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U S E R - G E N E R A T E D  C O N T E N T

Money Circulation, 
Trackable Items,  
and the Emergence  
of Universal Human 
Mobility Patterns
Proxy networks permit reliable estimates of statistical features such as 

degree, flux, and traffic weight distributions. The authors show that despite 

cultural and national differences, universal properties exist in a diverse 

set of traffic networks along with important insight into traffic-related 

phenomena such as the geographic spread of emergent infectious diseases.

H
uman mobility in our globalized 

world has reached a complexity 

and volume of unprecedented 

degree. More than 60 million 

people travel billions of miles 

on more than 2 million international flights each 

week. Hundreds of millions of people commute 

on a complex web of highways and railroads, 

most of which operate at their maximum capac-

ity. Despite this increasing 

connectivity and our ability to 

visit virtually every place on 

this planet in a matter of days, 

the magnitude and intensity 

of modern human traffic has 

made us more susceptible to 

threats intimately connected to 

human travel. For instance, long-range human 

mobility is responsible for the geographical 

spread of emergent infectious diseases and plays 

a key role in human-mediated bioinvasion, the 

dominant factor in the global biodiversity crisis. 

A prime example of modern epidemics is severe 

acute respiratory syndrome (SARS), which first 

appeared in a Chinese province in 2003 before 

proliferating and spreading around the world in 

a matter of weeks, infecting nearly 10,000 indi-

viduals worldwide with a mortality of approxi-

mately 10 percent. Since then, epidemiologists 

have devoted an increasing amount of attention 

and modeling effort to understanding in what 

way and to what extent modern traffic networks 

impact and determine the dynamics of emergent 

diseases, particularly in the face of an imminent 

H5N1 flu pandemic.1–5

In several recent studies, researchers in-

vestigated the statistical properties of human 

transportation networks with a focus on air 

transportation and long-distance traffic.6–8 

However, human mobility occurs on many 

length scales, ranging from commuter traffic 

over short distances to long-range travel by air, 

and involves diverse modes of transport (buses, 

light rail, cars, trains, planes, subways, and 

boats). No comprehensive study exists that in-

corporates traffic on all spatial scales because 

it would require collecting and compiling data 

into a multicomponent data set—a difficult, if 

not impossible, task particularly on an interna-

tional scale. Whereas researchers have studied 

the central statistical features of air transpor-

tation networks in detail, it remains unclear 
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whether these properties remain un-

changed in traffic networks that com-

prise all other means of transportation 

and spatial scales. How do these prop-

erties depend on the length scale, for 

example? Are they universal? In what 

way do they change as a function of 

length scale? What are the national 

and regional differences and similari-

ties? To understand human mobility in 

the 21st century and the dynamics of 

associated phenomena, particularly the 

geographic spread of modern diseases, 

answering these questions is of funda-

mental importance.

In this article, we report on the dis-

covery of statistical regularities, math-

ematical laws, and universal charac-

teristics underlying multiscale human 

mobility. Our study is based on the gen-

eration of proxy networks for global hu-

man travel behavior from pervasive user 

data collected at the world’s largest bill-

tracking Web site (www.wheresgeorge.

com) and trajectories of trackable items 

(known as travel bugs) recorded at a 

geocaching Web site (www.geocaching.

com). From this pervasive data, we ex-

tract multiscale human traffic networks 

for the US and European countries that 

cover distances of a few to a few thou-

sand kilometers. These proxy networks 

permit reliable estimates of statistical 

features such as degree, flux, and traffic 

weight distributions; we show that, de-

spite cultural and national differences, 

universal properties do exist, giving us 

insight into traffic-related phenomena.

Money Circulation  
and Human Mobility
Confronted with the difficulty of com-

piling a comprehensive data set of hu-

man traffic, Dirk Brockmann and his 

colleagues proposed in 2006 using 

the geographic circulation of money 

as a proxy for human traffic, based 

on the idea that individuals transport 

money as they travel and that the total 

flux of money between a set of cities 

is proportional to the flux of individu-

als.9 The researchers analyzed data col-

lected at the online bill tracker www.

wheresgeorge.com, which Hank Eskin 

founded in 1998. The idea is simple: 

registered users mark individual dol-

lars, which then enter circulation. 

When new users come into possession 

of a marked bill, they can register at the 

site and report the bill’s current loca-

tion via the zip code. Successive reports 

of a bill yield a spatiotemporal trajec-

tory with a very high resolution. Since 

1998, www.wheresgeorge.com has be-

come the largest bill-tracking Web site 

worldwide, with more than 3 million 

registered users and more than 140 mil-

lion registered bills. Approximately 10 

percent of all bills have had hits (defined 

as a second, third, and so on report af-

ter the initial entry), yielding a total of 

more than 14 million single trajectories 

consisting of origin (initial entry loca-

tion) and destination (hit location) X1 

and X2, respectively.

Figure 1 illustrates a sample of bill 

trajectories with initial entries in five 

US cities. Shown are bill journeys that 

lasted a week or less. Clearly, most bills 

remain in the vicinity of their initial en-

try, yet a small but significant number 

have traversed distances of the order of 

the size of the US, consistent with the 

intuitive notion that short trips occur 

more frequently than long ones.

Anomalous Diffusion 
in Bank Note Dispersal
One of the key results of the 2006 study 

was the first quantitative estimate of the 

probability p(r) of a bill traversing a dis-

tance r in a short time period, a direct 

estimate of the probability of humans 

performing journeys of this distance 

in a short time period. The research-

ers based their estimate on a data set of 

464,670 individual bills. Over a range 

of distances between 10 and 3,500 

km, this probability follows an inverse 

power law—that is,

p r
r

( ) ,
1
1

  
(1)

with an exponent   0.6. Despite the 

multitude of transportation options in-

volved, the underlying complexity of 

human travel behavior, and the US’s 

strong spatial heterogeneity, the prob-

ability p(r) follows this simple mathe-

matical law, indicating that underlying 

universal rules govern human mobility. 

Moreover, the specific functional form 

of p(r) has important consequences. 

If we assume that individual bills per-

form a spatial random walk with an 

arbitrary probability distribution p(r) 

for distances at every step, we can ask, 

what is the typical distance X(t) from 

the initial starting point as a function 

of time? For the ordinary random walks 

(also known as Brownian motion) that 

are ubiquitous in the natural sciences, 

the behavior of X(t) is determined by the 

standard deviation of the single steps 

 r r2 2
,

and irrespective of the particular shape 

of p(r), the distance X(t) scales accord-

ing to the square-root law—that is, 

X t t( ) —a direct consequence of the 

central limit theorem.10

However, for a power law of the type 

observed in bank note dispersal (Equa-

tion 1), the variance diverges for ex-

ponents  < 2, so the situation is more 

complex. It implies that bank note dis-

persal lacks a typical length scale, is 

fractal, and the bill trajectories resem-

ble a particular class of random walks 

known as Lévy flights.11 In contrast to 

ordinary random walks, Lévy flights 

are anomalously diffusive, exhibiting 

Proxy networks permit reliable estimates 

of statistical features such as degree, flux,  

and traffic weight distributions.
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a scaling relation that depends on the 

exponent :

X(t)  t1/ . (2)

Because  < 2, Lévy flights are super-

diffusive; they disperse faster than—

and their geometrical structure differs 

considerable from—ordinary random 

walks. The discovery that bank note 

dispersal and therefore human travel 

behavior lacks a scale and is related to 

Lévy flights was a major breakthrough 

in understanding human mobility on 

global scales. This result is particularly 

intriguing because researchers have 

observed similar power laws and Lévy 

flight dispersal in foraging animals such 

as albatrosses, deer, and marine preda-

tors as well12–14; a recent study on mo-

bile phone dynamics has since validated 

these results,15 indicating that similar 

underlying rules determine emergent 

mobility patterns.

A Multiscale  
Network Perspective
The initial bank note dispersal study 

focused on the process’s dynami-

cal features, but the data set was too 

small to investigate multiscale human 

mobility from a network perspective 

and analyze human traffic with meth-

ods from complex network theory.16 

For this, we would have to estimate 

the flux of bills between individual 

cities in the US instead of just focusing 

on distance distributions. Based on a 

data set of more than 10 million re-

cords—a factor of 20 larger than the 

original data set—we report here on 

the first network perspective analysis 

of multiscale mobility in the US based 

on money circulation. 

In our approach, we define the net-

work as a set of locations or nodes la-

beled n that we chose to be the 3,109 

counties in the US, excluding Alaska 

and Hawaii. These nodes are con-

nected by weights Wmn  0, which 

represent the flux rate of bills from 

county m to n in bills per day. We thus 

encode the entire network structure in 

a 3,109  3,109 flux matrix W. Because 

each location has a well-defined geo-

graphical position, we can visualize 

this multiscale US traffic network as 

a geographically embedded network, 

as shown in Figure 2. Qualitatively, 
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Figure 1. Short time trajectories of 

dollar bills in the US. (a) Lines connect 

origin and destination locations of 

bills that traveled for less than a week. 

(b)  The probability p(r) of traveling a 

distance r in a short time period of less 

than a week. The dashed line indicates 

the inverse power law of Equation 

1 in the text. The colors indicate 

trajectories that started in large cities 

(blue), intermediate cities (green), and 

small towns (red). (c) Two-dimensional 

trajectory of an ordinary random walk 

or Brownian motion. (d) Trajectory of a 

superdiffusive Lévy flight, the geometry 

of which consists of small clusters 

interconnected by long leaps. 
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we can see that prominent East Coast–

West Coast fluxes exist in the network, 

yet the strongest connections are short- 

to intermediate-length connections. 

This fact is particularly visible when 

compared with the US air transporta-

tion network shown in Figure 2c. Air 

transportation predominantly serves 

long-distance travel, and although 

2.35 million passengers travel on the 

network daily (according to the Inter-

national Air Transport Association), 

it represents only a small subset of the 

multiscale traffic network depicted in 

Figure 2a. The histogram in the figure 

illustrates these properties more quan-

titatively, comparing the relative fre-

quency of distances in the multiscale 

www.wheresgeorge.com network to 

the air transportation network. Clearly, 

most distances served by air transpor-

tation peak at 1,000 km, whereas dis-

tances in the www.wheresgeorge.com 

network are broadly distributed across 

a wide range, from a few to a few 

thousand kilometers. To understand 

human mobility on all spatial scales, 

we must include all methods of trans-

portation indirectly inherent in the  

www.wheresgeorge.com money circu-

lation network.

The bill circulation network quanti-

fied by the flux matrix W can give im-

portant insight into the statistical fea-

tures of human mobility across the US. 

To quantify these features, we concen-

trate on the flux of bills in and out of a 

node given by

F W F Wm
in

mn
n

m
out

nm
n

,  (3)

respectively. These flux measures are a 

direct proxy for a node’s overall traf-

fic capacity. Next, we investigate a 

node’s in and out degree defined ac-

cording to
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Figure 2. Network comparison. (a) and 

(b) Colors indicate the magnitude of 

the flux of dollar bills in the US, with 

bright lines representing heavy flux 

and dark lines weak flux. In (b) the US 

air transportation network, the lines 

indicate connections between the 413 

major airports in the US; the color 

represents the magnitude of passenger 

connections per day. (c) A histogram 

compares the relative frequency of 

distances in the multiscale traffic 

network obtained from the www.

wheresgeorge.com (WG) data set  

with the air transportation network.
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in

mn
n

m
out

nm
n

,

 

(4)

where the elements Anm are entries in 

the adjency matrix. These elements 

are either one or zero, depending on 

whether nodes n and m are connected. 

A node’s degree quantifies its connectiv-

ity—that is, to how many other nodes a 

given node is connected. An important 

but expected feature of the bill circula-

tion network is its degree of symmetry. 

Figure 3a depicts the correlation of the 

bill flux in and out of each node, and 

Figure 3b shows a correlogram of the 

in and out degrees. These quantities 

exhibit a linear relationship subject to 

fluctuations, 

F Fn
in

n
out

 
and

 
k kn

in
n
out , (5)

indicated by the dashed lines in the 

figure. Note also that the flux values’ 

magnitude ranges over nearly four or-

ders of magnitude, an indication of the 

network’s strong heterogeneity; this is 

further illustrated by the cumulative 

distributions of the weights Wnm, the 

fluxes Fn, and the degrees kn of all the 

nodes in the network, as depicted in 

Figures 3f through 3h. All quantities 

are broadly distributed across a wide 

range of scales, which researchers have 

also observed in air transportation net-

works.7,17 An important issue in trans-

portation theory is the development of a 

plausible evolutionary mechanism that 

can account for the emergence of these 

distributions, a task that has yet to be 

accomplished. As of today, no plausi-

ble theory for human traffic networks 

predicts the precise functional form of 

the distributions shown in Figures 3f 

through 3h.

Scaling Laws
To reveal additional structure in multi-

scale human mobility networks, we 

investigated the functional relation of 

the quantities defined in Equations 4 

and 5—that is, the functional relation 

of fluxes and degrees with respect to 

a node’s population size. Figure 3c il-

lustrates the statistical relationship be-

tween a node’s population size P and 

the bill flux into a node. The dashed 

line in the figure represents a linear re-

lationship with slope 1, indicating that 

traffic through a node grows linearly 

with population size:

F(P)~ P. (6)

Intuitively, we expect this—the larger 

a node’s population, the more traffic 

flows into it. However, correlating a 

node’s degree against population size 

indicates a sublinear relationship

k(P)~ P , (7)

with an exponent   0.7, contrasting 

the intuitive notion that a node’s con-

nectivity grows linearly with popula-

tion size as well. From the scaling re-

lations in Equations 6 and 7, we can 

determine an important property of 

multiscale mobility networks. The typi-
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Figure 3. Network flux. (b) The correlation of bill flux (a) in Fin and (b) out Fout and a node’s in and out degree for all 3,109 

nodes in the network. The dashed lines represent the linear relationships Fin = Fout and kin = kout, respectively. (c) The functional 

dependence of influx Fin and (d) in degree kin on a node’s population size P. Bill flux depends linearly on population size (gray 

dashed line), whereas the degree exhibits a sublinear dependence (pink dashed line). (e) Cumulative probability distributions of 

the nodes’ population, (f) the weight matrix elements Wnm, (g) the bill flux in and out of nodes Wn, and (h) the nodes’ degree kn. 
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cal strength of a connection W is given 

by the ratio of flux and degree, so we 

obtain heuristically

 

W P P( ) .1  (8) 

Equations 7 and 8 imply that larger 

counties aren’t only connected to a 

larger number of other counties but 

also that every connection’s typical 

strength is stronger. The universal ex-

ponent  determines both relations, 

and they hold over nearly four orders 

of magnitude, a surprising regularity. 

Again, no theory exists that can predict 

these scaling relations and the value of 

the exponent .

Topological US Hierarchies
The www.wheresgeorge.com network 

encodes US travel information in the 

form of money fluxes, so each node—in 

this case, a county—is geographically 

embedded and hence is a node in a geog-

raphy distance network. An important 

question lies in the similarities and dif-

ferences between these two networks. 

In Figure 3, we observed that the www.

wheresgeorge.com network encodes at 

least some information about geogra-

phy in terms of distance distributions. 

Here, we derive a non-distributional 

property—namely, highly connected 

subunits (clusters) from the graph—and 

check if they correspond to geographi-

cal clusters. We use a hierarchical clus-

tering algorithm, which recursively ag-

glomerates nearby nodes to form a tree 

or dendrogram. To do this, we need a 

network distance, which we define be-

tween nodes n and m as

V
Wnm

nm

1
for n  m. (9)

The idea behind this choice is simple: 

We can interpret the coupling of two 

nodes as reflected by the traffic Wnm 

as how effectively close two places are, 

and the reciprocal can provide a phe-

nomenological definition of their dis-

tance. The algorithm selects the pair (n, 

m) with the smallest Vnm and replaces 

n and m by a new group node. Hence, 

we must specify how to measure dis-

tances not only between nodes but also 

between clusters. For this, we use av-

erage linkage clustering, which implies 

calculating the mean distance between 

elements of each cluster A and B:

d A b
A B

d a b
a A b B

( , )
| || |

( , ).
,

1
 (10)

The edge “heights” in this tree are pro-

portional to the distances of the parent 

to its children, so we can cut at some 

(height) distance from the root to pro-

duce a set of disjoint sets (clusters). For 

the www.wheresgeorge.com state net-

work, we performed hierarchical clus-

tering on the 48-  48-state matrix M. 

We define this matrix in the same way 

as the county matrix W—that is, each 

element Mnm represents the overall 

bill flux between states n and m. De-

pending on the threshold, the www. 

wheresgeorge.com network exhibits k = 

5 state clusters with a varying number 

of cluster elements; see Figure 4. When 

visualizing this money clustering on the 

network level, we observe that travel 

clusters also correspond to geographi-

cal clusters. Moreover, we can interpret 

these clusters as historically grown natu-

ral communities because they essentially 

consist of the west, the northeast, the cen-

ter, and central east. This indicates that 

geospatial coherence and neighborhood 

relationships are essentially encoded in 

the network flow’s topology.

Beyond the US  
with Geocaching
Although scaling relations in the dynam-

ics of money circulation such as in Equa-

tion 2 and the topological properties of 

multiscale human mobility networks 

such as in Equations 7 and 8 are of fun-

damental importance for understanding 

global human traffic, it remains unclear 

whether the observed properties are spe-

cific to the US or whether they represent 

universal features inherent in most traf-

fic networks in developed countries. Do 

these scaling laws hold for other coun-

tries as well? Are broad distributions 

present in European mobility networks, 

(b)(a)

Figure 4. Hierarchical clustering of 

the www.wheresgeorge.com network 

weights on the state level. A distance 

between two states is the inverse of 

their network weight; we performed 

hierarchical clustering on the resulting 

distance matrix. The hierarchical linkage 

algorithm takes the two closest nodes, 

connects them as the first two leafs of 

the tree, and replaces them by a single 

node with average distances to all other 

states. This forms (a) the linkage tree 

(dendrogram), with increasing cluster 

size visualized by the corresponding 

tree edge’s length. We cut the resulting 

tree at a fixed level to produce clusters, 

illustrated by (b) different colors on the 

map. We determined the number of 

clusters as the largest number of clusters 

constantly obtained for thresholds 

differing at least by 0.02. 
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and do they exhibit the same shape? To 

what extent can we expect national dif-

ferences and similarities? One impor-

tant hypothesis to test is to what extent 

national differences and cultural diver-

sity in Europe affect the structure of hu-

man mobility networks. Unfortunately, 

www.wheresgeorge.com is a US-specific 

site, so these questions are beyond the 

data set’s reach. 

To circumvent this difficulty and ad-

dress some of these questions, we ana-

lyzed data from another Web site called 

www.geocaching.com, which is a mod-

ern treasure hunt based on GPS technol-

ogy. In geocaching, players hide boxes 

(caches) containing items of more or 

less value in geographically interesting 

places and publish the longitude/latitude 

coordinates on the site. Other players 

then use this positional information to 

locate the cache within 10 meters using 

their GPS devices; when found, they log 

their visit and exchange gifts by taking 

items out of the cache and placing other 

items in it. Superimposed on geocach-

ing are trackable items or “travel bugs” 

that have become a major component of 

the game. Travel bugs are marked with 

a unique identifier or tag registered at 

www.geocaching.com. When found in 

a cache, players take them out and put 

them in the next cache they find. The 

bug’s entire trajectory is recorded on the 

Web site and can be monitored by its 

owner. Because geocaching is popular 

in many countries, travel bugs cross na-

tional boundaries and can help address 

questions about human mobility on an 

international level. We analyzed the 

dispersal characteristics of more than 

200,000 travel bugs that visited more 

than 200 countries worldwide over a to-

tal distance of more than 1 billion km.

Similar to the money circulation 

network, we computed the flux matrix 

Wnm of trackable items among coun-

ties (nodes) for various European coun-

tries: the UK, the Benelux countries, 

Germany, Austria, Switzerland, Nor-

way, Sweden, Finland, and Denmark. 

Figure 5 shows a flux network for the 

UK and Ireland. Qualitatively, this 

network shares the same topological 

features as the dollar bill circulation 

network in the US: long-distance con-

nections exist but strong short-range 

connections outweight them. Geo-

caching and the associated activity 

of transporting trackable items is cer-
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Figure 5. Geocaching. The lines symbolize the flux for 

trackable items among counties in the UK. As in Figure 2, 

the colors represent the flux magnitude between connected 

counties. The histograms along the bottom illustrate 

statistical properties of travel bug networks for European 

countries. Nodes in this network are counties in the countries 

Germany (DE); the UK and Ireland (UK); Norway, Sweden, 

Finland, and Denmark (SC); Switzerland and Austria (CH/AU); 

Netherlands, Belgium, and Luxembourg (BX); all of these 

nations (EU); and the US. (a) The cumulative distribution 

of travel bug flux into a node, (b) the degree’s cumulative 

distribution, and (c) cumulative distribution of the weights 

in the network. Despite national and cultural differences, all 

three statistical properties are similar and nearly collapse on 

the same curves.
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tainly not representative of the entire 

population; the data set is subject to 

the behavioral biases of the individu-

als who participate in the game. But 

we can address an important issue by 

analyzing the flux network of trackable 

items not so much by what systematic 

deviations these biases introduce but 

rather what statistical features are ro-

bust against such biases. The bottom 

of Figure 5 shows a surprising result 

of our analysis of travel bug flow net-

works across various European coun-

tries, with the cumulative distributions 

of the total flux F of trackable items 

into a node, the degrees k of the nodes, 

and the weights W of the network for 

various European countries. Surpris-

ingly, weights, fluxes, and degrees ex-

hibit nearly identical distributions in 

all countries considered, and the travel 

bug network for the US agrees with the 

other networks over a wide range of 

scales. This is the first direct indication 

that multiscale mobility networks pos-

sess universal features across national 

and cultural boundaries.

O
ur findings are of funda-

mental importance for un-

derstanding a multitude of 

spatiotemporal phenom-

ena triggered by human traffic. We’re 

optimistic that, in the near future, re-

searchers can satisfactorily offer plau-

sible explanations of the properties and 

quantities we observed, such as the ex-

ponents in Equations 2 and 7.
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