
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 354, Number 4, Pages 1667–1697
S 0002-9947(01)02930-0
Article electronically published on December 4, 2001

MONGE’S TRANSPORT PROBLEM
ON A RIEMANNIAN MANIFOLD

MIKHAIL FELDMAN AND ROBERT J. MCCANN

Abstract. Monge’s problem refers to the classical problem of optimally trans-
porting mass: given Borel probability measures µ+ 6= µ−, find the measure-
preserving map s : M −→ M between them which minimizes the average
distance transported. Set on a complete, connected, Riemannian manifold M
— and assuming absolute continuity of µ+ — an optimal map will be shown
to exist. Aspects of its uniqueness are also established.

The mass transportation problem, formulated by Gaspard Monge in 1781, is to
move one distribution of mass onto another as efficiently as possible, where Monge’s
original criterion for efficiency was to minimize the average distance transported
[15]. For a discussion of the problem, its history, recent results, and applications,
we refer the reader to Evans [6], Ambrosio [1] and Villani [20]. The purpose of
this paper is to investigate the existence and uniqueness of an optimal solution
when the problem is set on a Riemannian manifold. Existence is resolved by ex-
tending a method developed in recent work of Caffarelli-Feldman-McCann [3] and
Trudinger-Wang [19] on Euclidean space. The uniqueness results parallel Euclidean
investigations from our paper [11] and Ambrosio [1]. Previous approaches to the
existence question were given in Euclidean space by Sudakov [18] and Evans and
Gangbo [7].

Fix a C3 smooth, geodesically complete, connected Riemannian manifold M .
Denote by d(x, y) the geodesic distance between points x and y ∈ M . Let µ+ and
µ− be two Borel measures on M , absolutely continuous with respect to the volume
measure on M , i.e., dµ± = f±(x)d vol(x), where f± ∈ L1(M,d vol(x)) are Borel
functions. We assume that the total masses of µ+ and µ− are finite and equal:

µ+(M) = µ−(M) <∞,(1)

which also can be written as∫
M

f+(x)d vol(x) =
∫
M

f−(x)d vol(x).(2)

We assume that f+ and f− have compact supports and study the following problem:
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1668 MIKHAIL FELDMAN AND ROBERT J. MCCANN

Problem 1. Find a mapping s : M →M which minimizes the functional

I[r] =
∫
M

d(x, r(x)) dµ+(x)(3)

among all Borel maps r ∈ A(µ+, µ−) which push the measure µ+ forward to µ−,
meaning each continuous function φ ∈ C(M) satisfies∫

M

φ(r(x))dµ+(x) =
∫
M

φ(y)dµ−(y).(4)

Our main result is

Theorem 1 (Existence of Optimal Maps). Fix two L1(M,d vol(x)) densities f+,
f− ≥ 0 with compact support and the same total mass (2). Then there exists a Borel
map s : M −→M which solves Monge’s problem, in the sense that it minimizes the
average distance (3) transported among all maps pushing f+ forward to f− (4).

The proof follows an argument developed in the Euclidean setting by Caffarelli-
Feldman-McCann [3] and independently Trudinger and Wang [19]. Our starting
point is slightly different, however, since we do not begin from a solution to the
minimization problem (3) in which the integrand has been replaced by a strictly
convex function dp (p > 1) of the geodesic distance d(x, r(x)) [14]. We instead solve
directly a dual problem, whose solution u : M → R1, called a Kantorovich potential,
is a Lipschitz function with Lipschitz constant one. This potential determines a set
of transport rays — paths from suppµ+ to suppµ− — along which u decreases
with maximum admissible rate. In the case of a complete Riemannian manifold,
the transport rays are length-minimizing segments of geodesics.

We show that any optimal map takes each transport ray into itself. Then we
restrict the measures µ+ and µ− onto each ray so that the mass balance holds,
and solve a one-dimensional transportation problem on each ray. Thus we get an
optimal map on each ray, hence on M .

In order to restrict the measures onto transport rays, we introduce a measure-
decomposing change of variables by defining coordinates x1, . . . , xn on certain sub-
sets of M , such that xn measures distance along each ray, and the variables x1, . . . ,
xn−1 parametrize rays, or, more precisely, parametrize a fixed level set of u. In
a smooth setting, these are the Gaussian normal coordinates orthogonal to the
level set of u. But in general, the lack of smoothness of u will prevent us from
constructing these coordinates globally, or even on small open balls. We therefore
decompose the set of all rays into a countable collection of special Borel subsets,
chosen so that the rays enjoy a more “regular” structure within each subset, and
perform a Lipschitz change of variables on each subset separately. These “coordi-
nate neighborhoods” are not generally open, and therefore cannot be among the
coordinate neighborhoods which define the differentiable structure on M .

It is important to know that the restrictions of measures on rays which emerge
from Fubini’s theorem applied in the above coordinates are absolutely continuous
with respect to arclength on each ray. For this the change of variables must be
Lipschitz locally. This is a subtle point in dimensions n ≥ 3. Indeed, as discovered
by Ambrosio [1], Alberti, Kircheim and Preiss, it is the source of a gap in the original
solution to Monge’s problem on Rn proposed by Sudakov [18]. We therefore need
to establish a Lipschitz control on the directions of rays passing near each point
in M . The proof of this estimate is a main technical difficulty distinguishing the
present Riemannian problem from the Euclidean case studied in [3] and [19].
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The remainder of the paper is organized as follows. In section 1 we solve the
Kantorovich dual problem on a general metric space (which in particular applies to
any Riemannian manifold). In section 2 we study the geometry of transport rays on
M . In section 3 we prove the Lipschitz control on the directions of transport rays.
In sections 4–6 we define the measure-decomposing change of variables and briefly
describe the construction of the optimal map, referring to [3] for details. In section 7
we extend to Riemannian manifolds the results of our work [11] on uniqueness both
of the optimal map satisfying a one-dimensional monotonicity condition, and of the
transport density: we show that the cost-flow density generated along geodesics by
any optimal map is an L1(M) function which does not depend on the specific choice
of optimal map. An alternate approach to uniqueness of the Euclidean transport
density may be found in Ambrosio [1].

1. Background on dual problems

In this section we recall a problem formulated by Kantorovich as a dual to
Monge’s problem. We construct its well-known solution, and extract various prop-
erties germane to our purposes. This part of the construction is most naturally
set in an abstract metric space (i.e., not necessarily a complete Riemannian man-
ifold metrized by the geodesic distance), so for this section alone we work in this
more general setting. Throughout the other sections of the paper we revert to a
Riemannian manifold.

Let (M,d) be a complete separable metric space, where M is a set, and d(·, ·) is
a distance on M . Let µ+, µ− be two Borel measures on M with compact support,
satisfying (1). We formulate Monge’s Problem 1 for measures µ+, µ− on the metric
space (M,d).

The corresponding dual problem is:

Problem 2 (Dual). Let µ+, µ− be the measures in Problem 1. Denote the support
of µ+ by X and µ− by Y. Among all pairs of functions ϕ ∈ C(X ), ψ ∈ C(Y)
satisfying

ϕ(x) + ψ(y) ≤ d(x, y) for all x ∈ X , y ∈ Y,(5)

find a pair (ϕ0, ψ0) maximizing the functional

K(ϕ, ψ) =
∫
X
ϕ(x) dµ+(x) +

∫
Y
ψ(y) dµ−(y).(6)

In fact, the duality assertion I[s] = K(φ0, ψ0) which relates these two problems
holds much more generally; see Rachev and Rüschendorf [16]. But when the triangle
inequality is satisfied, then — as is also well-known and we shall shortly see — the
Dual Problem 3 is equivalent to the problem as stated by Kantorovich [12]: Let
Lip1(M,d) denote the set of functions on M which are Lipschitz continuous with
Lipschitz constant no greater than one; i.e.

Lip1(M,d) =
{
u : M → R1 | |u(x)− u(y)| ≤ d(x, y) for any x, y ∈M

}
.

Problem 3 (Kantorovich). Maximize K̂[v] on Lip1(M,d), where

K̂[v] =
∫
M

v(dµ+ − dµ−).
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1670 MIKHAIL FELDMAN AND ROBERT J. MCCANN

We begin by demonstrating the equivalence of Problems 2 and 3, which we
combine with compactness of Lip1(M,d) to deduce that the maximum of (6) is
attained. The argument is a modification of a proof from Evans’ review article [6,
Lemma 9.1].

Proposition 2 (Lipschitz Maximizer). Let (M,d) be a complete separable metric
space with two finite Borel measures µ+, µ− having compact support X , Y ⊂M and
the same mass (1). Then a maximizing pair (ϕ0, ψ0) exists for Problem 2 satisfying

ϕ0 = u on X , ψ0 = −u on Y,(7)

with u ∈ Lip1(M,d). Moreover,

ϕ0(x) = inf
y∈Y

(d(x, y) − ψ0(y)) for any x ∈ X ;(8)

ψ0(y) = inf
x∈X

(d(x, y)− ϕ0(x)) for any y ∈ Y.(9)

Proof. Let ϕ, ψ satisfy (5). For x ∈ X define

ϕ̂(x) = inf
y∈Y

(d(x, y) − ψ(y)).(10)

Then

ϕ̂(x) + ψ(y) ≤ d(x, y),(11)

ϕ̂(x) ≥ ϕ(x)(12)

hold for all x ∈ X and y ∈ Y, where (5) was used in the last inequality. Define

ψ̂(y) = inf
x∈X

(d(x, y) − ϕ̂(x)) for any y ∈M.(13)

From (13) and (11),

ϕ̂(x) + ψ̂(y) ≤ d(x, y)
(
x ∈ X , y ∈M

)
,(14)

ψ̂(y) ≥ ψ(y)
(
y ∈ Y

)
.(15)

Now, by (10) and (15),

ϕ̂(x) ≥ inf
y∈Y

(d(x, y) − ψ̂(y))
(
x ∈ X

)
.

So, by (14), we get for all x ∈ X
ϕ̂(x) = inf

y∈Y
(d(x, y) − ψ̂(y)).(16)

Now we can extend ϕ̂ from X to the whole space M using the right-hand side of
(16) as the definition of ϕ̂(x). Thus (16) holds for all x ∈M .

Next, we prove ϕ̂ ∈ Lip1(M,d) [being an infimum of Lipschitz functions of x].
Indeed, let x∗ ∈M and ε > 0. By (16), there exists y∗ ∈ Y such that

ϕ̂(x∗) > d(x∗, y∗)− ψ̂(y∗)− ε.
For any x ∈M , (16) yields

ϕ̂(x) ≤ d(x, y∗)− ψ̂(y∗),

so

ϕ̂(x) − ϕ̂(x∗) ≤ d(x, y∗)− d(x∗, y∗) + ε ≤ d(x∗, x) + ε.

Since the above inequality holds for any x∗, x ∈ M and ε > 0, it follows that
ϕ̂ ∈ Lip1(M,d). Similarly ψ̂ ∈ Lip1(M,d).
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Now we show that ϕ̂ + ψ̂ = 0 on the compact set X . Let z ∈ X be such that
ϕ̂(z) + ψ̂(z) < 0. By (16), (13) and continuity of ϕ̂, ψ̂, there exist x ∈ X , y ∈ Y
such that

ϕ̂(z) = d(z, y)− ψ̂(y),

ψ̂(z) = d(z, x)− ϕ̂(x).

From this we get, using ϕ̂(z) + ψ̂(z) < 0,

d(z, y) + d(z, x) = ϕ̂(z) + ψ̂(z) + ϕ̂(x) + ψ̂(y) < ϕ̂(x) + ψ̂(y) ≤ d(x, y),

contradicting the triangle inequality. Thus we have ϕ̂+ψ̂ ≥ 0 on X . Combining this
with (14) yields ϕ̂+ ψ̂ = 0 on X . Thus, denoting u = −ψ̂ we have u ∈ Lip1(M,d),

ϕ̂ = u on X , and ψ̂ = −u on Y.

Note that

K̂[u] = K[ϕ̂, ψ̂] ≥ K[ϕ, ψ](17)

by (12) and (15). Thus the maximum in the Kantorovich Problem 3 will be just
as large as the maximum in Problem 2, despite the fact that it is taken over a
class of functions {(v,−v) | v ∈ Lip1(M,d)} more restricted than (5). In this sense
the two problems are equivalent. Moreover, for any maximizing (ϕ, ψ) in Problem
2, there is another maximizing pair (ϕ̂, ψ̂) satisfying all properties asserted in the
proposition; indeed u = −ψ̂ also maximizes Problem 3.

It remains to prove the existence of a maximizing pair (ϕ, ψ). Therefore, let
{vn} be a maximizing sequence for Problem 3. The mass balance condition (1)
ensures that adding a constant to vn does not change K̂[vn], so we can fix any
z ∈ M and assume that vn(z) = 0 for all n. Then, since X , Y are compact and
vn ∈ Lip1(M,d) for all n, the vn are uniformly bounded on X ∪ Y. Also, the vn
are equi-Lipschitz. The Ascoli-Arzela theorem yields a subsequence vn(k) uniformly
convergent on X ∪ Y to some v ∈ Lip1(X ∪ Y). Clearly K̂[v] = limk K̂[vn(k)] is
maximal. Define (ϕ, ψ) by

ϕ = v on X , ψ = −v on Y.

Then the pair (ϕ, ψ) maximizes Problem 2, sinceK[ϕ, ψ] = supu∈Lip1(M,d) K̂[u].

Remark 3 (Equivalence of Two Dual Problems). At (17) we showed the function
u ∈ Lip1(M,d) defined in the statement of the proposition to be a maximizing
solution of Problem 3:

K̂[u] = sup
v∈Lip1(M,d)

K̂[v].

In this sense Problems 2 and 3 are equivalent, and we refer to them both as duals
to Monge’s problem. We call a solution of Problem 3 a Kantorovich potential. In
addition, from (7–9)

u(x) = min
y∈Y

(u(y) + d(x, y)) for any x ∈ X ;

u(y) = max
x∈X

(u(x)− d(x, y)) for any y ∈ Y.(18)
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The next lemma exhibits the connection between the primal and dual problems.
It shows in particular that to obtain an optimal map in the primal problem, it is
sufficient to start from a Kantorovich potential u and construct any admissible map
consistent with (19). The rest of this paper is devoted to carrying out this program
on a space M which is a complete Riemannian manifold with geodesic distance
d(x, y).

Lemma 4 (Duality). Fix u ∈ Lip1(M,d) and let s : M → M be a mapping which
pushes µ+ forward to µ−. If

u(x)− u(s(x)) = d(x, s(x)) for µ+ a.e. x ∈ X ,(19)

then:
i. u is a Kantorovich potential maximizing Problem 3.
ii. s is an optimal map in Problem 1.
iii. The infimum in Problem 1 is equal to the supremum in Problem 3.
iv. Every optimal map ŝ and Kantorovich potential û also satisfy (19).

Proof. For any map r : M →M pushing forward µ+ to µ− and v ∈ Lip1(M,d) we
compute:

I[r] =
∫
M

d(x, r(x))dµ+(x)

≥
∫
M

[v(x) − v(r(x))]dµ+(x)(20)

=
∫
M

v(x)dµ+(x) −
∫
M

v(y)dµ−(y)

= K̂[v],

using (4). Thus the minimum value of I[r] on A(µ+, µ−) is at least as large as the
maximum of K̂[v] on Lip1(M,d). On the other hand, our hypothesis (19) produces
a case of equality I[s] = K̂[u] in (20). This implies the assertions i. K̂[u] is a
maximum; ii. I[s] is a minimum; and iii. I[s] = K̂[u] of the lemma.

Now let r ∈ A(µ+, µ−) and v ∈ Lip1(M,d) be any other optimal map and
Kantorovich potential. Then I[r] = I[s] and K̂[v] = K̂[u] combine with iii. to yield
I[r] = K̂[v]. But this implies a pointwise equality µ+ almost everywhere in (20),
so the proof of assertion iv., and hence the lemma, are complete.

2. Transport rays and their geometry

Section 1 reduced the problem of finding an optimal map in Monge’s problem to
constructing an admissible map which also satisfies (19). We carry out this program
for the complete Riemannian manifold M metrized by the geodesic distance d(x, y).
Our starting point is a solution u ∈ Lip1(M,d) of the Kantorovich dual Problem 3.
In this section, we study the geometric meaning of condition (19), and introduce the
transport rays, which in the case of a manifold are segments of distance-minimizing
geodesics, and transport sets which are ultimately used to construct an optimal
map.

Let M be a complete n-dimensional Riemannian manifold. Let TM and T ∗M be
the tangent and cotangent bundles ofM . We denote the Riemannian metric by 〈·, ·〉,
i.e., for p ∈ M the scalar product on TpM is 〈·, ·〉p. We denote by |ξ|p =

√
〈ξ, ξ〉p

the associated norm on TpM . The derivative of the function ϕ : M → R1 at x ∈M
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is denoted by Dϕ(x) ∈ T ∗xM . The gradient of ϕ at x is denoted by ∇ϕ(x) ∈ TxM .
According to the Hopf-Rinow theorem [5, §7.2.8], the geodesic distance d(x, y)
between points x and y makes (M,d) a complete separable metric space.

Fix two measures µ+ and µ− defined by non-negative densities f+, f− ∈ L1(M)
with respect to the volume measure onM , and satisfying the mass balance condition
(2). Assume that µ+ and µ− have compact supports, denoted by X and Y ⊂ M
respectively. Through the remainder of the paper, we fix a Kantorovich potential u
solving the Kantorovich problem and satisfying (18). Such a u exists by Proposition
2 and Remark 3. Note that u has Lipschitz constant one with respect to the geodesic
distance d(x, y).

Since we want to investigate the geometrical implications of (19) for u, suppose
x ∈ X and y ∈ Y satisfy

u(x)− u(y) = d(x, y).

By the Hopf-Rinow Theorem [5, §7.2.8] a minimizing geodesic σ : [0, 1]→M links
x to y, and is given by σ(τ) = expx(τσ̇(0)). Note that, since M is a complete
manifold, the curve σ(τ) is defined by the above formula for any τ ∈ R1. From the
Lipschitz constraint

|u(z1)− u(z2)| ≤ d(z1, z2) for any z1, z2 ∈M,(21)

it follows that on any minimizing geodesic σ from x and y the function u is de-
creasing with the maximum rate compatible with (21), i.e.,

u(z) = u(y) + d(z, y) for any z ∈ σ([0, 1]).

We will call maximal segments of geodesics having these properties the transport
rays. More precisely:

Definition 5 (Transport Rays). A transport ray R is a geodesic σ : [0, 1] → M
joining σ(0) = a to σ(1) = b and having length `(σ) = d(a, b) such that

i. a ∈ X , b ∈ Y , a 6= b;
ii. u(a)− u(b) = d(a, b);
iii. Maximality: for any t > 0 such that at := expa(−tσ̇(0)) ∈ X we have

|u(at)− u(b)| < d(at, b),

and for any t > 0 such that bt := expb(tσ̇(1)) ∈ Y we have

|u(bt)− u(a)| < d(a, bt).

We call the points a and b the upper and lower ends of R, respectively. Since
u(a)− u(b) = d(a, b), it follows from ii. and (21) that any point z ∈ R satisfies

u(z) = u(b) + d(z, b) = u(a)− d(a, z).(22)

Definition 6 (Rays of Length Zero). Denote by T1 the set of all points which lie
on transport rays. Define a complementary set T0, called the rays of length zero,
by

T0 = {z ∈ X ∩ Y : |u(z)− u(z′)| < d(z, z′) for any z′ ∈ X ∪ Y, z′ 6= z}.

From these two definitions and the property (18) of u we immediately infer the
following lemma, whose obvious proof is omitted.

Lemma 7 (Data is Supported Only on Transport Rays). X ∪ Y ⊆ T0 ∪ T1.

We also note the following:
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Lemma 8 (Transport Set is Compact). The set T0 ∪ T1 is compact.

Proof. By the Hopf-Rinow Theorem [5, §7.2.8], it is enough to show that T0 ∪T1 is
closed and bounded. The function v : M×M → R1 defined by v(x, y) = u(x)−u(y)
is continuous, and thus v attains maximum L < ∞ on the compact set X × Y.
Note that L ≥ 0. Indeed, if X ∩ Y is nonempty, then for any x ∈ X ∩ Y we have
(x, x) ∈ X × Y and v(x, x) = 0. Otherwise, it follows from Lemma 7 that T1 is
nonempty, i.e., there exists a transport ray R. If a ∈ X , b ∈ Y are the upper and
lower ends of R, then v(a, b) = d(a, b) > 0.

If the set

A := (T0 ∪ T1) \ (X ∪ Y)

is nonempty, then any z ∈ A lies on a transport ray Rz . Denoting again by a, b the
upper and lower ends of Rz, we have

d(a, z) + d(z, b) = d(a, b) = v(a, b) ≤ L,
and thus A lies in the union of L-neighborhoods of the compact sets X and Y. Thus
T0 ∪ T1 is bounded.

Now we prove that T0 ∪ T1 is closed. Let a sequence zn ∈ T0 ∪ T1 converge to
z ∈M . If an infinite subsequence of zn lies in X ∪Y, then we obtain z ∈ X ∪Y by
compactness of X and Y. Thus we can assume that zn ∈ A = (T0 ∪ T1) \ (X ∪ Y).
Then each zn lies in the interior of a transport ray Rn, with upper and lower
endpoints an, bn. Extracting a subsequence, we obtain anj → a ∈ X , bnj → b ∈ Y.
Since for each nj

d(znj , anj ) + d(znj , bnj ) = d(anj , bnj ) = u(anj )− u(bnj),

it follows that

d(z, a) + d(z, b) = d(a, b) = u(a)− u(b),

and thus either z lies on a transport ray, or z = a = b ∈ T0. In either case
z ∈ T0 ∪ T1.

To study the properties of rays, let us call a point z ∈ M an interior point of
a minimizing geodesic σ : [0, 1] → M from a to b, where a, b ∈ M , if z = σ(t) for
some 0 < t < 1. By a slight abuse of notations, we denote by σ the set σ([0, 1]),
and by σ0 the set of interior points of σ. Similarly to the case of Rn, we show that
transport rays on M do not cross in interior points:

Lemma 9 (Transport Rays Are Disjoint). Let R1, R2 be transport rays, let R1 6=
R2 and R1 ∩R2 6= ∅. Then either

i. R1 ∩R2 = {c} and c is either the upper end of both rays, or the lower end of
both rays, or else

ii. R1 ∩R2 = {cl, cu} where cu is the upper end of both rays, and cl is the lower
end of both rays.

In particular, an interior point of a transport ray cannot lie on any other trans-
port ray.

Proof. First note that if

d(x, y) + d(y, z) = d(x, z),

then y lies on a minimizing geodesic from x to z.
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Since Ri, i = 1, 2, is a transport ray, it follows that Ri is a minimizing geodesic
σi : [0, 1] → M , where the parametrization is chosen so that the function τ →
u(σi(τ)) is decreasing on [0, 1].

Suppose R1 6= R2 share a point c, and let c = σ1(τ1) = σ2(τ2), where τi ∈
[0, 1]. Then the vectors σ̇1(τ1), σ̇2(τ2) ∈ TcM cannot be collinear: since Ri ⊂
{expc(tσ̇i(τi)) | t ∈ R1} for i = 1, 2, the maximality part of Definition 5 would
force R1 = R2.

Suppose R1∩R2 contains at least two points; denote them {cl, cu}, where u(cu) >
u(cl). Then u(cu) = u(cl) + d(cl, cu). Since tangent vectors to R1 and R2 at cl
are not collinear, it follows that the segments of R1 and R2 between cl and cu do
not coincide. Then cu lies in the cut locus of cl, since R1 and R2 are minimizing
geodesics. Thus cl and cu are endpoints of both R1 and R2, and R1∩R2 = {cl, cu}.

It remains to consider the case when R1 and R2 have only one common point,
i.e. R1 ∩R2 = {c}. Denote ai = σi(0) and bi = σi(1) for i = 1, 2, i.e., ai and bi are
the upper and the lower ends of Ri.

We shall assume c 6= b2 and argue this forces c = a1. Since R1 has positive length,
it then follows that c 6= b1, which by symmetry forces c = a2 to complete the proof.
The other possibility c 6= a2 is handled similarly, leading to the conclusion that
c = b1 = b2 must be the lower end of both rays.

Assuming c 6= b2 means b2 /∈ R1. By (22)

u(c) = u(b2) + d(c, b2), u(c) = u(a1)− d(a1, c);

thus

u(a1)− u(b2) = d(a1, c) + d(c, b2) ≥ d(a1, b2).

Strict inequality would violate the Lipschitz condition (21). Thus equality must
hold, meaning c lies on a minimizing geodesic γ from a1 to b2. Suppose c 6= a1. Since
both curves γ and σ1 minimize distance between a1 and c, either they coincide, or c
lies within the cut locus of a1, which implies that c = b2 since c lies on a minimizing
geodesic γ from a1 to b2. But this contradicts our assumption c 6= b2. The curve
segments of γ and σ1 must therefore coincide between a1 and c. Then it follows
that γ ⊂ {expc(tσ̇1(τ1)) | t ∈ R1}, where τ1 ∈ [0, 1] is such that c = σ1(τ1).
But then, by maximality of R1 it follows that γ ⊂ R1, and thus b2 ∈ R1, which
contradicts our assumption. Thus c = a1.

Lemma 10 (Differentiability of Kantorovich Potential Along Rays). If z0 lies in
the relative interior of some transport ray R, then u is differentiable at z0. Indeed, if
R is parametrized as σ : [0, 1]→M such that σ̇(t) 6= 0 and the function t→ u(σ(t))

is decreasing on [0, 1], and z0 = σ(t0) for t0 ∈ (0, 1), then ∇u(z0) = − σ̇(t0)
|σ̇(t0)|z0

.

Proof. For c ∈M define a function dc : M → R1 by dc(z) := d(c, z).
Choose z0 in the interior of R. Choose a, b ∈ R such that u(a) > u(z0) > u(b)

and d(a, b) < rinj
2 , where rinj > 0 is the infimum of the injectivity radii of points

of T0 ∪ T1 (note that rinj is positive since distance to the cut locus is a continuous
and positive function of a point [5, Chap. 13, Prop. 2.9], and T0 ∪ T1 is a compact
set). Then the functions da(·), db(·) are smooth in a neighborhood of z0. Since R
is a minimizing geodesic and u satisfies (21), it follows that

db(z) ≥ u(z)− u(b) ≥ d(a, b)− da(z) for any z ∈M,(23)
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where the second inequality is obtained from u(a) − u(z) ≤ da(z) and u(a) =
u(b) + d(a, b). Since R is a transport ray, (23) holds with equalities for z = z0.
Thus u is differentiable at z0. In addition, ∇db(z0) = −∇da(z0) = − σ̇(t0)

|σ̇(t0)|z0
; thus

∇u(z0) = − σ̇(t0)
|σ̇(t0)|z0

.

3. Lipschitz directions of transport rays

In this section we prove a fact which is crucial for the construction of the measure-
decomposing change of variables in Section 4. We show that if transport rays
intersect a level set of u(z) in their interior points, then directions of rays have
a Lipschitz dependence on the point of intersection, provided distances from the
point of intersection to endpoints of a ray are uniformly bounded away from zero
for all rays. Since rays are geodesics, the directions of rays can be defined by
the unit vectors tangent to the rays at the points of intersection of rays with the
level set mentioned above. Thus in order to define how close the directions of rays
are, we need to measure a distance between two vectors on TM . We describe this
distance in Section 3.1, prove some estimates in Section 3.2, and prove the Lipschitz
dependence of the directions of rays in Section 3.3.

3.1. Metric structure on M and TM . In this subsection we collect the facts
from Riemannian geometry which we use through the rest of the paper.

We use the following Riemannian metric on TM , described in [13, §1.9.12]:
Let τ : TM → M be the tangent bundle of M . Let π : T (TM) → TM be

the tangent bundle of TM . Then the Levi-Civita connection on M determines the
splitting of T (TM) into the vertical and horizontal bundles

π = πV ⊕ πH : V ⊕H → TM(24)

such that each fiber Tξ(TM) of T (TM), where ξ ∈ TpM , is written as the direct
sum

Tξ(TM) = Vξ ⊕Hξ

of the vertical and horizontal subspaces, see e.g. [13, §§1.5.9–10]. The vertical sub-
space Vξ is the set of vectors tangent to the fiber TpM at ξ ∈ TpM . The horizontal
subspace Hξ is the horizontal lift of TpM to ξ by the Levi-Civita connection. The
spaces Vξ and Hξ are canonically identified to the fiber TpM , i.e., the maps

KV : Vξ → TpM, dτ(ξ) : Hξ → TpM(25)

are isomorphisms of linear spaces, where the map KV is the identification of the
tangent space to the fiber TpM at ξ with the fiber. We define the Riemannian metric
〈·, ·〉TM on TM as follows: On each Tξ(TM), where ξ ∈ TpM , the inner product
is defined by letting the horizontal and vertical spaces be orthogonal, and taking
on each of these spaces the inner product induced from TpM with the canonical
identifications. Explicitly, let ξ ∈ TpM , and α, β ∈ Tξ(TM). Then α and β are
uniquely represented as

α = αV + αH , β = βV + βH , where αV , βV ∈ Vξ and αH , βH ∈ Hξ.(26)

We define the inner product 〈·, ·〉TMξ on Tξ(TM) by

〈α, β〉TMξ = 〈KV αV ,KV βV 〉p + 〈dτ(ξ)αH , dτ(ξ)βH〉p.(27)
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Let dTM denote the geodesic distance on TM with respect to the Riemannian
metric (27).

In the following lemma we collect standard properties of geodesic metrics on M
and TM which we use in the rest of the paper:

Lemma 11. Let M be a complete Riemannian manifold. Then:

i. Let N be another complete Riemannian manifold, and let F : M → N be a
smooth mapping. Then for any compact set K ⊂ M there exists C = C(K)
such that dN (F (p), F (q)) ≤ CdM (p, q) for any p, q ∈ K.

ii. TM with Riemannian metric (27) is a complete Riemannian manifold.
iii. Let γ : [0, T ] → M , γ̃ : [0, T̃ ] → TM be piecewise differentiable curves on M

and TM respectively, and τ [γ̃] = γ. Then lTM (γ̃) ≥ lM (γ), where lTM (·) and
lM (·) denote length of curves on TM and M respectively. If, in addition, γ̃
is the horizontal lift of γ, then lTM (γ̃) = lM (γ).

iv. Let p, q ∈ M and ξ ∈ TpM , η ∈ TqM . Then dTM (ξ, η) ≥ d(p, q). If
in addition η is the parallel transport of ξ (with respect to the Levi-Civita
connection on M) along a minimizing geodesic from p to q on M , then
dTM (ξ, η) = d(p, q).

v. Let γ̃ : [0, T̃ ]→ TM be a piecewise differentiable curve on TM , and λ ∈ R1.
Let γ̃λ be the curve on TM defined by t→ λγ̃(t) for t ∈ [0, T̃ ]. Then

lTM(γ̃λ) ≤ max(1, |λ|)lTM (γ̃).

In particular, for any ξ, η ∈ TM and λ ∈ R1,

dTM (λξ, λη) ≤ max(1, |λ|)dTM (ξ, η).

3.2. Estimates of distances in normal coordinates. Now we derive certain
estimates which we use later. Let a ∈ M , and let i(a) be the injectivity radius
of a. We need to estimate, for q1, q2 ∈ B i(a)

2
(a) ⊂ M , how exp−1

a q1 − exp−1
a q2

changes when a changes. Precisely, for points p close enough to a we compare
ξ := exp−1

a q1− exp−1
a q2 ∈ TaM with the vector η obtained by parallel transport of

exp−1
p q1− exp−1

p q2 ∈ TpM to TaM along the (unique) minimizing geodesic from p
to a.

Let a ∈ M and let r(a) > 0 be such that Br(a) is strongly convex for all
0 < r < 2r(a) (i.e., for any q1, q2 in the closure of Br(a) there exists a unique
minimizing geodesic from q1 to q2, and its interior lies in Br(a)); such r(a) > 0
exists and depends continuously on a by [4, Theorem 5.14]. Also we can restrict
r(a) ≤ 1.

Define the following sets:

B = {(P,Q) | P,Q ∈ TaM, a ∈M, |P |a, |Q|a < r(a)} ⊂ TM ⊕ TM ;

C = {(P, a) | P ∈ TpM, a, p ∈M, p ∈ Br(a)(a)} ⊂ TM ×M.
(28)

Let Φ : B → TM be a map. We denote by Φa the restriction of Φ on B ∩ (TaM ⊕
TaM).

Define the following maps: From the definition of r(a) it follows that all three
are well-defined and smooth:

i. F : B → TM defined by F (P,Q) ≡ Fa(P,Q) = exp−1
expa P

(expaQ), where
a ∈M, P,Q ∈ Br(a)(0) ⊂ TaM ;

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1678 MIKHAIL FELDMAN AND ROBERT J. MCCANN

ii. Π : C → TM defined by Π(P, a) ≡ Πp(P, a), where Πp(P, a) ∈ TaM is the
parallel translate of the vector P ∈ TpM along the unique minimizing geodesic
from p to a.

iii. Finally, let Φ : B → TM be defined by Φ(P,Q) ≡ Φa(P,Q) = Π(F (P,Q), a),
where P,Q ∈ Br(a)(0) ⊂ TaM.

Lemma 12. The map Φ : B → TM is C2 smooth, and satisfies the following
properties: for any a ∈M and P,Q ∈ Br(a)(0) ⊂ TaM :

Φa(B) ≡ Φ(B ∩ (TaM ⊕ TaM)) ⊂ TaM,(29)
Φ(0, Q) = Q,(30)
Φ(P, P ) = 0 ∈ TaM,(31)
|Φ(P,Q)|a = d(expa P, expaQ).(32)

Moreover, let θ : [0, 1] → M be the unique minimizing geodesic from expa P to
expaQ and let the curve γ : [0, 1] → TaM from P to Q be defined by γ(t) =
exp−1

a (θ(t)) for t ∈ [0, 1]. Then Φ(P, γ([0, 1])) is a line segment in TaM from
Φ(P, P ) = 0 to Φ(P,Q) (i.e., for P ∈ TaM the mapping Φa(P, ·) ◦ exp−1

a maps
geodesics passing through expa P into straight lines in TaM passing through the
origin).

Proof. From the definition of F it follows that for any a ∈M , P ∈ Br(a)(0) ⊂ TaM
F (P, ·) : Br(a)(0)→ Texpa PM ;

F (0, P ) = exp−1
expa 0(expa P ) = P ;(33)

F (P, P ) = exp−1
expa P

(expa P ) = 0 ∈ Texpa PM.

Thus for any P,Q ∈ Br(a)(0) ⊂ TaM we have F (P,Q) ∈ Texpa PM , and by the
definition of F we have expexpa P

F (P,Q) = expaQ. This implies that

|F (P,Q)|expa P = d(expa P, expaQ) for any P, Q ∈ Br(a)(0) ⊂ TaM.(34)

Let P,Q ∈ Br(a)(0) ⊂ TaM , and let θ : [0, 1] → M be the unique minimizing
geodesic from expa P to expaQ. If the curve γ : [0, 1] → TaM from P to Q is
defined by γ(t) = exp−1

a (θ(t)), then F (P, γ([0, 1])) is a line segment in the space
Texpa PM from F (P, P ) = 0 to F (P,Q). Indeed, by the definition of F ,

F (P, γ([0, 1])) = exp−1
expa P

(θ([0, 1])),

which is a line segment since θ : [0, 1]→M is a geodesic through expa P .
Thus the map F has all required properties. It remains, for each a ∈M , to map

the set Fa(P,Br1(0)) ⊂ Texpa PM back to TaM .
We use the map Π(·, a) : TpM → TaM . By properties of the Levi-Civita con-

nection, if p ∈ Br(a)(a) and ξ ∈ TpM , then

|Π(ξ, a)|a = |ξ|p.(35)

From its definition, Φ is smooth as a composition of smooth maps.
The properties of Π and (33) imply (29)–(31): indeed, (29) is obvious, and to

get (30)–(31) we compute for P ∈ TaM

Φ(0, P ) = Π
(
F (0, P ), a

)
= Π(P, a) = P ;

Φ(P, P ) = Π
(
F (P, P ), a

)
= Π(0expa P , a) = 0 ∈ TaM.
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Also, (34), (35) and the first line of (33) imply (32):

|Φ(P,Q)|a = |Π(F (P,Q), a)|a = |F (P,Q)|expa P = d(expa P, expaQ).

The remaining assertion, i.e., that geodesics passing through expa P are mapped
by Φ(P, ·)◦exp−1

a into straight lines through 0 ∈ TaM , follows from the correspond-
ing property of the map F , and from the linearity of the parallel translation map
Πp(·, a) : TpM → TaM .

Let a ∈ M and P1, P2 ∈ Br(a)(0) ⊂ TaM . By (29), Φa(·, P2) and Φa(P1, ·)
are mappings from an open subset of the Euclidean space TaM ' Rn into TaM .
For k = 1, 2 we denote by DkΦ the derivative of Φ(P1, P2) with respect to the
variables Pk. Thus for any multi-index β = (β1, β2) such that k = |β| = β1 + β2,
the derivative DβΦa(P1, P2) ≡ Dβ1

1 Dβ2
2 Φa(P1, P2) is a k-linear map from TaM into

TaM . Since Φ is smooth on B, we have the following estimates of derivatives:

Lemma 13. Let M be a CN -smooth complete Riemannian manifold. For any
compact set K ⊂ M there exists C > 0 such that for any a ∈ K, any multi-index
β = (β1, β2) satisfying k = |β| < N , any P1, P2 ∈ B r(a)

2
⊂ TaM , ξ1, . . . , ξk ∈ TaM

|DβΦa(P1, P2)(ξ1, . . . , ξk)|a ≤ C
k∏
j=1

|ξj |a.(36)

Proof. Fix p ∈ M . Introduce local coordinates x : Br(p)(p)→ U ⊂ Rn on Br(p) ⊂
M , and corresponding coordinates (x, v) : τ−1(Br(p)(p)) ⊂ TM → U ×Rn. The
Riemannian structure on M induces a scalar product on each {a}×Rn, where a ∈ U
corresponds to a ∈ Br(p)(p) ⊂M . Let U ⊂ U ×Rn ×Rn be the image of B under
the coordinate mapping. In coordinates Φ is a smooth mapping Φ : U → U ×Rn

of the form Φ(a, P,Q) = (a, ϕ(a, P,Q)), where ϕ : U → Rn is smooth. Let U ′ ⊂ U
be the image of the set {(P,Q) | P,Q ∈ TaM, a ∈ B r(p)

2
(p), |P |a, |Q|a < 1

2r(a)}
under the coordinate mapping. Fixing a Euclidean structure 〈·, ·〉 on Rn, we obtain
existence of Cβ such that for any (a, P1, P2) ∈ U ′, ξ1, . . . , ξk ∈ Rn

|Dβϕ(a, P1, P2)(ξ1, . . . , ξk)| ≤ Cβ
k∏
j=1

|ξj |,(37)

where |ξ| =
√
〈ξ, ξ〉. Indeed, the constant Cβ is obtained by taking the supremum

of the left-hand side of the inequality (37) over the compact set

{(a, P1, P2, ξ1, . . . , ξk) | (a, P1, P2) ∈ U ′, |ξ1| = · · · = |ξk| = 1}.

Now, since the functions a → sup
|ξ|=1

|ξ|a
|ξ| and a → inf

|ξ|=1

|ξ|a
|ξ| are continuous on

Br(p)(p), we obtain (36) with C depending continuously on a ∈ B r(p)
2

(p).

Finally we prove the uniform estimates on the distortion of distances in normal
coordinates.

Lemma 14. Let M be a C3 smooth complete Riemannian manifold. Let K be a
compact subset of M . There exists C such that for any a ∈ K and P,Q1, Q2 ∈
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B 1
2 r(a)(0) ⊂ TaM∣∣∣∣[Φ(P,Q1)− Φ(P,Q2)]− (Q1 −Q2)

∣∣∣∣
a

≤ C|P |a|Q1 −Q2|a,(38)

and for any a ∈ K and P,Q ∈ B 1
2 r(a)(0) ⊂ TaM

|d(expa P, expaQ)− |P −Q|a| ≤ C|P −Q|a(|P |a + |P −Q|a),(39)

Proof. Let a ∈ K, P,Q1, Q2 ∈ TaM , |P |a, |Q1|a, |Q2|a ≤ 1
2r(a). For k = 1, 2 we

use (30) to obtain

Φ(P,Qk) = Φ(0, Qk) +
∫ 1

0

D1Φ(tP,Qk)Pdt

= Qk +
∫ 1

0

D1Φ(tP,Qk)Pdt,(40)

where tP ∈ B 1
2 r(a)(0) for 0 ≤ t ≤ 1. Then we estimate for any t ∈ [0, 1], using (36),

|D1Φ(tP,Q1)P −D1Φ(tP,Q2)P |a

=
∣∣∣∣∫ 1

0

D1D2Φ(tP, τQ1 + (1− τ)Q2)(P,Q1 −Q2)dτ
∣∣∣∣
a

≤ C |P |a|Q1 −Q2|a,

and thus using (40) we get (38).
Now we prove (39). Let a ∈ K and P,Q ∈ B 1

2 r(a)(0) ⊂ TaM . Using (31), we
obtain

Φ(P,Q) = Φ(P, P )−D2Φ(P, P )(P −Q)

+
∫ 1

0

D2
2Φ(P, Q̃(t))(P −Q,P −Q)(1− t)dt

= −D2Φ(P, P )(P −Q) +
∫ 1

0

D2
2Φ(P, Q̃(t))(P −Q,P −Q)(1− t)dt,

where Q̃(t) := tP +(1− t)Q ∈ B 1
2 r(a)(0) for 0 ≤ t ≤ 1. Since, by (30), D2Φ(0, P ) =

IdTaM , we compute

D2Φ(P, P )(P −Q) = D2Φ(0, P )(P −Q) +
∫ 1

0

D1D2Φ(tP, P )(P, P −Q)dt

= (P −Q) +
∫ 1

0

D1D2Φ(tP, P )(P, P −Q)dt,

and tP ∈ B 1
2 r(a)(0) for 0 ≤ t ≤ 1. Thus, using (36) with C = C(T0 ∪ T1), we have

|Φ(P,Q) + (P −Q)|a ≤ C|P −Q|a(|P |a + |P −Q|a),

and, using (32), we arrive at (39).

3.3. Directions of transport rays. From now on we assume that M is a C3

smooth complete connected Riemannian manifold. We can now state the main
result of Section 3.
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Proposition 15 (Ray Directions Vary Lipschitz Continuously). Let R1 and R2 be
transport rays, with upper end ak and lower end bk for k = 1, 2 respectively. If
there are interior points yk ∈ (Rk)0 where both rays pierce the same level set of
Kantorovich potential u(y1) = u(y2), then the ray directions satisfy a Lipschitz
bound

dTM (∇u(y1),∇u(y2)) ≤ C

σ
d(y1, y2),(41)

where σ := min
k=1,2

{σ0, d(yk, ak), d(yk, bk)}, and the constants C and σ0 > 0 depend

only on the Riemannian manifold M and the compact set T0 ∪ T1.

Proof. Let zk, xk ∈ Rk denote the points at distance σ above and below yk on the
ray, so that

u(zk) = u(y1) + σ,(42)
u(xk) = u(y1)− σ,(43)

d(xk, zk) = 2σ,(44)
d(xk, yk) = d(yk, zk) = σ(45)

for k = 1, 2. We first prove the following:

Lemma 16. There exist C, σ0 > 0 depending only on M , T0 ∪ T1 such that if σ in
(42–45) satisfies 0 < σ < σ0, then

d(x1, x2), d(z1, z2) ≤ Cd(y1, y2).(46)

Proof. We can assume without loss that

d(x1, x2) ≤ d(z1, z2).(47)

Otherwise we consider −u(x) instead of u(x) and reverse the directions of rays.
We also can assume that

d(y1, y2) < σ.(48)

Indeed, if d(y1, y2) ≥ σ, then

d(z1, z2) ≤ d(z1, y1) + d(y1, y2) + d(y2, z2) = d(y1, y2) + 2σ ≤ 3d(y1, y2),

and the lemma is proved.
By (45), (47–48)

d(x1, y2) ≤ d(x1, y1) + d(y1, y2) ≤ 2σ,(49)
d(x1, x2) ≤ d(z1, z2) ≤ d(z1, y1) + d(y1, y2) + d(y2, z2) ≤ 3σ,(50)

and so

d(x1, z2) ≤ d(x1, x2) + d(x2, z2) ≤ 5σ,(51)
d(z1, x2) ≤ d(z1, z2) + d(z2, x2) ≤ 5σ.(52)

By [4, Theorem 5.14], for every compact subset K of M there exists r0 > 0,
depending only on M, K, such that for any p ∈ K, r < r0 the geodesic ball Br(p)
is strongly convex. From this and the fact that the distance to the cut locus is
a continuous function on M it follows that for any p ∈ M there exists r1 > 0,
depending continuously on p, such that:

i. 20r1 ≤ r0(M,Br1(p));
ii. for any q ∈ Br1(p) we have B20r1(p) ⊂ Bi(q)(q), where i(q) is the injectivity

radius of q.
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Thus, since T0 ∪ T1 is a compact set, we can find r1 = r1(T0 ∪ T1) > 0 such that (i)
and (ii) hold with this r1 for all p ∈ T0 ∪ T1.

Let

20σ0 ≤ r1(T0 ∪ T1).(53)

By (42–45) and (47–52), the points {xk}, {yk}, {zk} for k = 1, 2 lie in B r1
2

(x1).
By our choice of r1, the map exp−1

x1
: Br1(x1) → Btr1(0) = exp−1

x1
(Br1(x1)) ⊂

Tx1M is a diffeomorphism. Here Btr(0) ⊂ Tx1M denotes the ball of radius r and
center 0 in the Euclidean space (Tx1M, 〈·, ·〉x1). Denote for k = 1, 2

Xk = exp−1
x1
xk, Yk = exp−1

x1
yk, Zk = exp−1

x1
zk.

Using (44), (45), we get

Y1 =
1
2

(X1 + Z1).(54)

In addition,

X1 = 0,

and

| exp−1
x1
p|x1 = d(p, x1) for any p ∈ Br1(x1).(55)

By (55) and (42)–(45):

|Z1 −X1|x1 = d(x1, z1) = u(z1)− u(x1) = u(z2)− u(x1)

≤ d(x1, z2) = |Z2 −X1|x1 .

Squaring this inequality yields

|Z1 −X1|2x1
≤ |(Z2 − Z1) + (Z1 −X1)|2x1

= |Z2 − Z1|2x1
+ 2〈Z2 − Z1, Z1 −X1〉x1 + |Z1 −X1|2x1

,

from which

〈Z2 − Z1, Z1 −X1〉x1 ≥ −
1
2
|Z2 − Z1|2x1

,

and finally, using (54), we get

〈Z2 − Z1, Z1 − Y1〉x1 ≥ −
1
4
|Z2 − Z1|2x1

.(56)

We need to obtain a similar estimate of 〈Z1 − Z2, Z2 − Y2〉x1 . By (42)–(45)

d(x2, z2) = u(z2)− u(x2) = u(z1)− u(x2) ≤ d(x2, z1).(57)

However, since d(x2, z2) and d(x2, z1) are generally not equal to |Z2 − X2|x1 and
|Z1 − X2|x1 respectively, we cannot repeat the previous argument. To estimate
this distortion of distances, we will use the map Φ introduced in Lemma 12. Note
that from the definition of r1(T0 ∪ T1) in (53) and of r(a) in (28), it follows that
r1(T0 ∪ T1) ≤ 1

20r(a) for any a ∈ T0 ∪ T1. From (44), (45), and (47–52) we obtain
using (55)

|Xk|x1 , |Yk|x1 , |Zk|x1 ≤ 5σ.(58)

Thus, by (53) and (28), Xk, Yk, Zk are in the domain of Φ, and in the estimates
below the conditions of Lemma 14 are always satisfied.
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Denote

Ẑk = Φ(X2, Zk) for k = 1, 2,

Ŷ2 = Φ(X2, Y2),

X̂2 = Φ(X2, X2).

Since Xk, Yk, Zk ∈ Tx1M , then, by (29), X̂k, Ŷk, Ẑk ∈ Tx1M . By (31)

X̂2 = 0.

Using (32) with a = x1, we get

|Ẑk − X̂2|x1 = d(expx1
Zk, expx1

X2) = d(zk, x2), for k = 1, 2,
|Ŷ2 − X̂2|x1 = d(expx1

Y2, expx1
X2) = d(y2, x2).

(59)

By (44–45), the point y2 lies on the minimizing geodesic from x2 to z2. Thus
Lemma 12 implies that Ŷ2 lies on the line segment between X̂2 and Ẑ2. Using
(44–45) and (59), we conclude that

Ŷ2 =
1
2

(X̂2 + Ẑ2).(60)

From (57) and (59) we obtain

|Ẑ1 − X̂2|x1 ≥ |Ẑ2 − X̂2|x1 .

Squaring this inequality, and repeating, with use of (60), the argument which led
to (56), we obtain

〈Ẑ1 − Ẑ2, Ẑ2 − Ŷ2〉x1 ≥ −
1
4
|Ẑ2 − Ẑ1|2x1

.(61)

In the following estimate we use the inequality

−|P |2 ≥ −(1 + ε)|Q|2 − 2
ε
|P −Q|2, for any P,Q ∈ Rn, ε ∈ (0, 1],(62)

where | · | is a norm in Rn defined by a scalar product 〈·, ·〉. The estimate (62) is
easily checked: by expanding and rearranging terms, we rewrite (62) as

(1− ε

2
)|P |2 + (1 +

ε

2
+
ε2

2
)|Q|2 ≥ 2〈P,Q〉,

and this is true since (1 − ε
2 )(1 + ε

2 + ε2

2 ) = 1 + ε2

4 −
ε3

4 ≥ 1 if ε ∈ (0, 1].
We substitute Ẑ1 − Ẑ2 = (Z1 − Z2) + [(Ẑ1 − Ẑ2) − (Z1 − Z2)] and Ẑ2 − Ŷ2 =

(Z2 − Y2) + [(Ẑ2 − Ŷ2) − (Z2 − Y2)] into the left-hand side of (61). We estimate
the right-hand side of (61) from below using (62) with P = Ẑ1 − Ẑ2, Q = Z1 −Z2.
Thus we get from (61)

〈Z1 − Z2, Z2 − Y2〉x1 ≥ − 1
4 (1 + ε)|Z2 − Z1|2x1

− 1
2ε |(Z1 − Z2)− (Ẑ1 − Ẑ2)|2x1

−|(Z1 − Z2)− (Ẑ1 − Ẑ2)|x1 |Z2 − Y2|x1

−|Z1 − Z2|x1 |(Z2 − Y2)− (Ẑ2 − Ŷ2)|x1

−|(Z1 − Z2)− (Ẑ1 − Ẑ2)|x1 |(Z2 − Y2)− (Ẑ2 − Ŷ2)|x1

(63)

for any ε ∈ (0, 1].
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Now we estimate the error terms in (63). We use Lemma 14 with the compact set
K = T0∪T1. In the calculations below C will denote different constants depending
only on M and T0 ∪ T1.

From (58) and (39) it follows that if σ0 is chosen small depending on M , T0∪T1,
and σ ≤ σ0, then

1
2
d(y1, y2) ≤ |Y1 − Y2|x1 ≤ 2d(y1, y2),(64)

1
2
d(z1, z2) ≤ |Z1 − Z2|x1 ≤ 2d(z1, z2).(65)

By (55), |X1 −X2|x1 = d(x1, x2), and thus by (47), (65)

|X1 −X2|x1 ≤ 2|Z1 − Z2|x1 .(66)

Using (66), (58), (38), we estimate

|Z2 − Y2|x1 ≤ |Z2|x1 + |Y2|x1 ≤ 10σ;

|(Z1 − Z2)− (Ẑ1 − Ẑ2)|x1 ≤ C|X1 −X2|x1 |Z1 − Z2|x1 ≤ C|Z1 − Z2|2x1
;

|(Z2 − Y2)− (Ẑ2 − Ŷ2)|x1 ≤ C|X1 −X2|x1 |Z2 − Y2|x1 ≤ Cσ|Z1 − Z2|x1 .

Using these estimates and (58) and recalling that σ < 1, we conclude that (63)
implies

〈Z1 − Z2, Z2 − Y2〉x1 ≥ −
1
4

(1 + ε+ Cσ + C
σ2

ε
).|Z2 − Z1|2x1

.(67)

Choosing first ε = 1
2 , and then reducing if necessary σ0 > 0 to achieve Cσ0 +C σ2

0
ε ≤

1
2 where C = C(T0 ∪ T1) is from (67) (and thus σ0 depends only on T0 ∪ T1), we
obtain for σ ≤ σ0

〈Z1 − Z2, Z2 − Y2〉x1 ≥ −
1
2
|Z2 − Z1|2x1

.(68)

Now we can finish the proof of the lemma. Combining (56) and (68), we estimate

|Z2 − Z1|x1 |Y2 − Y1|x1 ≥ 〈Z2 − Z1, Y2 − Y1〉x1

= 〈Z2 − Z1, (Y2 − Z2) + (Z2 − Z1) + (Z1 − Y1)〉x1

≥ −1
2
|Z2 − Z1|2x1

+ |Z2 − Z1|2x1
− 1

4
|Z2 − Z1|2x1

=
1
4
|Z2 − Z1|2x1

.

Thus

|Z2 − Z1|x1 ≤ 4|Y2 − Y1|x1 .(69)

Using (64) and (65), we conclude the proof of Lemma 16.

Finally, we return to the proof of Proposition 15. We choose σ0 from Lemma 16
and assume that σ ≤ σ0 in (42–45). We can assume without loss of generality that
(47), (48) hold. Then we also have (50–52) and (53). In particular, every pair of
points from yk, zk, k = 1, 2, is connected by a unique minimizing geodesic.

Denote

vk = σ∇u(yk) ∈ TykM, k = 1, 2.(70)
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Then |vk|yk = σ. Let ṽ2 ∈ Ty1M be the vector obtained by parallel translation of
v2 along the (unique) minimizing geodesic from y2 to y1. Then |ṽ2|y1 = |v2|y2 = σ.
Also, by Lemma 11(iv),

dTM (v2, ṽ2) = d(y1, y2).(71)

Since the map exp : TM →M is smooth, it is locally Lipschitz as a map between
the metric spaces (TM, dTM ) and (M,d), by Lemma 11(i). Let C = C(T0 ∪ T1) be
its Lipschitz constant on the compact set {(p, v) | p ∈ T0 ∪ T1, v ∈ TpM, |v|p ≤
2σ0} ⊂ TM . Then we get, using (71),

d(expy1
ṽ2, expy2

v2) ≤ CdTM (v2, ṽ2) = Cd(y1, y2).

Note that expyk vk = zk, k = 1, 2. Thus, using the above inequality and Lemma
16, we obtain

d(expy1
v1, expy1

ṽ2) ≤ d(z1, z2) + d(z2, expy1
ṽ2) ≤ Cd(y1, y2).(72)

Let U ⊂ TM be the set U = {(p, ξ) | p ∈ T0 ∪ T1, ξ ∈ TpM, |ξ|p < 2σ0}. By
choice of σ, i.e. by (53), the map F : TM →M×M defined by F (p, ξ) = (p, expp ξ)
is a diffeomorphism from U to F (U) = {(p, q) | p ∈ T0 ∪ T1, q ∈M, d(p, q) < 2σ0}
(see, e.g. the proof of [5, §3.3.7]). Thus, by Lemma 11(i), the map F−1 is Lipschitz
on the compact set {(p, q) | p ∈ T0 ∪ T1, q ∈M, d(p, q) ≤ σ0} ⊂ F (U). Thus there
exists a constant C depending only on M , T0 ∪ T1 such that for any p ∈ T0 ∪ T1,
ξ, η ∈ TpM , |ξ|p, |η|p ≤ σ0 we have

dTM (ξ, η) ≤ Cd(expp ξ, expp η).

Using this, we estimate

dTM (v1, ṽ2) ≤ Cd(expy1
v1, expy1

ṽ2) ≤ Cd(y1, y2),

where the last inequality follows from (72), and the constants C depend only on
M , T0 ∪ T1. Combining this with (70), (71), we get

dTM (σ∇u(y1), σ∇u(y2)) ≤ dTM (σ∇u(y1), ṽ2) + dTM (ṽ2, σ∇u(y2)) ≤ Cd(y1, y2).

Now, using Lemma 11(v) and the condition σ ≤ σ0, we obtain (41).

4. Measure decomposing coordinates on M

In this section we define Lipschitz coordinates (x1, . . . , xn) on M such that n−
1 of the variables are used to parameterize a given level set of the Kantorovich
potential u, while xn measures distance to this set along the transport rays which
pierce it. But the conditions of Proposition 15 make clear that we retain Lipschitz
control only if we restrict our transformation to clusters of rays in which all rays
intersect a given level set of u, and the intersections take place a uniform distance
away from both endpoints of each ray. These observations motivate the construction
to follow.

We begin by parametrizing the level sets of u.

Lemma 17 (Bi-Lipschitz Parametrization of Level Sets). Let u : M → R1 be a
Lipschitz function, σ ∈ R1, and Sσ the level set {x ∈M | u(x) = σ}. Then the set

Sσ ∩ {x ∈M | u is differentiable at x and ∇u(x) 6= 0}

has a countable covering consisting of Borel sets Siσ ⊂ Sσ, such that for each i ∈ N
there exist Lipschitz maps U : Siσ → Rn−1 and V : Rn−1 → M (i.e., Lipschitz
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maps between metric spaces (M,d) and (Rn−1, | · |), where | · | is a Euclidean metric
on Rn−1), satisfying

V (U(z)) = z for all z ∈ Siσ.(73)

Also, the U(Siσ) are Borel subsets of Rn−1.

Proof. We can cover the manifold M by a countable collection of bounded coor-
dinate neighborhoods {Mk}. Thus it is enough to prove the lemma for each set
Sσ ∩Mk. Fix k.

Let ψ : Mk → Rn be a coordinate mapping. Then ψ is a diffeomorphism from
Mk to U = ψ(Mk) ⊂ Rn.

Since ψ−1 : U → Mk is a diffeomorphism, it follows from the proof of Lemma
11(i) that ψ−1 is Lipschitz on U , as a map between subsets of metric spaces (Rn, |·|)
and (M,d). Similarly, ψ is Lipschitz on Mk.

Thus the function v = u ◦ ψ−1 : U → R1 is Lipschitz. Also, since ψ is a
diffeomorphism from M ′k to U , it follows that u is differentiable at z ∈ Mk if and
only if v is differentiable at x = ψ(z) ∈ U , and that ∇u(z) 6= 0 for z ∈ Mk if and
only if Dv(x) 6= 0, where x = ψ(z).

Extend v to the whole space Rn as a Lipschitz function using Kirszbraun’s
theorem [9, §2.10.43]. Denote Ŝσ the level set {x ∈ Rn v(x) = σ}.

Now, applying [3, Lemma 18] to the function v, we obtain a countable covering
of the set

Ŝσ ∩ {x ∈ Rn | v is differentiable at x and Dv(x) 6= 0}

consisting of Borel sets Ŝiσ ⊂ Ŝσ, such that for each i ∈ N there exist Lipschitz
coordinates Û : Rn → Rn−1 and V̂ : Rn−1 → Rn satisfying

V̂ (Û(x)) = x for all x ∈ Ŝiσ.

Since Û is univalent (i.e., one to one) on Ŝiσ ∩U , it follows from Federer [9, §2.2.10,
page 67] that Û(Ŝiσ ∩ U) is a Borel subset of Rn−1.

Now the sets Siσ = ψ−1(Ŝiσ ∩ U) are Borel and cover the set

Sσ ∩ {x ∈M | u is differentiable at x and ∇u(x) 6= 0} ∩Mk

and the maps U = Û ◦ψ : Siσ → Rn−1 and V = ψ−1 ◦ V̂ : Rn−1 →M are Lipschitz
and satisfy (73). Also, U(Siσ) = Û(Ŝiσ ∩ U) and thus U(Siσ) is Borel.

For each level σ ∈ R1 and integer i ∈ N, we shall extend these coordinates to
the transport rays intersecting Siσ.

Definition 18 (Ray clusters). Fix σ ∈ R1, a Kantorovich potential u, and the
Borel cover {Siσ}i of the level set Sσ := {x ∈ M | u(x) = p} in Lemma 17.
Let i ∈ N and let B be a Borel subset of Siσ. For each j ∈ N let the cluster
Tσij(B) :=

⋃
Rz denote the union of all transport rays Rz which intersect B, and

for which the point of intersection z ∈ B is separated from both endpoints of the
ray by a distance greater than 1/j. The same cluster, but with ray ends omitted,
is denoted by T 0

σij(B) :=
⋃
z(R

0
z). Denote Tσij := Tσij(Siσ) and T 0

σij := T 0
σij(S

i
σ).

On each ray cluster Tσij we are now ready to define the Lipschitz change of
variables which inspired the title of this section:
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Lemma 19 (Lipschitz Change of Variables). Each ray cluster Tσij ⊂ M admits
coordinates G = Gσij : T 0

σij → Rn−1 ×R1 with inverse F = Fσij : G(T 0
σij) → M

satisfying:

1. F is a Lipschitz mapping between G(T 0
σij) ⊂ Rn−1 ×R1 and M ;

2. for each λ > 0, G is Lipschitz on T λσij := {x ∈ T 0
σij | d(a, x), d(b, x) > λ},

where a and b denote the endpoints of the (unique) transport ray Rx;
3. F (G(x)) = x for each x ∈ T 0

σij ;
4. if a transport ray Rz ⊂ Tσij intersects Siσ at z, then each interior point
x ∈ (Rz)0 of the ray satisfies

G(x) = (U(z), u(x)− u(z)),(74)

where U : M → Rn−1 gives the Lipschitz coordinates (73) on Siσ.

Remark 20 (Flattening Level Sets). The final assertion of Lemma 19 implies: (a)
F maps the part of the hyperplane Rn−1 × {0} which lies within G(T 0

σij) onto Siσ;
(b) F maps the segment where each “vertical” line {X} × R1 intersects G(T 0

σij)
onto a transport ray. Thus in the new coordinates (X,xn) ∈ Rn−1 ×R1, the level
sets of u are flattened: they are parameterized by the variables X = (x1, . . . , xn−1)
while xn varies along the transport rays.

Proof. Lemma 9 shows that rays do not cross in the interior points, while Lemma 10
shows that u increases with rate one along each ray. Thus every point x ∈ T 0

σij lies
on a unique transport ray, and this ray intersects the level set Sσ in a single point
z ∈ Siσ, so the expression (74) defines a map G : T 0

σij → Rn−1×R1 throughout the
cluster. It remains to construct the inverse map F on G(T 0

σij) ⊂ Rn−1 ×R1. Let
(X,xn) ∈ G(T 0

σij), and let V be the map (73) parametrizing Siσ. Then the point
V (X) ∈ Siσ is an interior point of some transport ray R, both of whose endpoints
are separated from V (X) by a distance exceeding 1/j. Define

F (X,xn) := expV (X)[xn∇u(V (X))].(75)

That F inverts G (assertion 3) now follows from (73), (74), Lemma 10, and the fact
that a ray is a geodesic.

To prove F is Lipschitz on G(T 0
σij) ⊂ Rn−1 ×R1, introduce

Λ := {X ∈ Rn−1 | (X, 0) ∈ G(T 0
σij)}.(76)

We first claim the scaled ray direction 1
j∇u ◦ V : Λ→ TM is a Lipschitz function.

Indeed, recalling that V (X) ∈ Siσ is separated from the endpoints of RV (X) by a
distance greater than 1/j, we invoke Proposition 15 to conclude that X,X ′ ∈ Λ
satisfy

dTM (∇u(V (X)),∇u(V (X ′))) ≤ jC1 d(V (X), V (X ′))
≤ jC2 |X −X ′|,(77)

because V : (Rn−1, | · |)→ (M,d) was Lipschitz in Lemma 17.
Since T0 ∪ T1 is a compact set, it follows from the definition (74) of G that

(X,xn) ∈ G(T 0
σij) is also bounded, since u and U are Lipschitz on M and Siσ

respectively. Since |∇u| ≡ 1 on T 0
σij , it follows that {xn∇u(V (X)) | (X,xn) ∈

G(T 0
σij)} is a bounded subset of TM . Let (X,xn), (X ′, x′n) ∈ G(T 0

σij). Since
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exp : TM →M is a smooth map, then (75) and Lemma 11(i) yield

d(F (X,xn), F (X ′, x′n)) ≤ CdTM (xn∇u(V (X)), x′n∇u(V (X ′)))
≤ C[dTM (xn∇u(V (X)), xn∇u(V (X ′)))

+dTM (xn∇u(V (X ′)), x′n∇u(V (X ′)))].(78)

From boundedness of |xn|, Lemma 11(v), and (77)

dTM (xn∇u(V (X)), xn∇u(V (X ′))) ≤ CdTM (∇u(V (X)),∇u(V (X ′)))
≤ jC |X −X ′|.(79)

To estimate the last term in (78), we note that, connecting xn∇u(V (X ′) and
x′n∇u(V (X ′)) by a straight line in TV (X′)M and using that |∇u(V (X ′))|V (X′) = 1,
we get

dTM (xn∇u(V (X ′)), x′n∇u(V (X ′))) = |xn − x′n|.

Combining this with (78) and (79), we conclude that F is Lipschitz.
It remains to prove assertion 2 of the lemma. Let λ > 0. We first show the

function ∇u : M → TM to be Lipschitz on T λσij . Being discontinuous at the
mutual end of two rays, its Lipschitz constant must depend on λ. Let x, x′ ∈ T λσij
lie on the transport rays R and R′. Assume first that d(x, x′) ≥ λ/2. Let ξ ∈ TxM
be obtained by the parallel translation of ∇u(x′) ∈ Tx′M along the minimizing
geodesic from x to x′. Then |ξ|x = |∇u(x′)|x′ = 1, and dTM (∇u(x′), ξ) = d(x, x′)
by Lemma 11(iv). Thus

dTM (∇u(x),∇u(x′)) ≤ dTM (∇u(x), ξ) + dTM (∇u(x′), ξ) ≤ 2 + d(x, x′)

≤
(

4
λ

+ 1
)
d(x, x′).

Therefore, assume d(x, x′) < λ/2 and hence |u(x) − u(x′)| ≤ d(x, x′) < λ/2. The
point y′ := expx′([u(x)−u(x′)]∇u(x′)) then lies on the ray R′, since the ends of R′

are at least a distance λ from x′. Moreover, u(y′) = u(x′) + [u(x) − u(x′)] = u(x),
and the distances from x and y′ to the ends of R and R′ are at least λ/2 respectively.
Thus Proposition 15 yields

dTM (∇u(x),∇u(y′)) ≤ C

λ
d(x, y′).(80)

Moreover, x′, y′ ∈ R′ lie on the same transport ray, and u(x) = u(y′), so

d(x′, y′) = |u(x′)− u(y′)| = |u(x′)− u(x)| ≤ d(x′, x).(81)

Turning to G, we estimate

|G(x) −G(x′)| ≤ |G(x) −G(y′)|+ |G(y′)−G(x′)|.(82)

Since x′ and y′ lie on R′, definition (74) yields

|G(y′)−G(x′)| = |u(x′)− u(y′)| = |u(x′)− u(x)| ≤ d(x, x′).(83)

Let z and z′ be the points where R and R′ pierce Siσ. Since u(x)− u(z) = u(y′)−
u(z′), the same definition gives

|G(x) −G(y′)| = |U(z)− U(z′)|.(84)
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Setting δ := u(z)− u(x), we have z = expx[δ∇u(x)] and z′ = expy′ [δ∇u(y′)]. Also
|δ| is bounded by the diameter of the cluster T λσij . Because the coordinates U were
Lipschitz, we have

|U(z)− U(z′)| ≤ C d(expx[δ∇u(x)], expy′ [δ∇u(y′)])

≤ C dTM (∇u(x),∇u(y′))

≤ C

λ
d(x, x′)(85)

from (80), (81), and Lemmas 11(v) and 11(i), and C denotes different constants.
Now (82–85) imply G is Lipschitz on T λσij , to complete the lemma.

Lemma 21 (Rational Clusters Cover Rays). The clusters Tpij indexed by p ∈ Q
and i, j ∈ N define a countable covering of all transport rays T1 ⊂ M . Moreover,
each Tpij and transport ray R satisfy:

Either (R)0 ⊂ Tpij, or (R)0 ∩ Tpij = ∅.(86)

Proof. A transport ray R is a geodesic γ : [0, 1] → M , and has positive length
by Definition 5. Let a = γ(0) and b = γ(1) be the lower and upper ends of R.
By Lemma 10, |u(b) − u(a)| = length(γ). Thus there is some rational number
p ∈ (u(a), u(b)) for which R intersects the level set Sp := {x | u(x) = p}. The point
x of intersection belongs to one of the covering sets Sip ⊂ Sp of Lemma 17, and lies
a positive distance from each end of the ray, so R ⊂ Tpij for some j ∈ N.

Conversely, if the interior of some other ray R0 intersects one of the rays Rz
comprising the cluster Tpij , the non-crossing property of Lemma 9 forces R =
Rz ⊂ Tpij , to complete the proof of (86).

Definition 22 (Ray Ends). Denote by E ⊂ T1 the set of endpoints of transport
rays.

The next step is to address measurability of the sets Tpij and G(T 0
pij). Introduce

the distance functions to the upper and lower ends of rays:

Lemma 23 (Semicontinuity of Distance to Ray Ends). At each z ∈ Rn define

α(z) := sup{d(y, z) | y ∈ Y, u(z)− u(y) = d(y, z)},(87)

β(z) := sup{d(x, z) | x ∈ X , u(x)− u(z) = d(x, z)},(88)

where sup ∅ := −∞. Then α, β : Rn → R∪{−∞} are both upper semicontinuous.

Proof. We prove only the upper semicontinuity of α(z); the proof for β(z) is similar.
Given any sequence of points zn → z for which α0 := limn α(zn) exists, we need
only show α0 ≤ α(z). It costs no loss of generality to assume α0 > −∞ and
α(zn) > −∞; moreover, α(zn) < ∞ since the support Y of the measure µ− was
assumed compact. From (87),

α(zn)− 1/n ≤ d(yn, zn) = u(zn)− u(yn)(89)

for some sequence yn ∈ Y. By compactness of Y, a convergent subsequence yn →
y ∈ Y exists. The (Lipschitz) continuity of u yields α0 ≤ d(y, z) = u(z)− u(y) ≤
α(z) from the limit of (89), which proves the lemma.

Geometrically, the functions α, β have the following meaning: If z lies on a
transport ray R, then α(z) and β(z) are the distances on M from z to the lower
and upper end of R respectively; thus at ray ends z ∈ E , exactly one of these
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distances vanishes. If z ∈ T0 is a ray of zero length, then α(z) = β(z) = 0. If
z ∈ M \ (T0 ∪ T1), then either α(z) = −∞ or β(z) = −∞. We combine these
functions with our change of variables to show that the clusters of ray interiors
T 0
pij are Borel sets and that the ray ends have measure zero. In what follows, n-

dimensional Lebesgue measure is denoted Ln, and the volume measure on M is
denoted Vol.

Lemma 24 (Measurability of Clusters / Negligibility of Ray Ends). The ray ends
E ⊂ T1 form a Borel set of measure zero: Vol(E) = 0. The rays of length zero
T0 ⊂ M also form a Borel set. Finally, for each σ ∈ R1, i, j ∈ N, and Borel
B ⊂ Siσ the cluster T 0

σij(B) of ray interiors and its flattened image G[T 0
σij(B)] are

Borel. Here G is the map from Lemma 19. In particular, the sets T 0
σij and G[T 0

σij ]
are Borel.

Proof. First observe that T0 = {z ∈ M | α(z) = β(z) = 0} while E = {z ∈ M |
α(z)β(z) = 0 but α(z) + β(z) > 0}. Both of these sets are Borel by the upper
semicontinuity of α and β shown in Lemma 23.

Therefore, fix σ ∈ R1 and i, j ∈ N and recall the Borel set Siσ ⊂M and Lipschitz
coordinates U : Siσ −→ Rn−1 on it from Lemma 17. Let B ⊂ Siσ be Borel. By
Lemma 17 the sets U(Siσ) and U(B) are Borel. Moreover, the set Λ defined in (76)
is given by

Λ = {X ∈ U(Siσ) | α(U−1(X)), β(U−1(X)) > 1/j}

according to (74). Similarly, introduce a set

Λ(B) = {X ∈ U(B) | α(U−1(X)), β(U−1(X)) > 1/j}.

Now Definition 18 and Lemma 19(#2) yield that for any λ > 0

G(T λσij) = {(X,xn) | X ∈ Λ, −α(V (X)) + λ < xn < β(V (X))− λ},
G(T λσij(B)) = {(X,xn) | X ∈ Λ(B), −α(V (X)) + λ < xn < β(V (X))− λ},

where T λσij(B) := T λσij ∩ Tσij(B). Since V = U−1 is Lipschitz, the functions α ◦ V ,
β ◦V are upper semicontinuous in view of Lemma 23. Thus we conclude that both
Λ(B) ⊂ Rn−1 and G(T λσij(B)) ⊂ Rn−1 × R1 are Borel. Lemma 19 (#2) shows
the transformation G is Lipschitz on T λσij . Since a Lipschitz map from a subset
of any metric space into R1 can be extended to a Lipschitz map of the whole
metric space into R1 (see, e.g., [9, sect. 2.10.44]), it follows that G extends from
T λσij to a Lipschitz map Ĝ : M → Rn−1 × R1 (note that, in general, Ĝ 6= G on
T 0
σij \ T λσij). Thus we see that T λσij(B) = Ĝ−1[G(T λσij(B))] is a Borel subset of M .

Since T 0
σij(B) =

∞⋃
k=1

T
1
k

σij(B), the set T 0
σij(B) is Borel.

To show the ray ends have measure zero, we use Lemma 21. Fix p ∈ Q and
i, j ∈ N, and consider the points G ⊂ Rn−1 ×R1 of Tpij corresponding to the ray
ends in the flattened coordinate system:

G = {(X,−α(V (X))) | X ∈ Λ} ∪ {(X, β(V (X))) | X ∈ Λ}.

Using upper semicontinuity of α ◦ V and β ◦ V , we conclude G is a Borel set, and

Ln(G) = 0
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by Fubini’s theorem. By Lemma 19 (#1), F can be extended as a Lipschitz mapping
to the closure of G(T 0

pij) in Rn−1 × R1, the set G(T 0
pij). Clearly, G ⊂ G(T 0

pij).
Now E ∩ Tpij = F (G). Cover E ∩ Tpij by a countable collection of coordinate
neighborhoods Mk ⊂M . It is enough to prove that Vol(E ∩Tpij ∩Mk) = 0 for each
k. Fix k. Let φ : Mk → Rn be a coordinate mapping. Then φ is a diffeomorphism
from Mk to U = φ(Mk) ⊂ Rn. Thus it follows from the proof of Lemma 11(i) that
φ is Lipschitz on Mk.

Thus F̂ : G∩F−1(Mk)→ Rn, defined as F̂ = φ◦F , is Lipschitz. By Kirszbraun’s
theorem [9, §2.10.43], we can extend F̂ to a Lipschitz map F̂ : Rn−1 ×R1 → Rn.
Now we can use Ln(G) = 0 and the area formula [9, §3.2.3] to conclude that
Ln[F̂ (G ∩F−1(Mk))] = 0. From E ∩Tpij = F (G) and the fact that φ : Mk → U is a
diffeomorphism we get φ(E∩Tpij∩Mk) = F̂ (G∩F−1(Mk)). Thus Vol[E∩Tpij∩Mk] ≤
CLn[φ(E ∩ Tpij ∩Mk)] = CLn[F̂ (G ∩ F−1(Mk))] = 0 (and hence E ∩ Tpij ∩Mk is
a measurable set). Since the sets Mk form a countable cover for Tpij ∩ E , and,
by Lemma 21, the clusters {Tpij} form a countable cover for E ⊂ T1, we have
Vol(E) = 0, to conclude the proof.

As a particular consequence of this lemma, the set T1 of all transport rays is
Borel, being a countable union of Borel sets T 0

pij with E . Also, the sets Tpij are
Lebesgue measurable, being the union of a Borel set with a subset of a negligible
set.

Finally, we can take the rational clusters of rays Tpij , indexed by p ∈ Q and
i, j ∈ N, to be disjoint, and so that they still cover all rays. Indeed, enumerate
the triples (p, i, j) so the collection of clusters {Tpij} becomes {T(k)}, k = 1, 2, . . . .
For k > 1 redefine T(k) → T(k) \ (

⋃k−1
l=1 T(l)). Redefine T 0

(k) → T 0
(k) \ (

⋃k−1
l=1 T

0
(l))

analogously. We will continue to denote the modified sets by Tpij and T 0
pij . Note

that the structure of the clusters Tpij remains the same: for each Tpij we have a
Borel subset Spij := Tpij ∩ Sp of Sip ⊂M on which there are Lipschitz coordinates
U , V (73) satisfying

V (U(x)) = x for all x ∈ Spij .(90)

Indeed, since the new cluster is a subset of the old, the former maps U , V will
suffice. From the modification procedure it also follows that the ray property (86)
holds for the modified sets — which justifies calling them clusters — and that the
ray Rz corresponding to each z ∈ Spij extends far enough on both sides of Sp
(i.e. α(z), β(z) > 1/j) to define coordinates F , G on Tpij satisfying all assertions
of Lemma 19 (again, the original maps F and G work for the modified clusters).
The measurability Lemma 24 holds for the new clusters, as follows readily from the
modification procedure. Thus we have:

The (modified) clusters of ray interiors T 0
pij , where p ∈ Q and i, j ∈ N,

are disjoint and cover all transport rays(91)

Let us point out that the above construction implies the following. Define the
following mappings j, j± on subsets of level sets Sσ = u−1(σ), where σ ∈ R1: for
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A ⊂ Sσ
j(A) =

⋃
z∈A∩T 0

1

R0
z,

j+(A) = j(A) ∩ {y | u(y) ≥ σ},(92)
j−(A) = j(A) ∩ {y | u(y) < σ},

where R0
z is the relative interior of the unique transport ray through z. Thus, j(A)

is the smallest transport set containing A∩T 0
1 for A ⊂ Sq, and j±(A) are the parts

of j(A) which lie above (resp. below) the level set Sσ of u.

Corollary 25. Let σ ∈ R1, let Sσ := u−1(σ) be the level set of u(z), and let
B ⊂ Sσ be a Borel set. Then the sets j(B) and j±(B) are Borel.

Proof. Since u is a continuous function, we only need to prove that j(B) is Borel.
Since B ∩ T 0

1 is Borel, we can replace B by B ∩ T 0
1 , i.e., assume that B ⊂ Sσ ∩ T 0

1 .
We have

j(B) =
∞⋃

i,j=1

T 0
σij(B ∩ Siσ).

Since both B and Siσ are Borel, we use Lemma 24 to conclude the proof.

5. Detailed mass balance

Definition 26 (Transport Sets). A set A ⊂ M is called a transport set if z ∈
A ∩ (T1\E) implies R0

z ⊆ A, where Rz is the unique transport ray passing through z.
It is called the positive end of a transport set if A merely contains the segment [z, a)
of the transport ray Rz whenever z ∈ A ∩ (T1 \ E) and a denotes the upper end of
Rz.

Examples. Any subset A ⊂ T0 of rays of length zero is a transport set, as are the
clusters of rays Tσij(B).

For Borel transport sets, such as T 0
pij , the following balance conditions apply.

Lemma 27 (Detailed mass balance). Let A ⊂M be a Borel transport set. Then∫
A

f+(x) dx =
∫
A

f−(x) dx.(93)

More generally, if a Borel set A+ ⊂ M forms the positive end of a transport set,
then ∫

A+
f+(x) dx ≥

∫
A+

f−(x) dx.(94)

Proof. The first statement in the case of the Euclidean space is [7, Lemma 5.1]. In
fact, Evans and Gangbo also show (94) in the proof of [7, Lemma 5.1], in the case
of the Euclidean space (precisely, they show (94) for A+ of a particular form, but
the proof works for a general positive end of a transport set). The geometry of
Euclidean space enters the proof [7, Lemma 5.1] only through the facts that rays
do not cross in the interior points and the set of ray endpoints has measure zero.
We have shown these properties in Lemmas 9 and 24 for the case of a manifold, so
both the equality (93) and the inequality (94) follow immediately.
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6. Construction of the optimal map

Once we defined a measure-decomposing Lipschitz change of variables on the ray
clusters (Lemma 19) and proved its properties (Lemmas 21, 23, 24 and (91), and
detailed mass balance Lemma 27), construction of the optimal map follows [3, sect.
5].

A sketch of the construction follows:
Since µ+[M \ X ] = 0 and X ⊂ T0 ∪ T1 by Lemma 7, we need only define an

optimal map s on T0 ∪ T1.
Set s = id on T0.
Since T1 =

⋃
Tpij , where p ∈ Q and i, j ∈ N, and (91) holds, it is enough to

define s on each Tpij separately.
Fix Tpij , and let F,G be the corresponding maps from Lemma 19. By Lemma 19

the map F is Lipschitz in Rn, one to one on G(T 0
pij), and F (G(T 0

pij)) = T 0
pij . Then

the area formula for the case of Riemannian manifolds [9, §3.2.46, 3.2.5] yields∫
G(T 0

pij)

ϕ(F (x))f±(F (x))JnF (x) dx =
∫
T 0
pij

ϕ(z)f±(z)d vol(z)(95)

for any summable ϕ : M → R1. Here JnF denotes the n-dimensional Jacobian of
F computed with respect to the Riemannian inner product.

Define f̂± : Rn−1 ×R1 → R1 by

f̂±(x) =
{
f±(F (x))JnF (x) x ∈ G(T 0

pij);
0 otherwise.

From Lemma 27 one can derive that f̂+ and f̂− are in mass balance on each
vertical line τ → (X, τ), where X ∈ Rn−1, τ ∈ R1. Precisely, let us introduce the
distribution function

Ψ±(X, τ) :=
∫ ∞
τ

f̂±(X,xn) dxn.

Then for a.e. X ∈ Rn−1 we have

Ψ+(X, τ) ≥ Ψ−(X, τ) ≥ 0(96)

for all τ ∈ R, and

Ψ+(X,−∞) = Ψ−(X,−∞) <∞.(97)

In order to construct an optimal map spij : M → M for measures µ±|Tpij it is
enough by Lemma 4 to construct spij pushing forward µ+

|Tpij onto µ−|Tpij and acting
down transport rays. To get such spij , it is enough, by Lemma 19 and (95), to
construct ŝ : Rn−1×R1 → Rn−1×R1 pushing forward f̂+dx onto f̂−dx and acting
down the vertical lines, i.e. of the form ŝ(X, τ) = (X, tX(τ)), where X ∈ Rn−1,
τ ∈ R1 and tX : R1 → R1 satisfies tX(τ) ≤ τ , and then define spij = F ◦ ŝpij ◦G.

Thus it remains to construct the map tX for each X ∈ Rn−1, i.e., solve the
one-dimensional transportation problem on each vertical line. This is possible by
(97). Using (96), (97), one can show that tX can be defined by

tX(τ) := inf{ζ ∈ R1 | Ψ+(X, τ) ≥ Ψ−(X, ζ)}(98)

= sup{ζ ∈ R1 | Ψ+(X, τ) < Ψ−(X, ζ)}.(99)

Details and proofs for the above construction are the same as in the Euclidean
case [3, sect. 5].
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7. Uniqueness of monotonic optimal map, and transport density

The measure-decomposing change of variables defined in Section 4 allows us to
extend to the case of manifolds the results of [11]. We will only state the results
and give some remarks about proofs, since the proofs closely follow those of [11],
using Sections 4, 5 of the present paper.

We first address the question of uniqueness of an optimal map. As in Euclidean
space, the optimal map is nonunique. The source of the nonuniqueness is nonunique-
ness in the one-dimensional transfer problem. We show that this is the only source
of nonuniqueness. Precisely, we show uniqueness of an optimal map satisfying a
one-dimensional monotonicity condition:

Theorem 28 (Uniqueness of optimal maps). Let densities f+, f− ≥ 0 on M sat-
isfy the same conditions as in Theorem 1. Among Borel maps s : M −→M solving
Monge’s problem, in the sense that they minimize the average distance (3) trans-
ported among all maps pushing f+ forward to f− (4), there exists a unique optimal
map s ∈ A(µ+, µ−) satisfying the following monotonicity condition:

Let x1, x2 ∈M be such that four points x1, s(x1), x2, s(x2) lie on one minimizing
geodesic γ : [0, T ]→ M . For p on γ denote by t(p) the unique t ∈ [0, T ] such that
γ(t) = p. Then

[t(x1)− t(x2)][t(s(x1))− t(s(x2))] ≥ 0.(100)

Proof. The difference between the monotonicity condition stated above and the
condition in [11, Theorem 1.2] is that now we require some condition only for
points x1, x2 such that x1, s(x1), x2, s(x2) lie on one minimizing geodesic.

Thus for the proof of Theorem 28 we follow the argument of [11, Section 3],
skipping Lemma 3.1 of [11, Section 3] since this lemma considers the case when x1,
s(x1), x2, s(x2) are not in one line.

While the optimal map satisfying the monotonicity condition is unique, there
are other optimal maps which are not monotonic along transport rays. Now we
compare different optimal maps, and show that they generate the same mass (or
cost) flow.

Let u be a Kantorovich potential for Problem 1, satisfying (18). By Theorem 1
and Lemma 4(iv) the direction of optimal mass transfer through any point of T 0

1

is uniquely defined, and is given by the direction function ∇u(z). It remains to
study the rate of optimal mass transfer through a point of M . We define below a
corresponding quantity, called the transport cost density, and study its properties.

Imagine that as each particle of mass is transported from x to s(x), it deposits a
trail of dust uniformly along the segment of transport ray joining x to s(x). Imagine
furthermore, that the total residue of dust deposited by an individual particle is
proportional to the mass of the particle times the trip tariff d(x, s(x)). The transport
cost density a(z) defined in (101) gives the cumulative density of dust deposited
at z ∈ T 0

1 by all particles of µ+ as they are transported to µ− by a map s. We
quantify this definition by choosing a particular sequence of open neighborhoods
DR(z) shrinking to z and setting

a(z) = lim
R→0+

cost of transportation through DR(z) of mass flow generated by s
vol[DR(z)]

,

(101)
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if the limit exists. Our particular choice of domains DR(z) is motivated by the
convenience of subsequent arguments, and corresponds to a small cylinder in the
flattened coordinates of Section 4. More precisely, let Sz,u be a level set of u
containing z, i.e., Sz,u = {y | u(y) = u(z)}. Define for z ∈ T 0

1 , R > 0

DR(z) := j[BR(z) ∩ Sz,u] ∩ {y | u(z)−R ≤ u(y) ≤ u(z) +R},(102)

where the map j is defined by (92), and BR(z) = {y ∈ M | d(y, z) < R}. By
Corollary 25, DR(z) is a Borel subset of M .

Let us compute the cost of transportation through DR(z) of the mass flow gen-
erated by an optimal map s. The computation is based on the following obser-
vation. Let R be a transport ray, and let x, y ∈ R satisfy u(x) > u(y). Then
u(x) − u(y) = d(x, y), and so the cost of transport of unit mass from x to y is
u(x) − u(y). It follows that, if τ < t, and a total mass m is distributed within a
level set u−1(t)∩T 0

1 , then the cost of transportation of this mass along the transport
rays to the level set u−1(τ) ∩ T 0

1 is m(t− τ).
Let A be a Borel subset of the level set u−1(t)∩T 0

1 . Since the map s generates a
mass flow down the transport rays of u, the mass flux through A generated by s is
µ+{y ∈ j+(A)

∣∣ s(y) ∈ j−(A)}, where the maps j± are defined by (92). Then the
calculation given in [11, Section 4] shows that this expression can be rewritten as

µ+[j+(A)] − µ−[j+(A)].(103)

Note that (103) depends only on the Kantorovich potential u, and no longer on the
map s.

Now the cost of transport of the mass (103) along transport rays from A ⊂
u−1(t) ∩ T 0

1 to the level set u−1(t− dt) is{
µ+[j+(A)]− µ−[j+(A)]

}
dt.

So the cost of mass transport generated by any optimal map s through a Borel
set B ∈M is ∫ ∞

−∞

{
µ+

[
j+[B ∩ u−1(t)]

]
− µ−

[
j+[B ∩ u−1(t)]

]}
dt.

Thus, recalling (101), we define the transport cost density of the flow generated
by any optimal map s at the point z ∈ T 0

1 as

a(z) := lim
R→0+

∫ ∞
−∞

{
µ+

[
j+[DR(z) ∩ u−1(t)]

]
− µ−

[
j+[DR(z) ∩ u−1(t)]

]}
dt

vol[DR(z)]
,

(104)

where DR(z) is defined by (102).

Theorem 29 (Existence, uniqueness, and properties of transport density). Fix a
Kantorovich potential u satisfying (18).

i. The limit (104) exists a.e. on T 0
1 .

ii. There exists a ∈ L1(M), called the transport cost density, with the following
properties:

a ≥ 0 on M , a ≡ 0 on M \ T1,(105)
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and a(z) is equal to the right-hand side of (104) for Ln a.e. z ∈ T 0
1 . In

addition, a( · ) satisfies the equation

−div (a∇u) = f+ − f− in M(106)

in the weak sense, meaning that, for any test function ϕ ∈ C1(M),∫
M

a 〈∇u,∇ϕ〉 d vol(z) =
∫
M

(f+ − f−)ϕd vol(z).(107)

Moreover, for any measurable transport set A ⊂M and ϕ ∈ C1(M)∫
A

a 〈∇u,∇ϕ〉 d vol(z) =
∫
A

(f+ − f−)ϕd vol(z).(108)

iii. A function a ∈ L1(M) satisfying (108) for all measurable transport sets A
and ϕ ∈ C1(M) is uniquely determined by the constraints (105).

The proof follows the argument of [11, Section 4].
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[15] G. Monge. Mémoire sur la théorie des déblais et de remblais. Histoire de l’Académie Royale
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