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MONGE–AMPÈRE MEASURES FOR TORIC METRICS ON ABELIAN

VARIETIES

WALTER GUBLER AND STEFAN STADLÖDER

Abstract. Toric metrics on a line bundle of an abelian variety A are the invariant metrics
under the natural torus action coming from Raynaud’s uniformization theory. We compute
here the associated Monge–Ampère measures for the restriction to any closed subvariety
of A. This generalizes the computation of canonical measures done by the first author
from canonical metrics to toric metrics and from discrete valuations to arbitrary non-
archimedean fields.
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1. Introduction

Abelian varieties are projective geometrically integral group varieties over a field. They
play a distinguished role in arithmetic geometry. Let X be a closed subvariety of an abelian
variety A over a number field K. The group structure of A makes it easier to understand
the structure of the K-rational points of X. For example, Faltings [Fal91] showed the
Bombieri–Lang conjecture for such X. No finiteness statements are sensible for K-rational
points of X, instead we are looking for density statements for special points. The Manin–
Mumford conjecture, proven by Raynaud [Ray83], states that the set of torsion points of
X is dense if and only if X is the translate of an abelian subvariety by a torsion point.

The height of a K-rational point of a projective variety measures the arithmetic com-
plexity of its coordinates. In the case of an abelian variety A, there are canonical heights
called Néron–Tate heights. A natural generalization of the Manin–Mumford conjecture is
the Bogomolov conjecture which claims that if the closed subvariety X of A has dense
small points, then X is again a torsion translate of an abelian subvariety. This was shown
by Ullmo [Ull98] for a curve inside its Jacobian and by Zhang [Zha98] in full generality.
All the above statements have analogues in the case of a function field K where one has
to take into account that constant abelian varieties are also a source for points of height
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0. The function field variant of the Bogomolov conjecture is called the geometric Bogo-
molov conjecture which was harder to prove than the number field case. It was shown by
Gao and Habegger [GH19] in the case of the function field of a curve and generalized by
Cantat–Gao–Habegger–Xie [CGHX21] to arbitrary function fields, but both assuming that
K has characteristic 0. In arbitrary characteristics, the geometric Bogomolov conjecture was
shown by Xie and Yuan [XY21] using reduction steps by Yamaki and the Manin–Mumford
conjecture over function fields by Hrushowski [Hru01] and Pink–Roessler [PR04].

Ullmo’s and Zhang’s argument relies on an equidistribution theorem for small points
due originally to Szpiro–Ullmo–Zhang [SUZ97], later generalized by Yuan [Yua08]. This
equidistribution strategy also works to some extent in the case of function fields as shown
for totally degenerate abelian varieties in [Gub07a]. In constrast to the number field case,
the equidistribution has then to be with respect to a non-archimedean place and takes place
on the associated Berkovich space. The argument relies on a precise description of canonical
measures of X, see below for more details. This description holds for all abelian varieties
A [Gub10] and was the key in Yamaki’s argument showing that it is enough to prove the
geometric Bogomolov conjecture for abelian varieties A with good reduction at all places
of K. In the present paper, we will generalize the description of canonical measures of X.

For the remainder of the introduction, we consider an algebraically closed fieldK endowed
with a complete non-archimedean absolute value and non-trivial value group Γ in R. For a
projective variety X, we will perform analytic considerations on the associated Berkovich
space Xan. The notion of continuous semipositive metrics of a line bundle L over X goes
back to Zhang and is recalled in §2.5. For such a metric ‖ ‖, Chambert–Loir [CL06] has

introduced non-archimedean Monge–Ampère measures c1(L, ‖ ‖)∧ dim(X) which are positive
Radon measures on Xan, see [CL06], [Gub07a] and §2.6.

Assume now that X is a closed subvariety of an abelian variety A over K and let d :=
dim(X). For a rigidified ample line bundle L of A, there is a canonical metric ‖ ‖L of L.
Since ‖ ‖L is a continuous semipositive metric, we get the canonical measure

µL := c1(L|X , ‖ ‖L)
∧d

on the Berkovich analytification Xan of X. If X,A and L are defined over a discretely
valued field, then it was shown in [Gub10] that the support of µL has a piecewise linear
structure with a polytopal decomposition D such that

µL =
∑

σ∈D

rσµσ

where rσ ∈ R≥0 and µσ is a Lebesgue measure on the polytope σ. Note that lower di-
mensional polytopes are also allowed. The goal of this paper is to generalize these results,
removing the discreteness assumption about the field of definition and replacing canonical
metrics by a more general class called toric metrics. As we will see, toric metrics on L are
the variations of canonical metrics by combinatorial means.

We continue with the above setup confirming that K is any algebraically closed non-
archimedean field with non-trivial absolute value. The Raynaud extension for the abelian
variety A is a canonical exact sequence

0 −→ T an −→ Ean q
−→ Ban −→ 0

of abelian analytic groups over K which are all algebraic with T a torus of rank n and B
an abelian variety of good reduction. Raynaud’s uniformization theory gives a canonical
description Aan = Ean/Λ where E is a group scheme of finite type over K and Λ is a
discrete subgroup of Ean contained in E(K). Note that the quotient map p : Ean → Aan

is in general not algebraic. Moreover, there is a canonical tropicalization trop : Ean → NR

mapping Λ homeomorphically onto a lattice of NR ≃ Rn where N is the cocharacter lattice
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of T . It induces a canonical tropicalization

trop: Aan → NR/ trop(Λ).

We say that a continuous metric ‖ ‖ of the rigidified line bundle L of A is toric if there is
a function φ : NR → R such that ‖ ‖ = e−φ◦trop‖ ‖L.

There is a rigidified line bundle H on B such that we have an identification p∗(Lan) =
q∗(Han) as Λ-linearized cubical line bundles on Ean. The metric q∗(‖ ‖H) does not descend
to Lan and the obstruction leads to a cocycle (zλ)λ∈trop(Λ) encoding all tropical information
about the line bundle L, see Section 4 for details.

Theorem 1.1. There is a bijective correspondence between continuous toric metrics ‖ ‖ of
L and continuous functions f : NR → R satisfying the cocycle rule

f(ω + λ) = f(ω) + zλ(ω) (ω ∈ NR , λ ∈ trop(Λ)).

The correspondence is determined by

f ◦ trop = − log(p∗‖ ‖/q∗‖ ‖H).

If f is convex, then ‖ ‖ is semipositive. If L is ample, the converse also holds.

This will be shown in Proposition 4.9 and Theorem 4.10. To deduce semipositivity
from convexity, we will use an approximation result by piecewise linear convex functions
satisfying the cocycle rule which was done in [BGJK21a]. The converse uses arguments
from the theory of weakly smooth forms on Berkovich analytic spaces given in [GJR21] and
recalled in Appendix A.

Recall that X is a closed d-dimensional subvariety of the abelian variety A. In Section
7, we show that for any ample line bundle L on A, the support SX of the canonical mea-
sure c1(L|X , ‖ ‖L)

∧d has a canonical piecewise (Q,Γ)-linear structure not depending on the
choice of L. In fact, we will show that it is a (Q,Γ)-skeleton in the sense of Ducros [Duc12].

Theorem 1.2. The canonical tropicalization map trop: Aan → NR/ trop(Λ) restricts to a
piecewise (Q,Γ)-linear map SX → trop(Xan) which is surjective and finite-to-one.

This result was shown in [Gub07a] in the special case of X,L,A being defined over a
discretely valued field and was crucial in Yamaki’s reduction step mentioned above. We
prove at the end of the paper that this holds for any algebraically closed non-archimedean
field K.

The main result of this paper describes the non-archimedean Monge–Ampère measure
of a continuous toric metric in terms of the classical real Monge–Ampère measure MA(f)
associated to a convex function on Rn, see §2.3.

Theorem 1.3. There is a polytopal (Q,Γ)-decomposition Σ of the canonical subset SX such
that for any ample line bundle L on A with continuous toric metric ‖ ‖ corresponding to
the convex function f as in Theorem 1.1, there is a multiplicity mσ ∈ Q≥0 associated to
σ ∈ Σ such that

c1(L|X , ‖ ‖)∧d(Ω) = mσ ·MA(f)(Ω)

for any Lebesgue measurable subset Ω of relint(σ).

In the special case of the canonical metric, we can say more:

Corollary 1.4. The above polytopal decomposition Σ has the property that for any ample
line bundle L of A, there is rσ ∈ R≥0 associated to σ ∈ Σ such that

c1(L|X , ‖ ‖L)
∧d =

∑

σ∈Σ

rσµσ

where µσ is a fixed choice of a Lebesgue measure on the polytope σ ∈ Σ.
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We begin proving Theorem 1.3 by showing a variant (given in Theorem 6.2) for the pull-
back to a strictly polystable alteration of X where the support is contained in the union of
the canonical faces of the skeleton which are non-degenerate with respect to the alteration.
The existence of such a strictly polystable alteration follows from a result of Adiprasito,
Liu, Pak and Temkin [ALPT19]. In Theorem 7.7, we will see that the induced morphism
from the union of these non-degenerate faces to SX is a piecewise (Q,Γ)-linear surjective
map which is finite-to-one. Then Theorem 1.3 follows from the projection formula (6.4.1).

The structure of the paper is as follows. Section 2 fixes the notation and gives the pre-
liminaries on convex geometry, non-archimedean geometry, formal models and semipositive
metrics, and real and non-archimedean Monge–Ampère measures. In Section 3, we deal
with piecewise linear convex approximations of convex functions in a purely combinatorial
setting. The main result is Proposition 3.7 where we show that such an approximation
is possible by preserving a cocycle rule. The approximations can be chosen such that the
underlying domains of linearity are transversal to a given fixed set of polytopes. This will
be crucial later. In Section 4, we first recall Raynaud’s uniformization theory. Then we
introduce toric metrics and prove Theorem 1.1. Finally, we recap the theory of formal
Mumford models of an abelian variety A over K. Mumford models have the advantage
that they can be described in combinatorial terms on trop(Aan) = NR/ trop(Λ).

In Section 5, we first recall strictly polystable alterations for a closed subvariety X of
A, the piecewise linear structure of the skeleton S(X′) of the underlying strictly polystable
formal scheme X′ over K◦ and that any polytopal decomposition of S(X′) leads to a formal
model X′′ of the generic fiber of X′ which dominates X′. Then we relate this construction
to the formal Mumford models of A and give a combinatorial formula for the degree of an
irreducible component of the special fiber of X′′ under a transversality assumption. All the
material from Section 5 is a direct generalization of [Gub10, §5] from the strictly semistable
to the strictly polystable case. In Section 6, we prove the variant of Theorem 1.3 on the
strictly polystable alteration. We use the piecewise linear approximation from Proposition
3.7 to reduce to the piecewise linear case and then the claim is a direct consequence of the
combinatorial degree formula from Section 5. Finally, in Section 7, we prove the claims
about the canonical subset.

Acknowledgements. We thank Antoine Ducros for a fruitful discussion about skeletons
of Berkovich spaces and we are grateful to Felix Herrmann for proofreading the text lin-
guistically. We thank José Burgos, Roberto Gualdi, Klaus Künnemann and Joe Rabinoff
for comments to an earlier version of this paper.

2. Notation and preliminaries

2.1. Basic conventions. The set of natural numbers N includes 0. A lattice in a finite
dimensional real vector space is a discrete subgroup which generates the vector space. For
an abelian group M and a subgroup G of R, we set MG := M ⊗Z G. By a compact space,
we mean a quasi-compact Hausdorff space.

A ring is always assumed to be commutative and with 1. The group of invertible elements
in a ring A is denoted by A×. A variety over a field F is an integral scheme which is of
finite type and separated over SpecF .

By Bourbaki’s approach to measure theory, a positive Radon measure on a locally com-
pact Hausdorff space X can be seen as a positive linear functional on the space of compactly
supported continuous real functions Cc(X) of X. By the Riesz represention theorem, such
a function is given by f →

∫

X
f(x) dµ(x) for a unique regular Borel measure µ on X. A

sequence of Radon measures µk is called weakly convergent to a Radon measure µ on X if

lim
k

∫

X

f(x) dµk(x) =

∫

X

f(x) dµ(x)
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for all f ∈ Cc(X).

2.2. Convex geometry. Let N be a free abelian group of rank n and M = HomZ(N,Z)
its dual. A function f : NR → R is called affine if f = u + c for some u ∈ MR and c ∈ R.
Then u is called the slope of f . For a subring A of R and a A-submodule Γ of R, we say
that f is (A,Γ)-affine if u ∈MA and c ∈ Γ.

A finite intersection of half-spaces {f ≤ 0} for affine functions f on NR is called a
polyhedron in NR. It is called a (A,Γ)-polyhedron if the affine functions f can be chosen
(A,Γ)-affine. A polytope is a bounded polyhedron. The relative interior of a polyhedron
σ is denoted by relint(σ). For a polyhedron σ, a face is the intersection of σ with the
boundary of a half-space containing σ. By convention, we allow σ and ∅ also as faces of
σ. The notation τ ≺ σ means that τ is a face of σ. A polyhedral complex in NR is a
locally finite set C of polyhedra in NR such that for σ ∈ C , the faces of σ are in C and for
σ, ρ ∈ C we have that σ ∩ ρ is a common face of σ and ρ. The support of C is defined by
|C | :=

⋃

σ∈C
σ. For k ∈ N, we set Ck := {σ ∈ C | dim(σ) = k}. A function f : C → R on

a closed subset C of NR is called piecewise linear if there is a polyhedral complex C with
support C such that f |σ is affine for all σ ∈ C . If we can choose C as a (A,Γ)-polyhedral
complex (i.e. a polyhedral complex consisting of (A,Γ)-polyhedra) such that all f |σ are
(A,Γ)-affine functions, then we call f piecewise (A,Γ)-linear.

More generally, a piecewise (A,Γ)-linear space is a locally compact Hausdorff space X
with a compact atlas (Xi)i∈I by charts to (A,Γ)-polytopes in Rni such that the transition
functions are (piecewise) (A,Γ)-affine and such that every point has a neighbourhood in X
given by a finite union of Xi’s. All the above notions are transferred to X by using the
polytopal charts. We refer to [Duc12, §0] for more details.

2.3. Real Monge–Ampère measures. Let N be a free abelian group of rank n with
dual M and let f : Ω → R be a convex function on an open convex subset Ω of NR. Then
a classical construction from real analysis gives the Monge–Ampère measure MA(f) which
is a positive Radon measure on Ω. Let λN be the Haar measure on NR normalized by
requiring that the covolume of the lattice N is one. For f ∈ C2(Ω), we have

MA(f) = n! det
(

(∂ijf)1≤i,j≤n
)

λN , ∂ijf =
∂2f

∂ui∂uj
,

where u1, . . . , un is a basis for M viewed as coordinates on NR. For any convex function f ,
the construction of the Monge–Ampère measure MA(f) is local with respect to the open
convex set Ω in NR and continuous with respect to uniform convergence of convex functions
and weak convergence of Radon measures.

What we need is that for a conic piecewise linear function f on NR centered at x ∈ NR

(i.e. f(r(ω − x) + x) − f(x) = r(f(ω) − f(x)) for all ω ∈ NR and r > 0), the measure
MA(f) is the Dirac measure at x with total mass equal to the volume of the dual polytope
{x}f with respect to the Haar measure λM on MR normalized such that the lattice M has
covolume 1. Here, the dual polytope of f is defined by {x}f = {u ∈ MR | f(ω) − f(x) ≥
〈ω − x, u〉 ∀ω ∈ NR}. We refer to [BPS14, §2.7] for details (replacing convex functions by
concave functions).

2.4. Non-archimedean geometry. A non-archimedean field is a field K complete with
respect to a given ultrametric absolute value | | : K → R≥0. The valuation is v := − log | |
and Γ := v(K×) is the value group. The valuation ring is denoted by K◦ := {α ∈ K |
v(α) ≥ 0} with maximal ideal K◦◦ := {α ∈ K | v(α) > 0} and residue field K̃ := K◦/K◦◦.

We consider good non-archimedean analytic spaces as introduced by Berkovich in [Ber90].
They are characterized by the fact that every point has an affinoid neighbourhood. We are
occupied with strictly analytic spaces where we can use a closed analytic subspace of a unit
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ball for this affinoid analytic neighbourhood. We assume that the reader is familiar with
the notions from [Ber90]. We apply this to the analytification Xan of a variety X over K.

For a point x in a strictly analytic Berkovich space X, we have the completed residue
field H (x). We call x an Abhyankar point if the transcendence degree of the graded residue
field of H (x) over K is equal to the local dimension of x at X (in general, we have “≤”
which is Abhyankar’s inequality). The important point is that for a point y in a closed
analytic subspace Y of X, the completed residue field H (y) is the same for Y as for X and
hence if the local dimension of Y at y is strictly smaller than the dimension of X at y, it
follows that y is not an Abhyankar point of X. We refer to [Duc18, §1.4] for details.

2.5. Formal models and semipositive metrics. We consider a non-trivially valued
algebraically closed non-archimedean field K. Let X be an admissible formal scheme over
K◦ which means that X is a flat formal scheme over K◦ locally of topologically finite type
such that X has a locally finite atlas by formal affine schemes over K◦. The generic fiber of
X is a paracompact strictly analytic Berkovich space over K which we will denote by Xη.
The special fiber Xs is a scheme locally of finite type over K◦ and we have a reduction map
red: Xη → Xs. For details, we refer to [Ber93, §1.6] and [Bos14].

Let X be a proper algebraic variety over K of dimension n. A formal K◦-model of X
is an admissible formal scheme X over K◦ with an identification Xη = Xan. Let L be a
line bundle on X. Then a formal model L of L is a line bundle L on a formal K◦-model
X of X such that L|Xη

= Lan along the identification Xη = Xan. We call L nef if the line
bundle L|Xs

is nef on the special fiber Xs. More generally, these notions can be used for any
paracompact strictly analytic space replacing Xan. In the algebraic setting, one can replace
formal K◦-models by proper algebraic models over K◦ (see [GM19, §2]), but working with
formal models allows additional flexibility and is more convenient.

A formal model L of L induces a continuous metric ‖ ‖L on Lan, see [GM19, Definition
2.5]. A metric ‖ ‖ on Lan is called a model metric if there is a non-zero k ∈ N such that

‖ ‖⊗k is induced by a formal model L of L⊗k. We call a model metric nef if L can be
chosen as a nef line bundle. A continuous metric on Lan is called semipositive if it is a
uniform limit of nef model metrics on Lan.

2.6. Non-archimedean Monge–Ampère measures. In the above setting, a construc-
tion originated by Chambert–Loir [CL06] associates to a model metric ‖ ‖ of L a discrete
measure c1(L, ‖ ‖)∧n on Xan. This can be used to define the Monge–Ampère measure
c1(L, ‖ ‖)∧n for any continuous semipositive metric ‖ ‖ of Lan by using that for a uniform
limit of nef model metrics ‖ ‖k on L

an the corresponding sequence of measures c1(L, ‖ ‖k)
∧n

converges weakly in the sense of positive Radon measures, see [Gub07a, §2].
We briefly recall the construction of the Monge–Ampère measure for ‖ ‖L. Since K is

algebraically closed, the formal models of Xan with reduced special fiber are cofinal and
hence we may assume that L is a line bundle on a formal K◦-model with Xs reduced.
Then for every irreducible component Y of Xs, there is a unique point ξY ∈ Xan such that
red (ξY ) is the generic point of Xs. Such points are called Shilov points for Xs. We set

c1(L, ‖ ‖L)
∧n :=

∑

Y

degL(Y ) · δξY

where Y ranges over all irreducible components of Xs and where δξY is the Dirac measure
in the Shilov point ξY .

3. Piecewise linear approximation

In this section, we prove that convex functions can be approximated by suitable generic
piecewise linear functions in a setup later used for tropicalizations of abelian varieties.
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The setup is as follows: Let Γ be a non-trivial divisible subgroup of R. In the applications,
it will be the value group of a non-trivially valued algebraically closed non-archimedean field
K. We consider a free abelian group N of rank n and a lattice Λ in the base change NR

of N to R. Later, these data will come naturally from the canonical tropicalization of an
abelian variety over K. The dual group of N is denoted by M := Hom(N,Z).

We also fix a set Σ of polytopes in NR. We assume that for ∆ ∈ Σ, all faces of ∆ are
also included in Σ.

Definition 3.1. A locally finite polytopal decomposition C of NR is called Σ-transversal
if for all σ ∈ Σ and all ∆ ∈ C with σ ∩∆ 6= ∅, we have

(3.1.1) dim(σ ∩∆) = dim(∆) + dim(σ)− n.

Remark 3.2. LetD(σ,∆) := dim(∆)+dim(σ)−n. Recall from linear algebra the dimension
formula

(3.2.1) dim(Lσ ∩ L∆) = dim(∆) + dim(σ)− dim(Lσ + L∆)

for the underlying linear spaces. Transversal intersection of Lσ and L∆ usually means that
Lσ + L∆ = NR which is equivalent to dim(Lσ ∩ L∆) = D(σ,∆).

Lemma 3.3. A locally finite polytopal decomposition C of NR is Σ-transversal if it satisfies
the following two conditions for all σ ∈ Σ and ∆ ∈ C with underlying affine spaces Aσ,A∆:

(i) If D(σ,∆) ≥ 0, then Lσ + L∆ = NR.
(ii) If D(σ,∆) < 0, then Aσ ∩ A∆ = ∅.

Proof. The argument follows [Gub07b, Proposition 8.2]. Assume that σ ∩∆ 6= ∅. Then by
(i) and (ii), we have Lσ + L∆ = NR. Using σ ∩∆ 6= ∅ and Remark 3.2, we get

(3.3.1) dim(Aσ ∩A∆) = dim(Lσ ∩ L∆) = D(σ,∆).

If relint(σ)∩ relint(∆) 6= ∅, then we have dim(∆∩σ) = dim(Aσ ∩A∆) and (3.1.1) follows
from (3.3.1). It remains to see that relint(σ) ∩ relint(∆) = ∅ cannot happen. We argue by
contradiction. We may assume that ∆ and σ are minimal with relint(σ) ∩ relint(∆) = ∅.
Using that the roles of σ and ∆ are symmetric, we may assume that there is a proper face
σ′ of σ of codimension 1 with σ′ ∩∆ 6= ∅. Note that Aσ′ divides Aσ into two half-spaces,
and precisely one contains σ. By minimality, we have relint(σ′)∩ relint(∆) 6= ∅. Using also
relint(σ)∩relint(∆) = ∅, we deduce that Aσ∩relint(∆) ⊂ Aσ′ and hence Aσ∩A∆ = Aσ′∩A∆.
Since dim(σ′) < dim(σ), we have D(σ′,∆) < D(σ,∆) which contradicts (3.3.1) applied to
σ and σ′. �

Definition 3.4. A locally finite polytopal decomposition C of NR is called Λ-periodic if
for all ∆ ∈ C and for all λ ∈ Λ \ {0} the polytope ∆ + λ is a face of C disjoint from ∆.

These conditions ensure that we can see the image ∆ of ∆ in NR/Λ as a polytope in
NR/Λ and that the set of all ∆ is a polytopal decomposition C of NR/Λ.

3.5. We assume now that there is a positive definite inner product b on NR such that

(3.5.1) b(·, λ) ∈M

for all λ ∈ Λ. In the applications, such a bilinear form b will be induced by an ample line
bundle on the abelian variety A. We also consider a Λ-cocycle (zλ)λ∈Λ on NR, i.e. functions
zλ : NR → R satisfying

(3.5.2) zλ+ν(ω) = zλ(ω + ν) + zν(ω)

for all λ, ν ∈ Λ and all ω ∈ NR. We assume that the properties

(3.5.3) zλ(ω) = zλ(0) + b(λ, ω)
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and

(3.5.4) zλ(0) ∈ Γ

hold for all λ ∈ Λ and ω ∈ NR. Using (3.5.2) and (3.5.3), we see that

zλ+ν(0) − zλ(0)− zν(0) = zλ(ν)− zλ(0) = b(λ, ν).

It follows that zλ is a quadratic function with associated symmetric bilinear form b.

Definition 3.6. Under the above notation, we say that f : NR → R satisfies the cocycle
rule if

f(ω + λ) = f(ω) + zλ(ω)

for all ω ∈ NR and λ ∈ Λ.

These functions may be seen as tropical theta-functions, see [MZ08] and [FRSS18]. We
can now state the main result of this section.

Proposition 3.7. Let Σ be a finite set of polytopes in NR. We assume that Σ includes with
a polytope also all its faces. Under the above assumptions, we consider a convex function
f : NR → R satisfying the cocycle rule from Definition 3.6. Then f is the uniform limit of
functions fk satisfying the same cocycle rule such that every fk is a piecewise (Q,Γ)-linear
strictly convex function with respect to a locally finite (Z,Γ)-polytopal decomposition Ck of
NR which is Λ-periodic and Σ-transversal.

Proof. By [BGJK21a, Proposition 8.2.6], the function f is a uniform limit of piecewise
(Q,Γ)-linear functions satisfying the cocycle rule. So we may assume that the function f is
piecewise linear, but we do not require any rationality for f at the moment. Let C be the
locally finite polytopal decomposition on NR given by the maximal domains of linearity for
f . Using the cocycle rule and that the coycles zλ grow quadratically in λ ∈ Λ, the domains
of linearity are indeed bounded and hence are polytopes. The cocycle rule also shows that
if ∆ ∈ C , then ∆ + λ ∈ C , but we cannot guarantee that ∆ + λ is disjoint from ∆ for
any non-zero λ ∈ Λ. However, it is clear that relint(∆) + λ is disjoint from relint(∆) as
otherwise they agree and an inductive argument adding successively λ would show that ∆
is unbounded. This means that (∆ + λ) ∩∆ is contained in the boundary of ∆.

We replace C by the barycentric subdivision which is a locally finite Λ-periodic simplex
decomposition of NR in the sense of Definition 3.4 by the previous paragraph. We decrease
the value of the piecewise linear function f slightly in the barycenters of the faces. Using
an inductive procedure starting with the barycenters of the n-dimensional faces and a small
enough change, the resulting function is strictly convex with respect to this new subdivision
C . For ∆ ∈ C , let m∆ ∈MR be the slope of f |∆ and c∆ the constant term such that

(3.7.1) f = m∆ + c∆

on ∆. Recall that Cn := {σ ∈ C | dim(σ) = n}. Let N be a system of representatives for
Cn with respect to the Λ-action, i.e. a polytope ∆′ is in Cn if and only if it has the form

(3.7.2) ∆′ = ∆+ λ

with ∆ ∈ N and λ ∈ Λ. Moreover, ∆ and λ are uniquely determined by ∆′. For the
finitely many ∆ ∈ N , we will approximate m∆ by m′

∆ ∈ MQ and c∆ by c′∆ ∈ Γ using the
density of Γ in R. Since f satisfies the cocycle rule, we have

(3.7.3) 〈m∆+λ, ω〉+ 〈m∆+λ, λ〉+ c∆+λ = 〈m∆, ω〉+ c∆ + zλ(ω)

for any λ ∈ Λ and ω ∈ NR. Equivalently, using zλ(ω) = zλ(0) + b(λ, ω) from (3.5.3), we
have the two equations

(3.7.4) m∆+λ = m∆ + b(λ, ·)
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for the slopes and

(3.7.5) c∆+λ = c∆ + zλ(0)− 〈m∆+λ, λ〉 = c∆ − 〈m∆, λ〉+ zλ(0)− b(λ, λ)

and for the constant terms. We use this as a guideline to define

(3.7.6) m′
∆+λ := m′

∆ + b(·, λ),

which is an element of MQ by (3.5.1), and

(3.7.7) c′∆+λ := c′∆ − 〈m′
∆, λ〉+ zλ(0)− b(λ, λ),

which is an element of the divisible subgroup Γ by (3.5.1) and (3.5.4). By construction, we
have

(3.7.8) 〈m′
∆+λ, ω + λ〉+ c′∆+λ = 〈m′

∆, ω〉+ c′∆ + zλ(ω)

for any ∆ ∈ Cn, ω ∈ NR and λ ∈ Λ.
We fix ε with 0 < ε < 1. Our goal is to define a function f ′ : NR → R with |f − f ′| < ε

and the desired properties. Our strategy is to define the approximation f ′ by

(3.7.9) f ′ := sup{m′
∆ + c′∆ | ∆ ∈ Cn},

which automatically satisfies the cocycle rule by (3.7.8). In the following, we will deduce the
desired properties assuming that the approximations (m′

∆, c
′
∆) of (m∆, c∆) for the finitely

many ∆ ∈ N are sufficiently good. This will always mean that the imposed condition holds
in a sufficiently small neighbourhood of (m∆, c∆)∆∈N in the space of all approximations
(MR ×Γ)N . At the end of the proof, we will first pass to a non-empty open subset of such
a neighbourhood not necessarily including the trivial approximation to take care about
Σ-transversality and then we will require that (m′

∆, c
′
∆) ∈ MQ × Γ, which is not an open

condition, but can be fulfilled by density.
An arbitrary element of Cn has the form ∆+ λ for unique ∆ ∈ N and λ ∈ Λ. It follows

from (3.7.4)–(3.7.7) that

(3.7.10) (m′
∆+λ, c

′
∆+λ)− (m∆+λ, c∆+λ) = (m′

∆, c
′
∆)− (m∆, c∆)

and hence the quality of approximations is the same for all elements of Cn using the cocycle
rule to bypass the problem that there are infinitely many polytopes in Cn. We choose
sufficiently good approximations (m′

∆, c
′
∆)∆∈N such that

(3.7.11) f − 1 < f − ε = m∆ + c∆ − ε < m′
∆ + c′∆ < f

on ∆. Using that f is strictly convex with respect to C , we may even assume that

(3.7.12) m′
∆ + c′∆ < f

on NR. By the cocycle rule for f , (3.7.3) and (3.7.10), the inequalities (3.7.11) and (3.7.12)
hold in fact for all ∆ ∈ Cn. We conclude that f − ε < f ′ < f .

We consider any bounded subset Ω of NR. We claim that for the restriction of f ′ to Ω,
only finitely many polytopes contribute to the supremum in (3.7.9), which shows that f ′

is a piecewise linear convex function. To prove this finiteness property, we pick ∆ ∈ N ,
λ ∈ Λ and ω ∈ Ω. Then (3.7.6) and (3.7.7) show that

〈m′
∆+λ, ω〉+ c′∆+λ = 〈m′

∆, ω〉+ b(ω, λ) + c′∆ − 〈m′
∆, λ〉+ zλ(0)− b(λ, λ).

Since zλ(0) is a quadratic function with associated symmetric bilinear form b and since b is
positive definite, we see that the right hand side is −1

2b(λ, λ) + o(b(λ, λ)) for b(λ, λ) → ∞.
Since Ω is bounded and since N is finite, we deduce that there are only finitely many
∆ + λ ∈ Cn such that for all sufficiently good approximations (m′

∆, c
′
∆)∆∈N we have

(3.7.13) sup{〈m′
∆+λ, ω〉+ c′∆+λ | ω ∈ Ω} > inf{f(ω)− 1 | ω ∈ Ω}.

Using (3.7.11), we deduce that for the restriction of f ′ to Ω only finitely many polytopes
in Cn contribute to the supremum in (3.7.9).
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It follows from (3.7.6) and (3.7.7) that for any ∆ ∈ Cn the restriction of m′
∆ + c′∆ to

Ω depends continuously on the approximations (m′
∆, c

′
∆)∆∈N using the supremum norm

of functions on the bounded subset Ω of NR. Using that (3.7.13) only holds for finitely
many ∆ + λ ∈ Cn, we deduce that f ′|Ω also depends continuously on the approximations.
Applying this with an Ω covering a fundamental domain for Λ and using the cocycle rule,
we conclude that globally f ′ depends continuously on the approximations (m′

∆, c
′
∆)∆∈N

noting that the difference of two such functions is Λ-periodic.
The maximal domains of linearity for f ′ induce a locally finite polytopal decomposition

C ′ of NR. Recall that f is a strictly convex piecewise linear function with respect to C and
note that f ′ is a strictly convex piecewise linear function with respect to C ′. We choose
δ > 0 such that for every σ ∈ Cn, the center C(σ) of σ, given by the points with distance
≥ δ to NR \ σ, is non-empty. Strict convexity of f and (3.7.13) applied to Ω = σ yield that
there is r > 0 such that

〈mσ, ω〉+ cσ = f(ω) > 〈m∆, ω〉+ c∆ + 2r

for all ∆ ∈ Cn \ {σ} and all ω ∈ σ with distance ≥ δ to ∆. We may choose r so small
that the inequality holds for all σ ∈ Cn simultaneously. Indeed, this is clear for the repre-
sentatives σ in the finite N and then by (3.7.3) for all Λ-translates. Using continuity in
the approximations as shown above, we conclude for all sufficiently good approximations
(m′

∆, c
′
∆)∆∈N that

(3.7.14) 〈m′
σ, ω〉+ c′σ = f ′(ω) > 〈m′

∆, ω〉+ c′∆ + r

for all ∆ ∈ Cn \ {σ} and all ω ∈ σ with distance ≥ δ to ∆. It follows from strict convexity
that there is a unique σ′ ∈ C ′

n containing the center C(σ) and the map σ → σ′ gives a
bijection Cn → C ′

n. By construction, the Hausdorff distance of the domains of linearity σ
and σ′ is smaller than δ. Using δ > 0 sufficiently small and using that C is Λ-periodic, we
conclude that C ′ is Λ-periodic. Indeed, the cocycle rule for f ′ shows that σ′ ∈ C ′

n yields
σ′ + λ ∈ C ′

n for any non-zero λ ∈ Λ and using that σ has a positive Hausdorff distance to
σ + λ, the same has to be true for σ′ and σ′ + λ, proving that σ′ and σ′ + λ are disjoint.

All the conditions imposed for the approximations (m′
∆, c

′
∆)∆∈N are fulfilled in a suf-

ficiently small open neighbourhood U of the trivial approximation (m∆, c∆)∆∈N in the
space (MR × R)N . It remains to show that there is such an approximation in U with all
m′

∆ ∈MQ and all c′∆ ∈ Γ such that C ′ is Σ-transversal. All other required properties of f ′

have already been shown above.
To ensure Σ-transversality, we impose the following two conditions for a fixed σ ∈ Σ and

pairwise different ∆0, . . . ,∆p ∈ N . We pick linearly independent mi ∈MR for i in a finite
set Iσ and ci ∈ R such that Aσ is given by the intersection of the affine hyperplanes

(3.7.15) 〈mi, ·〉 = ci

in NR with i ranging over Iσ.
I) If #(Iσ) + p ≤ n, we require that the vectors

(3.7.16) (m′
∆j

−m′
∆0

)j=1,...,p, (mi)i∈Iσ

are linearly independent in MR. This can be expressed in terms of non-vanishing of at least
one maximal subdeterminant and hence becomes true on the complement of an algebraic
hypersurface in MN

R .
II) If #(Iσ)+p = n+1, we require that the system of (n+1)-inhomomogeneous equations

〈m′
∆j

−m′
∆0
, ω〉 = c′∆j

− c′∆0
(j = 1, . . . , p)(3.7.17)

〈mi, ω〉 = ci (i ∈ Iσ)(3.7.18)

has no solution in the n-dimensional variable ω. This is equivalent to the non-vanishing
of the determinant of the extended (n + 1) × (n + 1)-matrix of this system. We conclude
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that the set of approximations (m′
∆, c

′
∆)∆∈N fulfilling this condition is the complement of

an algebraic hypersurface in (MR × R)N .
Using that Σ and N are finite sets, we conclude that there is an algebraic hypersurface

H in (MR ×R)N such that for all (m′
∆, c

′
∆)∆∈N in the complement of H the conditions I)

and II) hold for all σ ∈ Σ and all pairwise different ∆0, . . . ,∆p ∈ N simultaneously. Using
(3.7.6), we see that this holds if we replace the finite set N by the infinite set Cn.

We claim that for (m′
∆, c

′
∆)∆∈N ∈ U \ H, the corresponding locally finite polytopal

decomposition C ′ is Σ-transversal. We want to use the criterion from Lemma 3.3. Let
σ ∈ Σ and ∆ ∈ C . For Aσ, we use the description in (3.7.15) and hence

(3.7.19) dim(σ) = dim(Aσ) = n−#(Iσ).

On the other hand, we have ∆ = ∆0 ∩ · · · ∩∆p for some pairwise different ∆0, . . . ,∆p ∈ Cn

and hence A∆ is the set of solutions of the p inhomogeneous linear equations (3.7.17) without
assuming #(Iσ) + p = n+ 1. Using (3.7.16), we have

(3.7.20) dim(∆) = dim(L∆) = n− p

and hence

(3.7.21) D(σ,∆) = dim(σ) + dim(∆)− n = n− p−#(Iσ).

We assume first D(σ,∆) ≥ 0. Then (3.7.19) and (3.7.16) yield that

dim(Lσ ∩ L∆) = n− p−#(Iσ).

It follows from Remark 3.2 that the first condition in Lemma 3.3 is fulfilled.
Now we assume that D(σ,∆) < 0. Recall that Aσ∩A∆ is the set of solutions of p+#(Iσ)

inhomogeneous linear equations (3.7.17)–(3.7.18). Using (3.7.21), the number of equations
is > n and hence condition II) yields that Aσ ∩ A∆ = ∅. It follows that condition (ii) in
Lemma 3.3 is also fulfilled and hence this lemma proves Σ-transversality of C ′.

To summarize the above, we have found a non-empty open subset U \ H containing
approximations (m′

∆, c
′
∆)∆∈N such that f ′ is a piecewise linear function satisfying the

cocycle rule which is strictly convex with respect to a locally finite Λ-periodic Σ-transversal
polytopal decomposition C ′. By density of MQ in M and by density of Γ in R, we may
assume that m′

∆ ∈MQ and c′∆ ∈ Γ for all ∆ ∈ N , hence f ′ is piecewise (Q,Γ)-linear, which
in turn implies that C ′ is a locally finite (Z,Γ)-polytopal decomposition. Since |f − f ′| < ε,
this proves the proposition. �

Remark 3.8. We note that Proposition 3.7 also holds for an infinite set Σ which includes
with a polytope all its faces if there is a finite set of polytopes Σ′ such that Σ ⊂ Σ′+Λ. To see
this we may assume that if Σ′ contains a polytope σ, then it includes all the faces of σ. Now
we can apply Proposition 3.7 to the finite set Σ′ and finally we note that Σ′-transversality
of the locally finite polytopal decomposition Ck is equivalent to Σ′ +Λ transversality using
that Ck is Λ-translation invariant as well.

In [Gub07b, 8.1], the notion of Σ-generic polytopal decompositions has been defined and
it was shown that such decompositions are Σ-transversal. It is proven in the second author’s
thesis that we can more generally assume for the approximations fk in Proposition 3.7 that
1
m

Ck are Σ-generic polytopal decompositions for all non-zero m ∈ Z.

4. Toric metrics

Let K be an algebraically closed non-archimedean field with additive value group Γ. We
consider an abelian variety A over K. Recall from [BG06, Theorem 9.5.4] that a rigidified
line bundle L on A has a canonical metric ‖ ‖L. If L is ample, then ‖ ‖L is a continuous
semipositive metric of Lan [Gub07a, 2.10].
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4.1. We first recall Raynaud’s uniformization theory [BL91], [Ber90, §6.5]. There is a
unique compact subgroup A0 of Aan, which is an analytic subdomain, and the generic fiber
of a formal group scheme A0 over K◦, whose special fiber is a semiabelian variety. There is
a unique formal affine torus T0 over K◦, which is a closed formal subgroup of A0, and we
have an exact sequence

0 −→ T0 −→ A0
q0
−→ B −→ 0

of formal group schemes over K◦ where B is a formal abelian scheme, i.e. B has good
reduction. Note that B is the formal completion of an abelian scheme B over K◦. Let M
be the character lattice of T0 and hence T0 = Spf(K◦{M}). We denote by T = Spec(K[M ])
the associated torus over K, then pushout with respect to Tan

0 → T an gives the Raynaud
extension

0 −→ T an −→ Ean q
−→ Ban −→ 0,

which is an exact sequence of abelian analytic groups over K. Here, the analytification of
the abelian variety B is the generic fiber of B. The exact sequence is algebraic, but the
canonical morphism p : Ean → Aan is only an analytic group morphism. The kernel Λ of q
is a discrete subgroup of E(K) and we write Aan = Ean/Λ as an identification.

4.2. The Raynaud uniformization Ean of A comes with a canonical tropicalization map.
Using that Ean = (A0 × T an)/Tan

0 with respect to the embedding Tan
0 → A0 × T an given

by t → (t, t−1), we see that the classical tropicalization map trop: T an → NR for the
cocharacter lattice N = Hom(M,Z) extends to a continuous proper map trop: Ean → NR.
It is a basic fact that trop maps Λ isomorphically onto a lattice in NR. By passing to the
quotient, we get

trop: Aan −→ NR/ trop(Λ),

called the canonical tropicalization map of A.

4.3. A line bundle F on Ean descends to Aan = Ean/Λ if and only if F admits a Λ-
linearization over the action of Λ on Ean. Then we have F = p∗(Lan) for the line bundle
Lan = F/Λ on Aan. Using rigidified line bundles, it is shown in [BL91, Proposition 6.5] that
there is a line bundle H on B, unique up to tensoring with a line bundle Eu of B induced
from E by pushout with the character u ∈M , such that q∗(Han) ≃ p∗(Lan) as Λ-linearized
cubical line bundles. Using that as an identification and the canonical metrics on L and H,
we note that p∗‖ ‖L/q

∗‖ ‖H is a continuous function on Ean which factorizes through the
canonical tropicalization and hence there are functions zλ : NR → R for λ ∈ trop(Λ) with

(4.3.1) − log(p∗‖ ‖L/q
∗‖ ‖H)(γ · x) = − log(p∗‖ ‖L/q

∗‖ ‖H)(x) + zλ(trop(x))

for all x ∈ Ean and γ ∈ Λ with λ = trop(γ), see [Gub10, 4.3]. These functions are trop(Λ)-
cocycles in the sense that

(4.3.2) zλ+ν(ω) = zλ(ω + ν) + zν(ω)

and there is a unique symmetric bilinear form b on NR such that

(4.3.3) zλ(ω) = zλ(0) + b(λ, ω)

for all λ ∈ trop(Λ) and ω ∈ NR. It follows that zλ is a quadratic function with associated
bilinear form b. Using the polarization induced by L, we have seen

(4.3.4) b(λ, ·) ∈M = Hom(N,Z)

in [BGJK21b, Remarks 7.1.2, 8.1.3]. Since ‖ ‖H is a model metric, we deduce from (4.3.1)

(4.3.5) zλ(0) ∈ Γ.

The line bundle L is ample if and only if H is ample and b is positive definite, see [BL91,
Theorem 6.13]. We conclude that the assumptions in 3.5 are satisfied.
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4.4. Now we consider any line bundle F on Ean with F = q∗(Han) for a rigidified line
bundle H on B. Using the canonical metric ‖ ‖H of H, there is a bijective correspondence
between continuous metrics ‖ ‖ on F and continuous real functions on Ean given by

‖ ‖ 7→ − log(‖ ‖/q∗‖ ‖H).

Definition 4.5. A continuous metric ‖ ‖ on F is called toric if the corresponding function
factorizes through the canonical tropicalization of E.

Remark 4.6. Using 4.4, we get a bijective correspondence between continuous toric metrics
‖ ‖ on F and continuous functions f : NR → R given by

f 7→ ‖ ‖f := e−f◦trop · q∗‖ ‖H .

Remark 4.7. As in 4.3, we assume that F = q∗(H) = p∗(Lan) leading to the cocycle
(zλ)λ∈Λ. For a continuous toric metric ‖ ‖f on F , it is clear that ‖ ‖f = p∗‖ ‖ for a

continuous metric ‖ ‖ of L if and only if f satisfies the cocycle rule

(4.7.1) f(ω + λ) = f(ω) + zλ(ω)

for all ω ∈ NR and λ ∈ trop(Λ).

In the following, we consider a rigidified line bundle L on A with canonical metric ‖ ‖L.

Definition 4.8. We call a continuous metric ‖ ‖ on Lan toric if the function− log(‖ ‖/‖ ‖L)
is A0-invariant.

Proposition 4.9. Let F = p∗(Lan) = q∗(Han) with cocycle (zλ) as in 4.3. Then there
is a bijective correspondence between continuous toric metrics ‖ ‖ on Lan and continuous
functions f on NR satisfying the cocycle rule (4.7.1), where the function f‖ ‖ associated to
‖ ‖ is characterized by

p∗‖ ‖ = e−f‖ ‖◦trop · q∗‖ ‖H .

Proof. This follows from Remark 4.7. �

Theorem 4.10. Under the assumptions in Proposition 4.9, if f‖ ‖ is convex, then the
continuous metric ‖ ‖ on Lan is semipositive. The converse holds for L ample.

Proof. We first assume that L is ample and that f := f‖ ‖ is convex. Then semipositivity
of ‖ ‖ is just a reformulation of [BGJK21b, Proposition 8.3.1].

Conversely, assume that ‖ ‖ is semipositive. Using currents and forms on Berkovich
spaces introduced by Chambert-Loir and Ducros [CD12], it is shown in [GJR21, Theorem
1.3] that the first Chern current c1(L, ‖ ‖) is positive. This means that the current evaluated
at the pull-back of a compactly supported smooth positive Lagerberg form with respect to
a smooth tropicalization map is non-negative. The canonical tropicalization map of A is
(locally) not necessarily a smooth tropicalization map [GJR21, §17], but it is a harmonic
tropicalization map, see [GJR21, Proposition 16.2]. We show in the appendix that the above
fact also holds for pull-backs with respect to harmonic tropicalization maps. We conclude
that d′d′′[f ] is a positive current on NR. By [Lag12, Proposition 2.5], this is equivalent for
f to be convex. �

Next, we will see that if f‖ ‖ is a piecewise linear function, then ‖ ‖ is a model metric
given by an explicit construction due to Mumford.

4.11. Let C be a locally finite (Z,Γ)-polytopal decomposition of NR for the cocharacter
lattice N from the Raynaud extension. Then there is an associated Mumford model E of
E. This is a scheme locally of finite type over K◦ with generic fiber E and reduced special
fiber Es. In this context, it is often more convenient to work with formal K◦-models and
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we denote the formal completion of E along the special fiber by E. We refer to [Gub10, §4]
and [BGJK21a, 8.2.2] for the construction and the following properties.

There is a bijective correspondence between the irreducible components Y of Es = Es
and the vertices ω of C given by the facts that the generic point of Y has a unique preimage
ξ in Ean with respect to the reduction map and that trop(ξ) is a vertex ω of C .

Let φ : NR → R be a piecewise (Z,Γ)-linear function. Then φ determines a line bundle
OE(φ) on E which is a formal model of OE determined by

(4.11.1) − log ‖1‖OE(φ) = φ ◦ trop

on Ean where ‖ ‖
OE(φ)

is the associated formal metric.

4.12. Let L be a line bundle on A with F = p∗(Lan) = q∗(Han) and cocycle (zλ) as
in 4.3. We assume that the locally finite (Z,Γ)-polytopal decomposition C is trop(Λ)-
periodic in the sense of 3.4. Then A := E/Λ is a formal K◦-model for A called the formal
Mumford model associated to C , where C is the polytopal decomposition C / trop(Λ) of
trop(Aan) = NR/ trop(Λ).

Recall that H has a model H on B, unique up to isomorphism. We denote by H the
associated formal model on B. The morphism q : E → B extends uniquely to a morphism
E → B which we also denote by q. For a trop(Λ)-periodic function φ : NR → R, let

(4.12.1) H(f) := q∗H⊗ OE(φ),

where f(λ) := φ(λ)+zλ(0) for λ ∈ NR. Note that we have defined zλ(0) only for λ ∈ trop(Λ),
but we have seen in 4.3 that zλ(0) is a quadratic function in λ and hence extends uniquely
to a quadratic function on NR. The Λ-periodicity of φ is equivalent to the cocycle rule for
f . This yields that L(f) := H(f)/Λ is a line bundle on the formal Mumford model A = E/Λ
such that L(f) is a formal model of L. By Proposition 4.8, the formal metric ‖ ‖L(f) is the
toric metric of L associated to f .

The following result will be crucial for computing toric Monge–Ampére measures.

Proposition 4.13. Let ‖ ‖ be a semipositive toric metric on an ample line bundle L of A
and let Σ be a finite set of polytopes in NR including all its faces. Then ‖ ‖ is the uniform
limit of semipositive model metrics ‖ ‖k with the following properties:

(i) For any k, there is a non-zero mk ∈ N such that ‖ ‖⊗mk is the formal metric
associated to a formal model Lk of L⊗mk on a formal Mumford model Ak of A.

(ii) The Mumford models Ak are associated to locally finite trop(Λ)-periodic (Z,Γ)-
polytopal decompositions Ck of NR which are Σ-transversal (see Definition 3.1).

(iii) For any k, there is a piecewise (Z,Γ)-linear strictly convex function gk with respect
to Ck satisfying the cocycle rule such that Lk = L(gk) by the construction in 4.12.

Proof. We have seen in 4.3 that there is an ample line bundle H with p∗(Lan) = q∗(Han)
for an ample line bundle H on B leading to the cocycle (zλ). By Proposition 4.8, the toric
metric ‖ ‖ corresponds to a continuous function f : NR → R satisfying the cocycle rule. By
Theorem 4.10, the function f is convex. We have seen in 4.3 that the cocycle (zλ) satisfies
the assumptions required in 3.5 and hence we may apply Proposition 3.7. We conclude
that f is the uniform limit of piecewise (Q,Γ)-linear functions fk satisfying the cocycle
rule. Moreover, we may assume that every fk is strictly convex with respect to a locally
finite Λ-periodic Σ-transversal polytopal decomposition Ck of NR. By Proposition 4.8 and
Theorem 4.10, the function fk corresponds to a semipositive toric metric ‖ ‖k of L. Since
fk satisfies the cocycle rule, we deduce from (4.3.3) and (4.3.4) that there is a non-zero

mk ∈ N such that gk := mkfk is piecewise (Z,Γ)-linear. By 4.12, we get that ‖ ‖⊗mk

k is the
formal metric induced by the line bundle L(gk) on the formal Mumford model Ak associated
to Ck. �
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Remark 4.14. Due to the analytic nature of the quotient, formal Mumford models A =
E/Λ of A as in 4.12 are not necessarily algebraic. But in Proposition 4.13, we may also
assume that every formal Mumford model Ak is the formal completion of an algebraic model
Ak of A and that a positive tensor power of the model metric ‖ ‖k is induced by an ample
model on Ak. Using [BGJK21a, Remark 8.2.7], this follows from strict convexity of the fk
.

5. Strictly polystable alterations

In this section, we recall strictly polystable alterations and their refinements obtained
from polytopal decompositions of the skeletons. Let K be an algebraically closed non-
archimedean field K with non-trivial additive valuation v and value group Γ := v(K×) as
a subgroup of R.

We will study strictly polystable alterations for a closed subvariety X of an abelian
variety A over a non-trivially valued algebraically closed non-archimedean field K and we
will relate it to Mumford models of A. At the end, we give a crucial degree formula which
is rather technical, but will be crucial for computing the Monge–Ampère measure of toric
metrics in the next section. The material covered generalizes [Gub10, §5] from strictly
semistable to strictly polystable alterations; the arguments remain the same.

5.1. Let Y be any reduced scheme locally of finite type over a field. Then Y has a canonical
stratification. The strata of codimension 0 are the irreducible components of the normality
locus of Y , the strata of codimension 1 are the irreducible components of the normality
locus of the complement of the previous normality locus and so on, see [Ber99, §2]. The
strata are partially ordered by inclusion of their closures.

5.2. We recall the notion of toric schemes. Let T = Gr
m be a split torus over K with toric

coordinates x1, . . . , xr leading to the classical tropicalization map

trop: (Gr
m)

an −→ Rr, p 7→ (v(p1), . . . , v(pr)).

For a (Z,Γ)-polytope ∆ of Rr, there is an associated toric formal scheme U∆ = Spf(A∆)
over K◦ given by

A∆ :=

{

∑

m∈Zr

amx
m1
1 . . . xmr

r | lim
|m|→∞

v(am) +m · ω = ∞ ∀ω ∈ ∆

}

where m ·ω is the standard inner product on Rr and |m| = m1 + · · ·+mr. More generally,
for any (Z,Γ)-polytopal decomposition D of ∆, we get an associated toric formal scheme
UD over K◦ with open subsets Uσ for σ ∈ D by gluing. These are admissible formal schemes
with generic fiber trop−1(∆) and reduced special fiber. We refer to [Gub07b, §4] for more
details and to [Gub13] for an algebraic description of these toric schemes.

Note that T an has a canonical skeleton S(T ) given by the weighted Gauss norms and
a canonical retraction map τT : T

an → S(T ) such that trop ◦τT = trop and such that the
tropicalization map restricts to a homeomorphism from S(U∆) onto Rr, see [Ber90, §6.3].
Then we define S(U∆) := S(T ) ∩ trop−1(∆).

5.3. A non-degenerate strictly polystable formal scheme X′ over K◦ is an admissible formal
scheme with reduced special fiber defined as follows. The formal scheme X′ is covered by
open affine formal schemes U′ with etale morphisms ψ : U′ → U∆ to an affine toric formal
scheme associated to a (Z,Γ)-standard polysimplex ∆ in Rr. Here, the number r might
depend on U′ and a standard polysimplex is the product of standard simplices ∆j in Rrj

with r =
∑

rj of the form ∆j = {ω ∈ [0, 1]rj | ω1+ · · ·+ωrj ≤ γj} for some γj ∈ Γ≥0. If U
′
s

has a unique minimal stratum which maps to the minimal stratum of the special fiber of
U∆, then we call (U′, ψ) a building block of X′. By shrinking the above covering, we deduce
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easily that every non-degenerate strictly polystable formal scheme is covered by building
blocks. We refer to [Ber99, §1] for more details.

5.4. Berkovich has shown that for a strictly polystable formal scheme X′ over K◦, there is a
skeleton S(X′), given as a closed subset of X′

η, and a canonical retraction map τ : X′
η → S(X′)

which is a proper strong deformation retraction of X′
η, see [Ber99, Theorem 5.2].

In fact, the skeleton is constructed from the building blocks ψ : U′ → U∆ using S(X′) ∩
U′
η = S(U′) and S(U′) = ψ−1(S(U∆)). Since ψ restricts to a homeomorphism from S(U′)

onto S(U∆) and the latter is mapped by trop homeomorphically onto the polysimplex ∆, we
can endow the skeleton S(X′) with a piecewise (Z,Γ)-linear structure coming with canonical
faces S(U′) related to the building blocks such that the canonical face S(U′) is isomorphic
to the polysimplex ∆ via trop ◦ψ. We refer to [Ber99, §5] for details.

The canonical faces are in bijective correspondence to the strata of X′
s. The canonical

face ∆S of S(X′) corresponding to a stratum S of S(X′) is determined by relint(∆S) =
τ(red−1(S)). This stratum-face correspondence is order reversing and hence the irreducible
components of X′

s correspond to the vertices of S(X′).

Definition 5.5. Let X′ be a strictly polystable formal scheme over K◦ with skeleton S(X′).
Then a polytopal subdivision of S(X′) is a finite set D of polytopes, each contained in a
canonical face of S(X′), such that for every stratum S the set DS := {∆ ∈ D | ∆ ⊂ ∆S} is
a polytopal decomposition of ∆S .

5.6. Let X′ be a strictly polystable formal scheme over K◦ with generic fiber S′ and let
D be a (Z,Γ)-polytopal subdivision of S(X′) as above. Then there is an associated formal
K◦-model X′′ of X ′ with reduced special fiber and with a morphism ι : X′′ → X′ extending
the identity on X ′. Locally, over a building block U′ with etale morphism ψ : U′ → U∆, the
preimage U′′ of U′ with respect to ι′ is given by the cartesian diagram

(5.6.1)

U′′ ψ′

−−−−→ UDS




yι′





y

ι

U′ ψ
−−−−→ U∆

of formal schemes over K◦ and in general we obtain X′′ and ι′ by gluing. Here, we used
the induced polytopal decomposition DS of ∆ = ∆S and the canonical morphism ι of the
toric formal K◦-models from 5.2. We refer to [Gub10, §5.6] for more details in the strictly
semistable case and to [Gub10, Remark 5.19] for the generalization to the polystable case.

5.7. We will now describe the crucial properties of the above formal K◦-model X′′. We
refer to [Gub10, Proposition 5.7, Corollary 5.8] for the arguments which generalize to our
polystable setting [Gub10, Remark 5.19]. There is again a bijective order-reversing corre-
spondence between the strata R of X′′ and the faces σ of D given by

(5.7.1) R = red
(

τ−1(relint(σ))
)

, relint(σ) = trop
(

red−1(Y )
)

,

where Y is any non-empty subset of R. We have dim(σ) = codim(R,X′′
s ) and hence the

irreducible components Y of X′′
s are in bijective correspondence to the vertices ξ of D . The

vertex corresponding to Y is the unique point ξ of X ′ with red(ξ) being the generic point
of Y .

Let R be a stratum of X′′
s with corresponding face ∆ ∈ D . Then relint(∆) is contained in

the relative interior of a unique canonical face ∆S of S(X′) corresponding to a stratum S of
X′
s. Then R is a fiber bundle over S via ι′ with the fiber being a torus of rank codim(∆,∆S)

and hence R is smooth. The closure of R is the union of the strata corresponding to the
faces σ ∈ D with ∆ ⊂ σ.
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Definition 5.8. Let X be a proper variety over K with formal K◦-model X over K◦.
Then a strictly polystable alteration is a generically finite proper morphism X ′ → X from
a smooth variety X ′ over K which extends to a morphism ϕ : X′ → X for a non-degenerate
strictly polystable formal K◦-model X′ of X ′.

Remark 5.9. It has been shown in [ALPT19, Theorem 5.2.19] that a strictly polystable
alteration always exists, at least when X is algebraic. By [GM19, Lemma 2.4], any formal
K◦-model is dominated by the formal completion of an algebraic K◦-model.

5.10. Now we fix the following setup. Let X be a closed subvariety of the abelian variety
A. We use the Raynaud extension

0 −→ T an −→ Ean q
−→ Ban −→ 0

and the notation from the previous section. We choose a formal Mumford model A0 of
A over K◦ associated to a trop(Λ)-periodic (Z,Γ)-polytopal decomposition C0 of NR and
we denote by X the closure of Xan in A0 as in [Gub98, Proposition 3.3]. We assume that
there is a strictly polystable alteration ϕ0 : X

′ → X. We denote the generic fiber of ϕ0

by f : X′
η → Xan. Using Remarks 4.14 and 5.9, for any closed subvariety X of A such a

Mumford model A0 with a strictly polystable alteration for X exists.

5.11. By [Gub10, Proposition 5.11, Remark 5.19], there is a unique map

faff : S(X
′) −→ trop(Aan) = NR/ trop(Λ)

with faff ◦ τ = trop ◦f . For every canonical face ∆′ of S(X′), there is a unique face ∆
of the polytopal decomposition C0 of NR/ trop(Λ) such that faff(relint(∆

′)) ⊂ relint(∆).
Moreover, the restriction of faff to ∆′ is a (Z,Γ)-affine map. We denote by faff : S(X

′) → NR

a lift of faff which might be multi-valued and which is unique up to trop(Λ)-translation.
Note that the restriction of faff to a canonical face ∆′ is a single-valued affine function,
unique up to trop(Λ)-translation.

5.12. Using the uniformization Aan = Ean/Λ, there is a multi-valued continuous lift
F : X′

η → Ean of f which is unique up to Λ-translation. Then q◦F extends to a multi-valued
continuous morphism G : X′ → B for the formal abelian scheme B over K◦ associated to
B. To omit multi-valued morphisms, we consider a stratum S of X′

s. One can show that
the restriction of G to S is a morphism which is canonical up to q(Λ)-translation. We refer
to [Gub10, Remarks 5.16 and 5.19] for details.

5.13. Let L be a rigidified line bundle on A. Then there is a rigidified line bundle H
on B with p∗(Lan) = q∗(Han) and cocycle (zλ) as in 4.3. Let us consider a function
h : NR → R which is piecewise (Z,Γ)-linear with respect to the trop(Λ)-periodic (Z,Γ)-
polytopal decomposition C1 of NR. Let A1 be the associated formal Mumford model of A,
let L = L(h) be the line bundle on A1 induced by h and let H be the model of H on B, see
4.12. Similarly as in [Gub10, 5.17], we see that S(X′) has the (Z,Γ)-polytopal subdivision

(5.13.1) D = {∆S ∩ f
−1
aff (σ) | S stratum of X′ , σ ∈ C1}

such that f : X′
η → Aan extends to a morphism ϕ1 : X

′′ → A1. Here, we use the formal

scheme X′′ over X′ associated to the subdivision D by the construction in 5.6.
Our goal is to compute the degree of an irreducible component Y of X′′

s with respect to
(the pull-back of) L. By 5.7, Y corresponds to a vertex ξY of D . Let σ be the unique
face of C1 such that faff(ξY ) is contained in relint(σ). Since ξY is a vertex of the polytopal
subdivison given by (5.13.1), we conclude that faff is injective on ∆S and that

(5.13.2) faff(ξY ) = faff(∆S) ∩ σ.

Since ∆S is a (Z,Γ)-polytope, the underlying linear space L∆S
has a well-defined Z-linear

structure which we will use to compute Monge–Ampère measures in the following result.
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Proposition 5.14. Using the above notation, we assume that h ◦ faff is convex in ξY and
we denote by hY the induced conic convex function in ξY on the linear space L∆S

. If the
intersection in (5.13.2) is transversal, which means dim(∆S) = codim(σ,NR), then

degL(Y ) =
d!

e!
· degH(S) ·MA(hY )({ξY })

where d := dim(X), e is the dimension of the stratum S and the real Monge–Ampère
measure on the right is computed with respect to the Z-linear structure of L∆S

.

Proof. Note that the Monge–Ampère measure MA(hY ) is a discrete measure on ∆S sup-
ported in the vertex ξY of D , see 2.3 for a description. The strictly semistable case has been
proven in [Gub10, Proposition 5.18] and the arguments generalize to the case of strictly
polystable alterations, see [Gub10, Remark 5.19]. �

6. Monge–Ampère measures of toric metrics

In this section, we use the results from the previous sections to compute the Monge–
Ampère measures of toric metrics on a closed d-dimensional subvariety X of an abelian
variety A over an algebraically closed non-archimedean field K with non-trivial value group
Γ. To describe Monge–Ampère measures of toric metrics on Xan, we choose a formal
Mumford model A0 of A and a strictly polystable alteration ϕ0 : X

′ → X for the closure
X of Xan in A0 as in 5.10. We will first compute the Monge–Ampère measures for the
pull-back metrics on X′

η and then we will use the projection formula with respect to the

generic fiber f : X′
η → Xan of ϕ0.

6.1. Recall the uniformization Aan = Ean/Λ from the Raynaud extension

0 −→ T an −→ Ean q
−→ Ban −→ 0.

Let B be the formal abelian scheme over K◦ with generic fiber Ban. We fix an ample line
bundle L on A. We have seen in 4.3 that L has an associated ample line bundle H on B
and we denote by H the associated formal model of H on B.

By Proposition 4.6 and denoting the cocharacter lattice of T by N , a continuous toric
metric ‖ ‖ on Lan corresponds to a function f‖ ‖ : NR → R, satisfying the cocycle rule. The
metric ‖ ‖ is semipositive if and only if f‖ ‖ is a convex function, see Theorem 4.10.

For a canonical face ∆S with associated stratum S of X′
s, there is an affine map faff : ∆S →

NR which is canonical up to trop(Λ)-translation and a morphism G : S → Bs which is
canonical up to q(Λ)-translation, see 5.11 and 5.12.

Theorem 6.2. Using the above notation, a continuous semipositive toric metric ‖ ‖ on the
ample line bundle L and an e-dimensional stratum S of X′

s, we have

c1(f
∗L, f∗‖ ‖)∧d(Ω) =

d!

e!
· degH(S) ·MA(f‖ ‖ ◦ faff |relint(∆S))(Ω)

for any Lebesgue measurable subset Ω of relint(∆S) where degH(S) := degG∗H(S).

In case of a discretely valued complete field K, a strictly semistable alteration ϕ0 and
the canonical metric for L, this result has been shown in [Gub10, Theorem 6.7].

Proof. Both sides of the claim are continuous with respect to uniform convergence of the
semipositive metrics and weak convergence of Radon measures, hence by Proposition 4.13 we
may assume that ‖ ‖ is a semipositive model metric of L determined on a formal Mumford
model A1 associated to a locally finite trop(Λ)-periodic (Z,Γ)-polytopal decomposition C1

of NR and that h := f‖ ‖ is a piecewise (Q,Γ)-linear strictly convex function with respect to
C1. We may even assume for a given finite set Σ of polytopes in NR that C1 is Σ-transversal.
We use this for the set Σ consisting of the polytope faff(∆S) and all its faces.
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We have also seen that there is a non-zero m ∈ N such that mh is piecewise (Z,Γ)-linear.
If we replace (L, ‖ ‖) by (L⊗m, ‖ ‖⊗m), then both sides of the claim are multiplied by md

and hence we may assume that h = f‖ ‖ is piecewise (Z,Γ)-linear. Then Proposition 4.13
shows that ‖ ‖ is the model metric associated to the model L := L(h) of L on A1.

The polytopal decomposition C1 induces a formal K◦-model X′′ of X over X′ given by the
polytopal subdivision D of S(X′) from (5.13.1) and a morphism ϕ1 : X

′′ → A1 as in 5.13. By
construction, the metric f∗‖ ‖ is the formal metric associated to the model ϕ∗

1(L) of f
∗(L)

on X′′. It follows from 5.13 that the Monge–Ampère measure c1(f
∗(L), f∗‖ ‖) is supported

in the vertices of D , as the latter are the Shilov points ξY for the irreducible components
Y of X′′

s . On the other hand, we note that h ◦ faff |∆S
is a piecewise linear convex function

with respect to DS = D ∩∆S and hence the Monge–Ampère measure MA(g ◦ faff |relint(∆S))
is a discrete measure supported in those vertices of D which are contained in relint(∆S),
see 2.3. It remains to check the claim for Ω consisting of a single vertex ξY of D . Then
we may replace h ◦ faff on the right hand side by hY for the conic piecewise linear convex
function hY in ξY induced by h ◦ faff and the claim follows from Proposition 5.14. Note
that the transversality assumption there holds as C1 is Σ-transversal. �

Remark 6.3. In the setting of Theorem 6.2, we call the canonical face ∆S of the skeleton
S(X′) non-degenerate with respect to f if

(6.3.1) dim(faff(∆S)) = dim(∆S) and dim(G(S) = dim(S)).

Obviously, the second condition in (6.3.1) does not depend on the choice of G. It follows
from the proof above and especially from the degree formula in Proposition 5.14 that the
support of the Monge–Ampère measure c1(f

∗L, f∗‖ ‖)∧d is contained in the union S(X′)nd
of all non-degenerate canonical faces with respect to f .

If ‖ ‖ is the canonical metric ‖ ‖L of L, then the restriction of c1(f
∗L, f∗‖ ‖L)

∧d to the
relative interior of a canonical face ∆S of S(X′) is a multiple of the Lebesgue measure on
relint(∆) as f‖ ‖L

◦ faff is a quadratic function on relint(∆S). It follows from the positive
definiteness of the bilinear form associated to the ample line bundle L that this multiple
is non-zero if and only if ∆S is non-degenerate with respect to f . We conclude that the
support of c1(f

∗L, f∗‖ ‖L)
∧d agrees with S(X′)nd.

Remark 6.4. We note that Theorem 6.2 also yields a formula for the Monge–Ampère
measure of the toric metric ‖ ‖ restricted to L|X by using the projection formula

(6.4.1) c1(L|X , ‖ ‖)∧d = f∗(c1(f
∗L, f∗‖ ‖)∧d).

We will show in the next section that Xan has a smallest subset SX containing the supports
of all these canonical measures and that SX has a canonical piecewise (Q,Γ)-linear structure.

7. The canonical subset

As in the previous section, we consider a closed d-dimensional subvariety X of an abelian
variety A over an algebraically closed non-archimedean field K with non-trivial value group
Γ. We will show that the supports of canonical measures on Xan give rise to a canonical
subset SX of Xan endowed with a canonical piecewise (Q,Γ)-linear structure.

We will start with the definition of the canonical subset of Xan. Then we will recall
(Q,Γ)-skeletons introduced by Ducros which will be an important tool to proof our main
results at the end.

Let L be a rigidified ample line bundle on A and let ‖ ‖L be the canonical metric of L.

Definition 7.1. The support of the Radon measure c1(L|X , ‖ ‖L)
∧d is called the canonical

subset of Xan and will be denoted by SX .
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Remark 7.2. We have seen in Remark 5.9 that there is a Mumford model A0 associated
to a trop(Λ)-periodic (Z,Γ)-polytopal decomposition C0 such that for the closure X of X in
A0, we have a strictly polystable alteration ϕ0 : X

′ → X. Let f : X′
η → Xan be the generic

fiber of ϕ0. By Remark 6.3, the support of c1(f
∗L, f∗‖ ‖L)

∧d is equal to S(X′)nd and hence
the projection formula (6.4.1) proves

(7.2.1) SX = f(S(X′)nd).

Proposition 7.3. The canonical subset SX does not depend on the choice of the ample line
bundle L. Moreover, for any continuous semipositive metric ‖ ‖ on Lan, the support of the
Radon measure c1(L|X , ‖ ‖)∧d is contained in SX .

Proof. Since S(X′)nd does not depend on the ample line bundle L, the first claim follows
from (7.2.1). By Remark 6.3, the support of c1(f

∗L, f∗‖ ‖)∧d is contained in S(X′)nd and
hence the second claim follows from the projection formula (6.4.1). �

Proposition 7.4. If ψ : A→ B is a finite homomorphism of abelian varieties over K, then
we have Sψ(X) = ψ(SX).

Proof. Let L be a rigidified ample line bundle on A. Note that ψ∗(L) is ample and that
ψ∗‖ ‖L is the canonical metric of ψ∗(L). Then the claim follows from the projection formula

ψX,∗(c1(ψ
∗
XL,ψ

∗
X‖ ‖L))

∧d = deg(ψX) · c1(L|X , ‖ ‖L)
∧d

for Monge–Ampère measures where ψX : X → ψ(X) is given by ψ. �

We will show below that SX is a (Q,Γ)-skeleton of Xan as defined by Ducros [Duc12,
4.6]. We will now briefly recall these notions for Xan, but they can be used more generally
for any topologically separated strictly analytic space (see [Duc12, §4]).

7.5. For any strictly analytic domain Y in Xan and invertible analytic functions g1, . . . , gm
on Y , we define the tropicalization map

tropg : Y → Rm, y 7→ (− log |g1(y)|, . . . ,− log |gm(y)|).

A compact subset P of Xan consisting of Abhyankar points is called an analytic (Q,Γ)-
polytope if there is a strictly analytic domain Y containing P and g1, . . . , gm ∈ O(Y )× such
that tropg induces a homeomorphism of P onto a finite union of (Q,Γ)-polytopes in Rm

with the following properties for the induced piecewise (Q,Γ)-linear structure on P : For
any strictly subdomain Z of Xan and any h ∈ O(Z)×, we require that P ∩Z is a piecewise
(Q,Γ)-linear subspace of P and that the restriction of h to P ∩Z is piecewise (Q,Γ)-linear.

A (locally) closed subset S of Xan is called a (Q,Γ)-skeleton if the analytic (Q,Γ)-
polytopes contained in S form an atlas for a piecewise (Q,Γ)-linear structure on S. It
follows from [Duc12, 4.1.2] that the piecewise (Q,Γ)-linear structure on S is completely
determined by the underlying set S and the analytic structure of Xan.

Lemma 7.6. Let Y be an integral strictly affinoid space over K. Then a finite union of
analytic (Q,Γ)-polytopes of Y is an analytic (Q,Γ)-polytope of Y .

Proof. We will use the criterion 2) in [Duc12, Lemma 4.4]. To show that a compact subset
S of Y consisting of Abhyankar points is an analytic (Q,Γ)-polytope of Y , it is enough to
show the following properties:

(i) tropg(S) is a piecewise (Q,Γ)-linear subspace of Rm for any g1, . . . , gm ∈ O(Y )\{0};
(ii) there are g1, . . . , gm ∈ O(Y )\{0} such that the restriction of tropg to S is injective.

By induction, it is enough to show for analytic (Q,Γ)-polytopes P and Q of Y that P ∪Q
is an analytic (Q,Γ)-polytope of Y . Let g1, . . . , gm ∈ O(Y ) \ {0}. Since tropg(P ) and
tropg(Q) are finite unions of (Q,Γ)-polytopes in Rm, it follows that the same is true for
tropg(P )∪tropg(Q) proving (i) for P ∪Q. To prove (ii), we include in the list g1, . . . , gm the



MONGE–AMPÈRE MEASURES FOR TORIC METRICS ON ABELIAN VARIETIES 21

functions appearing in (ii) for the analytic (Q,Γ)-polytopes P and Q. Then tropg restricts
to an injective function on P and also to an injective function on Q. We will enlarge the
list to get an injective function on P ∪ Q. For any x ∈ P , there is at most one y ∈ Q
such that tropg(x) = tropg(y). Since Y is affinoid, there is an analytic function h on Y
with |h(x)| 6= |h(y)|. Including h in the list, we conclude that x is the only point in P ∪Q
mapping to tropg(x). By continuity, the same holds for all x′ in a neighbourhood of x in P .
By compactness of P , we conclude that we may add a finite number of non-zero analytic
functions of Y to the list g1, . . . , gm to ensure that tropg is injective on P ∪Q. This proves
(ii) and hence P ∪Q is an analytic (Q,Γ)-polytope. �

We will frequently use the following notions introduced in Section 4: We have the uni-
formization Aan = Ean/Λ from the Raynaud extension

0 −→ T an −→ Ean q
−→ Ban −→ 0,

where Ban is the generic fiber of a formal abelian scheme B over K◦. Let N be the cochar-
acter lattice of the torus T and let trop: Aan → NR/ trop(Λ) the canonical tropicalization.

Theorem 7.7. The canonical subset SX of Xan is a (Q,Γ)-skeleton of Xan for any closed
subvariety X of A. For any strictly polystable alteration ϕ0 : X

′ → X as in Remark 7.2 with
generic fiber f : X′

η → Xan and any canonical face ∆S of S(X′) which is non-degenerate with
respect to f , the morphism f induces a piecewise (Q,Γ)-linear isomorphism ∆S → f(∆S).

Proof. By definition, the support of a Radon measure is closed, so SX is closed in Xan

and hence compact. We choose a strictly polystable alteration ϕ0 : X
′ → X as in Remark

7.2. Let f : X′
η → Xan be the generic fiber. The skeleton S(X′) is a (Q,Γ)-skeleton of X′

η

[Duc12, Exemple 4.8] and hence it consists of Abhyankar points. Since Abhyankar points
cannot be contained in a lower dimensional closed analytic subset, we conclude that S(X′)
is contained in the finite part of the generically finite morphism f . By [Duc18, 1.4.14], it
follows that f(S(X′)) consists of Abhyankar points. In particular, this holds for SX .

To show that SX is a (Q,Γ)-skeleton of Xan, we may argue G-locally at any x ∈ Xan

with respect to the Grothendieck topology induced by the strictly analytic domains of Xan,
see [Duc12, Proposition 4.9]. If x 6∈ SX , then SX is empty in a neighbourhood of x and
the claim holds. So we may assume that x ∈ SX . We recall from 5.10 that X is the
closure of X in the Mumford model A0 associated to a trop(Λ)-periodic (Z,Γ)-polytopal
decomposition C0 of NR. We pick a lift x̃ ∈ Ean of x with respect to the quotient morphism
p : Ean → Aan = Ean/Λ. There is a unique ∆ ∈ C0 such that trop(x̃) ∈ relint(∆). We fix
torus coordinates x1, . . . , xn of T giving NR

∼= Rn. It is explained in [Gub10, 4.2] that there
is a formal affine open covering of B such that, for the generic fiber W of any member of
the covering, the morphism q : Ean → Ban splits over W and such that for y ∈ trop−1(W ),
the canonical tropicalization is given by

(7.7.1) trop(y) = troph(y) = (− log |h1(y)|, . . . ,− log |hn(y)|)

where hj := p∗1(xj) for the first projection p1 with respect to the splitting q−1(W ) ∼=
T an ×W . We pick such a W with q(x̃) ∈ W . Since trop(x̃) ∈ relint(∆), we deduce that
U∆,W := trop−1(∆) ∩ q−1(W ) ∼= U∆ ×W is a strictly affinoid domain of Ean containing x̃,
where U∆ is the polytopal domain of T an given by the preimage of ∆ with respect to the
classical tropicalization map T an → NR

∼= Rn.
The quotient Aan = Ean/Λ and the construction of the Mumford model A0 identifies

q−1(W )/Λ with the generic fiber V∆,W of a formal affine open subset V∆,W of A0 such that
x ∈ V∆,W . We will view h1, . . . , hn as invertible analytic functions on V∆,W . It follows

from (7.7.1) and the definitions that troph ◦f |S(X′) is a lift of faff |S(X′) from trop(Aan) =
NR/ trop(Λ) to NR

∼= Rn. If ∆S is a canonical face of S(X′) which is non-degenerate with
respect to f , then we conclude that the restriction of troph to f(∆S) is injective.
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Since x ∈ SX , we know that x is an Abhyankar point and hence x ∈ Xan
reg. We conclude

that Xan is G-locally integral at x and hence there is an integral strictly affinoid domain
Y of Xan with x ∈ Y ⊂ V∆,W . By [Duc12, 4.6.1], it is enough to prove that SX ∩ Y is a
(Q,Γ)-analytic polytope of Y . Note that SX is the union of f(∆S) with S ranging over all
canonical faces ∆S of S(X′) which are non-degenerate with respect to f . Therefore Lemma
7.6 yields that it is enough to show that f(∆S) ∩ Y is an analytic (Q,Γ)-polytope of Y for
any canonical face ∆S which is non-degenerate with respect to f . To show this, we will use
criterion 2) in [Duc12, Lemma 4.4] recalled in the proof of Lemma 7.6. Let g1, . . . , gm be
non-zero analytic functions on Y . Since ∆S consists of Abhyankar points, the restriction
of any gj to f(∆S) is invertible and hence there is a strictly affinoid neighbourhood Z
of f(∆S) ∩ Y in Y such that every gj is an invertible analytic function on Z. Note that
Z ′ := f−1(Z) is a strictly analytic domain of X′

η and we have ∆S ∩ f
−1(Y ) = ∆S ∩Z

′. The

analytic function g′j := gj ◦ f is invertible on Z ′ for j = 1, . . . ,m. We have

(7.7.2) tropg(f(∆S) ∩ Y ) = tropg′(∆S ∩ f−1(Y )) = tropg′(∆S ∩ Z ′).

Since S(X′) is a (Q,Γ)-skeleton and Z ′ is a strictly analytic domain in X′
η , it follows from

[Duc12, 4.6.2, 4.6.3] that ∆S∩Z
′ is a (Q,Γ)-skeleton in Z ′. By [Duc12, 4.6.4], the map tropg′

is piecewise (Q,Γ)-linear on ∆S∩Z
′ and hence we deduce from (7.7.2) that tropg(f(∆S)∩Y )

is a finite union of (Q,Γ)-polytopes in Rm. This proves (i) of the criterion.
Now we choose for g1, . . . , gm the restrictions of the functions h1, . . . , hn to Y . We have

already seen that the restriction of troph to f(∆S) is injective. We conclude that the same
is true for the restriction to the subset f(∆S) ∩ Y which proves (ii) of the criterion. Then
the criterion yields that f(∆S) ∩ Y is an analytic (Q,Γ)-polytope of Y proving that SX is
a (Q,Γ)-skeleton.

Since troph is injective on f(∆S) for any non-degenerate canonical face ∆S of S(X′),
we get an induced piecewise (Q,Γ)-linear isomorphism f(∆S) → troph(f(∆S)). We have
seen that troph ◦f |∆S

is a lift of faff |∆S
and hence a (Q,Γ)-linear isomorphism of ∆S onto

troph(f(∆S)). Therefore f induces a piecewise (Q,Γ)-linear isomorphism ∆S → f(∆S). �

By Theorem 7.7, the set SX has a canonical piecewise (Q,Γ)-linear structure.

Corollary 7.8. There is a polytopal (Q,Γ)-decomposition Σ of the canonical subset SX
such that for any rigidified ample line bundle L on A with canonical metric ‖ ‖L, we have

c1(L|X , ‖ ‖L)
∧d =

∑

σ∈Σ

rσµσ

where µσ is a fixed choice of a Lebesgue measure on the polytope σ and where rσ ∈ R≥0

with rσ > 0 for all maximal σ.

Proof. We choose a strictly polystable alteration ϕ0 : X
′ → X as in Remark 7.2 with generic

fiber f : X′
η → Xan. We have seen in Theorem 7.7 that f restricts to a surjective piece-

wise (Q,Γ)-linear map S(X′)nd → SX with finite fibers. It follows that there is a (Q,Γ)-
polytopal decomposition Σ′ of S(X′)nd refining the canonical face structure of S(X′) such
that Σ := f(Σ′) is a polytopal decomposition of SX . Note that f restricts to a (Q,Γ)-affine
isomorphism σ′ → σ := f(σ′) for all σ′ ∈ Σ′. We conclude that the push-forward of a
Lebesgue measure on σ′ is a Lebesque measure on σ. Using the projection formula (6.4.1),
the claim follows from Remark 6.3. �

The following tropical description of the canonical Monge–Ampère measures has been
shown in [Gub10, Theorem 1.1] in the special case ofK being the completion of the algebraic
closure of a field with a discrete valuation. This statement is crucially used in Yamaki’s
reduction theorem, which is a major contribution to the proof of the geometric Bogomolov
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conjecture by Xie and Yuan [XY21]. We show here that this tropical description is true for
any algebraically closed non-trivially valued non-archimedean field K.

Theorem 7.9. The canonical tropicalization map trop: Aan → Rn/Λ gives a surjective
piecewise (Q,Γ)-linear map SX → trop(Xan) with finite fibers.

Proof. The proof follows the same lines as in [Gub10, §7] and so we only give a sketch, mainly
pointing out the necessary adaptions. We have seen in Theorem 7.7 that the canonical
subset SX of Xan is a (Q,Γ)-skeleton in Xan, which implies that trop induces a piecewise
(Q,Γ)-linear map SX → trop(Xan). We use a strictly polystable alteration ϕ0 : X

′ → X as
in Remark 7.2 with generic fiber f : X′

η → Xan. Since faff agrees with trop ◦f on S(X′),

it follows easily from SX = f(S(X′)nd) that the piecewise linear map SX → trop(Xan) has
finite fibers. It remains to prove surjectivity. We have to show that for any ω ∈ trop(Xan)
there is a canonical face ∆S of S(X′) which is non-degenerate with respect to f such that

(7.9.1) ω ∈ faff(∆S) = trop(f(∆S)).

Let d− e be the local dimension of trop(Xan) at ω. Using the density of the value group Γ,
we may assume that ω ∈ NΓ/ trop(Λ) and that ω is not contained in a polytope faff(∆T )
of lower dimension.

Our tropical dimensionality assumption at ω allows us to find a trop(Λ)-periodic (Z,Γ)-
polytopal decomposition C1 of NR such that for the unique ∆ ∈ C1 with ω ∈ relint(∆) we
have trop(Xan)∩∆ = {ω} and codim(∆) = d−e. Similarly as in the proof of Theorem 6.2,
we have a canonical morphism ϕ1 : X

′′ → A1 to the Mumford model A1 associated to C1,

where X′′ is the formal scheme over X′ associated to the subdivision D = {∆S ∩ f
−1
aff (σ) |

S stratum of X′ , σ ∈ C1}. The analytic domain trop
−1

(∆) is the generic fiber of a formal
open subset U of A1. Let X1 be the closure of X in A1. The special fiber of X1 has an
irreducible component Y intersecting U. Since the map ϕ1 induces a surjective proper map
X′′ → X1, there is an irreducible component Y ′ of X′′

s mapping onto Y . Let ξ′ be the vertex
of D corresponding to Y ′ (see 5.7), then one deduces from the choice of C1 that faff(ξ

′) = ω.
We claim that the unique canonical face ∆S of S(X′) with ξ′ ∈ relint(∆S) is non-degenerate
with respect to f which then proves (7.9.1) and the theorem.

Using that relint(∆S) contains a vertex of D , one deduces that faff is injective on ∆S

proving the first condition for non-degeneracy with respect to f . Since faff(∆S) contains
ω, we have dim(∆S) = dim(faff(∆S)) = d − e, hence the corresponding stratum S is e-
dimensional. Let G : S → B be the morphism from 6.1. Then it is clear that dim(G(S)) ≤ e
and it remains to show equality. It is shown in [Gub10, Proposition 4.8] that the strata of
the special fiber of the formal Mumford model A1 correspond bijectively to the faces of C 1.
Using the construction of Mumford models, there is a canonical multi-valued morphism
q1 : A1 → B. The restriction of q1 to a stratum closure becomes a single-valued morphism
which is canonical up to translation. We have seen in 5.7 that the dense stratum of Y ′ is a
fiber bundle over S which can be used together with ϕ1(Y

′) = Y to show that G(S) = q1(Y )
for a suitable choise of the morphism q1 : Y → Bs. By [Gub10, Proposition 4.8] again, ifW∆

is the stratum corresponding to ∆, thenW∆ is a fiber bundle over Bs with fiber isomorphic
to the codim(∆)-dimensional toric variety given by the star of ∆. Since ξ := f(ξ′) is a point
of Xan with reduction equal to the generic point of Y and since trop(ξ) = faff(ξ

′) = ω ∈
relint(∆), we conclude that Y is contained in W∆. As this stratum has relative dimension
d− e over Bs and since d = dim(Y ), we deduce that dim(q1(Y )) ≥ e. We conclude that

e ≥ dim(G(S)) = dim(q1(Y )) ≥ e

proving equality everywhere and hence ∆S is non-degenerate with respect to f . �
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Appendix A. Differential forms, currents and positivity

Here, we summarize results about differential forms and currents on tropical and non-
archimedean spaces. Let N be a free abelian group of rank n and NR the base extension to
R. In the applications below, we usually take N = Zn and hence NR = Rn, which amounts
to fix a basis in the lattice N .

A.1. In Lagerberg’s thesis [Lag12], he has introduced a bigraded differential sheaf of R-
algebras A•,• on NR with differentials d′, d′′. We call the elements Lagerberg forms. They
have similar properties as the complex (p, q)-forms.

More generally, by restriction we get a bigraded differential sheaf A•,• of R-algebras with
differentials d′, d′′ on any tropical cycle S of NR and a dual notion of currents on S, see
[GK17, §3]. The elements of A•,• can be seen as functions on S which we call smooth
functions.

A.2. There is a unique involution J of the sheaf A•,• which leaves the smooth functions
invariant and satisfies Jd′ = d′′J . A smooth (p, p)-form α on S is called positive if

α = (−1)
p(p−1)

2

m
∑

j=1

fjαj ∧ Jαj

for smooth non-negative functions fj and smooth (p, 0)-forms αj on S. Again, positive
forms are obtained from positive forms on NR and the latter are studied in [BGJK21b]. In
particular, we deduce that positive Lagerberg forms on S are closed under products.

A Lagerberg current T on S is called of type (p, q) if it acts on the compactly supported
(p, q)-forms on S. A Lagerberg current T on S of type (p, p) is called symmetric if TJ =
(−1)pT . A positive Lagerberg current is a symmetric Lagerberg current T of type (p, p) on
S such that T (α) ≥ 0 for all compactly supported smooth (p, p) forms α on S.

In the following, we denote by X a good strictly analytic space over a non-trivially
valued non-archimedean field K. Recall that Berkovich introduced the boundary ∂X of X
in [Ber90, §3.1]. We call X boundary-free if ∂X = ∅. The analytification of an algebraic
variety over K is always boundary-free [Ber90, Theorem 3.4.1].

A.3. Let W be a compact strictly analytic domain in X. We call h : W → Rn a smooth
tropicalization map if all the coordinate functions are given by hi = log |fi| for invertible
analytic functions fi on W . We call h a harmonic tropicalization map if all the hi are
harmonic functions, see [GJR21, §7]. Since every smooth function is harmonic, every smooth
tropicalization map is harmonic. For a harmonic tropicalization map h, a generalization
of Berkovich of the Bieri–Groves theorem from tropical geometry shows that the tropical
variety h(W ) is a finite union of (Z,Γ)-polytopes in Rn of dimension at most dim(W ).

Chambert-Loir and Ducros [CD12] used smooth tropicalization maps to introduce smooth
(p, q)-forms on Berkovich spaces. In [GJR21], the smooth tropicalization maps were replaced
by harmonic tropicalization maps to obtain a larger class of weakly smooth forms with better
cohomological behavior. The constructions can be summarized as follows.

Proposition A.4. There is a bigraded differential sheaf A•,•
sm (resp. A•,•) of R-algebras on

X with an alternating product ∧ and differentials d′, d′′ satisfying the following properties:

(i) For a morphism f : X ′ → X of good strictly analytic spaces, there is a functorial
homomorphism f∗ : AX → f∗AX′ of sheaves of bigraded differential R-algebras.

(ii) If h : W → Rn is a smooth (resp. harmonic) tropicalization map on a compact
strictly analytic subdomain W of X, there is an injective homomorphism

h∗ : A•,•(h(W )) → A•,•(W )

of bigraded differential R-algebras lifting smooth Lagerberg forms from h(W ) to W .
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(iii) Using the above notation, we have (h ◦ f)∗ = f∗ ◦ h∗.
(iv) For ω ∈ A(X), any x ∈ X has a strictly affinoid neighbourhood W with a smooth

(resp. harmonic) tropicalization map h : W → Rn such that ω|W = h∗(α) for some
α ∈ A(h(W )).

We call A•,•
sm (resp. A•,•) the sheaf of smooth (resp. weakly smooth) forms. These sheaves

of bigraded differential R-algebras are characterized up to unique isomorphisms by (i)–(iv).

A.5. If X is also boundary-free and separated, Chambert-Loir and Ducros introduced cur-
rents of type (p, q) as continuous linear functionals acting on compactly supported smooth
forms of bidegree (p, q) [CD12, §4]. The analogous continuous linear functionals on the
space of compactly supported weakly smooth forms are called strong currents. We denote
by Dsm

p,q (resp. Dp,q) the sheaf of currents (resp. strong currents) of type (p, q) on X.
For any smooth (resp. weakly smooth) form ω, the theory of integration for top dimen-

sional forms [CD12, §3] yields an associated current [ω]sm (resp. strong current [ω]) similarly
as in complex analysis, see [CD12, §4.3] and [GJR21, §11].

A.6. We call a smooth (resp. weakly smooth) (p, p)-form on X positive if it is locally
given by the pull-back of a smooth positive Lagerberg form with respect to a smooth
(resp. harmonic) tropicalization map in the sense of Proposition A.4(iv). Again, there is a
unique involution J acting on A and on its subsheaf Asm which leaves the weakly smooth
functions invariant and satisfies d′J = Jd′′.

Now assume that X is also boundary-free and separated. By duality, we also get a
Lagerberg involution J acting on Dsm (resp. D). A (strong) current T of type (p, p) on X
is called symmetric if TJ = (−1)pT . We say that a symmetric (strong) current T of type
(p, p) is positive if T (ω) ≥ 0 for all compact supported (weakly) smooth positive forms α of
bidegree (p, p) on X.

A.7. Still assuming X boundary-free and separated, we assume that L is a line bundle on
X endowed with a continuous metric ‖ ‖. Then the first Chern current (resp. strong first
Chern current) of (L, ‖ ‖) is given as follows: Locally, we choose an open subset U of X
which is a trivialization of L over U . Hence there is a frame s ∈ L(U). Then the first Chern
current (resp. strong first Chern current) of (L, ‖ ‖) is given on U by d′d′′[− log ‖s‖]sm
(resp. d′d′′[− log ‖s‖]). As this does not depend on the choice of the trivialization, this
defines a globally defined (strong) current, see [CD12, §6.4]. Note that the restriction of
the strong first Chern current to compactly supported smooth forms agrees with the first
Chern current.

The following result has been shown by Chambert-Loir and Ducros [CD12, Lemme 5.5.3]
for smooth tropicalization maps. Their argument generalizes to harmonic tropicalization
maps. For convenience of the reader, we will provide the proof here.

Proposition A.8. Let X be a compact good strictly analytic space over K of pure dimen-
sion d with a harmonic tropicalization map h : X → Rn. We consider a smooth function
f : h(X) → R. Then d′d′′[f ◦ h] is a positive strong current on X \ ∂X if and only if the
restriction of f to any d-dimensional face of the tropical variety h(X) is convex.

Proof. We assume first that d′d′′[f ◦h] is a positive strong current on X \∂X. Using results
of Berkovich and Ducros [Duc12, Theorem 3.4], the tropical variety h(X) is the support of
a (Z,Γ)-polytopal complex of dimension at most d such that h(∂X) is contained in faces
of dimension at most d− 1. Let ∆ be any d-dimensional face of h(X). Then positivity of
d′d′′[f ◦ h] on X \ ∂X yields that d′d′′[f ] is a positive current on relint(∆) and hence f is a
convex function on the relative interior of ∆ by [Lag12, Proposition 2.5]. By continuity of
f , we conclude that f is convex on ∆.
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To prove the converse, we assume that the restriction of f to any d-dimensional face of
∆ is convex. Let ω be a positive weakly smooth form on X \ ∂X with compact support
and of bidegree (n− 1, n − 1). Using the theorem of Stokes, we have to prove that

∫

X\∂X
d′d′′(f ◦ h) ∧ ω ≥ 0.

We view ω as a compactly supported weakly smooth form on X. Since X is good, there
is a family (Ui)i∈I of strictly affinoid subdomains of X whose interiors U◦

i cover X and
harmonic tropicalization maps hi : Ui → Rni such that ω|Ui

= h∗i (αi) for some smooth
positive (n−1, n−1)-Lagerberg form αi on hi(Ui). By [CD12, Proposition 3.3.6], there is a
smooth partition of unity (ϕi)i∈I subordinated to the covering (U◦

i )i∈I . We may assume that
the tropicalization map hi is a refinement of h, i.e. there is a (Z,Γ)-affine map Li : hi(Ui) →
h(X) such that h = Li ◦ hi. Then the function fi := f ◦ Li is a smooth function on hi(X)
with convex restriction to each d-dimensional face. We conclude that

∫

X\∂X
d′d′′(f ◦ h) ∧ ω =

∑

i∈I

∫

Ui

ϕi · h
∗
i (d

′d′′fi ∧ αi).

The support Ki of the weakly smooth form ηi := ϕi · h
∗
i (fid

′d′′αi) is a compact subset of
U◦
i ∩ (X \ ∂X) = Ui \ ∂Ui [Ber90, Proposition 3.1.3]. It follows from [CD12, Lemme 3.2.5]

that we can apply [CD12, Proposition 3.4.4] to this compact subset Ki of Ui \ ∂Ui. We
conclude that there is a strictly affinoid neighbourhood Vi of supp(ηi) in Ui and a smooth
tropicalization map Fi : Vi → Rmi which satifies ϕi|Vi = φi ◦Fi on Vi for a smooth function
φi on Fi(Vi). Replacing Fi by a harmonic tropicalization map refining hi, we may assume
that Fi = hi. We conclude that

∫

X\∂X
d′d′′(f ◦ h) ∧ ω =

∑

i∈I

∫

Vi

h∗i (φi) · h
∗
i (d

′d′′fi ∧ αi) =

∫

hi(Vi)
d′d′′fi ∧ (φiαi).

Since φiαi is a positive Lagerberg form on hi(Vi) and since d′d′′fi is a positive Lagerberg
form on each maximal face ∆ of hi(Vi) as fi|∆ is a smooth convex function, the above
integral is non-negative proving the claim. �

Corollary A.9. With the setup of Proposition A.8 and assuming h is a smooth tropicaliza-
tion map, we have d′d′′[f ◦h] is a positive strong current on X \∂X if and only d′d′′[f ◦h]sm
is a positive current on X \ ∂X.

Proof. This follows immediately from Proposition A.8 as the same criterion holds for pos-
itivity of the current d′d′′[f ◦ h]sm on X \ ∂X with respect to the smooth tropicalization
map h, see [CD12, Lemme 5.5.3]. �

In the following, we assume that X is a good strictly analytic boundary-free separated
Berkovich space (for example the analytification of an algebraic variety). We consider a
line bundle L over X endowed with a continuous semipositive metric ‖ ‖. It was shown in
[GJR21, Theorem 1.3] that the first Chern current of (L, h) is positive. Using the above,
the same arguments show the following result:

Theorem A.10. Let ‖ ‖ be a continuous semipositive metric on L. Then the strong first
Chern current of (L, ‖ ‖) is positive.

Proof. By restriction to the irreducible components of X, we may assume that X is of
pure dimension. By assumption, the metric ‖ ‖ is a uniform limit of semipositive model
metrics. Since such a limit obviously preserves positivity of the strong first Chern current,
we may assume that ‖ ‖ is a semipositive model metric. Then [GJR21, 7.14, Proposition
7.10] yields that ‖ ‖ is locally a uniform limit of smooth metrics with positive first Chern
currents. By Corollary A.9, the strong first Chern currents of the smooth metrics are also
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positive. As the claim is local, the above limit argument shows positivity of the strong first
Chern current of (L, ‖ ‖). �
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