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Abstract

We compare three pricing mechanisms for monetary economies: bar-
gaining (search equilibrium); price taking (competitive equilibrium);
and price posting (competitive search equilibrium). We do this in a
framework that, in addition to considering different mechanisms, ex-
tends existing work on the microfoundations of money by allowing a
general matching technology and endogenous entry. We study how the
nature of equilibrium and effects of policy depend on the mechanism.
Under bargaining, trades and entry are both inefficient, and inflation
implies a first-order welfare loss. Under price taking, the Friedman
rule solves the first inefficiency but not the second, and inflation can
actually improve welfare. Under posting, the Friedman rule implies
first best, and inflation reduces welfare but the effect is second order.

∗This paper has benefited from repeated discussions with Ricardo Lagos and Matthew
Ryan. We also thank participants at the SED conference in Paris (2003) for useful com-
ments. We are grateful to the Summer Research Grant scheme of the School of Economics
of the Australian National University, the National Science Foundation, and the Central
Bank Institute at the Federal Reserve Bank of Cleveland for research support.
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1 Introduction

We compare three alternative pricing mechanisms — or, three different equi-

librium concepts — for monetary economies: bargaining (search equilibrium);

Walrasian price taking (competitive equilibrium); and price posting with

directed search (competitive search equilibrium). For this comparison, we

develop a new model of monetary exchange. The basic physical environ-

ment is related to recent search-theoretic models following Lagos and Wright

[2002], in that it borrows the assumption that economic activity sometimes

takes place in highly centralized markets and sometimes takes place in more

or less decentralized markets. The existence of the latter markets generates

an essential role for money.1 The existence of the former markets greatly

reduces the complexity or the analysis.2 Although we borrow the idea of

combining decentralized trade with periodic access to centralized markets,

we also extend along several dimensions existing models in the literature on

the microfoundations of monetary theory.

First, we add heterogeneity in the sense that some agents will always be

buyers and others will always be sellers in the decentralized markets. Second,

this heterogeneity allows us to adopt a generalized matching technology and

to introduce an entry decision by one side of the market; these extensions,

which one might think of as being borrowed from labor market theory along

the lines of Pissarides [2000], make the analyses of equilibrium and policy

1In this context essential means that money allows one to achieve outcomes that could
not be achieved without it (Kocherlakota [1998]; Wallace [2001]). Essentiality arises from
the combination of a double coincidence problem and some form of anonymity (or, in
Kocherlakota’s language, limited memory). The role of anonymity in monetary theory
was emphasized earlier by Levine [1991].

2Green and Zhou [1998], Molico [1999], Camera and Corbae [1999], and Zhou [1999]
provide examples of models that are quite complicated, mainly because all trade is decen-
tralized and this makes it hard to keep track of the endogenous distribution of money. In
the Lagos-Wright framework, periodic access to centralized markets renders this distribu-
tion simple. See Shi [1997] for a different but related model.
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much more interesting. In particular, free entry allows us to easily analyze

effects on the extensive margin (the number of trades) as well as the intensive

margin (the amount exchanged in each trade), and the general matching

technology allows us to discuss “search externalities” (in the sense that the

probability of trade can depend on the numbers and types of agents in the

market). In addition to having a more general physical environment, perhaps

the key innovation in the paper is to consider the implications of alternative

pricing mechanisms. It turns out that the nature of equilibrium and the

effects of policy are very different under the different mechanisms.

Under bargaining, the quantity traded in each match and entry by sellers

are both inefficient, and although the Friedman Rule is the optimal policy

it does not fully correct either inefficiency. In this model inflation implies a

first-order welfare loss. Under price taking, the Friedman Rule solves the in-

efficiency on the intensive margin but not the extensive margin. In this model

the effects of policy are ambiguous, and inflation in excess of the Friedman

Rule may be optimal — something quite rare in monetary theory. Under post-

ing, the Friedman Rule achieves the first best, and inflation reduces welfare

but the effect is second order. The results are interesting for the following

reason. Economists have recently come to understand exactly what frictions

are necessary for money to be essential, and models based explicitly on these

frictions make novel predictions about things like the effects of inflation. But

the extent to which the results are due to features of the environment (pref-

erences, information etc.) or to the equilibrium concept (bargaining e.g.) has

not been previously analyzed.

Our three mechanisms have of course all been used in different contexts.

Dating back to Shi [1995] and Trejos and Wright [1995], most search-based

monetary models use bargaining (with exceptions to be noted below). Wal-

rasian pricing is used in monetary theory in, say, overlapping generations
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models by Wallace [1980] and turnpike models by Townsend [1980]. Com-

petitive search equilibrium, introduced by Moen [1997] and Shimer [1996] in

labor search theory, has not been used previously in monetary economics, but

the key ingredients of price posting rather than bargaining or price taking,

and partially directed rather than random search, fit nicely into the model.

Our results in terms of efficiency and the impact of policy under alterna-

tive mechanisms have not been noted before mainly because the different

mechanisms have not been studied in one environment — bargaining is used

in most search models, Walrasian pricing is used in overlapping generations

models, etc. The framework here allows one to compare mechanisms holding

the environment constant.

This also explains the paper’s title. Diamond [1984] introduced a cash-in-

advance constraint in the Diamond [1982] model because he wanted to discuss

“Money in Search Equilibrium.” Although his approach to bargaining was

primitive at best, perhaps a bigger problem was that money is imposed ex-

ogenously via the cash-in-advance constraint. However, Kiyotaki and Wright

[1991,1993] showed that in a very similar environment a role for money can

be derived endogenously. Kocherlakota [1998] later clarified exactly what

makes money essential in those environments: a double coincidence problem,

imperfect enforcement and anonymity. It seems natural to look for a physical

environment that incorporates these features, but also allows one to consider

alternative mechanisms. Here, in addition to being able to discuss what Di-

amond wanted, we can also consider “Money in Competitive Equilibrium”

and “Money in Competitive Search Equilibrium.”

The paper is organized as follows. Section 2 presents the basic assump-

tions. Section 3 analyzes the model with bargaining. Here we are able to

borrow some technical results from Lagos and Wright [2002], although for

the case with free entry we still need to prove several things, like existence.
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We also show for this case that equilibria are generically not unique, where

versions without entry including Lagos-Wright imply uniqueness. Section 4

analyzes competitive equilibrium, where prices are set by a Walrasian auc-

tioneer even though there are search-type frictions, in the spirit of Lucas

and Prescott [1974]. An advantage of this model is that it is much more

tractable than the bargaining version, even though the main existence and

multiplicity results are qualitatively similar. Section 5 analyzes competitive

search equilibrium. Our framework is fairly different from existing analyses

of competitive search, like Moen [1997] or Shimer [1996], mainly because we

have fiat money. Hence for this model we go into more detail concerning the

assumptions as well as existence and uniqueness. For each mechanism we de-

rive the welfare and policy conclusions described above. Section 6 concludes

by summarizing the results and offering suggestions for future research.

2 The Environment

Time is discrete and continues forever. Each period is divided into two

subperiods, day and night, where economic activity will differ. During the

day there will be a centralized and frictionless market, while at night trade

will be more or less decentralized, depending on which mechanism we adopt,

and this will make money essential. There is a continuum of agents divided

into two types that differ in terms of when they produce and consume. We

find it convenient to call them buyers and sellers. The difference is the

following: while all agents produce and consume during the day, at night

buyers want to consume but cannot produce and sellers are able to produce

but do not want to consume — a classic double coincidence problem. These

assumptions on preferences and technology, combined with the assumption

that agents are anonymous, which precludes credit in the decentralized night
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markets, generate a role for money.3

Many other devices could work to generate double coincidence problems,

but our set up has one big advantage over the environment in the typical

search model. In that model any agent in the decentralized market may end

up either buying or selling depending on who they meet, while here sellers

can only sell and buyers can only buy. Differentiating two types ex ante

allows us to introduce an entry decision by one side and thereby capture the

extensive margin in a very simple way. Thus, the measure of buyers is set to 1

and the measure of sellers is n ≥ 0, and we consider both the case where n is
exogenous and the case where sellers can enter at cost k. In any case, there

is an intrinsically useless, perfectly divisible, asset called fiat money. The

quantity of money per buyer grows at a constant rate γ, so that M+1 = γM

(we drop the t subscript, writingM forMt,M+1 forMt+1, etc.). New money

is injected, or withdrawn if γ < 1, by lump-sum transfers, or taxes in the

centralized market. To reduce notation transfers apply only to buyers.

The von Neuman-Morgenstern instantaneous utility function of a buyer

is given by

U b(x, y, q) = v(x)− y + βdu(q), (1)

where x is the quantity consumed and y the quantity produced during the

day, q is his consumption at night, and βd ∈ (0, 1) is a discount factor between
day and the night. There is also a discount factor between night and the next

day, βn ∈ (0, 1), and we let β = βdβn.
4 We assume u(0) = 0, u0(0) = ∞,

3Note that those we call buyers will buy at night and those we call sellers will sell at
night, but all agents buy and sell during the day; we hope these labels are nevertheless
clear. Note also that the double coincidence problem is temporal in nature, as opposed
to the double coincidence problem at any point in time in most of the search literature
following Kiyotaki and Wright [1989]. In this sense is the model is more in the spirit
of recent work by Kiyotaki and Moore [2001], or perhaps the turnpike and overlapping
generations models mentioned in the Introduction.

4One special case is when agents do not discount between day and night, βd = 1, as
assumed in some earlier papers. Another is when βd = βn, so that the two subperiods
could be thought of as even and odd dates.
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u0(q) > 0, and u00(q) < 0. Also, v0(x) > 0, v00(x) < 0 for all x, and there

exists x∗ > 0 such that v0(x∗) = 1. Lifetime utility for a buyer is given byP∞
t=0 β

tU b(xt, yt, qt).

The instantaneous utility function of a seller is

Us(x, y, q) = v(x)− y − βdc(q). (2)

We assume c(0) = c0(0) = 0, c0(q) > 0 and c00(q) > 0. Lifetime utility for a

seller is given by
P∞

t=0 β
tUs(xt, yt, qt). Also, we assume c(q) = u(q) for some

q > 0, and let q∗ denote the efficient (first best) quantity: u0(q∗) = c0(q∗).

From (1) and (2) notice that sellers and buyers have the same preferences

over day goods and the same discount factor, although we could relax this

with no difficulty. The key difference between buyers and sellers is that the

former enjoy consumption at night while the latter produce at night.

In the centralized market the price of goods is normalized to 1 and the

price of money is φ. As in Lagos-Wright, we will see below that the quasi-

linearity in (1) and (2) implies all agents of a given type choose the same

money holdings in the centralized market. In the decentralized night market,

although the details differ across the models studied below, there will always

be some “stochastic rationing” in the following sense: each period buyers get

an opportunity to trade with probability α(n) and sellers get an opportunity

to trade with probability α(n)/n, where α0(n) > 0, α00(n) < 0, α(n) ≤
min{1, n}, α(0) = 0, α0(0) = 1 and α(∞) = 1. This allows for “search

externalities” in the sense that trading probabilities will depend on the ratio

of sellers to buyers. The function α(n) can be given several interpretations.

For now, think of it as the standard specification coming from a constant

returns to scale matching technology.5

5If µ(nb, ns) is the number of meetings when there are nb buyers and ns sellers, constant
returns implies the arrival rate for a representative buyer is µ(1, ns)/nb = α(ns/nb). See
Petrongolo and Pissarides [2001] for a survey on matching functions.
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2.1 Buyers

A buyer trades at night with probability α(n), in which case he pays d = d(m)

dollars for q = q(m) units of goods, where (q, d) in general depends on his

money holdings. Let V b(m) and W b(m) be the value functions for a buyer

with m dollars in the night and day market, respectively (because we focus

on steady-state equilibria where the aggregate real money supply is constant

no other variables need to be included as arguments of these functions).

Bellman’s equation for an buyer in the decentralized night market is

V b(m) = α(n)
©
u [q(m)] + βnW

b
+1 [m− d (m)]

ª
+ [1− α(n)]βnW

b
+1(m). (3)

In words, with probability α(n) he gets to trade, buys q(m) and starts the

next day with m− d(m) dollars, and with probability 1− α(n) he does not

trade and starts the next day with m.

In the centralized day market a buyer’s problem is

W b(m) = max
m̂,x,y

©
v(x)− y + βdV

b(m̂)
ª

(4)

s.t. φm̂+ x = φ(m+ T ) + y, (5)

where T is his transfer and m̂ is the money he takes into the night market.

Substituting for y we have

W b(m) = max
m̂,x

©
v(x)− x+ φm+ φ(T − m̂) + βdV

b(m̂)
ª
. (6)

From (6) we see: the maximizing choice of x is x∗ where v0(x∗) = 1; the

maximizing choice of m̂ is independent of m; and W b(m) = φm +W b(0) is

linear inm. Assuming V b is differentiable (it will be) the first order condition

for m̂ is

−φ+ βdV
b
m(m̂) ≤ 0, = 0 if m̂ > 0, (7)
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where V b
m denotes the derivative. If V

b is strictly concave (it will be under

relatively weak conditions) there is a unique solution to (7) and all buyers

choose the same m̂.6

2.2 Sellers

Let V s(m) andW s(m) be the value functions for sellers. We will prove below

that sellers’ terms of trade (q, d) do not depend on the m they carry; for now

we take this as given. Since all buyers in the decentralized market hold the

same amount of money, say mb, Bellman’s equation for a seller is

V s(m) =
α(n)

n

©−c [q (mb)] + βnW
s
+1 [m+ d (mb)]

ª
+

·
1− α(n)

n

¸
βnW

s
+1(m)− k. (8)

There are several differences between (8) and (3). First, sellers have a differ-

ent arrival rate, α(n)/n rather than α(n). Second, they produce and suffer

disutility −c(q) in exchange for cash, while buyers spend cash and get to
enjoy utility. Also, sellers must pay cost k per period to participate in the

night market.

The problem of a seller in the centralized market is

W s(m) = max
m̂,x,y

{v(x)− y + βdV
s(m̂)} (9)

s.t. φm̂+ x = φm+ y. (10)

Substituting for y we have

W s(m) = max
m̂,x

{v(x)− x+ φm− φm̂+ βdV
s(m̂)} . (11)

6Lagos and Wright [2002] provide details on the existence, differentiability, and strict
concavity of the value function, as well as conditions guaranteeing the nonnegativity of y,
which is implicitly being assumed here, for their version of the model. Those arguments
also apply to our model under bargaining. We discuss below how things change under
price taking and posting.
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It is obvious that, like buyers, sellers choose x = x∗; m̂ is again independent

of m; and W s(m) = φm+W s(0) is again linear.

To say more, take the first order condition for m̂:

−φ+ βdV
s
m(m̂) ≤ 0, = 0 if m̂ > 0. (12)

From (8), V s
m = βnW

s
m,+1 = βnφ+1. Focusing on equilibria where real bal-

ances are constant, we have φ+1 = φ/γ. The last two observations reduce

the first order condition to −φ+βφ/γ ≤ 0, = 0 if m̂ > 0, which cannot hold

in a monetary equilibrium unless γ ≥ β. For all γ > β the solution is m̂ = 0;

for γ = β, any m̂ is any solution, but we only consider the limit as γ → β.

Hence, in any equilibrium m̂ = 0, and since sellers carry no money buyers

carry it all, at least as long as (q, d) is independent of sellers’ money holdings

as we have so far been assuming.

Lemma 1: Given (q, d) is independent of sellers’ money holdings, all

sellers hold m = 0, and thus all buyers hold m =M .

While the measure of buyers is exogenous and normalized to 1, regarding

the measure of sellers we consider two alternative assumptions. Either it is

exogenous at n = N , or it is endogenous and determined by a free-entry

condition. If sellers do not enter, they produce and consume x∗ each day for

a payoff of v(x∗) − x∗, which we normalize to 0 with no loss in generality.

Hence free-entry means V s(0) = 0, which implies after simplification that7

α(n)

n

£−c (q) + βnφ+1d
¤
= k. (13)

Intuitively, (13) equates the participation cost to the probability of trading

multiplied by a seller’s surplus from a trade.
7A seller with m dollars spends it all in the centralized market whether or not she

wishes to participate in the decentralized market. Since v(x∗) − x∗ = 0 we can rewrite
(11) as W s(m) = φm+ βdmax [V

s(0), 0] = φm since free entry implies V s(0) = 0. From
(8), V s(0) = α(n)

n

©−c [q (mb)] + βnφ+1d (mb)
ª− k, and then V s(0) = 0 yields (13).
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2.3 Welfare

We measure welfare by W = n(1− β)V s(0) + (1− β)V b(M). After simplifi-

cation this becomes

W = α(n) [u(q)− c(q)]− kn+ βn [nv(xs) + v(xb)− (nxs + xb)] , (14)

where q is the quantity consumed at night, while xb and xs are the quantities

consumed by buyers and sellers during the day.8 If a planner could choose

(q, n, xs, xb), the first-order conditions would be

u0(q)− c0(q) = 0, (15)

α0(n) [u(q)− c(q)] = k (16)

v0(xs) = 1 (17)

v0(xb) = 1. (18)

From (15), the efficient quantity traded at night is the q∗ that equates

marginal utility and marginal cost. From (16), the efficient n implies a seller’s

marginal contribution to the matching process, α0(n), times the total surplus

u(q)− c(q) should equal the participation cost k. From (17) and (18), xs =

xb = x∗. Given that xs = xb = x∗ in any equilibrium considered below, the

normalization v(x∗)−x∗ = 0 implies that welfare can be expressed succinctly
for our purposes as

W = α(n) [u(q)− c(q)]− kn. (19)

3 Search Equilibrium (Bargaining)

In this section we study the mechanism used in much of the recent literature

on the microfoundations of monetary theory, where (q, d) is determined by

8Notice the q consumed by buyers at night necessarily equals the amount produced
by sellers, while we could let buyers produce yb and sellers ys during the day, subject to
xb + nxs = yb + nys; substituting this into the objective function yields (14).
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bilateral bargaining. Figure 1 illustrates the functioning of the decentralized

market, where to keep track of things we represent buyers by men and sellers

by women. At random some agents are matched, as indicated by a dotted

circle, and some are unmatched. In each match the agents bargain bilaterally.

The figure shows meetings only between men and women, but that is without

loss of generality: given preferences and technology, any meeting between two

women or between two men is irrelevant.

dq,

dq,

dq,

Figure 1: Search equilibrium

3.1 Equilibrium

Consider a meeting in the decentralized market between a buyer withmb and

a seller with ms. Lemma 1 says that mb = M and ms = 0, if the terms of

trade do not depend on ms, but we now need to establish that (q, d) indeed

does not depend on ms, and so we write things more generally. We adopt

the generalized Nash solution, where θ ∈ (0, 1] is the bargaining power of
a buyer and threat points are given by continuation values. Because of the

linearity of W b(mb) and W s(ms), this simplifies nicely to

max
£
u(q)− βnφ+1d

¤θ £−c(q) + βnφ+1d
¤1−θ

(20)

12



subject to d ≤ mb.9 It is immediate that the solution (q, d) is independent

of ms, as assumed in Lemma 1; hence, in equilibrium we can now be assured

that mb =M and ms = 0.

Moreover, notice that (q, d) depends on mb iff the constraint d ≤ mb

binds. If it does not bind, the first order conditions for (20) are

u0(q) = c0(q) (21)

θ
£−c(q) + βnφ+1d

¤
= (1− θ)

£
u(q)− βnφ+1d

¤
, (22)

which implies q = q∗ and d = m∗ where βnφ+1m
∗ = θc(q∗) + (1 − θ)u(q∗).

If the constraint does bind, then q solves the first order condition from (20)

with d = mb. Letting z = βnφ+1mb denote the buyer’s real balances, it will

be convenient below to write this first order condition as

z = g(q) =
θu0(q)c(q) + (1− θ)c0(q)u(q)

θu0(q) + (1− θ)c0(q)
. (23)

This fully describes decentralized trade under bargaining.

Now consider the centralized market. From (3), given what we have just

seen concerning bargaining, ifmb > m∗ then V b
m(m) = βnφ+1 and ifmb < m∗

then

V b
m(mb) = α(n)

·
u0(q)

∂q

∂mb
− βnφ+1

¸
+ βnφ+1. (24)

We claim that m̂ < m∗. To summarize the argument, which is discussed in

more detail in Lagos andWright [2002], first note that in equilibrium we must

have φ ≥ βφ+1 since otherwise the problemmaxm̂
©−φm̂+ βdV

b(m̂)
ª
has no

solution.10 Given this, −φm̂ + βdV
b(m̂) is weakly decreasing for m̂ > m∗.

9The payoffs of the buyer and seller are u(q)+βnW
b
+1
(mb−d) and −c(q)+βnW s

+1
(ms+

d), and the threat points are βnW
b
+1
(mb) and βnW

s
+1
(ms). Linearity of W b(mb) and

W s(ms) implies W b
+1
(mb− d)−W b

+1
(mb) = −φ+1d and W s

+1
(ms+ d)−W s

+1
(ms) = φ+1d,

leading to (20).
10We earlier argued that in a stationary equilibrium where φM is constant we have

γφ+1 = φ, and also that we must have γ ≥ β, which gives the desired result. The
argument here is more general: it applies to any equilibrium, and not only to stationary
equilibria.
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One can also show that −φm̂+βdV
b(m̂) is strictly decreasing just to the left

of m∗; simply compute ∂q/∂mb, insert it into (24), and let mb → m∗. This

establishes the optimizing choice is m̂ < m∗.

Inserting (24) into the first order condition φ = βdV
b
m(m̂) and rearranging,

we get
γ − β

βα(n)
+ 1 =

u0(q)
βnφ+1

∂q

∂mb
. (25)

Since mb < m∗ we know from the bargaining solution that βnφ+1mb = g(q),

so ∂q/∂mb = βnφ+1/g
0(q), and

γ − β

βα(n)
+ 1 =

u0(q)
g0(q)

. (26)

Given n, this condition determines the steady state q. For future reference

let q̃∗ be the solution to (26) when we follow the Friedman Rule and deflate

at the rate of time preference: γ = β. Notice that q̃∗ = q∗ if θ = 1 and

q̃∗ < q∗ otherwise.

We make the following assumptions:

Assumption 1: (i) limq→0 u0(q)/g0(q) =∞; (ii) for all q < q∗, u0(q)/g0(q) is

strictly decreasing.

Part (i) is a standard Inada condition to guarantee existence; part (ii) implies

uniqueness when n is exogenous, and is made so that we will know any

multiplicity that occurs when n is endogenous must be due to free entry.11

Also, simplifying the free entry condition (13) using (23), we get

α(n)

n

(1− θ)c0(q)
θu0(q) + (1− θ)c0(q)

[u(q)− c(q)] = k, (27)

and from this it is clear that a necessary condition for n > 0 is

11Lagos and Wright [2002] establish that a sufficient condition for (ii) is that either θ is
not too small or u0 is log-concave. This is condition can also be used to prove the value
function is strictly concave. Some such condition is required because, under bargaining,
unless θ = 1, q is a nonlinear function of mb that depends on u000. As we will see later,
this is not a problem in models where agents take prices as given.
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Assumption 2: k <
(1− θ)c0(q̃∗)

θu0(q̃∗) + (1− θ)c0(q̃∗)
[u(q̃∗)− c(q̃∗)].

Given k > 0, naturally this Assumption requires θ < 1.

We now define equilibrium formally for the model with bargaining. In

this definition, and those that follow, when we say an equilibrium we mean

a steady-state monetary equilibrium, with q, n > 0.

Definition 1 (i) With n = N , a search equilibrium is a pair (q, z) ∈ R2+
satisfying (23) and (26). (ii) With free entry, a search equilibrium is a triple

(q, z, n) ∈ R3+ satisfying (23), (26) and (27).

Note that equilibrium has a recursive structure: with n fixed q is determined

by (26), and with free entry (q, n) is determined by (26)-(27), but in ei-

ther case we can solve for z = g(q) using (23) after we find q. Hence, we

concentrate on q and n in what follows.

In the case with n = N equilibrium exists and is unique by Assumption

1. It is easy to see that in this case q < q∗ and q → q∗ as γ → β iff θ = 1. In

the case with n endogenous, equilibrium obtains at the intersection of two

upward-sloping curves in (n, q) space defined by (26)-(27), shown as EE and

FE in Figure 2. As γ increases EE rotates downward. As the figure suggests,

one can show the following: First, there is a γ̄ > β such that equilibrium

exists iff γ ≤ γ̄. Second, for γ ∈ (β, γ̄] equilibria are generically not unique,
since at both n = 0 and n = n(q̃∗) the FE curve is above the EE curve,

where n(q̃∗) is the value of n that solves (27) at q̃∗. Third, in the limit as

γ → β the EE curve becomes horizontal at q̃∗ for all n > 0, and hence we

get a unique (monetary) equilibrium; in terms of Figure 2, the equilibrium

with low (q, n) coalesces with the origin at γ = β.12

12Although these results should be easy to understand from Figure 2, here we provide the
formal arguments. Let q be the value of q that solves (27) when n = 0. From Assumption
2, q < q̃∗. For all q ∈ £q, q∗¤, (27) can be written n = n(q) with n0 > 0 and n(q) = 0. Let
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Figure 2: Equilibrium

We will collect these results in a Proposition after we discuss efficiency.

To close this subsection we want to comment on fact that, for γ > β, if any

(monetary) equilibria exist there must be more than one. It is clear that

this multiplicity requires an entry decision, since when n = N is exogenous

Assumption 1 guarantees uniqueness. What is interesting is that multiplicity

here does not require increasing returns, as is the case in most search models

going back to Diamond [1982]. A nonmonetary model with constant returns

would not display this multiplicity, even with an entry decision. The differ-

ence is that in this model there is a strategic interaction between entry by

Γ(q; γ) be defined for q ∈ £q, q∗¤ by
Γ(q; γ) = βα [n(q)]

·
u0(q)
g0(q)

− 1
¸
− (γ − β).

An equilibrium exists iff there is a q ∈ ¡
q, q∗

¤
such that Γ(q; γ) = 0. Assume first

γ = β. Then, Γ(q;β) = 0 iff q = q or q = q̃∗. As n
¡
q
¢
= 0, q = q̃∗ is the unique

equilibrium with n > 0. Assume next γ > β. Then at q = q and for all q ≥ q̃∗,
Γ(q; γ) < 0. Consequently, if equilibrium exists it is generically not unique. Define

γ̄ = sup
n
γ ≥ β;maxq∈[q,q∗] Γ(q; γ) ≥ 0

o
. Since Γ(q; γ) is decreasing in γ, equilibrium

exists iff γ ≤ γ̄ where γ̄ > β.
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sellers and money demand by buyers, which can lead to multiple equilibria

even with constant returns.13

3.2 Welfare

We now analyze efficiency and the effects of changes in inflation. First note

that when n = N is exogenous, the unique equilibrium implies ∂q/∂γ <

0, and when n is endogenous, the equilibrium with the highest q implies

∂q/∂γ < 0 and ∂n/∂γ < 0. Notice from (26) that q is efficient iff γ = β and

θ = 1 (i.e. iff the Friedman Rule holds and buyers have all the bargaining

power), irrespective of n. If θ < 1 then q ≤ q̃∗ < q∗ even at γ = β. This

is due to a holdup problem that reduces the demand for money: when a

buyer brings cash to the decentralized market he is making an investment,

but when θ < 1 he is not getting the full return on his investment. This

reduces the equilibrium value of money q below the efficient level.

An alternative intuition is displayed in Figure 3, which plots the total

surplus from decentralized trade, S(q) = u(q) − c(q), as well as the buyer’s

share,14

Sb(q) =
θu0(q)

θu0(q) + (1− θ)c0(q)
[u(q)− c(q)] , (28)

as functions of q. The curve Sb(q) reaches a maximum at q = q̃∗ ≤ q∗, with

the inequality strict if θ < 1. Now q increases withmb, but a buyer will never

bring more money than needed to buy the quantity that maximizes Sb(q). If

there is an opportunity cost of holding money, which there is when γ > β, he

will in fact prefer to buy less than q̃∗. Hence, we have q ≤ q̃∗ < q∗ whenever

γ > β.

13We emphasize the interaction of monetary considerations and the entry decision: both
are needed for multiplicity here. A related point has been made by Johri [1999], who shows
that a version of Diamond [1982] with constant returns can have multiple equilibria once
fiat money is introduced in a sensible way.
14To derive(28), insert z = g(q) from (23) into Sb(q) = u(q) − z and simplify. The

seller’s share is defined similarly.
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In terms of the extensive margin, comparing (27) and (16) we see that

when n is endogenous it is efficient iff

(1− θ)c0(q)
θu0(q) + (1− θ)c0(q)

= η (n) , (29)

where η (n) = nα0(n)/α(n) measures sellers’ contribution to the matching

process by the elasticity of α(n). This is the familiar Hosios [1990] condition:

entry by a group is efficient iff their share of the surplus from matching equals

their contribution to matching. It is possible for n to be either too high or

too low in equilibrium. This has interesting welfare implications, since entry

can either exacerbate or mitigate the cost of inflation, depending on whether

n is too low or too high. Although the Hosios condition is well known, notice

that things are more complicated here than in typical applications in, say,

labor economics, because sellers’ share is the left side of (29), not simply the

exogenous bargaining weight 1 − θ. In fact, sellers’ share equals 1 − θ iff

q = q∗. However, q = q∗ in equilibrium iff θ = 1 (and γ = β), but if θ = 1

sellers do not enter, so there is no way to achieve q = q∗ and n > 0.

When there are multiple equilibria they can be ranked. First note that

under free entryW = α(n)Sb(q), which is nice because it is separable between
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α(n), which captures the extensive margin, and Sb(q), which captures the

intensive margin. In equilibrium Sb(q) is increasing in q because q < q̃∗ (see

Figure 3), and α(n) is always increasing in n. Hence equilibria with higher

(q, n) unambiguously yield higher W, and indeed, we can say that they are
better in terms of both the intensive and extensive margin. Finally, consider

an increase in γ in the best equilibrium. This rotates EE downward, so n

and q both decrease and this unambiguously reduces W. The best policy is
therefore the minimum inflation rate, the Friedman Rule γ = β (we proved

earlier that there is no equilibrium with γ < β). Although this is optimal, we

reiterate that it cannot support the first best outcome when n is endogenous,

because q = q∗ requires both γ = β and θ = 1, while θ = 1 is inconsistent

with free entry. In any case, we summarize things as follows.

Proposition 1 (i) Assume n = N . Search equilibrium exists and is unique.

The optimal policy is γ = β and it yields the efficient outcome iff θ = 1. (ii)

Assume free-entry. There is a γ̄ > β such that equilibrium exists iff γ ≤ γ̄.

For all γ ∈ (β, γ̄) equilibrium is not unique. When γ = β there exists a

unique equilibrium. The optimal monetary policy is γ = β but it can never

achieve the efficient outcome.

4 Competitive Equilibrium (Price Taking)

A few of the results in the previous section — i.e., those for the case n =

N , although not the more interesting case with n endogenous — have been

described in previous papers that use bargaining to determine the terms of

trade. However, in either case it is not clear to what extent things are driven

by features of the environment such as the double coincidence problem and

anonymity assumption, and to what extent things are driven by the use of

bargaining as a solution concept. One could follow Wallace’s [2001] advice
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and use a mechanism design approach: in fact, as we vary θ between 0 and

1 in the previous section we trace out the set of (symmetric, stationary)

incentive feasible and bilaterally-efficient allocations for a given policy. For

our purposes, however, the more interesting issues involve thinking about

different sets of institutions that can be used to determine the terms of trade.

We especially want to study mechanisms that have been used by others

in different contexts, as discussed in the Introduction. Here we consider

Walrasian price-taking in the decentralized night market.

The first thing to emphasize is that introducing a Walrasian auctioneer

may make the decentralized market less decentralized, but it does not make

money inessential as long as we maintain the double coincidence problem

and anonymity.15 The second thing is that one can still capture search-type

frictions with Walrasian pricing, and we do so here by assuming there are

competitive markets open at night, but agents must queue to randomly get

in to these markets and not necessarily all of them succeed.16 For now, to

help compare different models, we assume the same number enter on each

side, so that the probabilities of getting in for buyers and sellers are α(n) and

α(n)/n. The only role this plays is to isolate the price-setting function of the

auctioneer from the function of physically moving goods between sellers and

buyers, since with equal numbers one can think of every physical exchange

as bilateral if so desired; in any case we relax this below.

The situation is depicted in Figure 4. The night market is represented

by a dashed circle. Inside the market all agents see the price p announced

by the auctioneer. Buyers, again represented by men, observe the price and

15See Levine [1991] for an early expression of related ideas, and Temzelides and Yu
[2003] for a more recent discussion.
16This is similar to the model in Lucas and Prescott [1974], in that markets are com-

petitive but there may be frictions involved in getting into a given market. Things here
are more general, however, since we allow two-sided search plus an entry decision on one
side. One can also interpret the model in terms of shopping time, as in McCallum and
Goodfriend [1987], although again our framework allows two-sided search and entry.
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indicate how much they want to buy, qb, while sellers, again represented by

women, observe the price and indicate how much they want to sell, qs. Goods

trade against money here for exactly the same reason goods traded against

money in previous section: there is a double coincidence problem and agents

are anonymous. Agents outside the market do not trade at night (e.g. there

are no bilateral meetings between agents in the two queues). Finally, we

emphasize that in this section entry by sellers means entry into the queue;

only a fraction of those who enter the queue actually get into the market.

sq

sq

sq
bq

bq

bq

Figure 4: Competitive equilibrium

4.1 Equilibrium

First note that Lemma 1 applies here, so that in equilibrium mb = M and

ms = 0. Now, if a buyer gets in to the night market, he solves maxqb
©
u(qb) +

βnW
b
+1

¡
mb − pqb

¢ª
subject to pqb ≤ mb. The solution satisfies

u0(qb) = βnpφ+1 if mb ≥ m∗

qb = mb/p if mb < m∗ (30)

(using the linearity of W ), where m∗ is the level at which the constraint

binds, u0 (m∗/p) = βnpφ+1. One can show mb < m∗, for the same reason as
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in the previous section, and so in equilibrium

qb =M/p. (31)

If a seller gets in she solves maxqs
©−c(qs) + βnW

s
+1 (ms + pqs)

ª
. The solu-

tion satisfies

c0(qs) = βnpφ+1. (32)

The price clears the market, which with equal numbers requires qs = qb = q,

and so (31) and (32) imply

z = qc0 (q) , (33)

where again z = βnφ+1M .

We now determine money demand by buyers in the day market. Given

mb < m∗, we have ∂qb/∂mb = 1/p and17

V b
m(mb) = α(n)u0

µ
mb

p

¶
1

p
+ [1− α(n)]βnφ+1. (34)

Inserting (34) into the first-order condition φ = βdV
b
m(mb), using (32), and

rearranging we get
u0(q)
c0 (q)

= 1 +
γ − β

βα(n)
. (35)

For a given n (35) determines the equilibrium q, and we note that this co-

incides with (26) from the previous section iff θ = 1. If n is endogenous, in

this model the free entry condition reduces to

α(n)

n
[qc0 (q)− c (q)] = k. (36)

We now have:

Definition 2 (i) With n = N , a competitive equilibrium is a pair (q, z) ∈ R2+
satisfying (33) and (35). (ii) With free entry, a competitive equilibrium is a

triple (q, z, n) ∈ R3+ satisfying (33), (35) and (36).
17Notice V b

mm = αu00/p2 < 0 for all mb < m∗ here, and so we do not need any conditions
like those discussed in the model with bargaining for the strict concavity of V b. This is
an example of how the price-taking model is much easier than the bargaining model.
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Thins are again recursive: we can first determine q and then z = qc0(q).

Notice, however, that the condition for z here is different from the previous

section, where z = g(q). In particular, even if θ = 1 in the bargaining model,

we have g(q) = c(q), and the conditions are the same in the two models iff

c(q) is linear. In any case, we focus on q and n.

Assume first n = N . Then there exists a unique equilibrium by (35),

with ∂q/∂γ < 0 and q → q∗ as γ → β. Assume next n is determined by (36).

Then clearly the following restriction is necessary for n > 0.

Assumption 2’: k < q∗c0(q∗)− c(q∗).

The equilibrium (q, n) is now determined by the intersection of two upward-

sloping curves given by (35)-(36). An argument just like the one in the

previous section can be used to establish that there exists a threshold γ̄ > β

such that equilibrium exists iff γ ≤ γ̄, and that if an equilibrium exists

it is generically not unique, unless γ = β in which case there is a unique

equilibrium. As in that section, we will collect these results after we discuss

policy and welfare.

4.2 Welfare

If n = N the optimal policy is γ = β and it yields full efficiency. This is in

accordance with many models in monetary economics, although not the one

in the previous section, where the Friedman Rule was the optimal policy but

could not achieve full efficiency. The reason γ = β implies efficiency here, at

least with n = N , is that the holdup problem in money demand disappears

under competitive pricing.18 If n is endogenous, we still have q = q∗ iff γ = β,

18To say it another way, in the model of this section the surplus for a buyer taking p
as given is Sb(q) = u(q)− qβnpφ+1. In equilibrium this is equal to Sb(q) = u(q)− qc0(q),
which is still maximized at q < q∗, but when choosing mb agents ignore the effect of a
change in q on sellers’ marginal cost and thus on p. Under the Friedman rule, the function
u(q)− qβnpφ+1 reaches a maximum at q = q∗.
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and comparing (35)-(36) with (15)-(16) we see that n is also efficient iff

η(n∗) = 1− u(q∗)− q∗c0(q∗)
u(q∗)− c(q∗)

. (37)

This is again the Hosios condition. Hence, with free entry, full efficiency is

achieved iff the Friedman Rule and the Hosios condition both hold.

There is no reason to expect the Hosios condition to hold, in general, since

(37) relates the elasticity of the matching function to properties of prefer-

ences. Hence, in equilibrium n is typically inefficient, and it can be either

too high or too low. This has interesting implications for policy. Consider

the effect of inflation in the neighborhood of γ = β. Differentiating (19) and

substituting for k from (36), we have:

dW
dγ

¯̄̄̄
γ=β

=
α(n)

n
[u(q∗)− c(q∗)]

n
η(n)−

h
−c(q∗)+q∗c0(q∗)
u(q∗)−c(q∗)

io dn

dγ

¯̄̄̄
γ=β

(38)

At the best equilibrium ∂n/∂γ < 0; hence, as long as η(n∗) < −c(q∗)+q∗c0(q∗)
u(q∗)−c(q∗) ,

welfare is increasing in γ at γ = β. It is easy to construct explicit examples;

e.g. if α(n) = na, so that η = a for all n, then W must be increasing in γ at

γ = β as long as a is small enough.

It is rare in the literature for a deviation from the Friedman Rule to be

optimal. The intuition for the result here is as follows. In general, when

sellers decide to enter the market they do not take into account “search

externalities” in the sense that they impose a “congestion” effect on other

sellers and an opposite “thick market” effect on buyers.19 In equilibrium n

may be either too low or too high, but if it is too high then inflation helps

welfare because it reduces the sellers’ surplus and hence their incentive to

enter. Now inflation also reduces the quantity traded in each match, and

this hurts welfare along the intensive margin; however, the key observation

19The terms “thick market” and “congestion” are standard in the matching literature;
all they mean is that when a seller enters he increases α(n) and decreases α(n)/n.
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is that, because q = q∗ at the Friedman rule, this has only a second-order

effect.20

Proposition 2 (i) Assume n = N . Competitive equilibrium exists and is

unique. The optimal policy is γ = β and it yields the efficient outcome.

(ii) Assume free-entry. There exists γ̄ > β such that equilibrium exists iff

γ ≤ γ̄. For all γ ∈ (β, γ̄) equilibrium is not unique. When γ = β there

exists a unique equilibrium. Equilibrium is efficient iff γ = β and the Hosios

condition (37) holds. If (37) does not hold, optimal policy involves γ > β iff

η(n∗) < q∗c0(q∗)−c(q∗)
u(q∗)−c(q∗) .

4.3 Extensions

To close this section we briefly consider some extensions of the model with

competitive pricing in order to illustrate the flexibility of the framework,

to show it is robust to having unequal numbers of buyers and sellers in

the market, and to further develop further our intuition for the inefficiency.

Suppose first that all sellers get into the night market with probability 1,

while buyers get in with probability α(n), α0 ≥ 0. This may be a natural
assumption if, for instance, one wants to interpret buyers as “shopping”

among sellers. Also, allowing unequal numbers to potentially get in, market

clearing now requires nqs = α(n)qb.

20We know of no previous results in the monetary policy literature based on “search
externalities” except Li [1995, 1997] and Berentsen, Rocheteau and Shi [2001], and those
results are not especially robust. That is, even with “search externalities” the Friedman
Rule is optimal unless special assumptions are made to get around the holdup problem
in money demand. Recall from the previous section that γ = β was always the optimal
policy under bargaining even though “search externalities” were present. In that model,
inflation is always bad for welfare, even though n may be too big, and we attribute this to
the holdup problem. Li gets his results by assuming indivisible goods and money, which
avoids holdup problems at the margin, while Berentsen et al. get theirs by invoking a
special bargaining solution. In the model of this section we avoid the holdup problem in
money demand by the assumption of competitive price taking, which means q = q∗ at the
Friedman Rule, which means that a little inflation is not very bad on the intensive margin,
and hence it may be a net improvement when n is too big.
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Under these assumptions, the methods leading to (35) now lead to

u0(qb)
c0 (qs)

= 1 +
γ − β

βα(n)
, (39)

while the free-entry condition becomes

qsc0 (qs)− c (qs) = k. (40)

Welfare is α(n)u(qb)−nc (qs)−kn, and for any given q the optimal n satisfies

α0(n)
£
u(qb)− qbc0 (qs)

¤
+ qsc0 (qs)− c (qs) = k. (41)

If α0 = 0 then (40) and (41) coincide: equilibrium entry is efficient and the

Friedman Rule achieves the first best. But if α0 > 0, n is inefficiently low

because sellers ignore the “thick market” effect of their entry on buyers. Since

an increase in γ reduces n, inflation is always bad for welfare.

Assume next that all buyers get in with probability 1 while sellers get in

with probability ξ(n), ξ0 ≤ 0, which is quite similar to the Lucas-Prescott
[1974] model if we interpret sellers here as workers (selling their labor). Mar-

ket clearing requires nξ(n)qs = qb. Equation (35) becomes

u0(qb)
c0 (qs)

= 1 +
γ − β

β
, (42)

and the free-entry condition becomes

ξ(n) [qsc0 (qs)− c (qs)] = k. (43)

Welfare is u(qb)− nξ(n)c (qs)− kn, and the optimal n satisfies

[ξ(n) + nξ0(n)] [qsc0 (qs)− c (qs)] = k. (44)

If ξ0 = 0 then (43) and (44) coincide: equilibrium entry is efficient and the

Friedman Rule achieves the first best. If ξ0 < 0 however, n is too high and

inflation above γ = β unambiguously improves welfare. This shows that the
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origin of the inefficiency is the fact that entry generates “congestion” effects

that are not internalized by the Walrasian market-clearing price. As pointed

out by Moen [1997] and Shimer [1996] in the context of labor markets, one

interpretation of this is that there is a missing market that would price the

probabilities of trade. In the next section we consider a mechanism that

takes care of this.

5 Competitive Search Equilibrium (Posting)

The concept of competitive search equilibrium is based on the idea that some

agents can post a price, or more generally, a contract, that specifies the terms

at which agents commit to trade. Other agents observe posted prices and

choose where to go. Again, there may be “stochastic rationing” — in some

versions this is because more buyers may show up at a given seller’s location

that he has capacity to serve (Burdett et al. [2001]), or in other versions

it is because buyers get to choose a location where everyone posts a given

price but they still have to search for a seller at that location (Moen [1997]).

In any case, there is at least partially directed search, and this generates

competition among price setters. As argued in Corbae et al. [2003], directed

search does not make money inessential as long as we still have a double

coincidence problem and anonymity, but we will see that it will change the

way pricing works.21

Here we adopt the interpretation of competitive search equilibrium dis-

cussed in Mortensen andWright [2002]. In this version there are agents called

market makers who can open submarkets where they post the terms of trade

21Corbae et al. [2003] allow directed search but do not consider price posting, and the
notion of competitive search equilibrium requires a combination of the two. Posting with
undirected search has been used in monetary theory by Green and Zhou [1998], Zhou
[1999], Curtis and Wright [2000], Head and Kumar [2001], Camera and Winkler [2002],
and Jafarey and Masters [forthcoming].
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(q, d) and charge participants an entry fee, which will be 0 in equilibrium

as the cost of opening a submarket is negligible. Agents direct their search

in the sense that they can go to any submarket they like, but within any

submarket there is random bilateral matching. Given a menu of (q, d), and

expectations about where other agents go which determines the arrival rates,

across submarkets, each buyer or seller decides where he or she goes, and in

equilibrium expectations must be rational. When designing submarkets mar-

ket makers take into account the relationship between the posted (q, d) and

the numbers of buyers and sellers who choose each submarket, summarized

by the ratio n. In equilibrium the set of submarkets is complete in the sense

that there is no submarket that could be opened and make some buyers and

sellers better off, since then a market maker could earn a profit.

11 , dq
22 ,dq

Figure 5: Competitive search equilibrium

The situation is represented in Figure 5, where two submarkets are shown,

and in each there is a market maker announcing (q, d). In a submarket the

matching process is random, and a meeting is again represented by a circle.

The timing of events in a period is as follows. At the beginning of each day,

market makers announce the submarkets to be open that night, as described

by (q, d), and this implies an expected n in each submarket. Agents then
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trade in the centralized market during the day, exactly as before, and go to

submarkets of their choosing at night. In the submarkets at night agents

trade goods and money bilaterally, like in search equilibrium, except they do

not bargain: they are bound by (q, d).22

5.1 Equilibrium

A market maker can make a profit if he can design a submarket that beats

existing submarkets, in the sense of making buyers better off without making

sellers worse off. Given (q, d), the market maker can get any number of sellers

as long as he matches the market payoff, given by23

W s(ms) = φms + βdmax
ω∈Ω

½
α(n)

n

£−c(q) + βnφ+1d
¤¾
+ βW s

+1(0) (45)

where ω = (q, d, n) and Ω is the set of such triples implied by the open

submarkets. Thus, a seller with ms spends it all in the day market and then

goes to a submarket ω to maximize her expected surplus. As the choice ω is

independent of ms, at night all sellers obtain the same payoff, and all open

submarkets yield sellers the same payoff.

If we let Js = maxω∈Ω
n
α(n)
n

£−c(q) + βnφ+1d
¤o
, any active submarket ω

satisfies
α(n)

n

£−c(q) + βnφ+1d
¤
= Js. (46)

22Obviously this assumes a certain amount of commitment; this is the essence of posting
and competitive search equilibrium. While we could argue about whether this type of
commitment is reasonable, we emphasize that logically it does not make money inessential:
committing to the terms of decentralized trade is not the same as committing to repayment
of credit. We also emphasize that, instead of invoking market makers, it is equivalent for
sellers to post (commit to) the terms of trade and then have buyers search across sellers,
or for buyers to post (q, d) and then have sellers search. These different stories all generate
the same equilibrium conditions.
23To derive (45), begin with

W s(ms) = φms +max
ω∈Ω

βd

½
α(n)

n

£−c(q) + βnW
s
+1(d)

¤
+

·
1− α(n)

n

¸
βnW

s
+1(0)

¾
and use the linearity of W s

+1(m). The same method works below for W
b(ms).
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Given (q, d), (46) determines n. Therefore, a market maker designing a

submarket at the start of the day maximizes the buyers’ payoff,

W b(mb) = φ(mb+T )+max
ω∈R3+

©−φd+ βdα(n)[u(q)− βφ+1d]
ª
+βW b

+1(d) (47)

subject to (46). Notice the choice ω is independent ofmb, so all buyers obtain

the same payoff, and market makers do not have to cater their submarkets

to particular buyers.24

Using φ = γφ+1 and z = βnφ+1d this problem can be rewritten

max
ω∈R3+

½
α(n) [u(q)− z]−

µ
γ − β

β

¶
z

¾
(48)

s.t.
α(n)

n
[−c(q) + z] = Js. (49)

Effectively, market makers maximize buyers’ expected surplus minus the op-

portunity cost of carrying cash, subject to the constraint that ω has to attract

sellers.25 Substituting z from (49) into (48), the first-order conditions with

respect to q and n are
γ − β

βα(n)
+ 1 =

u0(q)
c0(q)

(50)

η(n) [u(q)− c(q)] =
n

α(n)
Js

½
1 + [1− η(n)]

µ
γ − β

α(n)β

¶¾
(51)

where η(n) = α0(n)n
α(n)

. One can show that generically the solution is unique —

i.e. there are a countable number of values for Js such that the solution is

not unique — and so any active submarket will have the same ω. Details are

in the Appendix (but the idea should be clear from Figure 6 below).

Eliminating Js using (49), we can write (51) as

η(n)c0(q) [u(q)− z] = [1− η(n)]u0(q) [−c(q) + z] . (52)

24It is because of quasi-linear preferences in our model that market makers do not have
to cater to particular buyers and sellers with different money holdings at the start of the
day. In general, with heterogenous agents, there may have to be many different types of
submarkets open in equlibrium (see e.g. Mortensen and Wright [2002]).
25The way we write the problem assumes n > 0, but of course if −c(q) + z < Js then

n = 0; we take care of this more carefully in the Appendix.
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Notice that (52) is actually the first order condition from the generalized

Nash problem where the seller’s bargaining power is η(n). Hence, in compet-

itive search equilibrium, the terms of trade endogenously satisfy the Hosios

condition. Real balances z satisfy a condition analogous to (23) where θ is

replaced by 1− η,

z = h(q) =
(1− η)u0(q)c(q) + ηc0(q)u(q)

(1− η)u0(q) + ηc0(q)
. (53)

Finally, n can either be set to N or endogenized. The free-entry condition is

analogous to (27) where θ is replaced by 1− η:

α(n)

n

ηc0(q)
(1− η)u0(q) + ηc0(q)

[u(q)− c(q)] = k, (54)

Before we define equilibrium, a detail needs mention. It may seem natural

to define equilibrium (when n is endogenous) as a triple (q, z, n) satisfying

(50), (52) and (53); in general, however, we cannot be sure that all solutions

to the first order conditions give the solution to (48) because the second order

conditions may not hold here. Hence, we define equilibrium here in terms of

the underlying maximization problem.

Definition 3 (i) With n = N , a competitive search equilibrium is a (q, z) ∈
R2+ satisfying (50) and (53). (ii) With free entry, a competitive search equi-

librium is a triple (q, z, n) ∈ R3+ that maximizes (48) subject to (49) with
Js = k.

Figure 6 illustrates the determination of competitive search equilibrium.

The curve Ñ(Js), which one can interpret as aggregate demand for sellers

by market makers, is the convex hull of the correspondence that gives the

value(s) of n emerging from the market maker’s problem taking Js as given.26

26The reason it is the convex hull of the correspondence is as follows. Supppose, for
example, there are eactly two solutions n1 and n2 emerging from the market maker’s
problem, with n1 < N < n2. Then equilibrium involves some submarkets with n = n1
and others with n = n2, such that the aggregate n equals N .
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Figure 6: Competitive search equilibrium. (a) No entry. (b) Free entry.

Properties of this correspondence are derived in the Appendix, including the

fact that it is strictly decreasing. Without entry, Js adjusts so that Ñ(Js) =

N ; with entry, we must have Js = k and the number of sellers adjusts.

Consider first the case n = N . In the Appendix we show equilibrium always

exists. Further, it is clear from Figure 6 that Js is uniquely determined, and

this implies any multiplicity is payoff irrelevant.

If n is endogenous, the following is necessary for n > 0.

Assumption 2”: k < u(q∗)− c(q∗).

In the Appendix we show that with free-entry there is a γ̄ > β such that equi-

librium exists iff γ ≤ γ̄, and if equilibrium exists it is generically unique. The

existence result is similar to what we found in the other models, but unique-

ness contrasts with the multiplicity found under both bargaining and price

taking. This reflects the fact that market makers internalize the strategic

complementarity between money demand and entry.

5.2 Welfare

If n = N then equilibrium is efficient iff γ = β, as in competitive equilib-

rium but not search equilibrium. This is perhaps not so surprising, since
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the holdup problem associated with bargaining is absent here, just like it is

absent in competitive equilibrium. A closer examination of (48) reveals that

competitive search equilibrium is equivalent to having buyers and sellers con-

tract (commit to the terms of trade) before matching, and this gets around

the holdup problem in the demand for money. As a consequence, if γ = β, so

that there is no opportunity cost of holding money, agents carry the efficient

amount. Hence competitive search equilibrium, like competitive equilibrium,

yields the first best when n is exogenous.

Now suppose n is endogenous. Comparing (50)-(54) with (15)-(16), we

see that equilibrium is efficient iff γ = β. Hence, the Friedman Rule implies

efficiency along both the intensive margin and the extensive margin. As we

noted above, competitive search generates the Hosios condition endogenously.

Another way to say it is that entry is efficient because the market maker

internalizes the effects of n on arrival rates. As shown in Figure 6, Js acts

as a price that clears the market for sellers. This extends results from the

non-monetary literature on competitive search equilibrium (in addition to the

papers cited earlier we mention Acemoglu and Shimer [1999] as an important

example). However, we emphasize that in a monetary economy competitive

search equilibrium is not efficient, in general, but only under the Friedman

Rule.

Proposition 3 (i) Assume n = N . Competitive search equilibrium exists.

The optimal policy is γ = β and it implies equilibrium is unique and efficient.

(ii) Assume free-entry. There is a γ̄ > β such that equilibrium exists iff

γ ≤ γ̄. For all γ ∈ (β, γ̄) equilibrium is generically unique. The optimal

policy is γ = β and it implies equilibrium is unique and efficient.
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6 Conclusion

We have considered three different pricing mechanisms for models of mone-

tary exchange: search equilibrium (bargaining), competitive equilibrium (price

taking), and competitive search equilibrium (price posting with directed

search). We did this in a model that shares features with the recent lit-

erature on the microfoundations of monetary economics, but also adds some

new features that make our comparisons across mechanisms more interesting,

including a particular kind of heterogeneity, a generalized matching technol-

ogy, and a free entry decision. These features allow for a natural discussion of

“search externalities” as well as both intensive and extensive margin effects.

We found that efficiency and the effects of policy can depend crucially on the

mechanism. We now recapitulate the main results.

The first table below shows the efficiency properties of the mechanisms

at the Friedman rule γ = β. Regarding the intensive margin, we have q =

q∗ in competitive equilibrium and competitive search equilibrium, but q <

q∗ in search equilibrium given θ < 1. When n is endogenous, we must

have θ < 1 or no sellers will enter the market; hence search equilibrium

with entry is necessarily inefficient. On the extensive margin, competitive

equilibrium as well as search equilibrium imply n is generically inefficient

because these mechanisms do not internalize the effects of entry. Efficient

n requires the Hosios condition, and this is an unlikely to hold for given

exogenous parameters. By contrast, in competitive search equilibrium the

relevant condition holds endogenously, so n as well as q are both efficient at

the Friedman rule.

SE CE CSE

Intensive margin: q
q < q∗ if θ < 1
q = q∗ if θ = 1

q = q∗ q = q∗

Extensive margin: n n ≷ n∗ n ≷ n∗ n = n∗
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The next table investigates the welfare effect of inflation near the Fried-

man Rule. With n exogenous, in all cases except search equilibrium inflation

has only a second-order effect. This is due the envelope theorem: with n fixed,

in competitive equilibrium or competitive search equilibriumW is maximized

and ∂W/∂γ = 0 at γ = β. In the case of search equilibrium with θ < 1,

the envelope theorem does not apply: W is maximized but ∂W/∂γ < 0 at

γ = β because we are at a corner solution — γ = β is the minimum possible

inflation rate. In this case γ has a first order effect on W. With n endoge-

nous, W is decreasing in γ in search equilibrium for any θ. By contrast, γ

has an ambiguous effect on W in competitive equilibrium; it is possible to

have ∂W/∂γ > 0. Finally, in competitive search equilibrium, the envelope

theorem applies to both q and n, and inflation has only a second order effect

even when n is endogenous.

SE CE CSE

n exogenous
∂W
∂γ

< 0 if θ < 1
∂W
∂γ
≈ 0 if θ = 1

∂W
∂γ
≈ 0 ∂W

∂γ
≈ 0

n endogenous ∂W
∂γ

< 0 ∂W
∂γ
≷ 0 ∂W

∂γ
≈ 0

We do not want to argue that any mechanism is “correct” or “most rel-

evant” here. Competitive search equilibrium may seem appealing since it is

efficient given we follow the optimal policy, although it is based on a notion

of commitment to the terms of trade that one may find objectionable. Search

equilibrium makes explicit holdup problems that may well be important in

the real world. Competitive search equilibrium has a big theoretical advan-

tage as a solution concept: it is much easier to work with. In any case, we

think the analysis has helped to clarify how equilibrium and the effects of

policy depend on different features of the environment and the different mech-

anisms. Future work could involve quantifying the welfare costs of inflation

under each of the mechanisms.
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Appendix

Here we verify some claims made in the text about competitive search equi-

librium. To begin, write the problem of a market maker as

V(Js, γ) = max
ω∈Γ(Js)

½
α(n) [u(q)− z]−

µ
γ − β

β

¶
z

¾
, (55)

where the constrain set is

Γ(Js) = {ω : α(n)
n

[−c(q) + z] = Js if − c(q) + z > Js; else n = 0}. (56)

To preserve continuity, any ω such that −c(q) + z = 0 and n ∈ [0,∞] is ele-
ment of Γ(0). Denote the set of optimal choices for n by N(Js). Equilibrium

with entry requires Js = k. Equilibrium without entry requires {N} ∈ Ñ(Js),

where Ñ(Js) is the convex hull of N(Js).

Part 1. N(Js) is upper hemi-continuous.

If we reformulate (55) as a choice of q, z and α = α(n), then if a solution

exists it needs to be in the compact set

{(q, z, α) : 0 ≤ α ≤ 1, 0 ≤ q ≤ q∗, c(q) ≤ z ≤ u(q)} . (57)

From Berge’s theorem, and the fact that α−1 exists and is continuous, N(Js)

is non-empty and upper hemi-continuous for all Js ≥ 0. This implies that
Ñ(Js) is non-empty and upper hemi-continuous. Furthermore, V(Js, γ) is
continuous in (Js, γ).

Part 2. Any selection from N(Js) is strictly decreasing in Js.

Assume the solution to (55) is interior. Substitute z = Jsn/α(n) + c(q)

from the constraint into (55) to rewrite the problem as max(n,q)Ψ (n, q; Js, γ)

where

Ψ (n, q; Js, γ) = α(n) [u(q)− c(q)]− nJs −
µ
γ − β

β

¶·
n

α(n)
Js + c(q)

¸
(58)
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Let J1s > J0s and (ni, qi) ∈ argmax(n,q)Ψ (n, q; J i
s, γ) for i = 1, 2. Then

Ψ (n0, q0;J
0
s , γ) ≥ Ψ (n1, q1;J

0
s , γ) and Ψ (n1, q1;J

1
s , γ) ≥ Ψ (n0, q0; J

1
s , γ),

which implies½·µ
γ − β

β

¶
n1

α(n1)
+ n1

¸
−
·µ

γ − β

β

¶
n0

α(n0)
+ n0

¸¾¡
J1s − J0s

¢ ≤ 0. (59)
Since n/α(n) is strictly increasing in n, this implies n1 ≤ n0. To show the

inequality is strict, note from (50) that if n1 = n0 then q1 = q0 which is

inconsistent with (51).

Part 3. Equilibrium with n = N .

From (58), if Js = 0 then n = ∞, i.e., {∞} = Ñ(0). Note that the

solution for q that maximizes −
³
γ−β
β

´
c(q) + [u(q)− c(q)] is interior from

the Inada conditions, which allows us to rule-out any solution (n, q) with

q = 0. From (51), if Js > u(q∗)− c(q∗) then there is no interior solution, i.e.,

{0} = Ñ(Js). Furthermore, any selection from Ñ(Js) is strictly decreasing

in Js assuming the solution is interior. Therefore, there exists a unique

Js ≤ [u(q∗)− c(q∗)] such that {N} ∈ Ñ(Js).

Part 4. Equilibrium with free entry.

For all γ such that V(k, γ) > 0 the solution to the market maker’s problem
is interior and equilibrium exists. The value function V(k, γ) is continuous
and decreasing in γ and, from (58) and Assumption 2”, V(k, β) > 0. Conse-
quently, there exists a threshold γ̄ > β such that for all γ ∈ (β, γ̄) equilibrium
exists. When equilibrium exists it is generically unique. Indeed, given that

α(n) is in the compact set [0, 1] and that it is strictly decreasing with Js,

there must be a countable number of values for Js such that Ñ(Js) is not a

singleton.
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