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There is a disconnect between data-intensive analytical tools and

traditional database management systems. Data scientists using

these tools often prefer to manually manage their data by storing

it either as structured text (such as CSV or XML �les), or as binary

�les [5]. This approach of managing data introduces a lot of prob-

lems, especially when a large amount of data from di�erent sources

has to be managed. Flat �le storage requires tremendous manual

e�ort to maintain, and is often di�cult to reason about because

of the lack of a rigid schema. Furthermore, the data is prone to

corruption because of lack of transactional guarantees and atomic

write actions.

Another consequence of this disconnect is that data scientists

have re-implemented many common database operations inside

popular scripting languages rather than using a database to per-

form these actions. Libraries such as dplyr [10] and Pandas [6]

re-implement most standard database operations, such as joins and

aggregations. However, these libraries su�er from having to load all

required data and intermediates into memory. This leads to frequent

out of memory problems or poor performance due to swapping.

All these issues could be solved by combining an e�cient an-

alytical RDBMS with these tools. The RDBMS can prevent data

corruption through ACID properties, it can automatically manage

data storage for the user and make data easier to reason about

by enforcing a rigid schema. In addition, the RDBMS can perform

e�cient execution on larger-than-memory data by only loading

required columns.

However, the current methods of using standard RDBMSes in

conjunction with analytical tools are lacking. The standard ap-

proach is to run the database as a separate process (the “database

server”) and connecting the analytical tool with it through a socket

connection (as a “database client”). The analytical tool can then

issue queries to the database, after which the server will transfer

the query results to the client through the socket. This approach

has several issues. Firstly, maintaining a database server requires
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(a) Socket connection.

(b) In-database processing. (c) Embedded database.

Figure 1: Di�erent ways of connecting analytical tools with

a database management system.

signi�cant manual e�ort from the user. The database server must be

installed, tuned and continuously maintained. Secondly, communi-

cating with a database through a socket connection falls short when

a large amount of data is involved. The data has to be transferred

to and from the analytical tool through a socket connection, which

is ine�cient in current major database systems [8], even when the

database server and the analytical tool reside on the same machine.

Additionally, writers of scripts in analytical languages such as R

or Python prefer writing portable scripts that they can share with

other data scientists. Scripts containing references to external tools

such as database management systems are challenging to port to

other systems, and as such cannot be included in these scripts.

An alternative solution is to use in-database processing meth-

ods [7]. By executing the analysis pipelines inside the database,

the overhead of data export can be avoided. While this approach

removes the data transfer overhead between the scripting language

and the database, it still requires the user to run and manage a sep-

arate database server. These user-de�ned functions also introduce

new issues. They force users to rewrite code so the code �ts within

the query work�ow, are di�cult to debug [3] and introduce safety

issues as arbitrary code can now run within the database kernel.

Another solution is to embed the database directly into the script-

ing language. As the database lives in the same address space as

the scripting language, data can be transferred between the two

systems without any overhead. Embedded databases are popular,

mainly because of the omnipresent SQLite [2]. However, SQLite

is designed for OLTP workloads. While popular analytical tools
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(a) Transfer data from database to client. (b) Run TPCH-Q1 inside the database. (c) Move data from the client to the database.

Figure 2: Experimental results.

do have SQLite bindings, it does not perform well when used for

analytical purposes.

In this work, we introduce MonetDBLite1, an Open-Source em-

bedded database based on the popular columnar database Mon-

etDB [4]. It is an in-process analytical database that can be run

directly from within popular analytical tools without any exter-

nal dependencies. It has bindings for C/C++, R, Python and Java,

and can be installed through their default package managers. In

addition, because of its in-process nature, data can be transferred

between the database and these analytical tools at zero cost.

Evaluation. In order to test the e�ectiveness of our system we

compare it against current solutions for combining analytical tools

with database systems in three di�erent important areas:

(1) Transfer of data from the database to the client process.

(2) Execution of analytical queries within the database.

(3) Transfer of data from the client process to the database.

The systems used for comparison are (1) the databases Post-

greSQL [9] and MonetDB [4] connected through a client connector,

and (2) SQLite [2] running embedded inside the client process. The

benchmarks were run using an R shell as the client process, and

were run on a machine running Fedora 26 with an Intel i7-2600K

with 8 Cores running at 3.4 GHz and 16GB of Main Memory.

Transfer ToClient. In this benchmark, we transfer the lineitem

table from the TPC-H benchmark [1] from the database to the client

process.

In Figure 2a, the transfer time from the database to the client

process is shown. We can see that MonetDBLite performs an order

of magnitude better than the competing systems. This because it

both runs inside the client process, meaning data does not have to

be transferred over a socket, and data is stored in columnar format

much like it is inside the scripting languages. This allows for fast

transfer of data.

MonetDB shows good performance on this benchmark compared

to the other databases. This is because MonetDB uses a client pro-

tocol optimized for bulk transfer of data in columnar format [8].

Meanwhile, both SQLite and PostgreSQL are doing poorly because

they have to convert from a row-based to a columnar format.

Execution of analytical queries. In this benchmark, we run

Q1 of the TPC-H benchmark inside the database server and transfer

the result to the client.

1The source code of MonetDBLite is available here:
https://github.com/hannesmuehleisen/MonetDBLite

In Figure 2b, the execution time of TPC-H Q1 within the database

is shown. This query has a small result set, hence transfer time

from the database to the client is not a bottleneck. Because of that

MonetDBLite and MonetDB have identical performance. We can

see that PostgreSQL and SQLite perform signi�cantly worse than

MonetDB. This is because they are row-store databases designed

for OLTP workloads.

Transfer To Database. In this benchmark, we again transfer

the lineitem table, but this time from the client to the server and

store it persistently within the database.

In Figure 2c, the results of this benchmark are shown. We can

see that both MonetDB and PostgreSQL perform very poorly here.

This is because the data is transferred over a socket connection

and individual rows are transferred using INSERT INTO statements,

which then have to be parsed back into binary data. Both SQLite and

MonetDBLite perform much better on this benchmark, and show

very similar performance. The main bottleneck for these systems

is writing the data to disk.
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