the
border of) the corresponding �limited-information�identi�cation-robust con�dence inter-
vals computed on the �pre-Volcker�sample (see the fourth column of Table 3). Evidence of
instability in the parameters of the private sector, other than the policy parameters, has
also been found, among others, by Canova (2009), Inoue and Rossi (2011a), Canova and
Menz (2011), Canova and Ferroni (2012), Castelnuovo (2012a), and Cantore et al. (2013).
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ference. In particular, we are not forced to choose a prior distribution for
some arbitrary auxiliary parameters that index the multiplicity of solutions
under rational expectations as in Lubik and Schorfheide (2004). With respect
to Boivin and Giannoni (2006), our method is based on the direct estimation
of the structural new-Keynesian model and provides a direct control for the
cases of identi�cation failure and dynamic misspeci�cation. Hence, we need
not minimize the distance between some selected impulse responses taken
from a VAR modeling the macroeconomic variables of interest and the struc-
tural model-based responses, a methodology which is unfortunately bias-
prone as for expectations-based models like ours (Canova and Sala, 2009).
More importantly, we need not make restrictive assumptions on the solution
under indeterminacy, as opposed to the MSV solution assumed by Boivin
and Giannoni (2006). While being plausible, such solution is anyhow ar-
bitrary, and it may importantly a¤ect the simulated moments of interest
(Castelnuovo, 2012b).
Mavroeidis (2010) applies identi�cation-robust �limited-information�meth-

ods to investigate the determinacy/indeterminacy of U.S. monetary policy
conditional on the estimation of the policy rule in isolation. Compared to
Mavroeidis (2010), we investigate the issue of macroeconomic stability of U.S.
monetary policy by using a fully speci�ed �hybrid new-Keynesian model�à
la Benati and Surico (2009), and apply a testing strategy which combines
�limited-�and �full-information�methods and is robust to identi�cation fail-
ure. Mavroeidis (2010) conjectures that the di¤erence between the (precise)
con�dence intervals in the �pre-Volcker�period and the (imprecise) ones in
the �post-Volcker�phase may be interpreted as (a) absence of sunspot �uctu-
ations during the �Great Moderation�; (b) increase in the policy inertia; (c)
larger variability of the policy shocks during the �rst years of the Volcker
era. Our methodology formally shows that sunspot �uctuations are unlikely
to have played a role during the �Great Moderation�. We therefore o¤er statis-
tical support to Mavroeidis�conjecture (a). Di¤erently, we do not �nd clear
evidence in favor of an increase in the policy inertia when moving from our
�rst to our second sub-sample. However, the con�dence interval surrounding
the point estimate of the degree of interest rate smoothing during the �Great
Moderation�does not exclude Mavroeidis�second conjecture (b) either. Fi-
nally, our �Great Moderation�sub-sample begins in 1985, i.e., after the end
of the �Volcker experiment�related to the targeting of non-borrowed reserves
by the Federal Reserve. Hence, our results are not necessarily driven by a
large volatility of the policy shocks, whose variance has drastically reduced
since 1985 (see Mavroeidis (2010), Figure 3 - left panel). More importantly,
however, we show that, when applying a system based �full-information�ap-
proach designed to handle weak identi�cation, the precision of the estimates
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obtained for the �Great Moderation�sample is higher than the one achieved
via a single-equation approach.

7 Concluding remarks

This paper has proposed and implemented a novel identi�cation-robust ap-
proach to test the null hypothesis that a fully speci�ed small-scale new-
Keynesian monetary policy model has a reduced form consistent with the
unique stable solution, versus the alternative of indeterminacy. The test-
ing strategy is designed such that when the null hypothesis is rejected, a
second-step is run to establish whether the rejection is due to the occurrence
of multiple equilibria or to the omission of relevant propagation mechanisms
from the speci�ed system of structural Euler equations. Our methodology
can be applied regardless of the strength of identi�cation of the structural
parameters, and it requires neither the use of prior distributions nor that of
nonstandard inference. Hence, our procedure works in favor of reducing the
degree of arbitrariness of our empirical results.
We have applied our novel methodology to a standard dataset of U.S.

macroeconomic data by using the new-Keynesian framework recently em-
ployed by Benati and Surico (2009) as our reference structural model. The
results of our testing strategy conform to the case of a switch from indeter-
minacy to a framework consistent with determinacy, in correspondence to
the advent of Paul Volcker as Chairman of the Federal Reserve. Neverthe-
less, it is not possible to claim that our analysis supports the hypothesis of
a unique equilibrium after Volcker. With respect to Mavroeidis (2010), who
works with a single-equation �limited-information�approach, we �nd tighter
con�dence bands for our estimated parameters. We attribute this di¤erence
to the �full-information�nature of the �rst-step of our robust test and to the
fact that the estimated new-Keynesian model is not rejected by the data on
the �Great Moderation�period.
To be clear, our �ndings, which line up with a number of previous contri-

butions in the literature, are consistent with, but do not necessarily point to,
the �good policy�explanation of the U.S. Great Moderation. In light of the
recent �nancial crisis, our analysis as for the period mid-1980s-onwards may
very well be over. When enough data become available, our methodology
will help to shed further light on this issue.
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TABLES
Table 1. Empirical size of the �LRT! ART�testing strategy when the data

are generated from the new-Keynesian system (5)-(6) under the hypothesis H 0
0 in

eq. (15).

�true��0;s T=100 �1=0.10

�max(G(�0;s)):=0.964 Interpret. �̂s;ML Avg. proj. 90% c.i. & grid int.


0:=0.744 IS, forw. look. term 0.694
(0.206)

[0.728-0.784] [0.688-0.822]

�0:=0.124 IS, inter. elast. of subst. 0.117
(0.038)

[0.113-0.141] [0.090-0.160]

�0:=0.059 NKPC: index, past in�. 0.058
(0.026)

[0.047-0.081] [0.030-0.099]

�0:=0.044 NKPC: slope 0.041
(0.013)

[0.039-0.051] [0.035-0.056]

�0:=0.834 Rule, smoothing term 0.747
(0.224)

[0.772-0.841] [0.515-0.877]

'ey;0:=1.146 Rule, react. to out. gap 0.925
(0.434)

[0.705-1.237] [0.383-1.610]

'�;0:=1.749 Rule, reaction to in�. 1.463
(0.637)

[1.228-1.917] [0.700-2.570]

�ey;0:=0.796 Out. gap shock, pers. 0.729
(0.215)

[0.765-0.818] [0.738-0.834]

��;0:=0.418 In�. shock, pers. 0.378
(0.126)

[0.356-0.462] [0.300-0.520]

�R;0:=0.404 Pol. rate shock, pers. 0.371
(0.125)

[0.354-0.453] [0.289-0.518]

Rej(LRT (�̂�̂s;ML
))=0.079 Rej(LRT (�̂�s;0))=0.121

NOTES. Results are obtained using M=1,000 replications. Each simulated
sample is initiated with 200 additional observations to get a stochastic initial state
and then are discarded. The structural parameters are calibrated to the medians
of the posterior distributions reported in Table 1 of Benati and Surico (2009),
column �After the Volcker stabilization�. The numerical inversion of the LRT (�̂��s)
test for the CER (�rst-step) is obtained on each generated dataset by considering
300 points ��s randomly chosen (using the uniform distribution) from the grid
delimited by the space formed by the Cartesian product of the intervals reported
in the last column. �̂�s;ML� is the vector of point estimates of �s obtained from
the problem in eq. (22) by replacing CLR1��1with C

�LR
0:90 (corresponding Monte Carlo

standard errors in brackets). �Average proj. 90% c.i. & grid intervals�reports the
average projected 90% con�dence interval computed as in Dufour (1997) and the
actual intervals used for the individual structural parameters in the grid testing
procedure. �Rej(�)�stands for �rejection frequency�. LRT (�̂�s;0) is the test statistic
for the hypothesis H0;cer in eq. (20) evaluated at the speci�c point ��s= �s;0.
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Table 2. Projected 90% identi�cation-robust con�dence intervals, point esti-
mates of the structural parameters �s:=(
; �; �; �; �; '~y; '�; �~y; ��; �R)

0 and re-
sults of the �rst-step of the �LRT! ART�testing strategy on U.S. quarterly data.

1954q3-1979q2 �pre-Volcker� 1985q1-2008q3 �Gr. Moder.�

Param. Interpretation �̂s;ML proj. 90% c.i. �̂s;ML proj. 90% c.i.

 IS, forw. look. term - - 0.729 [0.652-0.772]
� IS, inter. elast. of subst. - - 0.082 [0.082-0.154]
� NKPC: index, past in�. - - 0.020 [0.020-0.059]
� NKPC: slope - - 0.048 [0.042-0.098]
� Rule, smoothing term - - 0.666 [0.569-0.697]
'ey Rule, react. to out. gap - - 0.339 [0.127-0.479]
'� Rule, reaction to in�. - - 5.439 [2.318-5.445]
�ey Out. gap shock, pers. - - 0.920 [0.720-0.978]
�� In�. shock, pers. - - 0.925 [0.748-0.970]
�R Pol. rate shock, pers. - - 0.794 [0.730-0.806]
identi�cation-robust c.s. C�LR0:90 empty nonempty

(card(C�LR0:90 )=15)

�max(G(�̂s;ML)) � 0.946

LRT (�̂�̂s;ML
) test (�rst-step) � 19.54

[0.36]
NOTES. The projected 90% identi�cation-robust con�dence intervals (proj.

90% c.i.) have been obtained from the 90% identi�cation-robust con�dence set
C�LR0:90 (see eq. (30)) as in Dufour (1997). The set C�LR0:90 has been obtained by in-
verting numerically the LRT (�̂��s) test considering 5,000,000 points

��s chosen ran-
domly (using the uniform distribution) from the rectangle formed by the Cartesian
product of the following intervals: [0.65, 0.85] for 
, [0.08, 0.16] for �, [0.02, 0.10]
for �, [0.04, 0.10] for �, [0.50, 0.70] for �, [0.05, 1.5] for '~y, [0.5, 5.5] for '�, [0.40,
0.98] for �~y; �� and �R. �̂�s;ML�is the point estimate derived from the problem in

eq. (22) replacing CLR1��1 with C
�LR
0:90 . LRT (�̂�̂s;ML

) correspondes to the value of the

test statistics obtained in correspondence of the �least rejected�model within C�LR0:90 .
P-values in brackets. Estimation on each sub-period is carried out by considering
within-periods initial values and variables are demeaned within each sub-period.
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Table 3. Projected 90% identi�cation-robust con�dence intervals, point esti-
mates of the structural parameters �s:=(
; �; �; �; �; '~y; '�; �~y; ��; �R)

0 and re-
sults of the second-step of the �LRT! ART�procedure on U.S. quarterly data.

1954q3-1979q2 �pre-Volcker� 1985q1-2008q3 �Gr. Moder.�

Param. Interpretation �̂s;LI proj. 90% c.i. �̂s;LI proj. 90% c.i.

 IS, forw. look. term 0.841 [0.660-0.845] 0.821 [0.650-0.850]
� IS, inter. elast. of subst. 0.088 [0.084-0.160] 0.132 [0.080-0.160]
� NKPC: index, past in�. 0.025 [0.020-0.070] 0.097 [0.020-0.099]
� NKPC: slope 0.042 [0.040-0.058] 0.087 [0.040-0.100]
� Rule, smoothing term 0.520 [0.500-0.698] 0.699 [0.500-0.700]
'ey Rule, react. to out. gap 0.138 [0.050-0.325] 0.295 [0.050-1.043]
'� Rule, reaction to in�. 0.687 [0.500-0.906] 2.123 [0.500-5.499]
�ey Out. gap shock, pers. 0.900 [0.620-0.964] 0.911 [0.400-0.980]
�� In�. shock, pers. 0.578 [0.414-0.793] 0.907 [0.400-0.980]
�R Pol. rate shock, pers. 0.798 [0.565-0.916] 0.795 [0.674-0.980]
identi�cation-robust c.s. C�AR0:90 nonempty

(card(C�AR0:90 )=26)
nonempty

(card(C�AR0:90 )=41891)

�max(G(�̂s;LI)) 1.012 0.965

ART (�̂s;LI) test (second-step) 24.44
[0.14]

19.27
[0.37]

NOTES. The projected 90% identi�cation-robust con�dence intervals (proj.
90% c.i.) have been obtained from the 90% identi�cation-robust con�dence set
C�AR0:90 (see eq. (31)) as Dufour (1997). The con�dence sets have been obtained
by inverting the test ART (��s) (second-step); in practice, ART (��s) is computed as
a quasi-LR test using Zt:=(X 0

t�1; X
0
t�2)

0 in the auxiliary multivariate regression
system (26), considering 5,000,000 points ��s randomly chosen (using the uniform
distribution) from the rectangle formed by the Cartesian product of the same
intervals as in Table 2 and imposing the condition �max(G(��s))>1 on the 1954q3-
1979q2 period. �̂�s;LI� is the point estimate derived the problem in eq. (29) by
replacing CAR1��2 with C

�AR
0:90 . ART (�̂s;LI) reports the value of the test statistics

obtained in correspondence of the �least rejected�model within C�AR0:90 . P-values
in brackets. Estimation on each sub-period is carried out by considering within-
periods initial values and variables are demeaned within each sub-period.
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Technical Supplement of "Monetary Policy
Indeterminacy and Identi�cation Failures in
the U.S.: Results from a Robust Test" by
Efrem Castelnuovo and Luca Fanelli

Introduction

In this supplementary material, we (i) specify all assumptions underlying
the new-Keynesian system analyzed in the paper, (ii) derive its reduced form
solutions, (iii) formalize some asymptotic properties of the �LRT ! ART�
testing strategy and (iv) complete the Monte Carlo experiment presented in
the paper with further results.

Structural model, assumptions and time se-
ries representations

The structural model is given by

�0Xt = �fEtXt+1 + �bXt�1 + !t (32)

!t = �!t�1 + "t , "t �WN(0;�") (33)

where the matrices �0, �f , �b, � and �" depend nonlinearly on the m � 1
vector of structural parameters �, Xt is the vector of modeled variables, !t
stands for the vector of autoregressive stochastic processes hitting the system,
and "t is the vector of orthogonal martingale di¤erences which we interpret
as structural shocks. The space of all theoretically admissible values of � is
denoted by P and is assumed to be compact. Expectations are conditional
on the information set Ft, i.e. Et�:=E(� j Ft). We consider the partition
�:=(�0s, �

0
")
0, where the sub-vector �" contains the non-repeated, non-zero

elements of vech(�"). Given the partition �:=(�
0
s, �

0
")
0, we also consider the

corresponding partition of the parameter space P:=P�s �P�" :The true value
of �, �0:=(�

0
0;s, �

0
0;")

0, is an interior point of P.
Throughout the paper it will be maintained that dim(Xt) = dim("t):=n >

1:Moreover, we use the notations �A(�)�and �A:=A(�)�interchangeably to in-
dicate that the elements of the matrix A depend nonlinearly on the structural
parameters �. In our setup, �0:=�0(�s), �f :=�f (�s), �b:=�b(�s), �:=�(�s)
and �":=�"(�"):
We consider the following assumptions.
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Assumption 1 The matrix ��0 :=(�0+��f ) is non-singular and � is stable;
the matrix (��0 ��f�c;1) is non-singular, where �c;1:=�c;1(�) is a 3� 3
matrix.

Assumption 2 For � 2 P, any reduced form solution to system (32)-(33)
is covariance stationary.

Using some algebra, system (32)-(33) can written in the form

��0Xt = �fEtXt+1 + �
�
b;1Xt�1 + �

�
b;2Xt�2 + "�t (34)

��0 :=(�0 + ��f )

��b;1:=(�b + ��0)

��b;2:=� ��b

where the �composite� structural disturbance "�t :="t + ��f�t, �t:=(Xt �
Et�1Xt) is a Martingale Di¤erence Sequence (MDS) with respect to Ft, be-
cause of the MDS property of �t:
We rewrite system (34) in canonical form (Binder and Pesaran, 1995). To

do this, de�ne the 2n� 1 state vectors �Xt:=(X 0
t; X

0
t�1)

0 and�"t:=("�0t ; 0
0
n�1)

0,
and then express the system in the form

��0�Xt =��fEt�Xt+1 +��b�Xt�1 +�"t (35)

where

��0:=
�

��0 0n�n
0n�n In

�
, ��f :=

�
�f 0n�n
0n�n 0n�n

�
, ��b:=

�
��b;1 ��b;2
In 0n�n

�
:

By inverting ��0 (Assumption 1) in system (35) we obtain

�Xt = �DEt�Xt+1 + �B�Xt�1 + �wt (36)

where �D:=���10 ��f , �B:=��
�1
0
��b and �wt:=���10 �"t: In general, the matrices �D and

�B can be singular.

A solution to system (36) is any process
n
�X�
t

o1
t=0
such that (a) the quan-

tity Et�X�
t+1 exists and (b) when �Xt:=�X�

t is substituted into the model, the
equations of the system are veri�ed at any time t for given initial conditions
�X0:=(X 0

0; X
0
�1)

0: If
n
�X�
t

o1
t=0

is a solution of system (36), then Xt:=H �X�
t ,

where H:=[In , 0n�n], is a known selection matrix, will be a solution to sys-
tem (34). We de�ne a reduced form solution of system (32)-(33) any member
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of the solution set such that Xt can be expressed as linear function of "t, lags
of Xt and "t, and possibly other components which are function of MDSs
with respect Ft. The reduced form solution is �stable�if the companion ma-
trix associated with the companion form representation of the reduced form
solution is stable. We call stable a matrix that has all eigenvalues inside the
unit disk, and �unstable�a matrix that has at least one eigenvalue outside
the unit disk. Thus, denoting with �max(�) the absolute value of the largest
eigenvalue of the matrix in the argument, the condition �max(A(�))<1 holds
for stable matrices, and �max(A(�))>1 for unstable ones. The reduced form
solution is �unique�if it time series representation involves only Xt and "t,
and the conditional distribution of Xt given Ft�1 depends only on �.
Before presenting our main results, we sketch some features of the solu-

tion method used in the paper. Following Binder and Pesaran (1995), given

a solution
n
�X�
t

o1
t=0
, we assume that �Xt:=�X�

t is decomposed into two com-

ponents, i.e.

�Xt:=�XB;t + �XF;t (37)
�XB;t:=���Xt�1 (38)

where the process
n
�XB;t

o1
t=0

represents the �backward�part of the solution,

and the process
n
�XF;t

o1
t=0
is its �forward�part. In particular, �XF;t is assumed

to be a solution to the �Cagan multivariate�model

�XF;t = �CfEt�XF;t+1 + �C0�wt (39)

for given choice of the matrices �Cf :=�Cf (�) and �C0:=�C0(�).
Eq.(38) posits that �XB;t obeys an autoregressive scheme. The 2n � 2n

matrix �� must be real and stable under Assumption 2. Assumption 2 also
ensures that only non-explosive stable solutions of system (39) will be con-
sidered. From eq.(38) it turns out that

Et�XF;t+1 = Et�Xt+1 ����Xt (40)

so using eq.(40) in eq.(36), yields

�XB;t + �XF;t = �D[Et�XF;t+1 +���Xt] + �B�Xt�1 + �wt

and this system can be re-arranged in the form

(I2n � �D��)�XF;t = �DEt�XF;t+1 + (�D��
2 ���+ �B)�Xt�1 + �wt: (41)
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We observe that if there exists a stable matrix ��, denoted with ��c, which
satis�es the restriction

�D��2c ���c + �B = 02n�2n; (42)

then the system of equations (41) collapses to

(I2n � �D��c)�XF;t = �DEt�XF;t+1 + �wt (43)

and can be expressed in the �Cagan multivariate�form in eq.(39) if the matrix
(I2n � �D��c) is invertible.
Inspection of the block structure of the matrices in eq.(42) shows that

the form of the matrix ��c is given by

��c=
�
�c;1 �c;2
In 0n�n

�
(44)

where �c;1:=�c;1(�) and �c;2:=�c;2(�) depend on �, while

(I2n � �D��c)=
�
In �

�
��0
��1

�f�c;1 �
�
��0
��1

�f�c;2
0n�n In

�
:

This matrix is non-singular by Assumption 1, hence we can re-write the
system (43) in the multivariate Cagan form in eq.(39) based on

�Cf :=(I2n � �D��c)�1�D=
�
G(�) 0n�n
0n�n 0n�n

�
(45)

�C0:=(I2n � �D��c)�1 (46)

where G(�):=(��0 � �f�c;1)�1�f . It turns out that the stability/instability
of the matrix G(�) determines the stability/instability of �Cf and therefore
the solution properties of the system: Note that G(�) = G(�s), i.e. the G(�)
matrix does not depend on the parameters �" associated with the covariance
matrix of the structural shocks.
We can now prove our main results. We report below two propositions

and one corollary. Proposition 1 posits that for a given �s=��s, the condition
�max(G(��s))<1 is su¢ cient for the existence of the �nite-order VAR solution
for Xt discussed in Sub-section 2.2 of the paper. Proposition 2 establishes
that for a given �s=��s, the condition �max(G(��s))>1 is su¢ cient for the ex-
istence of the VARMA-type indeterminate reduced form solutions for Xt

discussed in Sub-section 2.3 of the paper. Finally, Corollary 1 proves that
the inequality �max(G(��s))>1 is also necessary for the existence of the class
of VARMA-type reduced form solutions.
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Proposition 1 [Su¢ cient condition for the �nite-order VAR reduced form solution]
Consider the new-Keynesian system (32)-(33) and Assumptions 1-2. If
for �s=��s, �max(G(��s))<1, the reduced form solution is stable and can
be represented as the �nite-order VAR

(In � �c;1(��s)L� �c;2(��s)L2)Xt = �(��s)
�1"t (47)

where L is the lag/lead operator (LhXt:=Xt�h), X0 and X�1 are �xed
initial conditions, �c;1(��s) and �c;2(��s) are sub-matrices of the stable
matrix ��c in eq. (44) which solves the quadratic matrix equation

��f��
2
c ���0��c +��b = 02n�2n; (48)

and �(��s):=(�0 � �f�1(��s)): The solution in eq.(47) is also unique
according to our de�nition.

Proof (heuristic). The condition �max(G(��s))<1 implies �max(�Cf )<1
which in turn implies that �Cf is absolutely summable. Under this con-
dition, the unique stable (�bubbles-free�) solution of system (39) based
on �Cf :=(I2n � �D��c)�1�D and �C0:=(I2n � �D��c)�1, is given by

�XF;t=
1X
j=0

�
�Cf

�j
�C0Et�wt+j=�C0�wt=(I2n � �D��c)�1�wt:

Using eq.s (37)-(38) and �wt:=���10 �"t, one obtains

�Xt=��c(�)�Xt�1 + (��0 ���f��c)�1�"t:

In matrix form, this system reads�
Xt

Xt�1

�
=

�
�c;1(�) �c;2(�)
In 0n�n

��
Xt�1
Xt�2

�
+

�
� ��f�c;2
0n�n In

��1�
"�t
0n�1

�
where �:=(��0 � �f�c;1), �c;1 = �c;1(�), and �c;1(�) and �c;2(�) are
obtained from the matrix ��c in eq. (44), i.e. the stable matrix that
solves eq. (48). Considering the �rst block of n equations of this
system, we infer that the reduced form solution must be such that
�t:=Xt � Et�1Xt=��1"�t . Using the de�nition "�t :="t + ��f�t (see
system (35)), we obtain the relationship��t=("t+��f�t) which, solved
for "t, gives:

"t=��t � ��f�t=(�� ��f )�t=(��0 � �f�c;1 � ��f )�t
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=(�0 + ��f � �f�c;1 � ��f )�t = (�0 � �f�c;1)�t=��t:
In light of this relationship, the quantity �t:=Xt�Et�1Xt is equivalent
to

Xt � Et�1Xt = �(��s)
�1"t , �(��s):=(�0 � �f�c;1):

Using the lag operator, the equation above is equivalent to system
(47). This solution does not involve extra parameters other than � and
extra shock terms other than "t, hence it is unique according to our
de�nition.�

Proposition 2 [Su¢ cient condition for the VARMA-type ind. reduced form solution]
Consider the new-Keynesian system (32)-(33) and Assumptions 1-2. If
for �s=��s, �max(G(��s))>1 and all eigenvalues of the matrix �(��s)�f (��s)M(��s;  )�(��s)�1

de�ned below are di¤erent from 1, there are multiple stable solutions
which can be represented in the form:

(I3��(��s)L)(I3��c;1(��s)L��c;2(��s)L2)Xt = (M(��s;  )��(��s)L)V (��s;  )�1"t+� t
(49)

� t:=(M(��s;  )� �(��s)L)V (��s;  )�1P (��s)�t + P (��s)�t: (50)

In eq.s (49)-(50), L is the lag/lead operator (LhXt:=Xt�h), X0, X�1
and X�2 are �xed initial conditions; �t:=(0

0
n1�1; s

0
t)
0 and st is a n2 � 1

vector (n2:=n�n1, n2 � n) of MDS called sunspot shocks; �c;1(��s) and
�c;2(��s) are sub-matrices of the stable matrix �c which solves eq.(42);
the matrices �(��s), M(��s;  ) and V (��s;  ) are de�ned by

�(��s):=P (��s)
�
0n1�n1 0n1�n2
0n2�n1 ��12

�
P�1(��s) , M(��s;  ):=P (��s)

�
In1 0n1�n2
0n2�n1 	

�
P�1(��s)

V (��s;  ):=�(��s)� �(��s)�f (��s)M(��s;  )
where �:=(��0 � �f�c;1); 	 is a n2 � n2 matrix containing arbitrary
auxiliary parameters unrelated to ��s, and the non-singular n�n matrix
P (��s) is obtained from the Jordan normal form of G(��s) :

G(��s):=P (��s)
�

�1 0n1�n2
0n2�n1 �2

�
P�1(��s)

where �1 is the n1�n1 Jordan normal block that collects the eigenvalues
of G(��s) that lie inside the unit disk and �2 is the n2�n2 Jordan normal
block that collects the eigenvalues ofG(��s) that lie outside the unit disk.
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Proof (heuristic). We �rst re-write system (39) with �Cf and �C0 given in
eq.s (45)-(46), obtaining

�XF;t = (I2n � �D��c)�1�DEt�XF;t+1 + (I2n � �D��c)�1�wt:

This system has the block structure�
XG
F;t

0n�1

�
=

�
G(��s) 0n�n
0n�n 0n�n

��
XG
F;t�1
0n�1

�
+

�
��1 (��1 � �f�c;2)
0n�n 0n�n

��
"�t
0n�1

�
so that the condition �max(G(��s))>1 implies �max(�Cf )>1. The solution

is therefore determined by the solution to the sub-system

XG
F;t = G(��s)EtX

G
F;t+1 +�

�1"�t : (51)

We now consider the Jordan normal form of the matrix G(��s):

G(��s):=P
�

�1 0n1�n2
0n2�n1 �2

�
P�1 (52)

where P :=P (��s) is non-singular, �1 is the normal Jordan block that
collects the n1:=n � n2 eigenvalues of G(��s) that lie inside the unit
circle, and �2 is the normal Jordan block that collects the eigenvalues
that lies outside the unit circle. Using eq.(52), system (51) reads

XG
F;t = P

�
�1 0n1�n2

0n2�n1 �2

�
P�1EtX

G
F;t+1 +�

�1"�t

and can be transformed into

P�1XG
F;t =

�
�1 0n1�n2

0n2�n1 �2

�
P�1EtX

G
F;t + P�1��1"�t

and �nally partitioned in the form

n1 � 1
n2 � 1

�
XG1
F;t

XG2
F;t

�
=

�
�1 0n1�n2

0n2�n1 �2

�
Et

�
XG1
F;t+1

XG2
F;t+1

�
+

�
#G1t
#G2t

�
(53)

where �
XG1
F;t

XG2
F;t

�
:=P�1XG

F;t ,
�
#G1t
#G2t

�
:=P�1��1"�t : (54)

Note that the term on the right in eq. (54) is a MDS with respect to
Ft like "�t : The �rst block of n1 equations of system (53) is given by

XG1
F;t = �1EtX

G1
F;t+1 + #G1t (55)
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and can be regarded as a special case of the multivariate Cagan model
of system (39) (�Cf :=�1, �C0:=In1). Moreover, since �1 contains only
stable eigenvalues, the solution to sub-system (55) is given by

XG1
F;t = #G1t : (56)

The second block of n2 equations of system (53) is given by

XG2
F;t = �2EtX

G2
F;t+1 + #G2t (57)

and, given the non-singularity of �2, can be re-written in the form

XG2
F;t+1 = �

�1
2 XG2

F;t � ��12 #G2t + �2;t+1

where we have used the decomposition �2;t:=X
G2
F;t+1 � EtX

G2
F;t+1. Since

both �2;t and #
G2
t are MDS with respect to Ft, the linear relationship

between these two components can be speci�ed in the form

�2;t = 	#
G2
t + st (58)

where 	 is an n2 � n2 matrix of arbitrary auxiliary parameters, i.e.,
unrelated to �, and st is a MDS with respect to Ft which can be orthog-
onal to #G2t . By substituting eq.(58) in eq.(57) and lagging variables,
the system reads as a stable VARMA(1,1)-type process:

XG2
F;t = �

�1
2 XG2

F;t�1 � ��12 #G2t�1 +	#
G2
t + st (59)

By coupling sub-systems (56) and (59), the solution is given by

XG1
F;t = #G1t

XG2
F;t = ��12 XG2

F;t�1 � ��12 #G2t�1 +	#
G2
t + st

and is equal, using matrix notation, to�
XG1
F;t

XG2
F;t

�
=

�
0n1�n1 0n1�n2
0n2�n1 ��12

��
XG1
F;t�1

XG2
F;t�1

�
+

�
In1 0n1�n2
0n2�n1 	

��
#G1t
#G2t

�

+

�
0n1�n1 0n1�n2
0n2�n1 ��12

��
#G1t�1
#G2t�1

�
+

�
0n1�1
st

�
:

Exploiting the mappings in eq.s (54), this system can be also expressed
in the form

XG
F;t = P (��s)

�
0n1�n1 0n1�n2
0n2�n1 ��12

�
P (��s)

�1XG
F;t�1+P (

��s)

�
In1 0n1�n2
0n2�n1 	

�
P (��s)

�1��1"�t
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+ P (��s)

�
0n1�n1 0n1�n2
0n2�n1 ��12

�
P (��s)

�1��1"�t�1+P (
��s)�t

(60)
where �t:=(0

0
n1�1; s

0
t): Eq.(60) can be further simpli�ed by

XG
F;t = �(

��s) X
G
F;t�1 +M(

��s; �)�
�1"�t ��(��s)��1"�t�1 + P (��s)�t (61)

where the matrices �(��s) and V (��s; �) are de�ned by

�(��s):=P
�
0n1�n1 0n1�n2
0n2�n1 ��12

�
P�1 , M(��s;  ):=P

�
In1 0n1�n2
0n2�n1 	

�
P�1:

(62)
In terms of �XF;t:=(XG0

F;t; 0
0
n�1)

0 and �"t:=("�0t ; 0
0
n�1)

0, the solutions in
eq.(61) read�
XS
F;t

0n�1

�
=

�
�(��s) 0n�n
0n�n 0n�n

��
XG
F;t�1
0n�1

�
+

�
M(��s; �)�

�1 0n�n
0n�n 0n�n

��
"�t
0n�1

�

�
�
�(��s)�

�1 0n�n
0n�n 0n�n

��
"�t�1
0n�1

�
+

�
P (��s)�t
0n�1

�
and can be compacted in the canonical form

�XF;t = ���XF;t�1 + �M���"t � �����"t�1 +��t (63)

where��t:=(�
0
tP

0; 00n�1)
0 and

��:=
�
�(��s) 0n�n
0n�n 0n�n

�
, �M :=

�
M(��s;  ) 0n�n
0n�n 0n�n

�
, ��:=

�
��1(��s) 0n�n
0n�n 0n�n

�
:

By combining eq.(63) with eq.(38), the solutions can be compacted in
the expression

�Xt = (�� +��)�Xt�1 � �� ���Xt�2 + �M���"t � �����"t�1 +��t (64)

which, using the lag operator, is equivalent to

(I2n � ��L)(I2n ���L)�Xt = ( �M � ��L)���"t +��t: (65)

The sub-system delimited by the �rst n equations of system (65) is
given by

(In��(��s)L)(In��1(��s)L��2(��s)L2)Xt = (M(��s; �)��(��s)L)��1"�t +P (��s)�t:
(66)
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Since in this model the forecast error �t:=Xt � Et�1Xt has structure

�t:=Xt � Et�1Xt:=M��1"Rt + P�t;

from the de�nition "�t :="t + ��f�t and the assumption that all the
eigenvalues of the matrix �(��s)�f (��s)M(��s;  )�(��s)�1 are di¤erent from
1, it is possible to obtain the relationship

"�t :=(In � ��fM��1)�1("t + ��f� t)

=(In � ��fM��1)�1"t + (In � ��fM��1)�1��fP�t:
If this expression is substituted into the right-hand side of eq. (66), re-
arranging terms and using the de�nitions V (��s;  ):=�(��s)��(��s)�f (��s)M(��s;  )
and � t:=[M(��s;  )��(��s)L]V (��s;  )�1P (��s)�t+P (��s)�t, we obtain the
representation in eq.s (49)-(50). �

Corollary 1 [Necessary condition for a VARMA-type reduced form solution]
Consider the new-Keynesian system (32)-(33) and Assumptions 1-2.
Assume that all stable linear reduced form solutions of interest are
given either by the VAR system (47) or by the VARMA-type sys-
tem (49)-(50), respectively. If for a given �s=��s the data generating
process belongs to the class of VARMA-type reduced forms in Eqs.
(49)-(50) and Minimum State Variable (MSV) solutions are ruled out,
then �max(G(��s))>1.

Proof. Proposition 1 establishes that for �s=��s, the condition �max(G(��s))<1
is su¢ cient for the existence of the �nite-order VAR representation in
eq.(47). By negation, any non-MSV reduced form solution described
by the class of models in eq.s (49)-(50) must satisfy, for �s=��s, the
condition �max(G(��s))>1. �

We remark that �max(G(��s))<1 is not necessary for the existence of the
�nite-order VAR representation in eq. (47). To see this, it is su¢ cient to
observe the MSV solution nested within system (49)-(50) for 	=In2 and
st=0n2�1 a.s. 8t, collapses to system (47) but is such that �max(G(�))>1.

Asymptotic properties of the testing strat-
egy

In this section, we formalize some asymptotic properties of the �LRT ! ART�
testing strategy discussed in Sub-section 3.3 of the paper.
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For convenience, the hypotheses H 0
0 and H0;cer in, respectively, eq. (15)

and eq. (20) of the paper, are reported below:

H 0
0 : Xt is generated by the VAR system (47) under the CER in eq. (48); (67)

there exists �" such that H0;cer: ���s=g(
��s; �") , �s = ��s 2 P�s . (68)

H0;cer is the composite null hypothesis that the CER implied by the new-
Keynesian system are valid for a given �s=��s. We recall that H 0

0 is accepted
if there exists at least one �s = ��s such that H0;cer is not rejected; instead,
H 0
0 is rejected only if H0;cer is rejected for all values of the parameters. The

alternative hypothesis of multiple equilibria, H 0
1 (eq. (16) of the paper), is

also reported here:

H 0
1 : Xt is generated by the VARMA-type system (49)-(50) (69)

where �� 2 I0 and:
I0:=

�
��:=(�0;  0; �+0� )

0, �s 2 PI�s ,  2 N n
�
vec(I(n2)2)

	
, �+� 2 Zn f06�1g

	
� I;

(70)
I:=

�
��:=(�0;  0; �+0� )

0, �s 2 PI�s ,  2 N , �
+
� 2 Z

	
:

It can be noticed that the alternative H 0
1 is speci�ed such that MSV

equilibria are ruled out, see Section 2 of the paper. The logic upon which
the �LRT ! ART�approach is based is summarized in Table TS1.
By construction, the size of our testing strategy, i.e. the probability of

rejecting H 0
0 when H

0
0 is true, depends on the test LRT (�̂�s) computed in

the �rst-step. Let PLR�s;T [�] be the probability measure associated with the
distribution of the LRT (�̂�s) test in a sample of length T . The notation
�PLR�s;T [�]�remarks that in small samples the distribution of LRT (�̂�s) generally
depends on �s. However, under H0;cer, the asymptotic null distribution of the
test is pivotal and is �2d1 with d1:=dim(�) � dim(�"), regardless of whether
�s is identi�ed or not, see e.g. Guerron-Quintana et al. (2013). Therefore,
de�ned the size of the LRT (�̂��s) test for the hypothesis H0;cer in a sample of
length T by

�01;T := sup
��s2P�s

PLR��s;T [LRT (�̂��s) � c�1T ]; (71)

where c�1T is the critical value of the test at the nominal level 0<�1<1,
17 for

��s = �0;s it holds
�01;1:=lim sup

T!1
�01;T = �1 (72)

17In the de�nition of the size �01;T in eq. (71), we have not restricted the parameter space
to the determinacy region, because the hypothesis H0;cer may also hold for points that lie
in the indeterminacy region and for which MSV solutions occur. We thank a referee for
bringing this point to our attention.
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which implies that the test LRT (�̂��s) has correct asymptotic size for H0;cer.
This ensures that the identi�cation-robust con�dence set reported in eq. (21)
of the paper has asymptotic coverage 1� �1.
However, the hypothesis we are actually interested in isH 0

0. H
0
0 is rejected

if and only if there is no �s = ��s for which the test LRT (�̂��s) accepts the
CER. Therefore, the asymptotic size of the test for H 0

0 is given by

�1;1:=lim sup
T!1

�1;T , �1;T :=P
LR
��s;T

"
min
��s2P�s

LRT (�̂��s) � c�1T

#
: (73)

The next proposition establishes that the LRT (�̂��s) test is asymptotically
correct for H 0

0, with asymptotic size at most �1.

Proposition 3 [Asymptotic size for H 0
0] Consider the new-Keynesian sys-

tem in eq.s (32)-(33), and the �LRT ! ART�testing strategy summa-
rized in Sub-section 3.3 of the paper. Let �0:=(�

0
0;s; �0;")

0 2 P be the
true value of �. Under H 0

0 and for ��s=�0;s, the LRT (�̂�0;s) test is such
that �1;1 � �1, where �1 is a pre-�xed type-I error.

Proof Since PLR��s;T

h
min��s2P�s LRT (�̂��s) � c�1T

i
� PLR��s;T

h
LRT (�̂��s) � c�1T

i
, for

��s=�0;s we have

PLR��0;s;T

"
min
��s2P�s

LRT (�̂��s) � c�1T

#
� �01;T (74)

Taking the limsup and using eq. (72) we obtain the result:�

Proposition 3 ensures that the identi�cation-robust con�dence set re-
ported in eq. (30) of the paper:

C�LR1��1:=
�
��s 2 G��s , LRT (�̂��s) < c

�1
�2d1

�
has asymptotic coverage at least 1� �1:
When the null H 0

0 is rejected, a second-step is run to decide whether
the alternative hypothesis of multiple equilibria H 0

1 must be accepted, or
rejected. If also H 0

1 is rejected, we conclude that the speci�ed system of
Euler structural equations omits important propagation mechanisms. The
second-step of the �LRT ! ART�procedure is based on the test ART (��s) for
the hypothesis H0;spec in eq. (23) of the paper, here reported for convenience:
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H0;spec: �s=��s , ��s 2 P�s : (75)

The hypothesis H 0
1 is accepted if there exists at least one �s=��s such that

H0;spec is not rejected; instead, H 0
1 is rejected if and only if H0;spec is rejected

for all values of the parameters. Using the same arguments we have used for
the test LRT (�̂��s) test in Proposition 3 and exploiting the results in Dufour
et al. (2006, 2009, 2010, 2013), it is possible to conclude that asymptotically,
the probability of incorrectly rejecting the hypothesis H 0

1 by the ART (��s) test
is bounded above by the nominal type-I error pre-�xed in the second-step,
�2: Thus, the identi�cation-robust con�dence set reported in eq. (31) of the
paper,

C�AR1��2:=
�
��s 2 D��s , ART (��s) < c

�2
�2d2

�
where D��s :=

n
��s 2 P�s , �max(G(��s))>1

o
, has asymptotic coverage at least

1� �2:
Finally, as observed in Remark 4 of the paper (Sub-section 3.3), the hy-

pothesis of no dynamic misspeci�cation of the new-Keynesian system is given
by H� = H 0

0_ H 0
1. The sequence of tests LRT (�̂��s) and ART (

��s) can be used
as a (mis)speci�cation test for H�: when the LRT (�̂��s) test rejects H

0
0 in

the �rst-step and the ART (��s) test rejects H 0
1 in the second-step, the new-

Keynesian model is rejected; the new-Keynesian model is instead accepted
either when the LRT (�̂��s) test accepts H

0
0 in the �rst-step, or when the

LRT (�̂��s) test rejects H
0
0 in the �rst-step but the ART (��s) test accepts H

0
1

in the �rst step. The next proposition establishes that, asymptotically, the
probability that the �LRT ! ART�testing strategy incorrectly rejects H�

is bounded above by the maximum of the nominal type-I errors �1 and �2
pre-�xed for the LRT (�̂��s) test and the ART (

��s) test, respectively:

Proposition 4 [Asymptotic size for the null of no dynamic misspeci�cation]
Consider the new-Keynesian system in eq.s (32)-(33), and the �LRT !
ART�testing strategy summarized in Sub-section 3.3 of the paper. Let
�0:=(�

0
0;s; �0;")

0 2 P be the true value of �. Under H� = H 0
0_ H 0

1 and
for ��s=�0;s, the asymptotic probability of incorrectly rejecting H� is
bounded above by maxf�1 , �2g.

Proof LetR1;T :=
n
min��s2P�s LRT (�̂��s) � c�1T

o
andR2;T :=

n
min��s2P�s ART (

��s) � c�2T

o
.

From Proposition 3 we know that for ��s=�0;s,

Pr(R1;T j H 0
0):=lim sup

T!1
PLR�0;s;T

"
min
��s2P�s

LRT (�̂��s) � c�1T

#
� �1:
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Similarly,

Pr(R2;T j H 0
1):=lim sup

T!1
PLR�0;s;T

"
min
��s2P�s

ART (��s) � c�2T

#
� �2:

Then

Pr(reject H� j H�)=Pr(R1;T^R2;T j H�) � max
�
Pr(R1;T ^R2;T j H 0

0) ,
Pr(R1;T ^R2;T j H 0

1)

�
� max fPr(R1;T j H 0

0) , Pr(R2;T j H 0
1)g � max f�1 , �2g :�

Further Monte Carlo results

In this section we complete the Monte Carlo experimentation provided in
the paper, by discussing further results on the �nite sample properties of the
�LRT ! ART�testing strategy. In Sub-section .1 we consider the power of
the test against some speci�c non-MSV equilibria that belong to the class of
time series model in eq.s (49)-(50) (see also the hypothesis H 0

1 in eq. (16) of
the paper and Section ). In Sub-section .2 we investigate the power of the
test against the hypothesis of omission of relevant propagation mechanisms
from the speci�ed system of Euler equations.
Before discussing the �nite sample power of the �LRT ! ART�testing

strategy, it is worth coming back on the results reported in Table 1 of the
paper about empirical size. In the �rst-step, we build the identi�cation-

robust con�dence set C�LR1��1:=
�
��s 2 G��s , LRT (�̂��s) < c

�1
�2d1

�
, where G��s is the

grid used to invert the LRT (�̂��s) test for the CER. The hypothesis H
0
0 is

rejected at the pre-�xed level �1 if C�LR1��1 is empty, and it is accepted otherwise.

Obviously, C�LR1��1 is empty when LRT (�̂�̂s;ML
):=min�s2G��s LRT (�̂��s) � c

�1
�2d1
. It

turns out that under the assumption of correct speci�cation, which in our
case includes the hypothesis that the chosen parametric grid G��s contains the
true value �s;0, the following inequality holds:

LRT (�̂�̂s;ML
):= min

��s2G��s
LRT (�̂��s) � LRT (�̂�s;0):

This inequality suggests that whatever the method one uses to invert the
test, the empirical rejection frequency associated with LRT (�̂�s;0), which is
the test statistic for the hypothesisH0;cer in eq. (20) of the paper evaluated at
the speci�c point �s = �s;0, is an upper bound for the size of the grid-testing
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procedure for H 0
0. Thus, Table 1 of the paper also reports the empirical size

of the test LRT (�̂�0;s), other than the empirical size for the hypothesis of
interest, H 0

0:

.1 Power against indeterminate equilibria

We recall that the �LRT ! ART�testing strategy rejects the null H 0
0 (see eq.

(15) in the paper) when the LR test computed in the �rst-step rejects the
CER implied by the new-Keynesian model under determinacy.
The data generating processes used in this experiment are selected from

the VARMA-type reduced form solutions in eq.s (49)-(50) for speci�c val-
ues of the structural and auxiliary parameters. In this case, we can only
provide limited Monte Carlo experimentation because, given the structural
parameters and the fundamental shocks, the choice of  and �+� is completely
arbitrary. To simplify the analysis, we follow Lubik and Schorfheide (2004)
and Fanelli (2012) and focus on the situation in which the sunspot shocks
are set to zero, i.e. �+� :=06�1 () � t:=03�1 a.s. 8 t) in eq.s (49)-(50). This
scenario is often referred to as �indeterminacy without sunspots�. The rejec-
tion frequency of the testing strategy is expected to increase when also the
sunspot shocks are allowed to a¤ect the dynamics of the system.
The vector �0;s:=(�

0
0;s; �

0
0;")

0 is calibrated at the medians of the 90% cover-
age percentiles of the posterior distribution reported in Table 1 of Benati and
Surico (2009), �Before October 1979�column. With this choice, the largest
eigenvalue of the matrix G(�0;s) is equal to �max(G(�0;s))=1.0051 and only
one eigenvalue lies outside the unit circle, so that  is scalar. We consider
three possible values for  : 0.95, 1.05 and 0.5. The choices  =0.95 and
 =1.05 are deliberately close to the case  =1 that generates MSV solutions
observationally equivalent to the unique stable equilibrium, see Sub-section
2.3 of our paper.18

Arti�cial datasets of length T=100 are generated from system (49)-(50)
which, after the quali�cations discussed above, reads as a �pure�VARMA(3,1)
system with highly restricted parameters. In this experiment, it is also in-
teresting to investigate the empirical size of the test ART (��s) computed in
the second-step of the testing strategy. The test ART (��s) is by construction
robust to determinacy/indeterminacy, hence we can check whether the em-
pirical size of this test is con�ned to admissible levels for the speci�c DGPs
under scrutiny. We �x the nominal type-I errors of the two tests, �1 and �2,
at the level �1 = �2:=0.10.

18Aside from these �nite sample simulations, we deliberately ignore testing issues at the
boundary of H 0

1 and H
0
0.
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The results are summarized in Table TS2. We observe that the rejection
frequency of the LRT (�̂��s) test for the CER computed in the �rst-step is
reasonably good even when the speci�ed indeterminate reduced form solution
is close to the MSV solution: the empirical power is 67.5% for  =0.95 and
76.9% for  =1.05, and is 100% for the selected indeterminate equilibrium
more distant from the MSV solution ( =0.50). The rejection frequency of the
ART (��s) test, instead, is to some extent in�uences by the value taken by the
nuisance parameter  which, recall, may amplify or dampen the oscillations
of the variables in Xt through the moving average part of system (49), in
addition to what implied by the fundamental shocks. In samples of size
T=100, the empirical size of the computed ART (��s) test ranges from 7.3%
for  =0.95 to 12.5% for  =0.50, and is equal to 8% for  =1.05, as opposed
to the pre-�xed type-I error of 10%. We can conclude that the under(over)-
rejection phenomenon is con�ned to admissible levels.

.2 Power against the omission of propagation mecha-
nisms

When the hypothesis H 0
0 (see eq. (15) in the paper) is rejected in the �rst-

step, and the hypothesis H 0
1 (see eq. (16) in the paper) is rejected in the

second-step, the �LRT ! ART�testing strategy leads one to conclude that
the speci�ed system of Euler equations is �dynamically misspeci�ed�in the
sense that it omits important propagation mechanisms. This situation occurs
when the two identi�cation-robust con�dence sets in eq. (30) and eq. (31) of
the paper are empty. In this sub-section, we analyze the rejection frequency
of the testing strategy in these situations.
The data generating process is assumed to belong to the reduced form

solutions associated with the �augmented�system of Euler equations:

��0Xt = �fEtXt+1+

k2X
h=2

�f;hEtXt+h+�
�
b;1Xt�1+�

�
b;2Xt�2+

k1X
j=3

�b;jXt�j + "
R
t

(76)
which, compared to the baseline system (34), includes (k1�2) additional lags
of Xt associated with the matrices of parameters �b;j 6= 0n�n, j = 3; ::; k1,
(k1 � 3), and (k2 � 1) additional expectations terms associated with the
matrices of parameters �f;h 6= 0n�n, h = 2; ::; k2, (k2 � 2): All reduced form
models discussed in Section are (non-locally) misspeci�ed if at least one
among �b;j, j = 3; ::; k1 and �f;h, h = 2; ::; k2 is di¤erent from zero, and
the data generating process belongs to the class of reduced form solutions
generated by system (76).
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We con�ne our attention to a version of system (76) where the matri-
ces �0, �f , �b and � have the same structure as in Section 2 of the paper,
and �f;h:=03�3 for h � 2 and k1:=3;with �b;3:=�I3. With this design, the
(scalar) parameter � captures the extent of the (non-local) misspeci�cation
of the theoretical model. The �extended�vector of parameters is given by
�e:=(�0s; �; �

0
")
0. When � = 0, no dynamic misspeci�cation occurs in the sense

that the system (76) collapses to the baseline new-Keynesian model summa-
rized in eq. (34). Conversely, values of � di¤erent from zero and for which a
reduced form solution to system (76) exists, de�ne a data generating process
for which the �LRT ! ART�testing strategy based on system (34) leads one
to reject both H 0

0 and H
0
1.

Arti�cial samples of length T = 100 (not including initial lags) are gen-
erated from system (76) under determinacy, by calibrating �s as in Table
1 of the paper, and setting the extra parameter � to values for which a
�nite-order VAR solution exists. We consider M = 1; 000 replications. The
identi�cation-robust �LRT ! ART�procedure is applied on each simulated
sample, using �1 = �2 = 0:10 as nominal type-I errors of the two tests.
Results are reported in Table TS3 which summarizes the marginal rejec-
tion frequencies of the tests LRT (�̂�̂s;ML

) (see eq. (22) of the paper) and

ART (�̂s;LI) (see eq. (29) of the paper), and their joint rejection frequency.
Table TS3 shows that the rejection frequency of the testing strategy tends

to increase, as expected, as the magnitude of the misspeci�cation parameter
j�j increases. The marginal rejection frequency of the LRT (�̂��s) test for H

0
0

ranges from 58.9% for � = �0:10, to 100% for � = �0:35, and is equal to
84.4% and 98.8% for � = �0:15 and � = �0:25, respectively. Therefore the
risk of falsely accepting a reduced form solution with the same time series
representation as the determinate equilibrium in a dynamically misspeci�ed
model is under strict control. The marginal rejection frequency of the test
ART (��s) for H 0

1 ranges from 54.4% for � = �0:10, to 88.9% for � = �0:35,
and is equal to 63.9% and 80.9% for � = �0:15 and � = �0:25, respec-
tively. We notice that the marginal rejection frequency of the LRT (�̂��s) test
is systematically larger than the marginal rejection frequency of the ART (��s)
test, con�rming West�s (1986) �ndings that when linear rational expectations
models are misspeci�ed, �full-information� tests tend to be more powerful
than �limited-information�tests.
The joint rejection frequency ranges from 40.6% for � = �0:10, to 0.88.9%

for � = �0:35, and is equal to 58.9% and 80.4% for � = �0:15 and � = �0:25,
respectively. Overall, the results in Table TS3 suggest that the capacity of
the �LRT ! ART�testing strategy to reject the hypotheses H 0

0 and H
0
1 when

the NK model omits important propagation mechanisms is satisfactory.
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TABLES
Table TS1. Summary of the �LRT! ART� testing strategy for the new-

Keynesian system (32)-(33).

Step 1: LRT (�̂�̂s;ML
) test rejects the CER (C�LR1��1empty) ?

YES NO

Step 2: ART (�̂s;LI) test rejects the OR (C�AR1��2 empty) ?

YES NO H 0
0 in eq. (67) accepted

Omission of H 0
1 in eq. (69) accepted

propagation Indeterminacy

Non conclusive evidence
of determ.

(sunspot shocks and
param. indet. ruled out)

mechanisms
new-Keynesian model rejected new-Keynesian model accepted new-Keynesian model accepted
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Table TS2. Empirical power of the �LRT! ART� testing strategy against
indeterminate equilibria and empirical size of the ART (��s) test in the second-step.

true �0;s :
�max(G(�0;s)):=1.0051 T=100 �1=�2=0.10


0:=0.744 Indeterminacy param. :  =0.95

�0:=0.124 Rej(LRT (�̂�̂s;ML
))=0.675

�0:=0.059 Rej(ART (�̂s;LI))=0.073
�0:=0.044
�0:=0.595
'ey;0:=0.527
'�;0:=0.821  =1.05

�ey;0:=0.796 Rej(LRT (�̂�̂s;ML
))=0.769

��;0:=0.418 Rej(ART (�̂s;LI))=0.08
�R;0:=0.404

 =0.50 Rej(LRT (�̂�̂s;ML
))=1

Rej(ART (�̂s;LI))=0.125

NOTES. Results are obtained using M=1,000 replications. Each simulated
sample is initiated with 200 additional observations to get a stochastic initial state
and then are discarded. The data are generated from the new-Keynesian system
(32)-(33) under indeterminacy, see eq.s (49)-(50), assuming that the sunspot shocks
are absent, i.e. �+� = 0. The structural parameters are calibrated to the medians of
the posterior distributions reported in Table 1 of Benati and Surico (2009), column
�Before October 1979�. The numerical inversions of the tests in the two steps of
the procedure are obtained on each generated dataset by drawing 300 points ��s
from the same grid and method as in Table 1 of the paper.  is the auxiliary
parameter that governs the �parametric indeterminacy�of the system. The test
statistic ART (�̂s;LI) is computed as a quasi-LR test (see Sub-section 3.2 of the
paper, eq. (29)), using Zt:=(X 0

t�1; X
0
t�2; :::; X

0
t�r)

0 and r = 7 in the auxiliary

multivariate regression. LRT (�̂�̂s;ML
) is computed as in eq. (22) of the paper.

Rej(�) stands for �rejection frequency�.
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Table TS3. Empirical power of the �LRT! ART�testing strategy when the
data are generated from the new-Keynesian system (76) with �f;h:=03�3 for h � 2
and k1:=3;and �b;3:=�I3.

true �0;s :
T=100 �1=�2=0.10


0:=0.744 misspeci�cation param.: �=-0.10

�0:=0.124 Rej(LRT (�̂�̂s;ML
))=0.625

�0:=0.059 Rej(ART (�̂s;LI))=0.568
�0:=0.044 Rej(ART (�̂s;LI) ; LRT (�̂�̂s;ML

))=0.432

�0:=0.595
'ey;0:=0.527 �=-0.15

'�;0:=0.821 Rej(LRT (�̂��s;ML
))=0.847

�ey;0:=0.796 Rej(ART (�̂s;LI))=0.645

��;0:=0.418 Rej(ART (�̂s;LI) ; LRT (�̂��s;ML
))=0.593

�R;0:=0.404
�=-0.25

Rej(LRT (�̂�̂s;ML
))=0.985

Rej(ART (�̂s;LI))=0.810

Rej(ART (�̂s;LI) ; LRT (�̂�̂s;ML
))=0.804

�:=-0.35

Rej(LRT (�̂�̂s;ML
))=1

Rej(ART (�̂s;LI))=0.913

Rej(ART (�̂s;LI) ; LRT (�̂�̂s;ML
))=0.913

NOTES. Results are obtained using M=1,000 replications. Size of the burn-
in: 200 observations. Arti�cial datasets are generated from system (76) under
determinacy, by calibrating �s as in Table 1 of the paper, and setting the extra
parameter � that governs the misspeci�cation of the model to values for which
a �nite-order VAR solution exists. The numerical inversions of the tests in the
two steps of the procedure are obtained on each generated dataset by drawing 300
points ��s from the same grid and method as in Table 1 of the paper. The test
statistic ART (�̂s;LI) is computed as a quasi-LR test (see Sub-section 3.2 of the
paper, eq. (29)), using Zt:=(X 0

t�1; X
0
t�2; :::; X

0
t�r)

0 and r = 7 in the auxiliary

multivariate regression. LRT (�̂�̂s;ML
) is computed as in eq. (22) of the paper.

Rej(�) stands for �rejection frequency�; Rej(LRT (�̂�̂s;ML
) ; ART (�̂s;LI)) denotes

the joint rejection frequency.
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