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Abstract

Fischer (1979) and Asako (1983) analyze the sign of the correlation between the growth rate of

money and the rate of capital accumulation on the transition path. Both plug a CRRA utility

(based on a Cobb-Douglas and a Leontief function, respectively) into Sidrauski�s model � yet

return contrasting results. The present analysis, by using a more general CES utility, presents both

of those settings and conclusions as limiting cases, and generates economic �gures more consistent

with reality (for instance, the interest-rate elasticity of the money demands derived from those

previous works is necessarily 1 and 0, respectively).

Rubens Penha Cysne is a Professor at the Graduate School of Economics of the Getulio Var-

gas Foundation (EPGE/FGV). David Turchick is a Researcher at EPGE/FGV. E-mail addresses:

rubens.cysne@fgv.br; davidturchick@fgvmail.br.



1 Introduction

In a classical paper in the literature, Fischer (1979) has derived two important conclusions:

(i) although in the Sidrauski model money is superneutral (the steady-state capital stock is invariant

to the growth rate of money supply), money is in general not superneutral on transition paths;

(ii) "for the constant relative risk aversion (CRRA) family of utility functions (except logarithmic),

the rate of capital accumulation is faster the higher the growth rate of money".

Fischer�s second conclusion has been particularly quoted in the literature because it generates

a positive relation between in�ation and the rate of capital accumulation, a somewhat unexpected

result. However, it is speci�c of a particular type of CRRA preferences in which the elasticity

of substitution between money and consumption equals one (a Cobb-Douglas case).1 Since such

preferences necessarily lead to money demands with a unitary interest-rate elasticity, and there is

no particular theoretical reason why this should be so, Fischer�s conclusion is certainly non-generic.

Asako (1983) addressed the same issue by considering another type of CRRA preferences. In-

stead of �xing the elasticity of substitution at 1, he �xed it at 0. In his analysis, real per capita

consumption c and real per capita monetary balances m are assumed to be perfect complements.

Asako�s main conclusion is that, in this case, Fischer�s second conclusion does not necessarily hold.

However, once again we are led to a non-generic conclusion, since in Asako�s framework the elasticity

of real balances with respect to the nominal interest rate is zero.

This paper extends those two contributions by assuming preferences de�ned so that the elasticity

of substitution between c and m can assume any other value in the positive real line, not only one

and zero. Instead of preferences based on a Cobb-Douglas or a Leontief utility function, preferences

are based here on a CES utility function, which admits those two as limiting cases. The generality

regarding the elasticity of substitution extends nicely to the elasticity of real balances with respect

1Throughout this work, by "elasticity" it is meant its absolute value.
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to the interest rate. Instead of necessarily being equal to 1 or 0, here it is allowed to take on any

positive real value.

Our main task is to study how the sign of the relationship between the growth rate of money

supply and the rate of capital accumulation depends upon the model�s parameters. Special emphasis

is put on the roles of the elasticity of substitution � (which, incidentally, turns out to be also the

interest-rate elasticity of money demand) and �, a parameter intimately related to the coe¢ cient

of relative risk aversion �R.

A �nal word must be given about our revisiting of Fischer�s and Asako�s results on how capital

accumulation may react to money supply. Despite the existing controversy on the role of money

supply vis-à-vis the use of short term interest rates in the conduct of monetary policy (see, e.g.,

Woodford 2008, McCallum 2008 and Nelson 2008), it is not our purpose to add to that discussion

here. We �nd it of interest on its own to note how Fischer�s and Asako�s apparently contrasting

results can be understood as two very particular cases of a more encompassing analysis which leads

to a whole new set of results. However, since the model we use allows for the endogenization of the

nominal interest rate, as well as the determination of its equilibrium path, those readers who want

to interpret our results from the interest-rate-policy perspective are o¤ered a path to proceed in

that direction as well.

2 Theoretical Setting

The basic setting here is a perfect-foresight version of Sidrauski (1967), as in Fischer (1979) and

Asako (1983). A representative agent maximizes
R +1
0 e��tu (c;m) dt with respect to c;m; k � 0

satisfying the budget constraint _k + nk + _m + (� + n)m = f (k) + x � c, where c is per capita

real consumption, m is per capita real cash balances, k is per capita capital stock, x is a lump-

sum transfer from the government, � is the (both expected and realized) in�ation rate, n is the
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population growth rate, m0; k0 > 0 are given, and the time subscripts for every variable are being

omitted. The utility function u is concave and such that u1; u2 > 0, u11; u22 < 0, J1 := (u2=u1)1 > 0

and J2 := (u2=u1)2 < 0.2 The production function f is such that f 0 > 0, f 00 < 0 and the Inada

conditions are satis�ed.

Assuming an interior solution, the Euler equations give

u1
�
f 0 (k) + �

�
= u2, (1)

u1 (� + � + n)� u2 = u11 _c+ u12 _m. (2)

As in Fischer (1979), government is assumed to issue money at rate �, implying

_m

m
= � � � � n, (3)

and run a balanced budget, so that x = _m + (� + n)m (= �m). In equilibrium, the budget

constraint becomes

_k + nk = f (k)� c. (4)

Equations (2), (3) and (4) form a system of three �rst-order di¤erential equations in (c;m; k).

Call (c�;m�; k�) its steady state. Equations (2) and (1) immediately yield k�, then (4) can be used

to give c�, while (2) and (3) give m�:

f 0 (k�) = � + n, (5)

c� = f (k�)� nk�, (6)

u2 (c
�;m�)

u1 (c�;m�)
= � + �. (7)

2 (u2=u1)i stands for the partial derivative of u2=u1 with respect to its ith argument.
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Equations (5) and (6) bring the important conclusion that k� and c� are superneutral (i.e., inde-

pendent from �).3 The amount �+ � in (7) should be recognized as the long-term nominal interest

rate r (accordingly, �+ ��� = �+n = f 0 (k�) is the long-term real interest rate). Since u1; u2 > 0,

it is positive, and since J2 < 0, it is negatively correlated to m� (money is a normal good).

Linearizing the 3�3 di¤erential system around (c�;m�; k�) yields (this is equation 9 in Fischer)

26666664
_c

_m

_k

37777775 =
26666664
mJ1

u12
u11

mJ2
u12
u11

�f 00 u1+mu12u11

�mJ1 �mJ2 mf 00

�1 0 �

37777775

������������
c�;m�;k�

26666664
c� c�

m�m�

k � k�

37777775 . (8)

Call D the preceding 3�3 matrix. D�s characteristic polynomial (see Appendix A) equals

�
�2 � ��

��
��+m

�
J1
u12
u11

� J2
��

+ f 00
�
u1 +mu12

u11
�+mJ2

u1
u11

�
, (9)

with everything evaluated at the steady state. Since detD < 0 and trD > 0 (see Fischer 1979,

p. 1436), D has one negative eigenvalue (of multiplicity 1) and two eigenvalues with positive real

parts (distinct or not).

Equation (7), if explicitly solvable for m� in terms of c� and r, can be used to eliminate all

the m� terms in D (both the ones explicit there and the ones appearing in the expressions for the

derivatives of u and the Ji�s), so that all of D�s dependence on � occurs exclusively because of the r

terms (since r := � + �, and c� and k� are superneutral). In order to focus attention on the e¤ects

of changing the growth rate of money supply, call D�s unique negative eigenvalue � (�).

As noted in Fischer (1979, p. 1438), if one is su¢ ciently close to the steady state, the ac-

cumulation of capital on the transition path is faster the larger is �� (�). But in order to know

3 In order to be assured that equations (5), (6) and (7) completely determine the steady state, the Inada conditions
and f 00 < 0 should be used for k�, while J2 < 0 for m�.
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whether "the larger is �� (�)" translates as "the faster the money supply increases" or "the slower

the money supply increases", the sign of �0 (�) must be studied. If �0 (�) < 0, the former is true,

and if �0 (�) > 0, the latter. We say that there is "transition-path superneutrality" when �0 (�) = 0.

For � 2 R++, de�ne g� : R+ ! �R by

g� (v) =

8>><>>:
v1���1
1�� if � 6= 1

log v if � = 1

. (10)

Using a utility speci�cation equivalent (that is, equal up to an increasing a¢ ne transformation) to

u (c;m) = g�

�
c� (
m)1��

�
, (11)

where � 2 (0; 1) and 
 2 R++, Fischer (1979) concluded that, unless � = 1 (in which case �0 (�) = 0),

one should expect to have �0 (�) < 0 (in words, positive correlation between the growth rate of

money and the rate of capital accumulation on the transition path).4 However, using a utility

function equivalent to5

u (c;m) = g� (min (c; 
m)) , (12)

with the same restrictions over parameters as above, Asako (1983) showed that in addition to

Fischer�s results for � � 1, one has �0 (�) > 0 when � > 1.6

On the one hand, taking a monotonic transformation of Leontief�s �xed-proportions function for

the utility function (as in Asako 1983) can be considered extreme because it generates a "money-

4This equivalence between (11) and expression 12 in Fischer (1979) can be established by taking � := �= (�+ �)
and � = 1 � (�+ �) (1�R), and noting that the restrictions imposed on �, � and R in Fischer (�; �;R 2 R++,
�+ � � 1 and R 6= 1) correspond to ours.

5Lucas focuses on the case of a homogeneous utility function (i.e., � 6= 1), but the present work does not depend
on that assumption.

6The correspondence between Asako�s terminology and ours can be established by maintaining the same meaning
for 
, taking � = 1� � (1�R), and noting that the restrictions imposed there (� > 0 and R > 1� 1=�) correspond
to the restrictions on our parameters.
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demand function" in which the interest-rate elasticity of money demand is zero: m� = (1=
) c� =

(1=
) c�r0. On the other, a monotonic transformation of a Cobb-Douglas function (as in Fischer

1979) is also quite restrictive, since (7) then gives m� = ((1� �) =�) c�r�1, a money demand with

elasticity necessarily equal to one. Hence we look for a utility function which still rationalizes

log-log money-demand functions, but with any given elasticity � > 0.

The matter is one of integrability, and is answered in Cysne and Turchick (2009) in the following

way. Consider Lucas�s (2000, section 3) utility function, equivalent to

u (c;m) = g�

�
c'
�m
c

��
, (13)

where ' : R+ ! R+ is such that '0 > 0 and '00 < 0.7 According to the math carried out in example

1 in Cysne and Turchick (2009), in order to generate a money demand

m� = Kc�r��, (14)

with K 2 R++ and � 2 R+ n f0; 1g, it is necessary and su¢ cient to plug into (13) a ' of the form

' (z) = B
�
1 +K

1
� z

��1
�

� �
��1
, B > 0. In particular, taking any pair (�; 
) 2 (0; 1)�R++ such that

((1� �) =�) 
 ��1� = K
1
� (there is a continuum of possibilities) and putting B = �

�
��1 conveniently

yields ' (z) =
�
�+ (1� �) (
z)

��1
�

� �
��1

and

u (c;m) = g�

��
�c

��1
� + (1� �) (
m)

��1
�

� �
��1
�
. (15)

Note that (15) is only de�ned for � 2 R+ n f0; 1g. This domain restriction must be kept in

mind regarding the results to be proved shortly. Because Fischer�s CES utility (11) and Asako�s

7As shown in Appendix B, this is indeed enough to assure us of the validity of the assumptions made on u.
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CES utility (12) are limiting cases of the class de�ned by (15) (when the elasticity of substitution

� approaches 1 and 0 respectively, as shown in Arrow et al. 1961, or Appendix C), but do not

properly belong to it, we shall refer to this class as the CES* class.

A function belonging to the CES* class di¤ers from Fischer�s and Asako�s also in another respect:

it may not be CRRA. We actually have the following

Lemma 1 Given the CES* utility function u in (15), the following are equivalent: (i) � = 1=�;

(ii) �R = 1=�; (iii) u is CRRA; and (iv) u is (strongly) separable.

Proof. As shown in Appendix D, u�s coe¢ cient of relative risk aversion is

�R (c;m) := �c
u11 (c;m)

u1 (c;m)
=
c
��1
� � +K

1
�m

��1
�

1
�

c
��1
� +K

1
�m

��1
�

, (16)

that is, a weighted average of � and 1=�. So (i) =) (ii) =) (iii) is clear. Also, since the weights

in the average �R are nonconstant with respect to (c;m) (because � 6= 1), (iii) =) (i). Finally, it

is clear from (15) that a CES*-class u can only be separable in the � 6= 1 case, more speci�cally

when the relevant exponent, (�= (�� 1)) (1� �), simpli�es to 1. This is equivalent to (i).

Before presenting our results, it should be noted that although r was de�ned only in the steady

state (r = � + �), we could also have chosen to take it endogenously, in accordance with the

equilibrium equation (7), as u2=u1. The same math leading to (14), and which can be checked in

Appendix D, would determine the path for r as a function of those for c and m:

r =
�
K
c

m

� 1
�
=

 
K

c� + e�(�)t (c0 � c�)
m� + e�(�)t (m0 �m�)

! 1
�

, (17)

already considering the convergent solution to the linear system (8).8

8Alternatively, (1) would give r = f 0 (k)+�, so that the approximate path for r near the (c�;m�; k�) steady state

could be written as r = f 0
�
k� + e�(�)t (k0 � k�)

�
+ �.
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Equation (17) gives the mirror-image of the monetary experience described by Fischer. It

regards the path followed by the nominal interest rate. To a certain extent it provides a link

between the experiences on which one used to focus in the 80�s (and which we analyze here), based

on an exogenous control of the money supply; and those most common in recent years, which

concentrate on the indirect control of interest rates by the monetary authorities.

3 Results

Our goal here is to �nd �0 (�), under the utility speci�cation (15). The characteristic polynomial

(9) leads to a characteristic equation 	(�; �) = 0, where (as shown in Appendix D)

	(�; �) :=

�
Kr + r� � K + ��r��1

�
�

��
�
�
�2 � ��

�
+ f 00 (k�) c�

�
+

f 00 (k�) c�
K (1� �) (1� ��)

�
� (18)

=
��
Kr + r� � �r��1�

� �
�2 � ��

�
+ f 00 (k�) c�K��

�
� �

K�
�
�2 � ��

�
+ f 00 (k�) c�

�
Kr + r� � �r��1��K (1 + �)�

�
, (19)

and r := � + �.

Unless the contrary is stated, we shall be looking at the �rst form above, (18). Since 	(0; �) =

f 00 (k�) c� (Kr + r�) < 0 and 	(�; �) = 0 has � (�) as its only negative root, we cannot have

	1 (� (�) ; �) > 0. Moreover, from � (�)�s multiplicity being 1, we are assured it isn�t an in�ection

point of the function 	(�; �), so that 	1 (� (�) ; �) < 0 indeed. Since �0 (�) = � (	2=	1) (� (�) ; �)

(Implicit Function Theorem), we then have sgn
�
�0 (�)

�
= sgn (	2 (� (�) ; �)).

Now, 	2 (�; �) =
�
K + �r��1 + � (1� �) r��2�

� �
�
�
�2 � ��

�
+ f 00 (k�) c�

�
. The sign of the

�rst factor is, in principle, undetermined (unless � > 1). As for �
�
� (�)2 � �� (�)

�
+ f 00 (k�) c�,

(18) implies (from 	(� (�) ; �) = 0 and � (�) < 0) that it shares its sign with � (1� �) (1� ��).
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Up to this point, our main conclusion is that

sgn
�
�0 (�)

�
= � sgn (� � 1) sgn

�
� � 1

�

�
sgn

�
K + �r��1 + � (1� �) r��2� (�)

�
, (20)

which immediately yields

Proposition 1 Suppose the elasticity of money demand is greater than one. Then

sgn
�
�0 (�)

�
= � sgn (� � 1) sgn

�
� � 1

�

�
. (21)

This proposition illustrates how easy it is, in contrast with Fischer (1979), to generate a negative

correlation between the growth rate of money supply and the rate of capital accumulation (�0 (�) >

0), within the CES* class. According to it, if � > 1, this will happen whenever � 2 (1=�; 1). This

case, however, should �nd a more limited use in real-world applications.

We now focus on the more realistic � < 1 case. The following developments shall make it possible

to replace the complicated condition in the last term in (20), depending on the unknown value � (�),

with a very determinate threshold for �, depending only on the parameters of the problem. Let �� be

the value � (�) would have to take on so that the �nal term in (20), K+�r��1+� (1� �) r��2� (�),

equaled 0 �that is,

�� := � K + �r��1

� (1� �) r��2 . (22)

ThereforeK+�r��1+� (1� �) r��2� (�) Q 0() � (�) Q ��() 	
�
��; �
�
Q 0, since 	1 (� (�) ; �) <

0 and � (�) is the only negative root of 	(�; �).

If all parameters besides � are �xed, and so is � (at some negative value), (19) presents 	 as a
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simple increasing a¢ ne function of �.9 Let s (�) represent the (possibly nonpositive) value � would

have to take on in order to make 	 vanish:

s (�) =
K�

�
�2 � ��

�
� f 00 (k�) c�

�
Kr + r� � �r��1��K (1 + �)�

�
(Kr + r� � �r��1�)

�
�2 � ��

�
+ f 00 (k�) c�K��

. (23)

Now 	
�
��; �
�
Q 0() � Q s

�
��
�
, and putting the pieces together gives

Proposition 2 Suppose the elasticity of real balances with respect to the nominal interest rate is

lower than one. Then

sgn
�
�0 (�)

�
= � sgn (� � 1) sgn

�
� � 1

�

�
sgn

�
� � s

�
��
��
, (24)

where the function s : R�� ! R is de�ned in (23), and �� in (22).

In the following, we denote the possibility that � (�) = �� (particular of the � < 1 case) or, equiv-

alently, � = s
�
��
�
, simply by P . The next proposition, our general transition-path superneutrality

result, is valid for any � 2 R+ n f0; 1g:

Proposition 3 Within the CES* class, transition-path superneutrality occurs if, and only if, either

(i) � = 1 (logarithmic utility); or (ii) � = 1=� (or either one of the other three equivalent conditions

stated in Lemma 1); or (iii) P .

Among these three cases, (i) is the only one mentioned in Fischer (1979). Cases (ii) and (iii)

show that under more general utilities there are other possibilities under which one may obtain

�0(�) = 0 as well.

If one wishes to compare our results with those of Asako and Fischer, the behavior of s
�
��
�

when � # 0 and when � " 1 must be studied. As shown in Appendix E, both limits are negative,

9Equations (5) and (6) show that the steady-state values k� and c� have no dependence on �.
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so � � s
�
��
�
> 0, and (24) becomes merely (21). We also have (21) when � # 1, from Proposition

1. If � = 1, our superneutrality result evidently concurs with theirs, so we proceed with the � 6= 1

case. Since we cannot have � = 1=� (� is taking part in a strictly monotonic convergent process),

�0 (�) cannot vanish, so that sgn is continuous at �0 (�). Therefore sgn
�
�0 (�)

�
= lim sgn

�
�0 (�)

�
=

� sgn (� � 1) lim sgn (� � 1=�), where the limit can be for either � ! 0+ or � ! 1. In the �rst

case, sgn
�
�0 (�)

�
= sgn (� � 1), and in the second, sgn

�
�0 (�)

�
= � (sgn (� � 1))2 = �1. Thus,

although our math was done for � =2 f0; 1g, our conclusions, if taken to the appropriate limits,

generalize the results obtained by Asako and Fischer for � = 0 and � = 1.

In order to visualize these results, we take the parameter values: � = 0:5, K = 0:05, � = 0:09,

n = 0:01, � = 0:03 and f (k) = 0:56k0:38.10 Using (5), (6) and (14), we get k� � 3:38, c� � 0:86 and

m� � 0:12, steady-state levels in conformity with those presented by developed economies. We now

let � free, and concentrate our analysis on the ��� plane.11 Figure 1 summarizes our conclusions.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

- +
-+

-

-

-
+

-

σ

The sign of λ'(θ)

α

P

σ=1/α+

-

Figure 1

10The �rst two values were calibrated for the U.S. by Lucas (2000, pp. 250 and 258). The elasticity of the
production function is consistent with estimates for the OECD of capital�s share of income in the traditional Solow
model (Mankiw et al. 1992, p. 414).
11From equations (5), (6) and (14), this approach leaves k� and c� �xed, but not m�.
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The signs on the � = 0 and the � = 1 vertical lines allude to Asako�s and Fischer�s results. The

little circles on the � = 1, the � = 1=� and the P curves remind us that over these sets of points

�0 (�) = 0, the transition-path superneutrality result. Fischer�s superneutrality result identi�es

the single point (1; 1), for which utility is logarithmic, separable, and the interest-rate elasticity

of money demand is equal to one. Concerning the relationship between capital accumulation and

money supply, regions and borders marked with a plus sign are all contrasting with Fischer�s results.

The ray f0g � (1;+1) corresponds to the counterexample provided by Asako to Fischer�s results.

Some general remarks may be useful in the understanding of the results displayed in Figure

1. The � = 1=� curve is really the u12 = 0 curve (see Appendix D), with the region above it

corresponding to u12 < 0 and the region below it to u12 > 0. The importance of u12 is captured

in Fischer�s (1979, p. 1439) conjecture that "the e¤ect on capital accumulation results from the

in�uence of holdings of real balances on the marginal utility of consumption", although in that

work (in which � = 1), as acknowledged by Fischer, it is not clear how this would be consistent

with his �nding that �0 (�) < 0 for both � < 1 and � > 1. Figure 1 gives the answer: following

along any vertical line � = ��, both curves � = 1 and � = 1=� do in fact correspond to a change in

sign for �0 (�). But if these curves happen to cut the vertical line in the exact same place (which

is what happens in the �� = 1 case analyzed by Fischer), then the changes in sign will end up

neutralizing each another, looking like if none ever took place. Through the dependence of capital

accumulation on the in�uence of money holdings on the marginal utility of consumption one also

understands why, in particular, �0 (�) = 0 along the � = 1=� curve or when � = 1: Indeed, in both

of these cases u12 = 0:

Tempting explanations for the signs which emerge in Figure 1 may be misleading. Take for

instance the region � < 1 and below the � = 1=� curve. Suppose one wishes to explain the positive

correlation between the rate of capital accumulation and money growth in the area above curve

12



P by arguing that increasing � would lead to higher nominal interest rates, lower real balances

and (because u12 > 0 in this region), a lower marginal utility of consumption. That this argument

cannot be correct is shown by the fact that it should also hold below curve P , which it does not.
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Figure 2

Figure 2 shows, through (possibly unrealistic) changes exclusively in the elasticity of the pro-

duction function (other parameter values kept as before), the other possible qualitative behaviors

of the sign of �0 (�). It focuses on � 2 (0; 1), since the � > 1 case as depicted in Figure 1 remains

unchanged (Proposition 1), the same happening with the � = 0 and the � = 1 cases. The graph

at the left illustrates that, for very large elasticities (0:98 and higher), possibility P may not arise

at all, since s
�
��
�
< 0;8� 2 (0; 1). Concerning the other two graphs, it should be noted that there

is a region (to which a minus sign should be assigned) that cannot be depicted: a very thin strip

for � very close to 0, and � lower than 1 but greater than s
�
��
�
.12

12The region exists because lim�!0+ s
�
��
�
is negative (see Appendix E).
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4 Conclusion

This paper has extended Fischer�s (1979) and Asako�s (1983) results on the sign of the correlation

between the growth rate of money and the rate of capital accumulation on the transition path

by dealing with a more general class of consumer preferences under which the elasticity of real

balances with respect to the nominal interest rate, rather than necessarily being equal to one or

zero, can assume any other positive real value. We have characterized the sign of that correlation

as a function of the parameters of the problem, showing that it can easily be negative (the plus

signs in Figure 1), contrary to Fischer�s prediction. We have also shown how Fischer�s and Asako�s

contrasting results can both be understood as particular cases of this more encompassing analysis.
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Appendix A

We wish to show that D�s characteristic polynomial is (9) indeed. One has

��3 + (trD)�2 � (D11D22 �D12D21 +D11D33 �D13D31 +D22D33 �D23D32)�+ detD

= ��3 + (trD)�2 � (D11D33 �D13D31 +D22D33)�+ detD,

and

trD = � + �,

D11D33 �D13D31 +D22D33 = D33 (D11 +D22)�D13D31 = �� � f 00
u1 +mu12

u11
,

detD = �mf 00J2
�
m
u12
u11

� u1 +mu12
u11

�
= mf 00J2

u1
u11

,

where � := m (J1u12=u11 � J2), and the determinant was calculated by application of Laplace�s

rule to D�s third row. So the characteristic polynomial is

��3 + (� + �)�2 �
�
�� � f 00u1 +mu12

u11

�
�+mf 00J2

u1
u11

,

and it is easy to compare coe¢ cient by coe¢ cient to see that this expression coincides with (9).

Appendix B

Here we check that the assumptions made on u at the beginning of Section 2 are satis�ed by the

functional form (13). Let v : R2++ ! R++ be given by v (c;m) = c' (m=c), so that u = g� � v.

Function g� is obviously increasing and concave: for any x 2 R++, g0� (x) = x�� > 0 and

g00� (x) = ��x���1 < 0. As for v, let (c;m) 2 R2++ and z := m=c. Then v1 (c;m) = ' (z) �

z'0 (z), which is positive (the strict concavity and nonnegativity of ' give '0(z)(0 � z) > '(0) �
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'(z) � �' (z)) and v2 (c;m) = '0 (z) > 0. Using that z1 = �z=c, we also have v11 (c;m) =

('0 (z)� '0 (z)� z'00 (z)) z1 =
�
z2=c

�
'00 (z) < 0, v22 (c;m) = (1=c)'00 (z) < 0, v12 (c;m) = v21 (c;m) =

(�z=c)'00 (z) and
�
v11v22 � v212

�
(c;m) = 0, so that v is also concave. Therefore, u is concave.

Although many of the following calculations wouldn�t have to be carried through since it is only

the sign of these expressions that matters for now, we do it since these expressions shall be needed

in Appendix D. All the derivatives of v below are evaluated at (c;m), and all the derivatives of g�

at v (c;m):

u1 = g0�v1 > 0

= (c' (z))��
�
' (z)� z'0 (z)

�
,

u2 = g0�v2 > 0

= (c' (z))�� '0 (z) ,

u11 = g00�v
2
1 + g

0
�v11 < 0

= (c' (z))���1
�
��
�
' (z)� z'0 (z)

�2
+ z2' (z)'00 (z)

�
,

u22 = g00�v
2
2 + g

0
�v22 < 0

= (c' (z))���1
�
��'0 (z)2 + ' (z)'00 (z)

�
,

u12 = g00�v1v2 + g
0
�v12 = (c' (z))

���1 ���'0 (z) �' (z)� z'0 (z)�� z' (z)'00 (z)� .
Also, for i 2 f1; 2g,

Ji =

�
u2
u1

�
i

=
d

dz

�
'0 (z)

' (z)� z'0 (z)

�
zi,
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so that

J1 =
'00 (z) (' (z)� z'0 (z))� '0 (z) (�z'00 (z))

(' (z)� z'0 (z))2
�
�z
c

�
= �z

c

' (z)'00 (z)

(' (z)� z'0 (z))2
> 0,

J2 =
1

c

' (z)'00 (z)

(' (z)� z'0 (z))2
= �J1

z
< 0.

Appendix C

Here we con�rm that the instantaneous utility functions taken in Fischer (1979) and Asako

(1983) are limiting cases of ours. More speci�cally, we wish to check that the function v : R2++ !

R++ given by v (c;m) =
�
�c

��1
� + (1� �) (
m)

��1
�

� �
��1
is such that lim�!1 v (c;m) = c� (
m)1��

and lim�!0+ v (c;m) = min (c; 
m). In fact,

lim
�!1

v (c;m) = exp lim
�!1

log
�
�c

��1
� + (1� �) (
m)

��1
�

�
��1
�

= exp lim
�!1

�
�c

��1
� log c+ (1� �) (
m)

��1
� log (
m)

�
d
d�

�
��1
�

��
�c

��1
� + (1� �) (
m)

��1
�

�
d
d�

�
��1
�

�
= exp (� log c+ (1� �) log (
m)) = c� (
m)1�� ,

where the second equality used l�Hôpital�s rule, and

lim
�!0+

v (c;m) = lim
n!+1

�
�c�n + (1� �) (
m)�n

�� 1
n

= lim
n!+1

1�
�
�
1
c

�n
+ (1� �)

�
1

m

�n� 1
n

=
1

max
�
1
c ;

1

m

� = min (c; 
m) ,

where the third equality used the fact that, if 0 � a � b and xn := (�an + (1� �) bn)
1
n , then

limn!+1 xn = b, since xn � (�bn + (1� �) bn)
1
n = b and limn!+1 xn � limn!+1 ((1� �) bn)

1
n =

18



b.

Appendix D

Here we work out the derivatives of u given by (15) that are necessary for the derivation of r in (17),

the coe¢ cient of relative risk aversion �R in (16), and 	 in (18) and (19). Given the developments

made in Appendix B, we can forget about u and focus on ' only. As mentioned in Section 2, we

should use ' (z) =
�
�+ (1� �) (
z)

��1
�

� �
��1
. Therefore '0 (z) =

�
�+ (1� �) (
z)

��1
�

� 1
��1

(1� �) 
 ��1� z� 1
� =

(1� �) 
 ��1� (' (z) =z)
1
� , ' (z) � z'0 (z) = ' (z)

1
��

' (z)
��1
� � (1� �) 
 ��1� z1� 1

�

�
= �' (z)

1
� , so that '00 (z) = (1=�) (1� �) 
 ��1� (' (z) =z)

1
�
�1

�
� (' (z)� z'0 (z)) =z2

�
= � (1=�) � (1� �) 
 ��1� z�1� 1

�' (z)
2��
� .

Using the expressions found in the previous appendix,

u1 = � (c' (z))�� ' (z)
1
� ,

u2 = (1� �) 

��1
� (c' (z))�� z�

1
�' (z)

1
�

u11 = (c' (z))���1
�
���2' (z)

2
� � � (1� �)

�


��1
� z1�

1
�' (z)

2
�

�
= � �

�
(c' (z))���1 ' (z)

2
�

�
���+ (1� �) (
z)

��1
�

�
,

u12 = (c' (z))���1
�
��� (1� �) 


��1
� z�

1
�' (z)

2
� +

� (1� �)
�



��1
� z�

1
�' (z)

2
�

�
=

� (1� �) (1� ��) 
 ��1�
�

(c' (z))���1 z�
1
�' (z)

2
� ,

J1 = �z
c

' (z)'00 (z)

(' (z)� z'0 (z))2
=
1

c

�(1��)
� 


��1
� z�

1
�' (z)

2
�

�2' (z)
2
�

=
(1� �) 
 ��1�

��

z�
1
�

c
,

J2 = �J1
z
= �(1� �) 


��1
�

��

z�1�
1
�

c
.
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Therefore

u2
u1

=
(1� �) 
 ��1� z� 1

�

�
,

u1
u11

= �� c' (z)

' (z)
1
�

�
���+ (1� �) 
 ��1� z ��1�

� = ��c �+ (1� �) (
z)
��1
�

���+ (1� �) (
z)
��1
�

,

so that (and now using K
1
� = ((1� �) =�) 
 ��1� )

r : =
u2
u1
= K

1
� z�

1
� =

�
K
c

m

� 1
�
,

�R : = �cu11
u1

=
1

�

���+ (1� �) (
z)
��1
�

�+ (1� �) (
z)
��1
�

=
c
��1
� � +K

1
�m

��1
�

1
�

c
��1
� +K

1
�m

��1
�

.

Also, at the steady state (in order to �nd the characteristic polynomial), we have (where c and

m are short for c� and m�)

u1
u11

= ��c 1 +K
1
� z

��1
�

�� +K
1
� z

��1
�

= ��c 1 + rz
�� + rz

= ��c K + r��1

K + ��r��1
,

u12
u11

= �(1� �) (1� ��) 

��1
� z�

1
�

���+ (1� �) (
z)
��1
�

= �K
1
� (1� ��) z� 1

�

�� +K
1
� z

��1
�

= �(1� ��) r
�� + rz

= � (1� ��) r
�

K + ��r��1
,

u1 +mu12
u11

= �
�c
�
K + r��1

�
+ (1� ��)mr�

K + ��r��1
= �c

�
�
K + r��1

�
+K (1� ��)

K + ��r��1

= �c(1 + �� ��)K + �r��1

K + ��r��1
,

m

�
J1
u12
u11

� J2
�

= mJ1

�
u12
u11

+
1

z

�
=
(1� �) 
 ��1�

��
z1�

1
�

�
� (1� ��) r

�

K + ��r��1
+
r�

K

�
=

K
1
� z�

1
�

�
z
r�

K

�
1� K (1� ��)

K + ��r��1

�
=
r

�

K + ��r��1 �K +K��

K + ��r��1
=
� (Kr + r�)

K + ��r��1
,

mJ2
u1
u11

= �m(1� �) 

��1
�

��

z�1�
1
�

c

�
��c K + r��1

K + ��r��1

�
= K

1
� z�

1
� c

K + r��1

K + ��r��1
= c

Kr + r�

K + ��r��1
.
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Plugging these expressions into (9) yields

�
�2 � ��

��
��+ � (Kr + r�)

K + ��r��1

�
+ f 00

�
�c(1 + �� ��)K + �r��1

K + ��r��1
�+ c

Kr + r�

K + ��r��1

�
= �

�
�2 � ��

��
��
�
+

Kr + r�

K + ��r��1

�
+ f 00c

Kr + r�

K + ��r��1
� f 00c(1 + �� ��)K + �r��1

K + ��r��1
�

=
�
�
�
�2 � ��

�
+ f 00c

��
��
�
+

Kr + r�

K + ��r��1

�
+ f 00c

�

�
� f 00c(1 + �� ��)K + �r��1

K + ��r��1
�

=

�
Kr + r�

K + ��r��1
� �
�

��
�
�
�2 � ��

�
+ f 00c

�
+ f 00c

1
�

�
K + ��r��1

�
� (1 + �� ��)K � �r��1

K + ��r��1
�

=

�
Kr + r�

K + ��r��1
� �
�

��
�
�
�2 � ��

�
+ f 00c

�
+ f 00c

K

�

(1� �) (1� ��)
K + ��r��1

� =
	(�; �)

K + ��r��1
,

if 	 is de�ned as in (18). From this �rst form of 	, it is a trivial task to obtain the second, (19):

�
Kr + r� � K + ��r��1

�
�

��
�
�
�2 � ��

�
+ f 00c

�
+ f 00c

K (1� �) (1� ��)
�

�

=

�
Kr + r� � �r��1�� K

�
�

�
�
�
�2 � ��

�
+ f 00c

�
Kr + r� � �r��1�� K

�
�

�
+ f 00c

K
�
1� � � �� + ��2

�
�

�

=
�
Kr + r� � �r��1�

� �
�2 � ��

�
� �K�

�
�2 � ��

�
+ f 00c

�
Kr + r� � �r��1�

�
+ f 00cK (�1� �+ ��)�

=
��
Kr + r� � �r��1�

� �
�2 � ��

�
+ f 00cK��

�
� �K�

�
�2 � ��

�
+ f 00c

�
Kr + r� � �r��1��K (1 + �)�

�
.

Appendix E

Here we are concerned with the side limits of s
�
��
�
when � # 0 and when � " 1. From (22), we

immediately get lim�!0+ �� = �1 and lim�!1� �� = �1. It follows that

lim
Kr + r� � �r��1���K (1 + �) ���

Kr + r� � �r��1��
� �
��
2 � ���

�
+ f 00 (k�) c�K���

= lim
Kr + r� � �r��1���

Kr + r� � �r��1��
� �
��
2 � ���

�
+ f 00 (k�) c�K���

�

lim
K (1 + �)�

Kr + r� � �r��1��
� �
��� �

�
+ f 00 (k�) c�K�

= 0� 0 = 0,

21



no matter which side limit is being considered. Additionally, from (5) and (6) we know that neither

k� nor c� depend on �. We thus have, from (23) and (22),

lim s
�
��
�
= lim

K��
�
��
2 � ���

�
�
Kr + r� � �r��1��

� �
��
2 � ���

�
+ f 00 (k�) c�K���

= lim
K��

�
��� �

��
Kr + r� � �r��1��

� �
��� �

�
+ f 00 (k�) c�K�

= K lim
��

Kr + r� � �r��1��

= �K lim
K+�r��1

�(1��)r��2

Kr + r� + Kr+�r�

1��
= �K lim K + �r��1

�r��1 ((2� �)K + r��1)
,

so that

lim
�!0+

s
�
��
�
= �K lim

�!0+

K

�r�1 (2K + r�1)
= �1,

lim
�!1�

s
�
��
�
= �K.
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