Monetary Policy Surprises, Investment Opportunities, and Asset Prices

Andrew Detzel

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

University of Washington

2015

Reading Committee:
Avraham Kamara, Chair
Ed Rice
Stephan Siegel

Program Authorized to Offer Degree: Foster School of Business ©Copyright 2015 Andrew Detzel

University of Washington

Abstract

Monetary Policy Surprises, Investment Opportunities, and Asset Prices

Andrew Detzel

Chair of the Supervisory Committee:
Professor Avraham Kamara
Michael G. Foster School of Business
Department of Finance and Business Economics

I use changes in Federal funds futures rates on days of FOMC announcements to isolate monetary policy shocks. Recent evidence suggests that contractionary (positive) monetary policy shocks increase expected excess market returns. All else equal, standard intertemporal asset pricing theory predicts that these shocks should therefore earn a positive risk premium as long-lived investors will pay to hedge against decreases in expected returns. Consistent with this prediction, I find that a mimicking portfolio for these shocks earns positive average excess returns, and along with the market factor prices portfolios formed on size, book-to-market, and momentum with an R^2 of 86%. The policy shock portfolio also eliminates the alphas of value and momentum factors.

TABLE OF CONTENTS

		Page
ist of Figures		ii
ist of Tables		iii
Chapter 1: Monetary Policy Surprises, Investment Opportunities, and As	sset Prices	1
1.1 Introduction		1
1.2 Federal funds policy shocks and other data		5
1.3 Monetary policy shocks and asset prices		10
1.4 Contrast with prior literature		16
1.5 Robustness		18
1.6 Conclusion		24
Chapter 2: Supplemental Results on Monetary Policy and Asset Prices		37
2.1 Simulations		37
2.2 Supplemental tests with monthly Federal funds policy shocks		40
2.3 Vector autoregression-based innovations		46
2.4 Related literature		47
Ribliography		59

LIST OF FIGURES

Figure 1	Number	Page
1.1	Federal funds policy shocks	26
1.2	Predicted vs. actual average excess returns from one-step GMM estimations	
	of two linear pricing kernel models for three different sets of assets	27
2.1	Intercepts from regressions of SMB, HML and MOM on simulated " $FFED$ "	s. 52
2.2	Cross-sectional R^2 s and mean absolute pricing errors for two-factor models	
	with MKT and the simulated " $FFED$ "s	53
	The Federal funds and futures rates	
2.4	The monthly-frequency measure of Federal funds surprises $\bar{\Delta}r_t^u$	55

LIST OF TABLES

Table N	Number	Page
1.1	Variable definitions	28
1.2	Summary statistics	29
1.3	Market, size, value and momentum returns controlling for $FFED$	30
1.4	GMM tests with $FFED$	31
1.5	Forecasts of log excess returns on the stock market with the Federal funds rate: with and without output gap and inflation	32
1.6	Forecasts of the variance of excess returns on the stock market with the Federal	
	funds rate: with and without output gap and inflation	33
1.7	GMM tests with $FFED$ and related factors	34
1.8	Returns on $FFED$ prior to and during the zero lower bound	35
1.9	GMM tests with $FFED$ and the intermediary leverage mimicking portfolio .	36
2.1	Forecasts of monthly changes in Federal funds rates with expected changes	
	from futures contracts	56
2.2	Quintile portfolios sorted on exposure to $\bar{\Delta}r^u$	57
2.3	GMM with Thorbecke (1997) Federal funds rate innovations	58

ACKNOWLEDGMENTS

I am very grateful to Avi Kamara, Thomas Gilbert, Ed Rice, and Stephan Siegel for tremendous research guidance. I also thank Hank Bessembinder, Philip Bond, Philip Brock, Jonathan Brogaard, Peter Christoffersen, Ian Dew-Becker, John Elder, Christopher Hrdlicka, John McConnell, Michael O'Doherty, Andreas Stathopoulos, Jack Strauss, Michael Weber, Sterling Yan, and Xiaoyan Zhang for helpful comments and conversations.

DEDICATION

To my wife Kelli, my Father, my Mother, and my Sister for their enduring support and encouragement.

Chapter 1

MONETARY POLICY SURPRISES, INVESTMENT OPPORTUNITIES, AND ASSET PRICES

1.1 Introduction

Asset prices have significant reactions to monetary policy announcements.¹ Bernanke and Kuttner (2005) attribute this price reaction to news of tighter monetary policy, in the form of unexpectedly high Federal funds rates, increasing expected excess returns on stocks. Similarly, Gertler and Karadi (2015) and Hanson and Stein (2014) find that this news increases bond term and credit premia. Taken together, this evidence suggests that surprise changes in the Federal funds rate positively correlate with changes in the expected excess market return, and should therefore earn a positive risk premium in the cross-section of returns (see, e.g., Merton (1973)). However, several recent studies (see, e.g., Thorbecke (1997), Maio and Santa-Clara (2013), and Lioui and Maio (2014)) find that monthly or quarterly innovations in the Federal funds rate earn a negative risk premium.² In this paper, I attempt to reconcile these findings.

Most of the variation in the Federal funds rate is not driven by policy shocks, but the systematic response of the Federal Reserve to changes in the output gap and inflation, as prescribed by the rule of Taylor (1993), for example. Hence, Federal funds innovations capture both the systematic response of the Federal Reserve to innovations in economic conditions, as well as policy shocks, which are unexpected deviations from this systematic response. The systematic response of the Federal funds rate to innovations in economic conditions could earn a negative risk premium because the business cycle and expected

¹See, e.g. Kuttner (2001), Rigobon and Sack (2004), Bernanke and Kuttner (2005)

²The literature generally estimates a negative risk premium associated with innovations in other short-term interest rates as well. See, e.g., Brennan, Wang and Xia (2004) and Petkova (2006).

inflation negatively forecast returns and therefore investment opportunities.³ Federal funds policy shocks, which are unanticipated deviations of the Federal Reserve from its policy rule may command a positive risk premium, but be dwarfed by innovations in the business cycle and inflation.⁴ Estimating the risk premium of Federal funds policy shocks therefore crucially relies on precisely identifying them. This is important because identifying how monetary policy shocks impact asset prices is fundamental to understanding how monetary policy impacts the real economy.

Changes in Federal funds futures rates on days of Federal Open Market Committee (FOMC) announcements provide a precise measure of Federal funds policy shocks (see, e.g., Piazzesi and Swanson (2008)). Event studies, such as Kuttner (2001) and Bernanke and Kuttner (2005) use these to identify whether monetary policy shocks impact stock prices. I take advantage of this identification and relate these time-series impacts to the cross-section of returns via the ICAPM. To do this, I form a mimicking portfolio, FFED, for the changes in the Federal funds futures rate relative to the day before FOMC announcements. If Federal funds policy shocks positively vary with investment opportunities, then this portfolio should earn a positive risk premium and help explain the cross-section of returns. The use of a mimicking portfolio is necessary as these shocks are irregularly spaced around eight FOMC meetings per year. Using standard time-series regressions and GMM, I test the power of a two-factor ICAPM with the market excess return (MKT) and FFED to explain the average returns on the Fama-French 25 portfolios formed on size and book-to-market, and the 25 portfolios formed on size and momentum return.

My key results can be summarized as follows. FFED earns a significant positive risk premium, and along with MKT, explains the returns on the 50 Fama-French portfolios with an R^2 of 86%, slightly higher than the benchmark Fama-French-Carhart four-factor model. In a five-factor model with the Fama-French-Carhart four factors and FFED, only FFED

³See, e.g., Fama (1975), Campbell (1996), Ang and Bekaert (2007), Cooper and Priestley (2009).

⁴Instead of "monetary policy shock", I use the term "Federal funds policy shock" to emphasize that they are derived from the Federal funds rate as opposed to a monetary aggregate like M0, M1, or M2. In particular, this makes a contractionary policy shock positive as opposed to negative.

loads significantly in the discount factor, suggesting that the size, value and momentum factors do not add significant asset pricing power to FFED. In time-series regressions, controlling for exposure to FFED eliminates the alphas earned by the value and momentum factors. Next, I find that the Federal funds rate no longer significantly helps to forecast stock returns or volatility, controlling for the business cycle as proxied by the output gap of Cooper and Priestley (2009) and inflation. Hence, innovations in the Federal funds rate that simply capture the systematic response of the Federal Reserve to changing economic conditions should command a negative risk premium. Conversely, Federal funds policy shocks command a positive risk premium, consistent with expansionary monetary policy shocks adversely shifting the investment opportunity set by lowering the market risk premium.

My study supports prior evidence that tighter monetary policy increases aggregate risk premia by empirically confirming the resulting cross-sectional implication from the ICAPM. This approach allows for the precise identification of monetary policy shocks while still testing whether they represent discount-rate or cash-flow news. The more common approach to decomposing returns into cash-flow and discount-rate news, which Bernanke and Kuttner (2005) use, is to use Campbell and Shiller (1988)-type vector autoregression methods. These decompositions lose the precise identification of FOMC announcement-day shocks by requiring regular time series that are only available at lower frequencies, such as monthly or quarterly. These decompositions also tend to produce unreliable estimates (see, e.g. Chen and Zhao (2009) and Maio (2014)). A second benefit to my approach is that it results in a single factor related to time-varying investment opportunities that explains both value and momentum returns, a novel result relative to the literature that tries to explain the cross-section of returns with the ICAPM.⁵

A third benefit to my approach is that it identifies a risk premium on Federal funds policy shocks, and the sign of this premium has implications for monetary policy. The Federal Reserve may try to increase aggregate demand via an expansionary monetary policy shock.

⁵See, e.g., Vassalou (2003), Brennan et al. (2004), Campbell and Vuolteenaho (2004), Petkova (2006), and Maio and Santa-Clara (2013).

This shock may raise wealth by raising asset prices, which would increase the consumption portion of aggregate demand, all else equal. However, estimating a positive risk premium on Federal funds policy shocks is evidence that the expansionary monetary policy shock also deteriorates the investment opportunity set, which would decrease consumption per unit of wealth. The net result is an ambiguous impact of Federal funds policy shocks on consumption.

Several studies find noteworthy behavior of equity prices around FOMC and other macroe-conomic announcements. Savor and Wilson (2014), for example, find that the CAPM prices a number of test assets well, but only on days of macroeconomic announcements including those from the FOMC. My results are distinct from theirs in at least two ways. First, their CAPM results do not explain momentum returns, even on important announcement days. In contrast, my two-factor model does explain such returns. Second, my asset pricing results do not hold only on macroeconomic announcement days. Rather, my results are consistent with (i) investment opportunity set risk explaining value and momentum returns, and (ii) FOMC announcements being an important source of news about investment opportunities. Lucca and Moench (2015) document that since 1994, over 80% of the equity premium is earned in the 24 hours prior to scheduled FOMC announcements. However, they find these pre-FOMC returns do not correlate with the Federal funds policy shocks that I study and conclude this phenomenon is distinct from the exposure of stocks to policy announcements.

This paper is also related to the literature on financial intermediaries and asset prices. In the models of Drechsler, Savov and Schnabl (2014) and He and Krishnamurthy (2013), a reduction in the Federal funds rate can lower borrowing costs for relatively risk-tolerant financial intermediaries. This in turn allows intermediaries to bid up asset prices, lowering risk premia and Sharpe ratios. Adrian, Etula and Muir (2014) construct a mimicking portfolio, LMP, for intermediary leverage, arguing that intermediary leverage summarizes the pricing kernel of intermediaries. Given that monetary policy affects asset prices at least in part through intermediaries, I investigate whether intermediary leverage explains the returns on FFED. In a three factor model with MKT, LMP and FFED, all three factors

significantly help to price assets. Hence, intermediary leverage alone does not seem to fully explain the effects of monetary policy shocks.

The remainder of this chapter proceeds as follows. Section 1.2 describes my measures of monetary policy surprises and other data sources. Section 1.3 performs the core asset pricing tests with the futures-based Federal funds innovations. Section 1.4 discusses the contrast of my results and those from the previous literature. Section 1.5 presents several important robustness checks. Section 1.6 concludes.

1.2 Federal funds policy shocks and other data

1.2.1 Federal funds policy shocks

To make precise the meaning of "Federal funds policy shock", suppose the FOMC sets the Federal funds rate (FF) according to the rule of Taylor (1993):

$$FF_t = \alpha + \beta GAP_t + \gamma E_t(\pi_{t+1}) + u_t. \tag{1.1}$$

The output gap (GAP) equals the difference between real and potential real GDP, a common proxy for the state of the real business cycle, $E_t(\pi_{t+1})$ denotes expected inflation, and u_t denotes a policy deviation from the rule. Eq. (1.1) captures the Federal Reserve's statutory dual mandate of maximum employment and stable prices. A "monetary policy shock", or "Federal funds policy shock", ϵ_t^{FF} , is an innovation in u_t , that is $\epsilon_t^{FF} = u_t - E_{t-1}u_t$, where E_t denotes expectation with respect to publicly available information. Christiano, Eichenbaum and Evans (2005) among others generalize the Taylor rule in Eq. (1.1) to include other variables, however, the definition of monetary policy shocks remains the same and the simple rule given by Eq. (1.1) is sufficient for illustration purposes.

Since October 1988, the Chicago Mercantile Exchange has listed futures contracts, "Federal funds futures", that make a payment based on the Federal funds rate in a delivery month. Changes in these futures prices on days of FOMC announcements provide a very precise measure of Federal funds policy shocks because the futures market efficiently incorporates current macroeconomic conditions (see, e.g., Kuttner (2001), Cochrane and Piazzesi

(2002), Bernanke and Kuttner (2005), Piazzesi and Swanson (2008)). The primary alternative to using futures contracts to isolate monetary policy shocks is relying on some form of structural-identification-scheme in a vector autoregression (VAR) (see e.g., Christiano et al. (2005), or Christiano, Eichenbaum and Evans (1999) for a survey). Unfortunately, the choice of VAR specification tends to lead to qualitatively different responses of macroeconomic aggregates and asset prices to Federal funds policy shocks (see e.g., Cochrane and Piazzesi (2002), Uhlig (2005)). Survey expectations are also available for the Federal funds rate from sources such as Bloomberg, but they tend to have a limited history and a weekly timing that is somewhat inconvenient for asset pricing tests and prohibits the high-frequency identification associated with changes in Federal funds futures prices on FOMC days (see, e.g., Gilbert (2011)).

Federal funds futures make a payment equal to the interest on a notional amount of \$5 million, where the interest rate is given by the average (calendar) daily Federal funds rate over the delivery month. At any given time, there are 36 contracts outstanding, one for delivery in the current month, and one for delivery in each of the following 35 months. The price $P_{m,d}^n$ on day d, of month m for the contract with delivery in month m+n is quoted as:

$$P_{m,d}^n = \$100 - f_{m,d}^n, \tag{1.2}$$

where $f_{m,d}^n$ denotes the futures rate. In this paper, I use the contracts with delivery in the current month (n = 0), and the following month (n = 1).

For a policy announcement on day d of month m, it is standard to isolate the policy shock from the change in the current-month futures rate, $f_{m,d}^0$. Federal funds futures prices equal the average Federal funds rate in the delivery month so the change in the futures rate must be scaled up by a factor related to the number of days in the month affected by the change. As such, for all but the first calendar day of the month and last three calendar days of the month, I define the surprise change in the Federal funds rate on day d of month m by:

$$\Delta r_{m,d}^{u} \triangleq \frac{D_{m}}{D_{m} - d} \left(f_{m,d}^{0} - f_{m,d-1}^{0} \right), \tag{1.3}$$

where D_m denotes the number of calendar days in month m. For the first day of the month, the surprise equals the difference between the current-month futures rate and the one-month-ahead futures rate from the last day of the previous month $\Delta r_{m,1}^u \triangleq f_{m,1}^0 - f_{m-1,D_{m-1}}^1$. For changes occurring in the last three days of the month, $\Delta r_{m,d}^u \triangleq f_{m,d}^1 - f_{m,d-1}^1$, the change in the one-month-ahead futures rate.⁶

The set of Federal funds policy events consists of the union of pre-scheduled FOMC meetings as well as any days of changes in the Federal funds target rate between regularly scheduled meetings. To construct the sample, I start with the list of times when the outcome of policy events became known to financial markets from Kenneth Kuttner's website. This set of events spans June 1989 through June 2008. I then extend this set through December 2008. The remainder of 2008 includes four regularly scheduled FOMC meetings with announcements made before closing time in the futures market. Finally, on October 7th, 2008, the FOMC decided to lower the Federal funds target by 50 basis point in a 5:30pm conference call, after the futures market had closed. Hence, I consider the change in futures price from October 7th to October 8th to derive the surprise. I do not measure policy shocks post-December 2008 as the Federal funds rate has been kept close to 0 since then.

1.2.2 Factor mimicking portfolio of policy shocks

The FOMC announcements are irregularly spaced so it is necessary to use a factor-mimicking portfolio to obtain a regular time series that has the same important risk characteristics as the announcement surprises. A mimicking portfolio is simply a regression of a factor onto a set of test asset returns. The slopes on the test assets correspond to weights in a portfolio with the same asset pricing information as the original factor, but the portfolio can be sampled at any frequency and in general will be more precisely measured than the

 $^{^6 \}mathrm{See}$ Kuttner (2001) for a more detailed explanation of the precise construction of $\Delta r^u_{m,d}$

⁷http://econ.williams.edu/people/knk1. Note that this sample includes an announcement on October 15, 1998 that occurred after the futures market closed. Following Bernanke and Kuttner (2005), I use the change in futures price from the close on the 15th to the open of the 16th to measure the surprise.

factor itself (see, e.g., Cochrane (2005)). A tempting alternative approach to constructing a regular time series based on Federal funds policy shocks is to form a series that is 0 on non-announcement days and equal to the Federal funds policy shock on announcement days. This factor would be problematic in an ICAPM because investors care about the investment opportunity set that the Federal Reserve affects, not just FOMC announcements per se. There can be other news about the dimension of investment opportunities the Federal Reserve affects that can come at any time. Moreover, this alternative construction would impose the counterfactual assumption that there is no news about monetary policy on non-announcement days.

As test assets, I use the 25 Fama-French size and book-to-market sorted portfolios and the Fama-French 25 size and momentum sorted portfolios, obtained from Kenneth French's website. Maio and Santa-Clara (2012) find that the Fama and French (1993) and Carhart (1997) size, value, and momentum factors most plausibly correspond to innovations in investment opportunities relative to other common factor models. This in turn suggests that spreads in size, value, and momentum most plausibly result from a spread in exposure to time-varying investment opportunities and therefore generate good sets of test assets to test an ICAPM model. To form a mimicking portfolio for Federal funds surprises, I follow Breeden, Gibbons and Litzenberger (1989), Vassalou (2003), Ang, Hodrick, Xing and Zhang (2006), and Adrian et al. (2014) among others, and project the Federal funds policy shocks Δr_d^u onto a subset of eight base assets that summarize all 50 returns well. The eight base assets consist of the four "corners" from the 25 Fama-French size and book-to-market portfolios and the four "corners" from the Fama-French 25 size and momentum portfolios. These eight assets are highly representative of the 50 portfolios. In untabulated tests, the average correlation between the excess returns on the 50 portfolios chosen and their projections onto the eight base assets is over 0.95.

To be precise, let $szbm_{ijt}$ (szm_{ijt}) denote the excess return on the portfolio in the *i*th size quintile and the *j*th book-to-market (momentum) quintile on day or month t. I first

estimate the regression:

$$\Delta r_d^u = a + X_d \cdot b + \epsilon_d, \tag{1.4}$$

where $X_d = (szbm_{11}, szbm_{15}, szbm_{51}, szbm_{55}, szm_{11}, szm_{15}, szm_{51}, szm_{55})'_d$. Then, for convenient scaling, I normalize the vector \hat{b} to have length 1 so that the return on the mimicking portfolio, $FFED_m$, in month m is given by:

$$FFED_m = X_m \cdot \frac{\hat{b}}{\|\hat{b}\|}. (1.5)$$

The precise weights for the mimicking portfolio are given by (t-statistics below in parentheses):

$$\frac{\hat{b}}{\|\hat{b}\|} = \begin{pmatrix}
szbm_{11} & szbm_{15} & szbm_{51} & szbm_{55} & szm_{11} & szm_{15} & szm_{51} & szm_{55} \\
0.05, & 0.85, & -0.09, & 0.01, & -0.48, & -0.16, & 0.09, & -0.07 \\
(0.21) & (3.11) & (-0.46) & (0.09) & (-2.50) & (-0.59) & (0.53) & (-0.84)
\end{pmatrix}^{\prime} (1.6)$$

FFED takes a large long position in small-value $(szbm_{15})$ and a relatively large short position in the small loser portfolio (szm_{11}) . The correlation between $FFED_d$ and Δr_d^u is 0.38.8 Moreover, a heteroskedasticity-robust Wald test rejects the null that b=0 with a p-value of 0.002.

I sample *FFED* over two time periods. The first period, 1989:1-2008:12, just covers the period where the policy shocks come from. To generate the second sample period, I follow Campbell and Ammer (1993), Brennan et al. (2004), and other interest rate-based asset pricing studies and extend the sample to 1952:1-2013:12. This is effectively the largest sample that follows the Treasury-Fed Accord of 1951, which re-established the independence of the Federal Reserve following the second World War.

1.2.3 Other data and descriptive statistics

Table 1.1 lists the main variables used in this paper along with their definitions and their respective sources.

⁸The analogous correlation for a similar portfolio used in Adrian et al. (2014) is 0.37, for example.

Insert Table 1.1 about here

Table 1.2 presents summary statistics of the important variables in the paper over two sample periods. The first sample period covers the existence of Δr^u , 1989:1-2008:12 (n=240). The second sample period covers the entire post-Treasury-Fed accord sample 1952:1-2013:12 (n=744). The future twelve-month inflation limits the sample for $\pi_{t+1,t+12}$ to 1951:1-2012:12, and the monthly Federal funds rate availability limits FF to 1954:7-2013:12.

Insert Table 1.2 about here

The Federal funds policy shock was about -4 basis points on average during this sample period, consistent with a (potentially unexpected) general decline in the Federal funds rate during this period. Figure 1.1 presents a plot of the Federal funds policy shocks.

Insert Figure 1.1 about here

Most of the shocks are close to zero consistent with relatively predictable monetary policy, however there are more negative surprises than positive ones. The largest surprise decrease of -74 basis points occured after an unscheduled meeting on January 21, 2008. The largest positive policy shock was 17 basis points, occuring on March 3, 2008, when the Fed failed to lower the target Federal funds rate as much as expected.

Other noteworthy features of the summary statistics include the average returns on the tradable risk factors. Over the 1989-2008 sample, the market excess return (MKT), the value factor (HML), and the momentum factor (MOM), earned average returns of about of 42, 29, and 97 basis points per month, respectively. Over the longer 1952-2013 sample, however, MKT, HML, and MOM earned average returns of 59, 36, and 75 basis points per month, respectively. SMB earned a relatively small 11 basis points in the shorter sample and 19 basis points per month in the longer sample.

1.3 Monetary policy shocks and asset prices

In this section, I present my main asset pricing results. Given the evidence that Federal funds policy shocks impact the investment opportunity set, I use the framework of the ICAPM,

which is frequently expressed as the following discrete-time model of expected returns for an asset i (see, e.g., Cochrane (2005)):

$$E\left(R_{i,t+1}^{e}\right) = \beta_{iW}\lambda_{W} + \beta_{i\Delta z_{t}}^{\prime}\lambda_{z}.$$
(1.7)

 $R_{i,t}^e$ denotes the excess return on asset i, β_{iW} denotes the beta of asset i with respect to the excess return on the aggregate wealth portfolio, and $\beta_{i\Delta z_t}$ represents a vector of β s with respect to innovations in the state vector z_t . λ_W denotes the risk premium of the market portfolio, and λ_z denotes the vector of risk premia for each state variable.

To be of any hedging concern to investors, the state variables z_t must forecast returns or volatility of returns on the wealth portfolio (see, e.g., Maio and Santa-Clara (2012)). Long-lived investors will demand a premium in the form of higher expected returns to hold a security whose lowest returns coincide with adverse innovations in the state variables. Hence, if a state variable z_{jt} positively forecasts returns on the wealth portfolio, or negatively forecasts volatility, the risk premium, λ_{z_j} will be positive. I test the implication, based on the evidence that policy shocks postively correlate with changes in expected returns on the market, that FFED commands a positive risk premium in a model of the form Eq. (1.7).

1.3.1 Time-Series Asset Pricing Tests with FFED

One way to determine if FFED helps to price the size-book-to-market and size-momentum portfolios, is to test whether or not FFED can explain the returns on factors that are known to price these assets, namely SMB, HML, and MOM. As FFED is a tradable excess return, I can test whether FFED explains these factors by testing whether the intercepts are zero in the following time-series regressions (see, e.g., Fama and French (1993)):

$$X_t = \alpha_X + \beta_{X,FFED}FFED_t + \epsilon_t, \ X = MKT, \ SMB, \ HML, \ MOM.$$
 (1.8)

Table 1.3, Panels A and B presents the estimates of Eq. (1.8) for the 1989:1-2008:12 and 1952:1-2013:12 sample periods, respectively.

Insert Table 1.3 about here

Over the shorter sample period, 1989:1-2008:12, the market earned an abnormal return of 0.61% per month, controlling for FFED, and over the longer period, the abnormal return earned by MKT with respect to FFED remained a significant 0.41% per month. These suggest that, consistent with the ICAPM, FFED did not account for the return on the market over this time period. The FFED slopes of the other three factors are relatively stable, positive and statistically significant in both sample periods. The most noteworthy result from Table 1.3 is that exposure to FFED effectively eliminates the time-series abnormal returns earned by HML and MOM in both samples. Note that including MKT in equation Eq. (1.8) does not meaningfully change αs (untabulated).

One may suspect that these strong results could simply be attributable to forming FFED portfolio from the particular eight base assets used. In chapter 2, I consider a Monte Carlo experiment to determine the likelihood that a randomly generated portfolio of the eight base assets used in FFED would generate such strong results. Fewer than one-tenth of 1% of simulated factors generate α s that were less than or equal to those on HML and MOM in Table 1.3. Only one in 10,000 simulated factors reduced the HML and MOM alphas to as close to zero in absolute value as FFED. Hence, it is extremely unlikely that FFED explains the returns on HML and MOM purely by chance.

Overall, the time-series evidence presents a strong case that FFED explains much of the risk premium associated with HML and MOM. Furthermore, the fact that FFED does not explain the returns on MKT is consistent with the distinct roles of the market return and hedging factors in the ICAPM. In the next section, I consider the extent to which exposures to these two factors explain the cross-section of average stock returns.

1.3.2 GMM Results with FFED

Linear factor models such as Eq. (1.7) are equivalent (see, e.g., Brennan et al. (2004), Cochrane (2005)) to linear discount factor models of the form:

$$E\left(m_t R_t^e\right) = 0 \tag{1.9}$$

$$m_t = 1 + b' f_t.$$

 $R_t^e = (R_{1t}^e, ..., R_{nt}^e)'$ denotes a vector of excess returns and f denotes a mean-0 vector of innovations in the market return and state variables. I test the canonical moment condition given by equation (1.9) via generalized method of moments (GMM) following Cochrane (2005).

Table 1.4 presents my main GMM tests with FFED. I use one-step GMM that equally weights pricing errors as my focus is explaining the variation in the size and book-to-market and size and momentum portfolios per se. The alternative is multi-step procedures that give more weight to explaining returns on more-statistically informative combinations of the underlying test assets. This leads to smaller asymptotic standard errors, but the results can be less-robust in sample. I present Hansen and Jagannathan (1997) distances (HJDs) as a measure of overall model fit. A lower HJD means the estimated discount factor is closer to the space of factors that price all asset perfectly ex post. Hence, a lower HJD corresponds to a better fit. I also present OLS R^2 s from a simple regression of average returns on factor β s.

Insert Table 1.4 about here

In Panels A through D, I compare the four factor model consisting of the Fama-French three factors and the Carhart momentum factor with the two-factor ICAPM consisting of MKT and FFED. In Panel A, I use the 1989:1-2008:12 sample period, as this was the period of time that the Federal funds futures market surprises came from. As expected, the Fama-French-Carhart model explains much of the cross-sectional variation in average

returns over this sample with an OLS R^2 of 0.68 and a mean absolute pricing error ($|\alpha|$) of 1.41% per annum. Further, MKT, HML, and MOM all have significant discount factor coefficients and risk premia that are marginally significant.

Over the same sample period, the two-factor ICAPM achieves an OLS R^2 of 0.71, higher than that of the Fama-French-Carhart model, and has a lower $|\bar{\alpha}|$ of 1.34% per annum. The risk premium on FFED is positive and significant as well. Overall, over 1989:1-2008:12, the two-factor ICAPM explains the spread in average returns on the 50 size and book-to-market and size and momentum portfolios about as well as the Fama-French-Carhart model. This conclusion is confirmed by the statistically indistinguishable HJDs across models.

Panel B also presents estimations of the Fama-French-Carhart model and the two-factor ICAPM, but over the 1952:1-2013:12 sample. The results appear similar to those in Panel A, but the longer sample period results in less noisy average returns and subsequently, more precise estimates. The Fama-French-Carhart model earns an R^2 of 0.83 and an $|\alpha|$ of 1.17% per annum, whereas the two-factor ICAPM earns a very similar R^2 of 0.86 and a similar $|\alpha|$ of 1.09% per annum. FFED also earns a positive risk premium and a negative discount factor coefficient that are significant at the 1% level.

Panels A and B of Figure 1.2 present a plot of average returns versus those predicted by the GMM estimates for the two-factor ICAPM and Fama-French-Carhart models, respectively. This corresponds to the estimates in Panel B of Table 1.4. The two figures look very similar, although the two-factor ICAPM seems to have slightly smaller pricing errors in the non-extreme portfolios whereas the Fama-French-Carhart model seems to have smaller pricing errors on the smaller extreme growth portfolios $szbm_{21}$ and $szbm_{11}$.

Insert Figure 1.2 about here

FFED was constructed from portfolios formed on size and book-to-market and size and momentum return. A natural question is whether the two-factor ICAPM prices just the size and book-to-market portfolios, or just the size and momentum portfolios, as well as the four factor model. Hence, Panels C and D of Figure 1.2 show plots of the average

excess returns over 1952:1-2013:12 on the size and book-to-market portfolios versus those predicted by a GMM estimation analogous to those from Table 1.4. The two-factor ICAPM explains the size and book-to-market with a higher R^2 of 0.85 for versus 0.76 for the Fama-French-Carhart model. However, the two-factor ICAPM has a larger pricing error on the small-growth portfolio, resulting in slightly higher $|\alpha|$ of 1.08% per annum versus 0.98 for the Fama-French-Carhart model. Panels E and F of Figure 1.2 repeat the same exercise as Panels C and D, but with the size and momentum portfolios instead of the size and book-to-market portfolios. The two-factor model has lower pricing errors on most portfolios. The two-factor ICAPM earns a slightly higher R^2 of 0.92 versus 0.90 for the Fama-French-Carhart model, and a slightly lower $|\alpha|$ of 0.97% per annum versus 1.13% per annum for the Fama-French-Carhart model. Overall, the two-factor ICAPM prices both sets of test assets well.

Panel C of Table 1.4 presents GMM estimates of equation (1.9) for the five-factor model with MKT, SMB, HML, MOM, and FFED. All of the discount factor coefficients besides that of FFED are insignificant at the 10% level, whereas the coefficient for FFED is still significant at the 1% level. Further, a χ^2 -test fails to reject the hypothesis that the discount factor coefficients on SMB, HML, and MOM are jointly zero, at the 10% level. Overall, this is consistent with the Fama-French-Carhart factors not adding significant asset pricing information to FFED.

Given these strong results, I again investigate whether the choice of base assets used in FFED drives the results. In chapter 2, I present results from a simulation of factors based on the projection of random noise on the eight base assets I used to make FFED. In only 7 out of 10,000 (0.07%) such simulations do the simulated noise factors generate a t-statistic that is as great or greater than that on FFED and t-statistics on MKT, SMB, HML and MOM that are less than or equal to those on MKT, SMB, HML and MOM presented in Panel E of Table 1.4. The simulations imply that FFED almost certainly does not explain returns just by randomly choosing a lucky combination of the base assets. Rather, FFED appears to derive its asset pricing power by reflecting the risk associated with Federal funds

policy announcements.

Overall, the evidence in Tables 1.3-1.4 indicate that Federal funds policy shocks command a positive risk premium in equities and that FFED explains returns on portfolios formed on size, value and momentum well.

1.4 Contrast with prior literature

In this section, I investigate ICAPM-based explanations for why monthly or quarterly innovations in the Federal funds rate have a negative risk premium whereas Federal funds policy shocks have a positive risk premium. The level of the Federal funds rate negatively forecasts market returns, so its innovations should earn a negative risk premium in the cross-section of returns, all else equal. However, if the FOMC sets the Federal funds rate according to the rule given by Eq. (1.1), then the Federal funds rate could simply inherit its negative forecasting power for returns from the business cycle and inflation. If this is the case, then monthly or quarterly Federal funds innovations could simply proxy for innovations in the business cycle and inflation, which dominate the policy shock portion of the innovation, earning a negative risk premium as a result. Hence, I test whether the the business cycle and inflation explains the forecasting relationship between the Federal funds rate and the investment opportunity set.

To do this, table 1.5 presents forecasting regressions of the form:

$$r_{t+1,t+h} = \alpha + \beta' X_t + \epsilon_{t+1,t+h},$$
 (1.10)

where $r_{t+1,t+h}$ denotes the log excess returns on the CRSP value-weighted index over months t+1 through t+h. In Panel A, X_t includes FF and $\log(D/P)$, the Federal funds rate and log dividend-price ratio on the CRSP value weighted stock index, respectively. I include $\log(D/P)$ because Ang and Bekaert (2007) find that short-term interest rates do not have significant forecasting power without controlling for the dividend yield. In Panel B, X_t also includes GAP and $\pi_{t-12,t}$, the output gap of Cooper and Priestley (2009)⁹ and log-inflation

⁹GAP denotes log industrial production with a quadratic time-trend removed. Monthly measures of

over the 12 months ending in month t, respectively. Following Ang and Bekaert (2007) and Brogaard and Detzel (2015), I use Hodrick (1992) standard errors.

Insert Table 1.5 about here

Panel A shows that the Federal funds rate is a significant, negative forecaster of returns. However, Panel B shows that adding GAP and $\pi_{t-12,t}$ eliminates the significance of the Federal funds rate in forecasting returns. Though insignificant, the slope on FF remains negative. This should not be considered evidence that policy shocks negatively forecast returns. GAP and $\pi_{t-12,t}$ are imprecisely measured proxies of the variables in the monetary policy rule given by Eq. (1.1). Hence, GAP and $\pi_{t-12,t}$ will not perfectly capture all of the variation in the precisely measured, market-based FF. Moreover, any other business cycle and inflation measures that the Federal Reserve responds that are absent from the Taylor rule specified in Eq. (1.1) further exacerbate this problem.

The Federal funds rate may also relate to another important dimension of investment opportunities, the volatility of the market return (see, e.g., Maio and Santa-Clara (2012)). Hence, following Maio and Santa-Clara (2012) I consider similar tests as those in Table 1.5, but with the variance of the market return as the dependent variable. Table 1.6 presents the variance forecasting regressions, which take the form:

$$VAR_{t+1,t+h} = \alpha + \beta' X_t + \epsilon_{t+1,t+h}, \qquad (1.11)$$

where $VAR_{t+1,t+h} = VAR_{t+1} + ... + VAR_{t+h}$ and VAR_t is the variance of daily returns on the CRSP value-weighted index in month t.

Insert Table 1.6 about here

Panel A shows that the Federal funds rate is a significant predictor of variance at the 12-month horizon. However, Panel B shows that, like returns, adding GAP and $\pi_{t-12,t}$ eliminates the significance of the Federal funds rate in forecasting return variance.

Overall, the evidence from Tables 1.5 and 1.6 is consistent with business cycle and inflation driving the relationship between the level of the Federal funds rate and the investment opportunity set. Hence, if innovations in the Federal funds rate earn a negative risk premium, they seem to do so because they capture innovations in the business cycle or inflation as opposed to policy shocks.

1.5 Robustness

In this section I discuss the robustness of my main results that Federal funds policy shocks command a positive risk premium and price sorts on size, value and momentum.

1.5.1 Federal funds risk during the zero lower bound period

FFED was formed using all available policy shocks over the 1989-2008 sample. During this sample and the extended 1952:1-2013:12 sample, FFED prices assets well, suggesting that the asset pricing power of FFED is stable. However, one may seek reassurance of the stability of the relationship between FFED and the asset pricing news captured by monetary policy shocks. A recent quasi-experiment provides at least some opportunity for such reassurance. In December 2008, the Federal Reserve replaced the single Federal funds target rate with a range of 0 to 25 basis points. This so-called "zero lower bound" remains through the end of the sample. During this period, risk associated with large changes in the Federal funds rate, particularly decreases, was minimal. Hence, the risk premium earned by FFED should be less during this period.

To investigate, I compare the returns on FFED over the 60 zero-lower-bound months of the sample (2009:1-2013:12) to those from the 60 months leading up to this period. Table 1.8 presents estimations of two CAPMs with FFED as the dependent excess return. Controlling for just the market factor as the CAPM does leaves the average return attributable to the hedging risk portion of the ICAPM (the $\beta'_{i,\Delta z}\lambda_z$ portion of Eq. (1.7)). In Column (1) the sample is the 60 months prior to the institution of the zero lower bound (2004:1-2008:12) and in Column (2) the sample is the 60 zero-lower-bound months (2009:1-2013:12).

Insert Table 1.8 about here

In the 60 months prior to the institution of the zero lower bound, FFED earned a sizable CAPM α of about 50 basis points per month (6% p.a.). However, in the 60 zero-lower-bound months FFED effectively earned a CAPM α of zero. A standard robust Wald test (untabulated) rejects at the 5% level the null that CAPM α of FFED was not greater prior to the zero-lower-bound period. These patterns are consistent with FFED capturing low Federal funds risk during the out-of-sample zero-lower-bound period and earning a commensurate risk premium of 0.

1.5.2 FFED and factors related to Federal funds rate

The forecasting regressions in Tables 1.5 and 1.6 indicate, via the ICAPM, that the negative risk premium on innovations in the Federal funds rate comes from the business cycle and inflation rather than policy shocks. Rather than only rely on this ICAPM implication, I directly verify that monthly innovations in the Federal funds rate and related factors do not explain the asset pricing power of FFED in the cross-section of returns. I do this by forming mimicking portfolios for factors related to monetary policy shocks, constructed from the same set of base assets as FFED, and investigating whether they can explain the asset pricing results in Section 1.3. This has the additional benefit of providing further evidence that the asset pricing power of FFED does not simply come from the choice of base assets used in its construction.

I generate the mimicking portfolios for the several factors related to the Federal funds

 $^{^{10}\}mathrm{This}$ is a one-sided test. The corresponding test with a two-sided alternative is significant at the 10% level.

rate by estimating the following:

$$\Delta r_{rt} = a^{r_r} + X_t \cdot b^{r_r} + \Delta r_{r,t-1} \cdot c^{r_r} + \epsilon_t^{r_r}$$
(1.12)

$$\Delta BILL_t = a^{BILL} + X_t \cdot b^{BILL} + \Delta BILL_{t-1} \cdot c^{BILL} + \epsilon_t^{BILL}$$
 (1.13)

$$\Delta \overline{FF}_t = a^{FF} + X_t \cdot b^{FF} + \Delta FF_{t-1} \cdot c^{FF} + \epsilon_t^{FF}$$
(1.14)

$$\pi_{t+1,t+12} = a^{\pi} + X_t \cdot b^{\pi} + \pi_{t-12,t-1} \cdot c^{\pi} + \epsilon_t^{\pi}$$
(1.15)

 X_t denotes the same set of test assets as in Eq. (1.4) but at the monthly frequency. The lagged macro variables in Eqs. (1.12)-(1.15) control for predictable variation in the macro variable allowing the loadings on the base assets to more cleanly reflect innovations in the variables (see, e.g. Vassalou (2003)). To get the most precise estimates on the b's, the sample period for equations (1.12)-(1.15) span 1952:1 through 2013:12 unless limited by data constraints. $\pi_{t+1,t+12}$ limits the sample period to end in 2012:12 in equation (1.15) and FF limits the sample period to start in July 1954 in equation (1.14). The four respective mimicking portfolios are given by:

$$F_{Z,t} = X_t \cdot \hat{b}^Z, Z = r_r, BILL, FF, \pi_{t+1,t+12}$$
 (1.16)

Panels A and B of Table 1.7 present one-step and two-step GMM estimates, respectively, of the model given by Eq. (1.9) with factors MKT, FFED, F_{BILL} , F_{FF} , F_{r_r} , and F_{π} . The test assets include all 50 size and book-to-market and size and momentum portfolios.

Insert Table 1.7 about here

The replicating portfolios for the changes in BILL and FF earn a negative risk premium, consistent with the aforementioned prior literature. F_{π} does as well. However, the real interest rate replicating portfolio earns a positive risk premium, consistent with the ICAPM but in contrast with the negative risk premium found by Brennan et al. (2004). Most importantly, the interest rate and inflation factors do not subsume the explanatory power of FFED.

1.5.3 Signaling and uncertainty

Federal funds policy shocks could command a positive risk premium because they reflect a signal that the Fed has more optimistic expectations about the future path of the economy than does the market. This is consistent with Romer and Romer (2000) who find that the Federal Reserve possesses a private forecast of inflation and output that is not subsumed by commercially available forecasts. However, this view is hard to reconcile with the fact that stock prices fall in response to positive Federal funds policy shocks. Boyd, Hu and Jagannathan (2005) argue that stocks can fall in response to good news, because this news increases expectations of future interest rates. However, Bernanke and Kuttner (2005) find a very small impact of monetary policy shocks on expected future interest rates.

Bekaert, Hoerova and Lo Duca (2013) find that Federal funds policy shocks positively correlate with uncertainty, proxied by the VIX index. Increasing risk could explain why Bernanke and Kuttner (2005) find that positive Federal funds shocks increase the equity risk premium. However, VIX commands a negative risk premium (see, e.g., Ang et al. (2006)) as risk and uncertainty adversely affect the investment opportunity set. If tighter monetary policy increases the equity risk premium only by increasing the quantity of risk, then Federal funds policy shocks should command a negative risk premium, counter to my results. Rather, my results are consistent with tighter monetary policy increasing the market Sharpe ratio via increasing expected returns on the market. Similarly, Pástor and Veronesi (2013) shows that policy uncertainty can increase the equity risk premium. Hence, positive Federal funds policy shocks could correlate with increased policy uncertainty as well. However, policy uncertainty also commands a negative price of risk (see, e.g., Brogaard and Detzel (2015)). Hence, the effect of monetary policy shocks on stock prices does not appear to come from effects on risk or uncertainty.

1.5.4 Intermediaries

Monetary policy works directly through financial intermediaries in executing its open market operations. Hence, one likely explanation for my results comes from the recent literature on intermediary based asset pricing that posits a relationship between monetary policy and aggregate expected returns. He and Krishnamurthy (2013) and Drechsler et al. (2014) present models in which a reduction of the Federal funds rate increases the ability of relatively risk tolerant financial intermediaries to bid up asset prices, lowering risk premia and Sharpe ratios.

Adrian et al. (2014) argue that the leverage of the intermediary sector should be a state variable that describes the pricing kernel of intermediaries. They construct a mimicking portfolio, LMP for intermediary leverage in a comparable fashion as FFED. The two factors have qualitative differences in their loadings on the base assets. FFED is dominated by positions in small-cap portfolios whereas LMP does not have a strong size tilt. Further, LMP has a large negative weight in growth stocks whereas FFED does not have a significant position in growth.¹¹ Nonetheless, given the likely relationship of Federal funds risk with the intermediary channel, I test whether LMP explains the asset pricing power of FFED. Panels A and B of Table 1.9 present one-step and two-step GMM estimates, respectively, of the models with factors MKT and LMP, and MKT, FFED, and LMP.

Insert Table 1.9 about here

MKT and LMP alone explain 58% of the variation in average returns on the 50 portfolios, with LMP earning a significant risk premium. Adding FFED increases the R^2 further to 0.86 and reduces the mean absolute pricing error from 1.78% per annum to 1.00%. In one-step estimation LMP does not have a significant discount factor coefficient in the presence of

¹¹They only use the momentum factor as opposed to four size momentum portfolios, and use the 6 size and book-to-market portfolios, as opposed to the four extreme portfolios from the 25 size-value portfolios, slightly limiting the comparison. However, in untabulated results I verify that the comparison I make still holds if I construct FFED with the same portfolios they use.

 $^{^{12}}$ In untabulated tests, the results are qualitatively similar when I construct FFED with exactly the same base assets as used for LMP.

FFED, but in two step estimation, both factors have significant discount factor coefficients, suggesting that both factors help to price assets. In particular, Table 1.9 is evidence against the null that intermediary leverage explains the returns associated with Federal funds policy risk. Hence, the intermediary channel does not yet appear to fully explain the risk premium of FFED.

1.5.5 Additional results in chapter 2

Aside from the simulations described in Section 1.3, the chapter 2 contains two additional robustness results and a detailed review of related literature.

The first of the two robustness checks verifies that there is a positive risk premium on the monthly frequency measure (BK) that Bernanke and Kuttner (2005) uses to relate monetary policy to expected returns. I perform this check via sorting common stocks into portfolios based on estimated exposure to BK and observing that average returns as well as CAPM and Fama and French (1993)-three factor alphas increase monotonically with exposure to BK. This is consistent with my evidence of a positive risk premium on Federal funds policy shocks. However, BK suffers from several sources of noise and endogenous variation, discussed further in chapter 2, so I do not rely on it for my main results.

The second robustness check shows how vector autoregression (VAR)-based identification can fail to produce Federal funds policy shocks that are truly independent of business cycle and inflation shocks, even if they are all mutually orthogonal in sample. Thorbecke (1997) uses a structural VAR to isolate monthly Federal funds policy shocks that are orthogonalized with respect to industrial production and inflation shocks and finds a negative risk premium on the Federal funds shocks. However, I estimate several ICAPMs, that is factor models with MKT along with other factors, and find that these Federal funds shocks only have a negative risk premium in the absence of the industrial production shocks. That is, these Federal funds shocks seem to inherit a negative risk premium from production shocks in spite of the in-sample orthogonalization.

1.6 Conclusion

Monetary policy has a large impact on asset prices, though its effects on risk premia, particularly the equity risk premium, are not completely understood. I use futures contracts to isolate Federal funds policy shocks on FOMC-anouncement days and find that, contrary to the existing evidence, these shocks command a positive risk premium in the cross-section of stock returns. Moreover, a two-factor model with the market excess return and a portfolio that mimics Federal funds policy shocks prices the cross section of returns well. This evidence is consistent with that of Bernanke and Kuttner (2005) that expansionary Federal funds policy shocks decrease aggregate expected excess returns, adversely impacting the investment opportunity set. I also find that the level of the Federal funds rate negatively relates to investment opportunities, but only because it captures the business cycle and inflation, which the Federal Reserve reacts to. As a result, previously used measures of Federal funds innovations seem to earn a negative risk premium because they capture changes in economic conditions, not shocks to monetary policy.

This evidence has consequences for monetary policy. In the standard textbook treatment (see, e.g., Mankiw (2016)), the Federal Reserve attempts to use expansionary monetary policy to increase aggregate demand. The Federal Reserve may increase wealth via an expansionary Federal funds policy shock that raises asset prices and other present values. By itself, this would increase the consumption portion of aggregate demand. However, the positive risk premium on Federal funds policy shocks indicates that this expansionary shock also deteriorates the investment opportunity set. This in turn reduces consumption per unit of wealth. It follows that the net effect of a monetary policy shock on consumption is ambiguous.

There is still an unanswered question of how monetary policy affects the equity risk premium. The positive risk premium I estimate on Federal funds policy shocks is inconsistent with tighter monetary policy simply increasing risk through such channels as weakening balance sheets of firms (see, e.g., Bernanke and Gertler (1995)) or increasing policy uncer-

tainty. The more likely possibility is that Federal funds policy affects risk premia through the financial intermediary channel. In these models (see, e.g., Drechsler et al. (2014) and He and Krishnamurthy (2013)), a reduction in the Federal funds rate allows relatively risk tolerant intermediaries to increase their leverage and bid up asset prices, lowering risk premia and Sharpe Ratios, adversely affecting investment opportunities. This is consistent with the positive risk premium I estimate on Federal funds policy shocks. However, I find that a mimicking portfolio for intermediary leverage, a key state variable in intermediary asset pricing (see, e.g., Adrian et al. (2014)) fails to explain the returns on my Federal funds policy shock portfolio. Thus, intermediary asset pricing currently provides at most an incomplete theory of how monetary policy affects risk premia. Future research is needed to furnish such a complete theory.

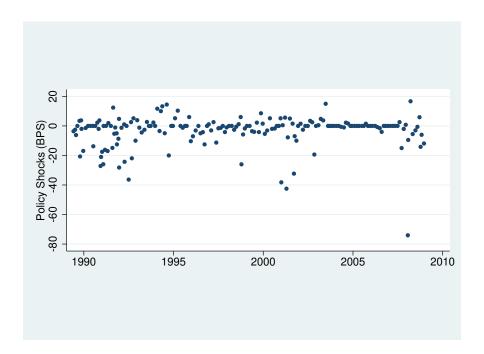


Figure 1.1. Federal funds policy shocks.

This figure depicts the 182 Federal funds policy shocks (Δr^u) based on changes in Federal funds futures rates on days of FOMC announcements from Jun 5, 1989 through December 16, 2008.

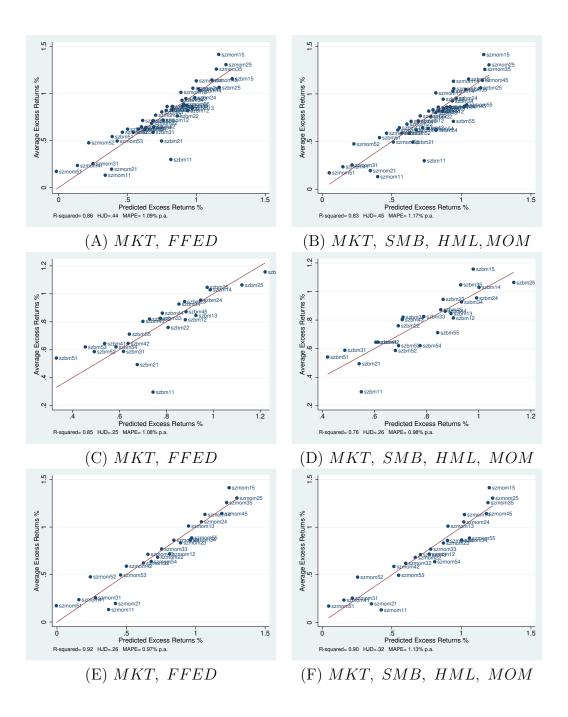


Figure 1.2. Predicted vs. actual average excess returns from one-step GMM estimations of two linear pricing kernel models for three different sets of assets.

In the left panels, the factors are MKT, FFED and in the right panels they are MKT, SMB, HML, MOM. Panels (A) and (B) show results for the 25 size and book-to-market and 25 size and momentum portfolios. Panels (C) and (D) ((E) and (F)) show estimates form just the size and book-to-market (size and momentum portfolios) portfolios.

Table 1.1. Variable definitions

Name	Definition	Source
$szbm_{ij}$	Excess return on the portfolio in the i th size quintile and j th Book-to-Market quintile from the Fama French 25 Size and Book-to-Market Sorted Portfolios	Kenneth French Website
szm_{ij}	Excess return on the portfolio in the i th size quintile and j th Momentum quintile from the Fama French 25 Size and Momentum Sorted Portfolios	Kenneth French Website
MKT	Excess Return on the CRSP Value-Weighted Index	Wharton Research Data Services (WRDS)
SMB	Fama and French (1993) size factor	WRDS
HML	Fama and French (1993) value factor	WRDS
MOM	Carhart (1997) momentum factor	WRDS
CPI	Consumer Price Index (CPI)	St Louis Federal Reserve Website (FRED)
$\pi_{t+1,t+12}$	Change in log CPI over months $t+1$ to $t+12$	FRED
r_r	Real 1-month bill rate: log one-month Treasury bill yield minus the first difference in $\log(CPI)$	WRDS and FRED
BILL	Yield on the 3-month treasury bill	FRED
FF	Effective federal funds rate (Note that the monthly frequency FF on FRED is the average calender daily effective federal funds rate)	FRED
GAP	Monthly output gap of Cooper and Priestley (2009) formed by removing a quadratic time trend from the natural log of the Industrial Production Index	FRED

Table 1.2. Summary statistics

This table presents means, standard deviations, minimums and maximums of the variables used in the paper. MKT denotes the excess return on the CRSP value-weighted index, SMB and HML are the Fama French size and value factors, MOM denotes the Carhart (1997) momentum factor. Δr_d^u denotes the federal funds policy shock on day d. r_r denotes the real log 1-month bill rate. π denotes the one-month change in $\log(CPI)$ and $\pi_{t+1,t+12}$ denotes the change in $\log(CPI)$ over the following 12 months. FF denotes the effective federal funds rate (APR). The frequency of all variables is monthly, except for Δr_d^u , which has 182 daily observations. In Panel A, the sample is 1989:1-2008:12 (n = 240). In Panel B, the sample is 1952:1-2013:12 (n = 744 months), with one exception. The sample for which $\pi_{t+1,t+12}$ is available is 1952:1-2012:12.

	Par	nel A: 1989-2	2008	
	Mean	Std. Dev.	Min	Max
MKT	0.42%	4.28%	-17.23%	10.83%
SMB	0.11%	3.49%	-16.39%	22.00%
HML	0.29%	3.19%	-12.60%	13.84%
MOM	0.97%	4.63%	-24.97%	18.39%
FFED	0.77%	2.39%	-15.79%	9.02%
FF	4.50%	2.14%	0.16%	9.85%
Δr_d^u	-0.04%	0.11%	-0.74%	0.17%
r_r	0.11%	0.29%	-1.08%	1.82%
π	0.24%	0.28%	-1.79%	1.37%
	Par	nel B: 1952-2	2013	
	Mean	Std. Dev.	Min	Max
MKT	0.59%	4.33%	-23.24%	16.10%

	Mean	Std. Dev.	Min	Max
\overline{MKT}	0.59%	4.33%	-23.24%	16.10%
SMB	0.19%	2.90%	-16.39%	22.02%
HML	0.36%	2.71%	-12.68%	13.87%
MOM	0.74%	3.97%	-34.72%	18.39%
FFED	0.72%	2.06%	-15.79%	10.81%
BILL	4.58%	3.02%	0.01%	16.30%
FF	5.16%	3.54%	0.07%	19.10%
r_r	0.08%	0.28%	-1.09%	1.82%
π	0.29%	0.31%	-1.79%	1.79%
$\pi_{t+1,t+12}$	3.52%	3.65%	-20.51%	19.73%

Table 1.3. Market, size, value and momentum returns controlling for FFED

This table presents estimates from time-series regressions of the form: $r_{it} = \alpha_i + \beta_i FFED_t + \epsilon_{it}$. Each *i* denotes one of the following: MKT, SMB, HML, or MOM. In Panel A, the sample spans 1989:1-2008:12 (n=240). In Panel B, the sample is 1952:1-2013:12 (n=744). Parentheses below the estimates present OLS t-statistics. The constant term is in units of % per month. *, ** and *** denote significance at the 10%, 5% and 1% level respectively.

	Panel A	A: 1989:1-	2008:12	
	MKT	SMB	HML	MOM
α	0.61**	-0.03	-0.15	0.07
	(2.12)	(-0.14)	(-0.77)	(0.27)
FFED	-0.25**	0.19**	0.57***	1.18***
	(-2.15)	(2.08)	(7.24)	(11.90)
N	240	240	240	240
R^2	0.02	0.02	0.18	0.37
	Panel I	B: 1952:1-	2013:12	
	MKT	SMB	HML	MOM
α	0.42**	-0.07	0.01	0.00
	(2.53)	(-0.67)	(0.09)	(0.03)
FFED	0.22***	0.36***	0.48***	1.02***
	(2.94)	(7.28)	(10.73)	(16.89)
N	744	744	744	744
R^2	0.01	0.07	0.13	0.28

Table 1.4. GMM tests with FFED

This table presents one-step GMM estimations of several linear pricing kernel models. The test assets are the excess returns on the Fama French 25 portfolios formed on size and book-to-market and the 25 portfolios formed on size and momentum. In Panels A and B, the first five columns present estimates with factors MKT, SMB, HML, and MOM, and the last three columns present estimates with factors MKT and FFED. In Panel C, the factors are MKT, SMB, HML, MOM, and FFED. b and λ denote the discount factor coefficients and risk premiums, respectively, for each factor. R^2 denotes the from the OLS cross-sectional regression of average returns on β s, and $|\alpha|$ denotes the mean absolute pricing errors per annum. HJD denotes the Hansen Jagannathan Distances and standard errors are next to the HJDs in parentheses. χ^2 (b_{smb} , b_{hml} , b_{umd}) and p_{χ^2} denote the χ^2 -test statistic and p-value, respectively, of the test that the discount factor coefficients on SMB, HML and MOM are jointly 0. In Panel A, the sample is 1989:1-2008:12. In Panels B and C, the sample is 1952:1-2013:12. Newey and West (1987) t-statistics based on three lags of serial correlation are in parentheses.

			F	Panel A: 1989:1-	2008:12		
	MKT	SMB	HML	MOM		MKT	FFED
b	-0.06	-0.02	-0.07	-0.05	\overline{b}	-0.04	-0.12
t(b)	(-2.86)	(-0.75)	(-2.73)	(-2.60)	t(b)	(-1.94)	(-2.88)
λ	0.69	0.17	0.36	0.69	λ	0.69	0.71
t_{λ}	(1.98)	(0.76)	(1.70)	(1.69)	t_{λ}	(1.67)	(2.72)
$R^2 =$	$=0.68, \overline{ \alpha }$	=1.41, HJ	D = 0.61(0.04))	$R^2 = 0$	$.71, \overline{\alpha} = 1.34,$	HJD = 0.60(0.04)

	MKT	SMB	HML	MOM		MKT	FFED
b	-0.05	-0.02	-0.10	-0.07	\overline{b}	-0.02	-0.19
t(b)	(-4.36)	(-1.35)	(-5.19)	(-4.28)	t(b)	(-1.41)	(-4.58)
λ	0.62	0.17	0.42	0.82	λ	0.56	0.81
t_{λ}	(2.84)	(1.19)	(3.44)	(3.33)	t_{λ}	(2.14)	(4.80)
$R^2 =$	$=0.83, \overline{\alpha} $	=1.17, HJ	D = 0.45(0.03))	$R^2 = 0$	$.86, \overline{ \alpha } = 1.09,$	HJD = 0.44(0.03)

Panel C: 1952:1-2013:12

	MKT	SMB	HML	MOM	FFED
\overline{b}	-0.02	0.04	0.04	0.03	-0.28
t(b)	(-1.05)	(1.30)	(1.12)	(1.32)	(-3.42)
λ	0.63	0.24	0.35	0.77	0.93
t_{λ}	(2.67)	(1.58)	(2.74)	(2.41)	(4.72)
$R^2 = 0.8$	$7, \overline{\alpha} = 0.91, H$	JD = 0.43((0.03)		
$\chi^2 \left(b_{SM} \right)$	$_{B},b_{HML},b_{MOM}$	$(-1)=2.15, p_{\chi}$	$_{2} = 0.54$		

Table 1.5. Forecasts of log excess returns on the stock market with the Federal funds rate: with and without output gap and inflation

This table presents forecasting regressions of the form: $r_{t+1,t+h} = \alpha + \beta' X_t + \epsilon_{t+1,t+h}$, where $r_{t+1,t+h}$ denotes the log excess return on the CRSP value-weighted index over months t+1 through t+h. In Panel A, X_t includes FF and $\log(D/P)$, the Fed funds rate and log dividend-price ratio on the CRSP value weighted stock index, respectively. In Panel B, X_t also includes GAP and $\pi_{t-12,t}$, the output gap of Cooper and Priestley (2009) and log-inflation over the 12 months ending in month t, respectively. The sample period is 1954:8-2013:12. t-statistics based on Hodrick (1992) standard errors are in parentheses. *, **, and *** denote significance at the 10%, 5% and 1% levels, respectively.

Par	nel A: Fore	ecasts with	FF and \log	g(D/P)
	h=1	h=3	h=6	h=12
\overline{FF}	-0.12**	-0.51***	-0.86***	-1.43**
	(-2.21)	(-3.05)		(-2.32)
$\log(D/P)$	1.63***	4.62***	8.38***	14.40**
	(3.08)	(2.93)	(2.70)	(2.34)
N	713	711	708	702
$adj-R^2$	0.01	0.05	0.08	0.11
Panel B: F	orecasts w	with FF , lo	g(D/P), G	AP , and $\pi_{t-12,t}$
	h=1	h=3	h=6	h=12
FF	-0.04	-0.27	-0.40	-0.97
	(-0.51)	(-1.19)	(-0.90)	(-1.16)
$\log(D/P)$	1.23**	3.15*	5.15	7.25
	(2.07)	(1.81)	(1.51)	(1.09)
GAP	-5.08*	-17.62**	-37.71**	-75.85**
	(-1.86)	(-2.19)	(-2.33)	(-2.36)
$\pi_{t-12,t}$	-9.48	-22.75	-38.47	7.94
	(-0.86)	(-0.71)	(-0.62)	(0.07)
\overline{N}	713	711	708	702
$\operatorname{adj-}R^2$	0.02	0.07	0.12	0.18

Table 1.6. Forecasts of the variance of excess returns on the stock market with the Federal funds rate: with and without output gap and inflation.

This table presents forecasting regressions of the form: $VAR_{t+1,t+h} = \alpha + \beta' X_t + \epsilon_{t+1,t+h}$, where $VAR_{t+1,t+h} = VAR_{t+1} + ... + VAR_{t+h}$ and VAR_t is the variance of daily returns on the CRSP value-weighted index in month t. In Panel A, X_t includes FF and $\log(D/P)$, the Fed funds rate and log dividend-price ratio on the CRSP value weighted stock index, respectively. In Panel B, X_t also includes GAP and $\pi_{t-12,t}$, the output gap of Cooper and Priestley (2009) and log-inflation over the 12 months ending in month t, respectively. The sample period is 1954:8-2013:12. t-statistics based on Hodrick (1992) standard errors are in parentheses. *, **, and *** denote significance at the 10%, 5% and 1% levels, respectively.

, ,		O		,
Par	nel A: Fore	casts with	FF and \log	g(D/P)
	h=1	h=3	h=6	h=12
FF	0.00	0.00	0.01	0.04**
	(0.16)	(0.62)	(1.12)	(2.32)
$\log(D/P)$	-0.11***	-0.37***	-0.80***	-1.74***
	(-6.72)	(-6.95)	(-7.11)	(-7.02)
\overline{N}	713	711	708	702
$adj-R^2$	0.04	0.06	0.09	0.15
Panel B: F	orecasts wi	ith FF , \log	g(D/P), GA	AP , and $\pi_{t-12,t}$
	h=1	h=3	h=6	h=12
FF	-0.01	-0.02	-0.04	-0.04
	(-1.33)	(-1.41)	(-1.37)	(-0.81)
$\log(D/P)$	-0.16***	-0.52***	-1.05***	-2.04***
	(-7.33)	(-6.94)	(-7.14)	(-7.24)
GAP	-0.40***	-1.15***	-1.79***	-1.85*

(-3.45)

5.60***

(3.13)

711

0.10

(-3.07)

11.45***

(3.14)

708

0.14

(-1.74)

17.00***

(2.85)

702

0.18

(-3.76)

1.56***

(3.16)

713

0.05

 $\pi_{t-12,t}$

 $adj-R^2$

N

Table 1.7. GMM tests with FFED and related factors

This table presents estimated discount factor coefficients and risk premiums from GMM estimations of the linear pricing kernel model with factors MKT, FFED, F_{FF} , F_{BILL} , F_{rr} , and F_{π} . The test assets are the monthly excess returns on the Fama French 25 portfolios formed on size and book-to-market and the 25 portfolios formed on size and momentum. Panel A and B present one-step and two-step GMM estimates, respectively. R^2 denotes the OLS R^2 s from the cross-sectional regression of average returns on β s, and $|\alpha|$ denotes the mean absolute pricing errors expressed per annum. HJD denotes the Hansen Jagannathan Distances and standard errors are next to the HJDs in parentheses. The sample is 1952:1-2013:12. Newey and West (1987) t-statistics based on three lags of serial correlation are in parentheses.

Pane	el A: (One	e-Step) M	KT, FF	ED, F_{FF}	$, F_{BILL},$	F_{rr}, F_{π}
	MKT	FFED	F_{FF}	F_{BILL}	F_{rr}	F_{π}
b	-0.03	-0.21	0.15	-0.19	0.01	0.13
t(b)	(-1.81)	(-3.32)	(0.32)	(-0.47)	(0.10)	(1.67)
λ	0.65	0.83	-0.13	-0.08	0.18	-0.13
t_{λ}	(2.64)	(4.02)	(-1.96)	(-1.31)	(2.13)	(-1.70)
$R^2 =$	$=0.90, \overline{ \alpha }$	=0.88, H	JD = 0.4	0(0.03)		
Pane	el B: (Tw	o-Step) M	KT, FF	ED, F_{FF}	$, F_{BILL},$	F_{rr}, F_{π}
Pane	el B: (Two	o-Step) M	F_{FF}	ED, F_{FF} F_{BILL}	F_{BILL} , F_{rr}	F_{rr}, F_{π} F_{π}
Pane	MKT		-	F_{BILL}		
	MKT -0.03	FFED	F_{FF} 0.58	F_{BILL}	F_{rr} 0.01	F_{π} 0.10
b	MKT -0.03 (-2.32)	FFED -0.23	F_{FF} 0.58	F_{BILL} -0.51 (-2.12)	F_{rr} 0.01	F_{π} 0.10 (2.34)
b $t(b)$	MKT -0.03 (-2.32)	FFED -0.23 (-7.55)	F_{FF} 0.58 (2.52)	F_{BILL} -0.51 (-2.12)	F_{rr} 0.01 (0.34)	F_{π} 0.10 (2.34)

Table 1.8. Returns on FFED prior to and during the zero lower bound

This table presents two time series regressions of FFED on the market excess return. In column (1), the sample period is the last 60 months before the FOMC instituted the zero lower bound (2004:1-2008:12). In column (2), the sample period is the last 60 months of the sample during which the federal funds rate is at the "zero lower bound" (2009:1-2013:12). Units are percent per month so that 0.01 denotes one basis point. Heteroskedasticity-robust t-statistics are in parentheses. *, **, and *** denote significance at the 10%, 5% and 1% levels, respectively.

	(1)	(2)
MKT	0.133**	0.087
	(2.10)	(0.74)
α	0.515**	-0.004
	(2.53)	(-0.01)
N	60	60
$adj-R^2$	0.077	0.002

Table 1.9. GMM tests with FFED and the intermediary leverage mimicking portfolio

This table presents estimated discount factor coefficients and risk premiums from GMM estimations of several linear pricing kernel models. The test assets are the monthly excess returns on the union of the Fama French 25 portfolios formed on size and book-to-market and the 25 portfolios formed on size and momentum. The first three columns present estimates from the model with factors MKT and LMP and the last four columns present estimates with FFED as well. Panel A uses one-step GMM and Panel B uses two-step GMM. b and λ denote the discount factor coefficients and risk premiums, respectively, for each factor. R^2 denotes the OLS R^2 s from the cross-sectional regression of average returns on β s, and $|\alpha|$ denotes the mean absolute pricing errors expressed per annum. HJD denotes the Hansen Jagannathan Distances and standard errors are next to the HJDs in parentheses. The sample is 1952:1-2013:12. Newey and West (1987) t-statistics based on three lags of serial correlation are in parentheses.

Panel A: (One-Step) MKT, LMP, FFED

	MKT	LMP		MKT	FFED	LMP	
b	0.00	-0.11	\overline{b}	-0.01	-0.14	-0.04	
t(b)	(-0.30)	(-4.78)	t(b)	(-0.78)	(-2.81)	(-1.07)	
λ	0.64	1.21	λ	0.58	0.78	1.11	
t_{λ}	(2.65)	(5.61)	t_{λ}	(2.24)	(4.70)	(4.64)	
$R^2 = 0.58, \alpha = 1.78, HJ = 0.46(0.03)$			$R^2 = 0.86, \alpha = 1.00, HJ = 0.43(0.03)$				

Panel B: (Two-Step) MKT, LMP, FFED

	*	
MKT	LMP	MKT $FFED$ LMP
b 0.01	-0.12	b -0.01 -0.19 -0.05
t(b) (0.61)	(-8.78)	t(b) (-1.17) (-7.2) (-2.83)
λ 0.53	1.35	λ 0.68 1.03 1.45
t_{λ} (2.92)	(9.18)	$t_{\lambda} \qquad (3.47) \qquad (9.98) \qquad (8.76)$
HJ = 0.46(0.03)		HJ = 0.43(0.03)

Chapter 2

SUPPLEMENTAL RESULTS ON MONETARY POLICY AND ASSET PRICES

This chapter includes supplemental results to augment those in the paper. Section 2.1 presents simulations to validate the construction of FFED. Section 2.2 presents asset pricing results with the monthly frequency measure of Federal funds policy shocks used by Bernanke and Kuttner (2005). Section 2.3 discusses a vector autoregression-based measure of Federal funds policy shocks. Finally, section 2.4 presents a detailed review of related literature.

2.1 Simulations

Here I present simulation evidence that picking a "lucky" combination of the base assets does not generate my main asset pricing results with FFED. I form ten thousand random "FFED"s by regressing i.i.d. normal noise onto the eight base assets that I used to make FFED over the monthly sample period 1952:1-2013:12. I then simulate some of the important test statistics that I generate in this paper and consider the null hypothesis that my results are simply due to randomly picking a particularly powerful combination of the base assets.

More specifically, I generate (n=744) random sequences of i.i.d. standard normal random variables, denoted $z_{i,t}$, i = 1, ..., 10,000, t = 1, ..., 744. t = 1 through t = 744 corresponds to each month from January 1952 through December 2013. I then estimate the same regressions as for FFED for each i:

$$z_{i,t} = a_i + (szbm_{11}, szbm_{15}, szbm_{51}, szbm_{55}, szm_{11}, szm_{15}, szm_{51}, szm_{55})_t \cdot b_i + \epsilon_{it}, \quad (2.1)$$

I normalize the vector \hat{b}_i to have length 1 so that the simulated value of the mimicking

portfolio, $FFED_{it}^{SIM}$, in month t is given by:

$$FFED_{it}^{SIM} = (szbm_{11}, szbm_{15}, szbm_{51}, szbm_{55}, szm_{11}, szm_{15}, szm_{51}, szm_{55})_t \cdot \frac{\hat{b}_i}{\|\hat{b}_i\|}. \quad (2.2)$$

Note that the simulated $FFED_{it}^{SIM}$ s keep the same one historical sample of $szbm_{11}$, $szbm_{15}$, $szbm_{51}$, $szbm_{55}$, szm_{11} , szm_{15} , szm_{51} , and szm_{55} , but I generate random noise to project onto this one history of base assets. Hence, the simulations address the likelihood of whether a randomly drawn "FFED" would produce as strong or stronger results as those reported in the paper, simply by choosing the right combination of the base assets by chance.

Figure 2.1 Panels A, B and C plot distributions of the estimated intercepts from the time-series regressions of SMB, HML and MOM on each of the 10,000 randomly generated $FFED_i^{SIM}$ s. The observations between the vertical red line correspond to intercepts that are as small, or smaller, in absolute value, to corresponding intercepts reported in Table 1.3. Beneath the x-axis are the empirical frequencies of observations bound between the red lines. Panel D presents a scatter plot with of the intercepts from the regressions of HML and MOM on each of the ten-thousand randomly generated "FFED"s. The red lines cross through pair of intercepts from the corresponding regression reported in Table 1.3 Panel B Right. The yellow dots correspond to pairs of intercepts where both intercepts are less-than or equal to those reported by Table 1.3. Beneath the x-axis is the empirical probability that one of the dots depicted is yellow.

An untabulated calculation reveals that only one of the ten-thousand randomly generated $FFED^{SIM}$ s generates α s on HML and MOM in the estimation of (1.8) that are as small or smaller in absolute value as those reported in Table 1.3. Furthermore, as seen in figure 2.1 panel D, only 9 simulated $FFED^{SIM}$ s generated α s on HML and MOM that are both less than or equal to the correspond values in Table 1.3. In short, it is extremely unlikely that a random combination of the base assets would generate a factor that generates the same powerful time-series results as FFED.

Then, Figure 2.2 Panels A and B present histograms of mean absolute pricing errors $|\alpha|$ s and cross-sectional R^2 s for the GMM tests in table 1.4, for each of the ten-thousand simulated

"FFED"s. The vertical red lines denote the corresponding quantity reported in Table 1.4. Beneath the x-axis in Panel A is the empirical probability that a random $FFED^{SIM}$ would have an $|\alpha|$ that is less than or equal to that earned by the model MKT, FFED in Table 1.4. Panel B reports a similar probability that a cross-sectional R^2 on a randomly generated $FFED^{SIM}$ would be greater than or equal to that earned by the model MKT, FFED in Table 1.4. Panel C presents a scatter of simulated cross-sectional R^2 s and $|\alpha|$ s. The two red lines intersect at the corresponding $|\alpha|$ and R^2 reported in Table 1.4. Yellow dots denote combinations of $|\alpha|$ and R^2 s where $|\alpha|$ is no greater and the R^2 is no less than the corresponding numbers in Table 1.4. Beneath the x-axis in Panel (C) is the empirical probability that a dot is yellow.

Only 20 out of 10,000 randomly generated factors combine with the market excess return to yield both a mean absolute pricing error that is less than or equal to that reported in Table 1.4 and a cross-sectional R^2 that is as large or larger than that reported in Table 1.4. For each simulated $FFED_i^{SIM}$, let $t_{i,SMB}$, $t_{i,HML}$ and $t_{i,MOM}$ and $t_{FFED_i^{SIM}}$ denote the t-statistics corresponding to the test that b_{SMB} , b_{HML} , b_{MOM} and $b_{FFED_i^{SIM}}$ are significantly different than 0 from the one-step GMM estimation of the factor model given by $f = (MKT, SMB, HML, MOM, FFED_i^{SIM})$. This is analogous to the test in Panel E of Table 1.4. I perform the following two computations:

• 0.71 % of the 10,000 simulated $t_{i,SMB}$, $t_{i,HML}$, $t_{i,MOM}$ and $t_{FFED_i^{SIM}}$ fail to reject the null that b_{SMB} , b_{HML} and b_{MOM} are 0 at the 10% level while rejecting the null that $b_{FFED_i^{SIM}} = 0$ at the 5% level. That is, 0.71 % of the simulated $FFED_i^{SIM}$ s satisfied:

$$|t_{i,SMB}| >= \Phi^{-1}(0.95), |t_{i,HML}| >= \Phi^{-1}(0.95), |t_{i,MOM}| >= \Phi^{-1}(0.95), \text{ and}$$
 (2.3)
 $|t_{FFED_i^{SIM}}| < \Phi^{-1}(0.975),$

where Φ denotes the standard normal CDF.

• 0.26 % of the 10,000 simulated $t_{i,SMB}$, $t_{i,HML}$, $t_{i,MOM}$ were as small or smaller as those reported in Table 1.4 while $t_{FFED_i^{SIM}}$ was as large or larger. That is, 0.26 % of the

simulated $FFED_i^{SIM}$ s satisfied:

$$|t_{i,SMB}| \le 1.30, |t_{i,HML}| \le 1.12, |t_{i,MOM}| \le 1.32, \text{ and}$$
 (2.4)
 $|t_{FFED_i^{SIM}}| >= 3.42.$

Overall, the empirical probabilities from the simulations allow me to reject the null hypothesis, at the 1% level, that I would observe time-series or cross-sectional asset pricing results that are as strong as those of FFED, simply by randomly generating mimicking portfolios from the history of $szbm_{11}$, $szbm_{15}$, $szbm_{55}$, szm_{11} , szm_{15} , szm_{51} , and szm_{55} .

2.2 Supplemental tests with monthly Federal funds policy shocks

My study is motivated largely from the ICAPM implications of the evidence from Bernanke and Kuttner (2005) that the impacts of monetary policy on stock prices comes largely through news about expected returns. They do this using a monthly frequency proxy of Federal funds policy shocks in order to use a Campbell and Shiller (1988)-type decomposition. In particular, they do not use the more precisely measured daily policy shocks that my study takes advantage of. In this section I perform additional analysis to determine if the monthly frequency measure of Bernanke and Kuttner (2005) also commands a positive risk premium. This has at least two benefits. The first is to verify that my study is well-founded. A negative risk premium on the monthly Bernanke and Kuttner (2005) Federal funds policy shock measure would cast doubt on the ICAPM implication that I use to explain the positive risk premium on my Federal funds announcement surprise portfolio (FFED). The second benefit of testing the monthly Bernanke and Kuttner (2005) measure is that it is already regularly spaced and can be used in asset pricing tests directly without the use of a mimicking portfolio. This provides further evidence of the robustness of the positive risk premium on Federal funds policy shocks.

2.2.1 Construction and properties of the monthly measure

Letting D_m denote the number of calendar days in month m, the average daily Federal funds rate implied by the one-month ahead Federal funds futures contract on the last day of month m-1 is given by:

$$f_{m-1,D_{m-1}}^1 = \$100 - P_{m-1,D_{m-1}}^1, \tag{2.5}$$

where $P_{m-1,D_{m-1}}^1$ denotes the settlement price of the one-month-ahead futures contract on the last day of month m-1. To get a sense of how well $f_{m-1,D_{m-1}}^1$ forecasts one-month-ahead Federal funds rates, Figure 2.3 presents a plot of three monthly-frequency time series. The first is the average daily Federal funds rate each month, \overline{FF}_m . The second is the average daily target Federal funds rate, \overline{FFT}_m . The third is the lagged one-month-ahead futures rate, $f_{m-1,D_{m-1}}^1$. The series nearly lay on top of each other with only a small amount of noise separating the average daily Federal funds rate from the other two series. In particular, the futures contracts appear to be an accurate predictor of any of the two ex-post rates in the plot, consistent with the now-outdated evidence of Krueger and Kuttner (1996) who find that $f_{m-1,D_{m-1}}$ yields a rational and efficient forecast of the Federal funds rate at the one-month and two-month horizon.

I formally test this forecasting power as follows. Following, Kuttner (2001), Bernanke and Kuttner (2005) and others, I define the "expected" change in the futures rate in month m to be the difference between the futures rate at the end of the previous month and the target rate at the end of the previous month: $f_{m-1,D_{m-1}}^1 - FFT_{m-1}$. Then, I estimate forecasting regressions of the form:

$$\Delta X_m = a + b \left(f_{m-1, D_{m-1}}^1 - FFT_{m-1} \right) + \epsilon_m, \tag{2.6}$$

where X_m denotes the average daily effective federal funds rate or target federal funds rate, in month m. Table 2.1 presents the results.

Insert Table 2.1 about here

Table 2.1 also includes the F statistics for the hypothesis that b = 1. The F test fails to reject the hypothesis that b = 1 in all four specifications. This is equivalent to failing to reject the null of a time-varying forecast error. Further, the futures rate seems to over predict the changes in federal funds rate by a constant 5 or 6 base points per annum, which is small. Hence, at the one-month horizon Federal funds futures contracts predict changes in the Federal funds rate with a small, seemingly constant error.

Following Krueger and Kuttner (1996), Kuttner (2001), Bernanke and Kuttner (2005) and others, I define the month-m surprise change in the target Federal funds rate by:

$$\bar{\Delta}r_m^u = \frac{1}{D_m} \sum_{d \in m} FFT_d - f_{m-1, D_{m-1}}^1. \tag{2.7}$$

 FFT_d denotes the target Federal funds rate on day d of month m. The measure is available from January 1989 through November 2008 when the Federal Reserve quit publishing a single target rate. Starting December 16, 2008 the Federal Reserve began publishing a target range of Federal funds rates. In December 2008, I replace the target Federal funds rate with the average daily effective Federal funds rate in equation (2.7) because the Federal Reserve ceased to publish a single Federal funds target rate mid-month. I do not continue to construct $\bar{\Delta}r^u$ with the effective rate after December 2008 because the FOMC kept the Federal funds rate close to 0, and adopted so-called unconventional monetary policy, which makes the Federal funds rate a questionable proxy for monetary policy. Following the literature, I construct $\bar{\Delta}r^u$ using the average daily target rate in month m as opposed to the average effective rate over month m. One reason for doing this is that the spread between the average daily effective Federal funds rate represents high frequency fluctuations in the demand for Federal funds that is hard to forecast and does not reflect monetary policy (see, e.g., Bernanke and Blinder (1992)). To get a sense of how much of the variation in the Federal funds rate comes from $\bar{\Delta}r^u$, note that the correlation between $\bar{\Delta}r^u$ and $\Delta F\bar{F}_t$ is 0.24.

2.2.2 Asset Pricing Tests with $\bar{\Delta}r^u$

To estimate a risk premium on $\bar{\Delta}r^u$, I sort stocks based on their estimated exposures to past Federal funds surprises. Each month, I estimate the following model:

$$r_{it} - r_{ft} = \alpha + \beta (r_{mt} - r_{ft}) + \beta^{\$} \bar{\Delta} r_t^u + \epsilon_{it}, \qquad (2.8)$$

over the previous 60 months, for each common stock i in CRSP with at least 36 months of returns. I then sort these stocks into 5 value-weighted quintiles excluding those stocks with share prices below \$5 following Asparouhova, Bessembinder and Kalcheva (2013). I denote the excess return on the i-th quintile in month t as FED_{it} and the top-minus-bottom- $\beta_{\bar{\Delta}r^u}$ -quintile spread as $FED_{5-1,t}$. That is:

$$FED_{5-1,t} \triangleq FED_{5t} - FED_{1t} \tag{2.9}$$

The series begins 1994:1, 60 months after $\bar{\Delta}r^u$ becomes available and lasts through 2008:12 (n=180).

In Panels A through C of Table 2.2, I estimate several models of the form:

$$r_{pt} - r_{ft} = \alpha_p + \beta_p' X_t + \epsilon_{pt}, \tag{2.10}$$

where $p = FED_i$, i = 1, 2, 3, 4, 5 or p = 5 - 1. Panel A presents average returns, Panel B presents CAPM estimations $(X_t = MKT_t)$, and Panel C presents Fama-French 3-factor model estimations $(X_t = (MKT, SMB, HML)')$.

Insert Table 2.2 about here

Average returns increase monotonically from the lowest to highest quintile portfolio. The top-minus-bottom quintile difference is economically significant at 58 base points per month, or equivalently 6.96% per annum. Similarly, the α s with respect to the CAPM model also increase monotonically from the bottom to the top quintile. The CAPM α on FED_{5-1} is 61 base points per month (7.32% per annum). In Panel C, the three-factor α s increase

monotonically from the bottom to top quintile portfolios, with the spread FED_{5-1} earning a Fama-French three factor α of 72 base points per month (8.64% per annum). The three-factor abnormal return is also significant at the 5% level. Furthermore, the loading on the market return is negative in Panels B and C as well, consistent with FED_{5-1} acting as a mimicking portfolio for Federal funds innovations which are negatively correlated with market returns.

Panel D of Table 2.2 presents post-ranking $\beta_{\bar{\Delta}r^u}$ s and β_{FFED} s from the following model:

$$r_{pt}^e = \alpha + \beta_p M K T_t + \beta_{X,p} X_t + \epsilon_t, \ X = \bar{\Delta} r^u, \ FFED.$$
 (2.11)

The post-ranking $\beta_{\bar{\Delta}r^u}$ s increase monotonically from FED_2 to FED_4 though the point estimates are not precisely estimated and the top and bottom quintiles both have negative, though insignificant post-ranking $\beta_{\bar{\Delta}r^u}$ s. The $\beta_{\bar{\Delta}r^u}$ of FED_{5-1} is -0.61% with an insignificant t-statistic of t=-0.17. This level of imprecision in post-ranking betas for risk factors is not uncommon in post-ranking samples this length (see e.g., Pástor and Stambaugh (2003)). Hence, this evidence does not serve to reject a risk-based explanation for the relationship between ranking $\beta_{\bar{\Delta}r^u}$ and returns, just makes it less convincing. It is interesting to note, however, that the post-ranking β_{FFED} s follow a similar pattern as those on $\bar{\Delta}r^u$, increasing monotonically from quintile 1 to 4 but falling to an insignificant level in quintile 5.

Overall, the evidence from Table 2.2 suggests that the monthly innovations in the Federal funds rate $(\bar{\Delta}r^u)$ earns a positive risk premium. Further, this risk premium is not subsumed by several common portfolio based risk factors, MKT, SMB and HML. The positive risk premium is consistent with the $\bar{\Delta}r^u$ improving investment opportunities. Unfortunately, the weak spread in post-ranking $\bar{\Delta}r^u$ β s precludes strong conclusions about the economic importance of the $\bar{\Delta}r^u$ risk premium.

Discussion of $\bar{\Delta}r$

Unfortunately, the measure $\bar{\Delta}r^u$ suffers from several technical drawbacks, which is why I do not rely on it in the main analysis. First, the existence of the futures contracts limits the measure to the 1989 through 2008 time period. Second, $\bar{\Delta}r^u$ could reflect the endogenous

response of the Fed to changes in the economy during month m, as opposed to shocks to monetary policy. As noted by Bernanke and Kuttner (2005), this endogeneity would tend to attenuate the measured sensitivity of returns to Federal funds surprises because the Fed would, if anything, lower rates in response to a decrease in the market or bad news about the economy. However, Bernanke and Kuttner also find that $\bar{\Delta}r_m^u$ is negatively correlated with returns on the market, which is hard to reconcile with any explanation other than the market negatively reacting to shocks in the stance of Federal funds policy.

A second problem is that the Federal funds futures rate only equals the expected future Federal funds rate if investors are risk neutral. Rather, the futures rate is driven by the so-called "risk-neutral" expected future Federal funds rate. That is:

$$f_{m-1,D_{m-1}}^1 = E_{m-1}^Q[\bar{r}_m] = E_{m-1}[\bar{r}_m] + \lambda_{m-1}. \tag{2.12}$$

 \bar{r}_m denotes the average daily Federal funds rate in month m. $E_{m-1}^Q[\cdot]$ and $E_{m-1}[\cdot]$ denote risk neutral and physical expectations, respectively. The risk-neutral expectation differs from the physical expectation by a risk premium λ_{m-1} . The risk premium may also be specific to futures contracts. In a form of market segmentation modeled early on by Hirshleifer (1988), returns on futures contracts reflect "hedging pressure" in which asymmetric hedging demand skews futures prices. In the context of Federal funds futures, Piazzesi and Swanson (2008) argue that banks create a tremendous hedging demand for protection against increases in Federal funds rates, driving down $\bar{\Delta}r^u$.

Finally, $\bar{\Delta}r_s^u$ also suffers from a time-aggregation issue due to the fact that Federal funds futures make a payment based on the average daily Federal funds rate. The construction of $\bar{\Delta}r^u$ will give less weight to equally informative policy news that comes out later in the month because fewer days worth of Federal funds rates will reflect the news. Without making assumptions about when relevant news comes out in a given month, this time aggregation issue does not have a simple fix. In spite of the attenuation from this source of noise, empirical results that use $\bar{\Delta}r^u$ are still strong. As such, Kuttner (2001) and Bernanke and Kuttner (2005), among others, simply accept this limitation in their analyses.

2.3 Vector autoregression-based innovations

The Monetary Policy literatures relies heavily on structural vector autoregressions (VARs) to identify regular time series of monetary policy shocks from the Federal funds Rate. (see e.g., Christiano et al. (2005), or Christiano et al. (1999) for a survey). Unfortunately, different VAR structural identification schemes tend to result in qualitatively different results, at least with the response of output and inflation to Federal funds shocks (see e.g., Uhlig (2005)).

Thorbecke (1997) uses this identified-VAR approach to construct monthly Federal funds policy shocks and estimates a negative risk premium on them. These Federal funds policy shocks are only orthogonalized ex post, and only with respect to industrial production and monthly inflation, which are themselves proxies for the business cycle and current and expected inflation. This orthogonalization can not perfectly isolate Federal funds policy shocks in real time given the richer information set that the market has in addition to just one measure of industrial production and inflation. It is therefore likely that the VAR-based Federal funds shocks still contain business cycle and inflation news that affects how these shocks impact asset prices. Hence, I replicate the policy shocks of Thorbecke (1997) and consider them in an ICAPM-type model with and without business cycle and inflation shocks. This allows me to test whether the risk premium on the Federal funds shocks are really driven by shocks to the business cycle and inflation as opposed to monetary policy shocks, consistent with my argument in Section 1.4 of the main body of the paper.

Following Thorbecke (1997), I estimate Federal funds policy shocks, denoted ϵ_{FF}^{\perp} , as the orthogonalized innovations in the Federal funds rate from a 6-lag VAR. The recursive causal ordering used to identify the ϵ_{FF}^{\perp} is given by the order in which I list the variables in the VAR, which are:

- 1. Log industrial production growth (IP)
- 2. Log year-over-year inflation $(\pi_{t-12,t})$
- 3. Log producers price index (PPI)

- 4. The Federal funds rate (FF)
- 5. Log non-borrowed reserves (NBR)
- 6. Log total reserves (TR)

The macro variables all come from the Federal Reserve website.

To test whether ϵ_{FF}^{\perp} still captures exposure to the business cycle and inflation, I estimate two ICAPM-type models, one with MKT and ϵ_{FF}^{\perp} , and one that also adds the business cycle and inflation innovations ϵ_{IP}^{\perp} , ϵ_{PPI}^{\perp} , and ϵ_{π}^{\perp} . I use similar test assets as Thorbecke (1997), the union of the ten CRSP size-decile portfolios and the Fama-French 17 industry portfolios. I present estimates with two-step GMM as no coefficients are significant with one-step GMM. These estimates are in Table 2.3.

Insert Table 2.3 about here

 ϵ_{FF}^{\perp} commands a negative risk premium. However, this risk premium becomes insignificant after adding the business cycle innovation ϵ_{IP}^{\perp} , which earns a significant negative risk premium. This is consistent with the ϵ_{FF}^{\perp} earning a negative risk premium because it captures changes in the business cycle that the Fed responds to, in spite of the in sample orthogonalization.

2.4 Related literature

Several recent studies consider the impact of monetary policy shocks on the risk premia of bonds. Hanson and Stein (2014) and Gertler and Karadi (2015) find that news of tighter monetary policy increases term premia and credit spreads, respectively. This evidence is analogous to that of Bernanke and Kuttner (2005) in the sense that they all suggest that tighter monetary policy raises aggregate expected excess returns. My evidence is consistent with the cross-sectional ICAPM implication of all three studies and extends them by showing

 $^{^{1}}$ Thorbecke (1997) formed 20 industry portfolios to pair with 10 size portfolios.

how risk associated with monetary policy shocks helps to explain anomalies in the crosssection of stock returns.

The literature on monetary policy and stock returns has focused primarily on the timeseries of returns whereas my paper contributes to the empirical evidence of monetary policy
and the cross-section of stock returns. Early cross-sectional evidence comes from Thorbecke
(1997) who isolates innovations in Federal funds rate using a vector auto-regression following
Christiano, Eichenbaum and Evans (1996). Thorbecke focuses on the time-series effects
of monetary policy shocks on broad stock market indices but also estimates an arbitrage
pricing theory factor model with Federal funds innovations and other macroeconomic factors.
Thorbecke estimates a negative risk premium for Federal funds innovations over the sample
period 1967-1990. As shown above, I replicate Thorbecke's Federal funds innovations and
estimate an ICAPM model with the market excess return, the Federal funds innovations
and business cycle and inflation innovations. Consistent with my time-series results, I find
that the Federal funds innovations risk premium is insignificant controlling for innovations
in inflation and the business cycle. In particular, the VAR-based identification of Thorbecke
(1997) seems to not capture Federal funds policy shocks.

More recently, Maio and Santa-Clara (2013) estimate a 3-factor model that includes the first difference in the federal funds rate and a market factor whose beta varies linearly with the lagged federal funds rate. Using portfolios sorted on book-to-market, long-term-reversal, asset growth, investment-to-assets and market value as test assets, they estimate a negative risk premium on the federal funds factor. Based on my results, the first-difference of the Federal funds rate would earn a negative risk premium because it primarily captures negatively priced innovations in the business cycle and inflation expectiations that the Fed responds to. Lioui and Maio (2014) also consider a measure that is very similar to the first difference in the Federal funds rate and find that it commands a negative risk premium in the stock portfolios formed on size and book-to-market along with the portfolios formed on size and long-term reversal. Their measure involves log-differencing a scaled federal funds rate as opposed to the simple first-difference used by Maio and Santa-Clara (2013). However,

the two measures captures similar business cycle and inflation effects that carry a negative risk premium.

Relative to the cross-section, more evidence exists pertaining to the time-series relationship between innovations in Federal funds policy and asset prices. A large event study literature generally finds the positive Federal funds policy shocks lowers stock and bond prices (see, e.g., Kuttner (2001), Rigobon and Sack (2004), Bernanke and Kuttner (2005), Bjørnland and Leitemo (2009)). Further event studies include Chen (2007) who finds that the reaction of the stock market to federal funds shocks varies over the business cycle and Ammer, Vega and Wongswan (2010) finds that the the impacts of monetary policy announcements on stock prices vary by industry, with more cyclical industries experiencing greater impacts of Federal funds shocks. Related, Boyd et al. (2005) posit that the reaction of stocks to unemployment news varies over the business cycle because in good times lower unemployment increases expected futures interest rates, likely due to the Federal reserve reaction, lowering stock prices.

Kuttner (2001) and Bernanke and Kuttner (2005) find that stock and bond prices both respond negatively to monthly-frequency futures based proxies of Federal funds policy shocks. Using a Campbell and Shiller (1988)-type cash flow - discount rate news decomposition following Campbell and Ammer (1993), Bernanke and Kuttner (2005) attributes most of the impact of monetary policy on stocks to a positive relationship between Federal funds surprises and the equity risk premium. Unfortunately, the results of Bernanke and Kuttner (2005) have at least two large concerns. The first is that the cash-flow discount rate decomposition relies on the monthly measure of Federal funds policy shocks, which means it is contaminated with business cycle and inflation changes that the Fed responds to. Second, VAR-based decompositions are extremely unreliable (see, e.g., Chen and Zhao (2009)). Using a mimicking portfolio allows me to capture the precision of the futures-based FOMC announcement shocks and then use the sign of the risk premium on the mimciking portfolio to makes similar inferences as the Campbell and Shiller (1988) decomposition.

Buraschi, Carnelli and Whelan (2014) also form a monthly frequency measure of monetary

policy shocks. They focus on shocks to the expected future path of monetary policy based on a combination of survey data and a Taylor (1993) rule. They find these shocks have a strong impact on the expected returns on treasury bonds. They also find that among the Fama French 100 size & book-to-market portfolios, the ten portfolios with the highest sensitivities to these path shocks earn higher average returns than the ten portfolios with the lowest sensitivities to these path shocks. This is an interesting contrast to my results as their path-shock proxy negatively correlates with my measures of Federal funds policy shocks, yet still commands a positive risk premium.

The negative risk premium earned by most monthly-frequency Federal funds innovations is related to the results of Brennan et al. (2004) and Petkova (2006) who estimate a negative risk premium on short-term real and nominal bill rates, respectively. Ang and Bekaert (2007) and Campbell (1996) find that these short-term interest rates negatively forecast returns so innovations in short-term interest rates should command a negative risk premium, similar to the Federal funds rate.

Most recent studies focus on the Federal funds rate as a proxy for monetary policy. However, some studies consider the related asset-pricing effects of money. Balvers and Huang (2009) find that a Consumption CAPM with real money growth, measured by growth in price-deflated M2, helps to explain the value premium. Furthermore, they estimate a positive risk premium on money growth. Chan, Foresi and Lang (1996) consider the inside money portion of M2 and M3 growth as risk factors. They also estimate a positive risk premium on money growth, which is analogous to a negative risk premium on the Federal funds rate. In enforcing its Federal funds rate target via open market operations, the Federal Reserve controls the monetary base. However, the money supply, generally measured by M2 or M3, depends not only on the monetary base, but also aggregate demand for money, which covaries strongly with the business cycle and inflation. Thus, these studies capture different effects than I do as I study shocks to monetary policy as opposed to the business cycle and inflation.

This paper also adds novel results to a growing literature on the noteworthy behavior of equity prices around FOMC announcements. Savor and Wilson (2014), for example, find

that the unconditional CAPM prices a number of test assets well on days of macroeconomic announcements including FOMC announcements, but not on other days. My results are distinct from theirs in at least two ways. First, their CAPM results do not explain momentum returns, even on important announcement days. In contrast, my two-factor model does explain such returns. Second, my asset pricing results do not hold only on announcement days. Rather, my results are consistent with (i) investment opportunity set risk explaining value and momentum returns, and (ii) Federal funds announcements being an important source of news about investment opportunities. Lucca and Moench (2015) document that since 1994 over 80% of the equity premium is earned in the 24 hours prior to scheduled FOMC meeting announcements. However, they find these pre-FOMC returns do not correlate with the Federal funds surprises that I use and conclude this phenomenon is presumably distinct from the exposure of stocks to policy announcements, which I study.

My paper is also related to a growing literature on financial intermediaries and asset prices. In the models of Drechsler et al. (2014) and He and Krishnamurthy (2013), a reduction in the Federal funds rate can lower borrowing costs for relatively risk-tolerant financial intermediaries. This in turn allows intermediaries to bid up asset prices, lowering risk premia and Sharpe ratios. Adrian et al. (2014) construct a mimicking portfolio, LMP, for intermediary leverage, arguing that intermediary leverage summarizes the pricing kernel of intermediaries. Given that monetary policy affects asset prices at least in part through intermediaries, I investigate whether intermediary leverage explains the returns on FFED. In a three factor model with MKT, LMP and FFED, all three factors significantly help to price assets. Hence, intermediary leverage alone does not seem to fully explain the effects of monetary policy shocks.

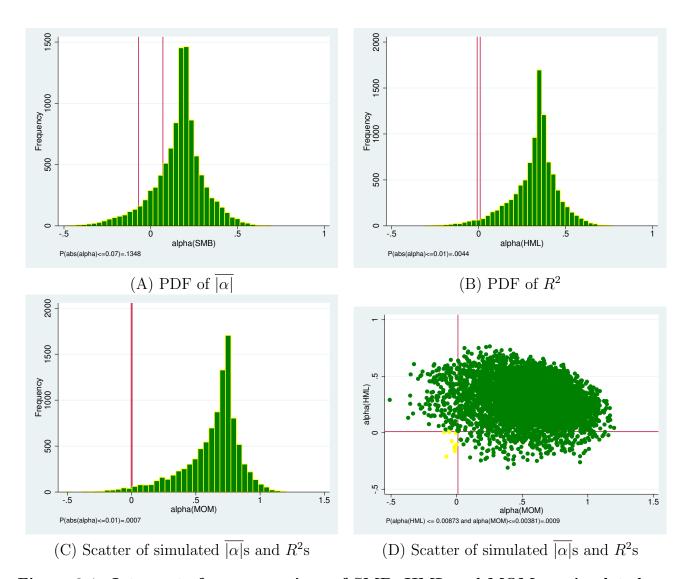


Figure 2.1. Intercepts from regressions of SMB, HML and MOM on simulated "FFED"s.

Panels A, B and C plot distributions of the estimated intercepts from the time-series regressions of SMB, HML and MOM on each of the 10,000 randomly generated $FFED_i^{SIM}$ s. The observations between the vertical red lines correspond to intercepts that are as small, or smaller, in absolute value, to corresponding intercepts reported in Table 1.3. Beneath the x-axis are the empirical frequencies of observations between the red lines. Panel D presents a scatter plot with of the intercepts from the regressions of HML and MOM on each of the ten-thousand randomly generated "FFED"s. The red-lines cross through pair of intercepts from the corresponding regression reported in Table 1.3 Panel B Right. The yellow dots correspond to pairs of intercepts where both intercepts are less-than or equal to those reported by Table 1.3. Beneath the x-axis is the empirical probability that one of the dots depicted is yellow.

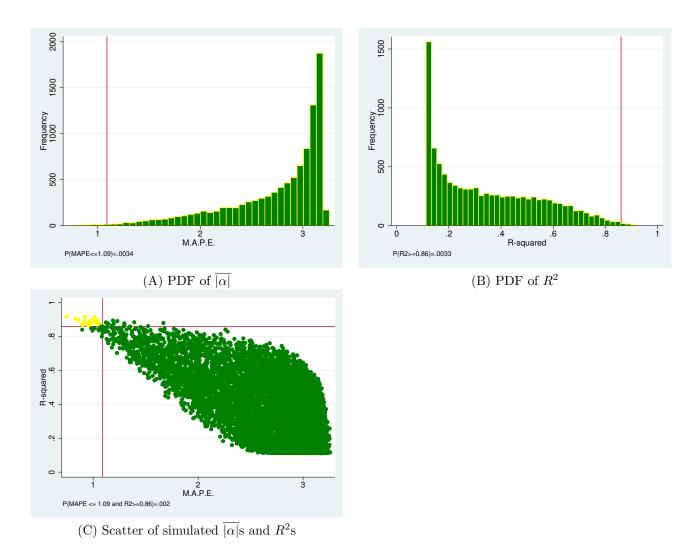


Figure 2.2. Cross-sectional R^2 s and mean absolute pricing errors for two-factor models with MKT and the simulated "FFED"s.

Panels A and B present histograms of mean absolute pricing errors $|\alpha|$ s and cross-sectional R^2 s for the GMM tests in table 1.4, for each of the ten-thousand simulated "FFED"s. The vertical red lines denote the corresponding quantity reported in Table 1.4. Beneath the x-axis in Panel A is the empirical probability that a random $FFED^{SIM}$ would have an $|\alpha|$ that is less than or equal to that earned by the model MKT, FFED in Table 1.4. Panel B has a similar probability that a cross-sectional R^2 on a randomly generated $FFED^{SIM}$ would be greater than or equal to that earned by the model MKT, FFED in Table 1.4. Panel C presents a scatter of simulated cross-sectional R^2 s and $|\alpha|$ s. The two red lines intersect at the corresponding $|\alpha|$ and R^2 reported in Table 1.4. Yellow dots denote combinations of $|\alpha|$ and R^2 s where $|\alpha|$ is no greater and the R^2 is no less than the corresponding numbers in table 1.4. Beneath the x-axis in Panel (C) is the empirical probability that a dot is yellow.

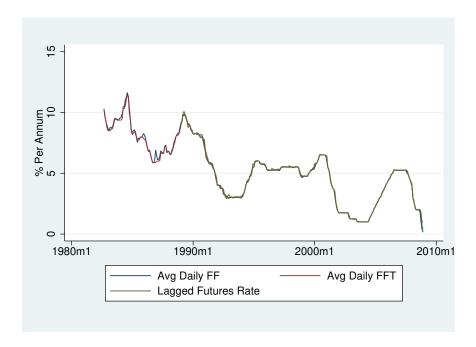


Figure 2.3. The Federal funds and futures rates

This figure depicts three monthly time series. The first two are the monthly averages of the effective (blue) and target (red) federal funds rates, respectively. The third time series is the futures rate from the one-month ahead futures contract at the end of the previous month (green). This series is the futures-based "expected" average daily federal funds rate for the current month. The futures rate series spans 1989:1-2008:12 December 2008 and the other three series span 1982:9-2008:12. Units are % per annum.

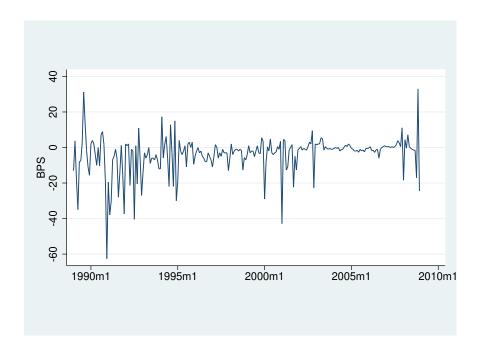


Figure 2.4. The monthly-frequency measure of Federal funds surprises $\bar{\Delta}r_t^u$. The sample is 1989:1-2008:12. Units are base points per annum.

Table 2.1. Forecasts of monthly changes in Federal funds rates with expected changes from futures contracts

This table presents estimates of one-month ahead futures forecasting regressions of the form: $\Delta X_m = a + b \left(f_{m-1,D_{m-1}}^1 - FFT_{m-1} \right) + \epsilon_m$. $f_{m-1,D_{m-1}}^1$ denotes the one-month ahead futures rate on the last day of month m-1 and FFT_{m-1} denotes the target federal funds rate on the last day of month m-1. In columns 1 and 2, X_m denotes the average daily effective federal funds rate and target federal funds rate, respectively, in month m. Units are APR's so that 0.01 denotes one basis point per annum. F denotes the F statistic from a Wald test of the hypothesis that b=1 for each regression and p_F is the corresponding p-value. The sample is 1989:1-2008:12. Heteroskedasticity-robust t-statistics are in parentheses. *, ** and *** denote significance at the 10%, 5% and 1% level, respectively.

	$\Delta \overline{FF}_m$	$\Delta \overline{FFT}_m$
b	0.98***	0.95***
	(7.45)	(6.40)
a	-0.05***	-0.05***
	(-4.64)	(-4.27)
\mathbb{R}^2	0.32	0.33
F	0.02	0.10
p_F	0.88	0.75

Table 2.2. Quintile portfolios sorted on exposure to $\bar{\Delta}r^u$

Each month, I sort common stocks in CRSP into five value-weighted quintiles based on their estimate β^r from the following regression estimated over the previous 60 months: $r_{it} - r_{ft} = \alpha + \beta(r_{mt} - r_{ft}) + \beta^r \Delta \tilde{r}_t^u + \epsilon_{it}$. Panels A, B and C report average returns, CAPM estimates, and Fama French three factor model estimates, respectively, for each of the quintile portfolios and the top-minus-bottom quintile portfolio FED_{5-1} . In each panel, column (i) presents estimates for quintile (i) with column (5 – 1) presenting estimates for FED_{5-1} . Panel D presents post-ranking betas of each portfolio from the following regressions: $r_{pt}^e = \alpha + \beta_p MKT_t + \beta_{X,p} X_t + \epsilon_t$, where $X = \Delta r_t^u$, or FFED and r_{pt}^e denotes the excess return on portfolio p. The post-ranking sample is 1994:1-2008:12 (n=180). t-statistics are in parentheses. *, ** and *** denote significance at the 10%, 5% and 1% level respectively.

Panel A: Average Returns									
	(1)	(2)	(3)	(4)	(5)	(5 - 1)			
Avg	0.06	0.29	0.34	0.46	0.64	0.58**			
Ü	(0.13)	(0.87)	(1.12)	(1.49)	(1.50)	(2.07)			
	P	anel B: CAP	M Factors	Estimation					
α	-0.33*	0.00	0.08	0.19*	0.29	0.61**			
	(-1.78)	(0.01)	(0.69)	(1.88)	(1.52)	(2.19)			
MKT	1.27***	0.94***	0.83***	0.88***	1.16***	-0.11*			
	(30.71)	(36.69)	(31.20)	(38.25)	(27.41)	(-1.69)			
N	180	180	180	180	180	180			
adj. R^2	0.840	0.883	0.845	0.891	0.807	0.010			
Panel C: Fama French 3 Factors Estimation									
α	-0.39**	-0.02	0.00	0.17*	0.33*	0.72**			
	(-2.22)	(-0.19)	(0.02)	(1.87)	(1.76)	(2.57)			
MKT	1.26***	1.00***	0.93***	0.93***	1.10***	-0.16**			
	(28.84)	(40.07)	(39.38)	(40.63)	(23.97)	(-2.24)			
SMB	0.24***	-0.16***	-0.13***	-0.13***	0.10*	-0.14*			
	(4.61)	(-5.57)	(-4.64)	(-4.94)	(1.75)	(-1.74)			
HML	0.10	0.09**	0.22***	0.08**	-0.12*	-0.22**			
	(1.55)	(2.42)	(6.47)	(2.35)	(-1.81)	(-2.18)			
N	180	180	180	180	180	180			
adj. R^2	0.856	0.911	0.902	0.913	0.817	0.030			
		Panel D:	Post-ranki	$ing \beta s$					
$\beta_{\bar{\Delta}r^u}$	-0.59	-1.61	1.93	2.98**	-1.20	-0.61			
	(-0.25)	(-1.10)	(1.27)	(2.30)	(-0.49)	(-0.17)			
FFED	-20.67***	-11.70***	1.81	12.06***	-0.18	20.50*			
	(-2.95)	(-2.67)	(0.39)	(3.10)	(-0.02)	(1.89)			

Table 2.3. GMM with Thorbecke (1997) Federal funds rate innovations

This table presents estimates from two-step GMM estimations of two linear pricing kernel models. The test assets are the monthly excess returns on Fama-French 17 industry portfolios and the 10 CRSP size portfolios. The first three columns present estimates with factors MKT, and ϵ_F^{\perp} , and the last three columns present estimates with factors MKT, ϵ_{FF}^{\perp} , ϵ_{IP}^{\perp} , ϵ_{PPI}^{\perp} , and ϵ_{π}^{\perp} . b and λ denote the discount factor coefficients and risk premiums, respectively, for each factor. HJD denotes the Hansen Jagannathan Distances and standard Errors are next to the HJDs in parentheses. The sample is 1967:1-1990:12. Newey and West (1987) t-statistics based on three lags of serial correlation are in parentheses.

	MKT	ϵ_{FF}^{\perp}		MKT	ϵ_{FF}^{\perp}	ϵ_{IP}^{\perp}	F_{π}^{\perp}	F_{PPI}^{\perp}
b	0.01	0.01	b	0.03	0.01	0.01	0.00	0.00
t(b)	(0.63)	(2.27)	t(b)	(1.06)	(1.29)	(2.83)	(0.30)	(-0.63)
λ	0.27	-59.55	λ	-0.07	-47.88	-116.65	-7.09	18.66
t_{λ}	(0.80)	(-2.29)	t_{λ}	(-0.15)	(-1.26)	(-2.83)	(-0.22)	(0.62)
HJD	=0.45(0.06)		HJD	=0.41(0.06)				

BIBLIOGRAPHY

- Adrian, T., Etula, E. and Muir, T. (2014), Financial intermediaries and the cross-section of asset returns, *Journal of Finance* 69(6), 2557–2596.
- Ammer, J., Vega, C. and Wongswan, J. (2010), International transmission of u.s. monetary policy shocks: Evidence from stock prices, *Journal of Money, Credit and Banking* 42, 179–198.
- Ang, A. and Bekaert, G. (2007), Stock return predictability: is it there? Review of Financial Studies 20(3), 651–707.
- Ang, A., Hodrick, R. J., Xing, Y. and Zhang, X. (2006), The cross-section of volatility and expected returns, *Journal of Finance* 61(1), 259–199.
- Asparouhova, E., Bessembinder, H. and Kalcheva, I. (2013), Noisy prices and inference regarding returns, *Journal of Finance* 68(2), 665–714.
- Balvers, R. J. and Huang, D. (2009), Money and the C-CAPM, *Journal of Financial and Quantitative Analysis* 44, 337–368.
- Bekaert, G., Hoerova, M. and Lo Duca, M. (2013), Risk, uncertainty and monetary policy, Journal of Monetary Economics 60(7), 771–788.
- Bernanke, B. S. and Blinder, A. S. (1992), The Federal funds rate and the channels of monetary transmission, *American Economic Review* 82(4), 902–921.
- Bernanke, B. S. and Gertler, M. (1995), Inside the black box: The credit channel of monetary policy transmission, *Journal of Economic Perspectives* 9(4), 27–48.
- Bernanke, B. S. and Kuttner, K. N. (2005), What explains the stock market's reaction to Federal Reserve policy? *Journal of Finance* 60(3), 1221–1257.
- Bjørnland, H. C. and Leitemo, K. (2009), Identifying the interdependence between us monetary policy and the stock market, *Journal of Monetary Economics* 56(2), 275 282.
- Boyd, J. H., Hu, J. and Jagannathan, R. (2005), The stock market's reaction to unemployment news: Why bad news is usually good for stocks, *Journal of Finance* 60(2), 649–672.

- Breeden, D. T., Gibbons, M. R. and Litzenberger, R. H. (1989), Empirical tests of the consumption-oriented capm, *Journal of Finance* 44(2), 231–262.
- Brennan, M. J., Wang, A. W. and Xia, Y. (2004), Estimation and test of a simple model of intertemporal capital asset pricing, *Journal of Finance* 59(4), 1743–1775.
- Brogaard, J. and Detzel, A. (2015), The asset-pricing implications of government economic policy uncertainty, *Management Science* 61(1), 3–18.
- Buraschi, A., Carnelli, A. and Whelan, P. (2014), Monetary policy and treasury risk premia, London Business School Working Paper.
- Campbell, J. and Shiller, R. (1988), The dividend-price ratio and expectations of future dividends and discount factors, *Review of Financial Studies* 1(3), 195–228.
- Campbell, J. Y. (1996), Understanding risk and return, *Journal of Political Economy* 104(2), 298–345.
- Campbell, J. Y. and Ammer, J. (1993), What moves the stock and bond markets? a variance decomposition for long-term asset returns, *Journal of Finance* 48(1), 3–37.
- Campbell, J. Y. and Vuolteenaho, T. (2004), Bad beta, good beta, *The American Economic Review* 94(5), pp. 1249–1275.
- Carhart, M. M. (1997), On persistence in mutual fund performance, *Journal of Finance* 52, 57–82.
- Chan, K. C., Foresi, S. and Lang, L. H. P. (1996), Does money explain asset returns? theory and empirical analysis, *Journal of Finance* 51(1), 345–361.
- Chen, L. and Zhao, X. (2009), Return decomposition, Review of Financial Studies 22(12), 5213–5249.
- Chen, S.-S. (2007), Does monetary policy have asymmetric effects on stock returns? *Journal of Money, Credit and Banking* 39(2/3), 667–688.
- Christiano, L. J., Eichenbaum, M. and Evans, C. (1996), The effects of monetary policy shocks: Evidence from the flow of funds, *The Review of Economics and Statistics* 78(1), 16–34.
- Christiano, L. J., Eichenbaum, M. and Evans, C. L. (1999), Monetary policy shocks: What have we learned and to what end?, in J. B. Taylor and M. Woodford, eds, *Handbook of Macroeconomics*, Vol. 1, Elsevier, 65 148.

- Christiano, L. J., Eichenbaum, M. and Evans, C. L. (2005), Nominal rigidities and the dynamic effects of a shock to monetary policy, *Journal of Political Economy* 113(1), 1–45.
- Cochrane, J. H. (2005), Asset pricing, Princeton University Press, Princeton, N.J.
- Cochrane, J. H. and Piazzesi, M. (2002), The Fed and interest rates: A high-frequency identification, *American Economic Review* 92(2), pp. 90–95.
- Cooper, I. and Priestley, R. (2009), Time-varying risk premiums and the output gap, *Review of Financial Studies* 22(7), 2801–2833.
- Drechsler, I., Savov, A. and Schnabl, P. (2014), A model of monetary policy and risk premia, NBER Working Paper.
- Fama, E. F. (1975), Short-term interest rates as predictors of inflation, American Economic Review 65(3), 269.
- Fama, E. F. and French, K. R. (1993), Common risk factors in the returns on stocks and bonds, *Journal of Financial Economics* 33(1), 3–56.
- Gertler, M. and Karadi, P. (2015), Monetary policy surprises, credit costs and economic activity, *American Economic Journal: Macroeconomics* 7(1), 4476.
- Gilbert, T. (2011), Information aggregation around macroeconomic announcements: Revisions matter, *Journal of Financial Economics* 101(1), 114–131.
- Hansen, L. P. and Jagannathan, R. (1997), Assessing specification errors in stochastic discount factor models, *Journal of Finance* 52(2), 557–590.
- Hanson, S. and Stein, J. (2014), Monetary policy and long-term real rates. working paper., Working Paper.
- He, Z. and Krishnamurthy, A. (2013), Intermediary asset pricing, American Economic Review 103(2), 732–70.
- Hirshleifer, D. (1988), Residual risk, trading costs, and commodity futures risk premia, *Review of Financial Studies* 1(2), 173–193.
- Hodrick, R. J. (1992), Dividend yields and expected stock returns: alternative procedures for inference and measurement, *Review of Financial Studies* 5(2), 357–386.

- Krueger, J. T. and Kuttner, K. N. (1996), the Fed funds futures rate as a predictor of Federal Reserve policy, *Journal of Futures Markets* 16(8), 865–879.
- Kuttner, K. (2001), Monetary policy surprises and interest rates: Evidence from the Fed funds futures market, *Journal of Monetary Economics* 47(3), 523–544.
- Lioui, A. and Maio, P. (2014), Interest rate risk and the cross-section of stock returns, *Journal of Financial and Quantitative Analysis* (forthcoming).
- Lucca, D. O. and Moench, E. (2015), The pre-FOMC announcement drift, *Journal of Finance* 70(1), 329–371.
- Maio, P. (2014), Another look at the stock return response to monetary policy actions, *Review of Finance* 18(1), 321–371.
- Maio, P. and Santa-Clara, P. (2012), Multifactor models and their consistency with the ICAPM, *Journal of Financial Economics* 106(3), 586–613.
- Maio, P. and Santa-Clara, P. (2013), The Fed and stock market anomalies, Working Paper.
- Mankiw, N. G. (2016), *Macroeconomics*, 9th edn, Worth Publishers, New York.
- Merton, R. C. (1973), An intertemporal capital asset pricing model, *Econometrica* 41(5), 867–887.
- Newey, W. K. and West, K. D. (1987), A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix, *Econometrica* 55(3), pp. 703–708.
- Pástor, L. and Stambaugh, R. F. (2003), Liquidity risk and expected stock returns, *Journal of Political Economy* 111(3), 642–685.
- Pástor, L. and Veronesi, P. (2013), Political uncertainty and risk premia, *Journal of Financial Economics* 110(3), 520–545.
- Petkova, R. (2006), Do the Fama-French factors proxy for innovations in predictive variables? Journal of Finance 61(2), 581–612.
- Piazzesi, M. and Swanson, E. T. (2008), Futures prices as risk-adjusted forecasts of monetary policy, *Journal of Monetary Economics* 55(4), 677–691.
- Rigobon, R. and Sack, B. (2004), The impact of monetary policy on asset prices, *Journal of Monetary Economics* 51(8), 1553–1575.

- Romer, C. D. and Romer, D. H. (2000), Federal Reserve information and the behavior of interest rates, *American Economic Review* 90(3), 429–457.
- Savor, P. and Wilson, M. (2014), Asset pricing: A tale of two days, *Journal of Financial Economics* 113(2), 171–201.
- Taylor, J. (1993), Discretion versus policy rules in practice, Carnegie-Rochester Conference Series on Public Policy 39, 195–214.
- Thorbecke, W. (1997), On stock market returns and monetary policy, *Journal of Finance* 52(2), 635–654.
- Uhlig, H. (2005), What are the effects of monetary policy on output? Results from an agnostic identification procedure, *Journal of Monetary Economics* 52(2), 381–419.
- Vassalou, M. (2003), News related to future gdp growth as a risk factor in equity returns, Journal of Financial Economics 68(1), 47–73.

VITA

Andrew Detzel is a PhD Candidate in Finance and Business Economics at the University of Washington. He was born in San Diego, California and earned a B.S. in Mathematics from the California State University at San Marcos. In 2009, he earned an M.S. in Mathematics from the University of Oregon and in 2012, an M.S.B.A. in Finance from the University of Washington. Effective September 1, 2015, he will serve as an Assistant Professor at the Reiman School of Finance in the Daniels College of Business at the University of Denver.

Andrew's Mathematical interests include Real Analysis and Probability, especially Stochastic processes. His Finance interests include Macro-Finance, Asset Pricing, Investments and Market Design.