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Abstract

Despite their immense relevance, the neurocognitive mechanisms underlying real-life self-control failures (SCFs) are insuffi-

ciently understood. Whereas previous studies have shown that SCFs were associated with decreased activity in the right inferior

frontal gyrus (rIFG; a region involved in cognitive control), here we consider the possibility that the reduced implementation of

cognitive control in individuals with low self-control may be due to impaired performance monitoring. Following a brain-as-

predictor approach, we combined experience sampling of daily SCFs with functional magnetic resonance imaging (fMRI) in a

Stroop task. In our sample of 118 participants, proneness to SCF was reliably predicted by low error-related activation of a

performance-monitoring network (comprising anterior mid-cingulate cortex, presupplementary motor area, and anterior insula),

low posterror rIFG activation, and reduced posterror slowing. Remarkably, these neural and behavioral measures predicted

variability in SCFs beyond what was predicted by self-reported trait self-control. These results suggest that real-life SCFs may

result from deficient performance monitoring, leading to reduced recruitment of cognitive control after responses that conflict

with superordinate goals.
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In everyday life, people frequently encounter conflicts be-

tween their long-term goals, moral values, or social norms,

on the one side, and momentary impulses to satisfy immediate

desires, on the other. Self-control denotes the ability to resist

such temptations and override impulsive responses in order to

render behavior consistent with superordinate goals

(Baumeister, Vohs, & Tice, 2007; Hofmann, Baumeister,

Förster, & Vohs, 2012; Inzlicht, Legault, & Teper, 2014).

Whereas high self-control predicts higher educational

achievement and social adjustment, better coping with stress,

and less substance abuse (Mischel et al., 2010; Tangney,

Baumeister, & Boone, 2004), deficient self-control entails

harmful behaviors such as overeating and overspending and

is a core characteristic of substance use disorders (Bühringer,

Wittchen, Gottlebe, Kufeld, & Goschke, 2008; Goschke,

2014; Heatherton & Wagner, 2011). Self-control failures

(SCFs) thus incur severe personal and societal costs, due to

poor health, disability, and early death (Schroeder, 2007;

Wittchen et al., 2011). Investigating the neurocognitive basis

of individual differences in self-control is therefore of great

scientific relevance.

Self-control requires the individual to suppress prepotent

responses leading to unwanted behaviors (e.g., to eat cake,

smoke a cigarette), and thus is assumed to depend on response

inhibition, a cognitive control process associatedwith the right

inferior frontal gyrus (rIFG; Aron, Robbins, & Poldrack,

2014; Goschke, 2014). Consequently, impaired self-control

is commonly thought to reflect the reduced implementation

of cognitive control (e.g., Heatherton & Wagner, 2011;

Hofmann, Schmeichel, & Baddeley, 2012). In line with this

view, two previous studies yielded evidence that real-life

SCFs related to smoking (Berkman, Falk, & Lieberman,

2011) and eating (Lopez, Hofmann, Wagner, Kelley, &

Heatherton, 2014) are associated with reduced activity in the
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rIFG in a response inhibition task. In contrast to these studies,

which focused on the neural correlates of sustained inhibitory

control across a task, here we aimed to investigate the role of

error processing as an indicator of performance monitoring.

Errors indicate performance failures—that is, actions that run

counter to one’s intentions—and therefore signal a strong

need for subsequent behavioral adaptations in order to contin-

ue goal-directed behavior (Danielmeier & Ullsperger, 2011).

Thus, instead of sustained inhibitory control across tasks, here

we focused on dynamic adjustments in situations in which

increased control was needed. Moreover, we did not restrict

data acquisition to a certain (clinical) type of SCF (such as

smoking). Rather, aiming at a general understanding of self-

control, we addressed SCFs in the context of a wide range of

different desires.

On the basis of current neurobiological models of cognitive

control, we assume that self-control rests on a performance-

monitoring network (PMN) comprising the posterior medial

frontal cortex (pMFC), which includes the anterior middle

cingulate cortex (aMCC) and the presupplementary motor ar-

ea (preSMA), as well as the anterior insulae (aINS) (Uddin,

2015; Ullsperger, Danielmeyer & Jocham, 2014). Although

methodological challenges (e.g., spatial smoothing, group dif-

ferences, image resolution) make a clear functional localiza-

tion within the pMFC difficult, functional magnetic resonance

imaging (fMRI) studies have consistently shown that the

pMFC is sensitive to evaluative signals (King, Korb, von

Cramon, & Ullsperger, 2010; Ridderinkhof, Ullsperger,

Crone, & Nieuwenhuis, 2004; Ullsperger & von Cramon,

2004). Likewise, there is converging evidence that the often

coactivated aINS assigns salience to behaviorally relevant

stimuli and events (Craig, 2009; Klein et al., 2007; Uddin,

2015).

In line with conflict-monitoring theory (Botvinick, Braver,

Barch, Carter, & Cohen, 2001; Kerns et al., 2004; Miller &

Cohen, 2001), we assume that the PMN registers conflict-

induced performance problems and signals the need for en-

hanced cognitive control and appropriate adjustments to the

lateral prefrontal cortex. In the context of response interfer-

ence tasks such as the Stroop, flanker, or Simon task, these

adjustments include recruitment of the rIFG, which mediates

the inhibition of prepotent but nonintended responses (Aron

et al., 2014). On a behavioral level, these adjustments of cog-

nitive control are reflected in posterror slowing (PES)—that

is, the tendency to slow down after an error (Danielmeier &

Ullsperger, 2011; King et al., 2010; Rabbitt, 1966; Ullsperger

et al., 2014).

According to the function of performance monitoring

outlined above, a hypoactive PMN should lead to reduced

recruitment of cognitive control, not only under laboratory

conditions but also in real-life situations requiring self-control:

For instance, a dieter who views a fast food commercial may

fail to inhibit intrusive food-related thoughts, thus allowing a

problematic desire to emerge. In such situations, aberrant per-

formance monitoring would entail an inability to efficiently

mobilize cognitive control processes, and thus likely leads to

full-blown SCFs.

Following a brain-as-predictor approach (Berkman & Falk,

2013), here we tested whether everyday SCFs assessed via

experience sampling are predicted by the neural correlates of

performance monitoring, operationalized as error-related

brain activity in a Stroop task under fMRI. On the basis of

the assumption that SCFs result from deficient monitoring of

performance problems and/or insufficient subsequent control

adaptations, we hypothesized that low self-control would be

associated with (i) low error-related activity in the PMN

(aMCC, preSMA, aINS), (ii) low posterror recruitment of

the rIFG, and (iii) reduced PES. To determine the discriminant

validity of these neural and behavioral measures of perfor-

mance monitoring with respect to self-ascribed self-control

abilities, we furthermore investigated whether error-related

brain activity and PES explain variance in SCFs beyond what

is predicted by participants’ self-reports of trait self-control.

Materials and method

Participants

A total of 142 young adults (79 female, 63 male; age 20 to 26

years, M = 22.04 years, SD = 1.73) were recruited from a

representative community sample for an ongoing longitudinal

study on the role of cognitive control in the onset and early

course of addictive disorders. Thus, although addiction was

not the focus of the present investigation, participants were

screened for symptoms of addictive disorders and addiction-

like behaviors (see Appendix 1). Participants were excluded if

they had a limited ability to provide informed consent and to

understand the questionnaires and tasks, disorders that might

influence cognition ormotor performance (e.g., craniocerebral

injury, multiple sclerosis), magnetic-resonance contraindica-

tions, lifetime schizophrenia or psychotic symptoms, bipolar

disorder, somatoform, anxiety, obsessive-compulsive or eat-

ing disorders, or major depression in the last four weeks.

Participants were paid €40 for completing the scanning ses-

sion and experience sampling. All participants provided writ-

ten informed consent. One participant was excluded due to

technical problems during the fMRI acquisition; two partici-

pants were excluded due to error rates of 100% in the Stroop

task, and 20 participants were excluded due to a complete lack

of errors. We excluded one further participant whose parame-

ter estimates deviated from the normal distribution. Thus, 118

participants (64 females, 54 male; age 20–26 years, M =

22.18, SD = 1.82) were included in the analyses reported here.

This sample size is exceptionally large in comparison to pre-

vious studies that have used a brain-as-predictor approach.
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Experience sampling procedure

Real-life SCFs across a wide range of behavioral domains

were assessed via experience sampling (Hofmann,

Baumeister, et al., 2012). Participants were given identical

smartphones on which a customizable experience-sampling

application was running while all other functions were

blocked. Participants were shown how to use the device dur-

ing a brief meeting with a research assistant. The experience-

sampling period, during which the participants carried the

devices with them at all times, started the next morning and

lasted for seven consecutive days. Each day, eight alarms were

emitted within a 14-h time window, which was adjusted to the

participant’s habitual waking hours (starting at either 8, 9, or

10 a.m.). The exact time for each alarm was randomly select-

ed, with the constraint that two alarms be at least 1 h apart.

Whenever participants accepted an alarm, they completed a

short questionnaire consisting of up to seven questions on the

device. First, they were asked whether or not they had expe-

rienced a desire to enact a realizable behavior at some point

during the last hour. If they reported a desire, they were asked

to indicate the desire strength, on a scale from 1 (very weak) to

6 (very strong), and to select the respective desire type, from a

list of 19 categories (eating, drinking, drinking alcohol,

smoking, using some other substance, using the internet,

playing a computer game, watching TV, buying something,

gambling, exercising, sleeping, resting, retreating,

misbehaving, socializing, having sex or intimacy, using a

bathroom, and other). They were then asked whether they

had a reason not to enact the desire (i.e., whether there was a

conflict). If they reported a conflict, they were asked to

indicate the conflict strength, on a scale from 1 (very weak)

to 6 (very strong), and whether or not they had attempted to

resist the desire. Eventually they were asked whether or not

they had enacted the desired behavior. In summary, up to four

dichotomous variables (desire, conflict, resistance, and enact-

ment), one categorical variable (desire type), and two contin-

uous variables (desire and conflict strength) were acquired per

questionnaire. Depending on response rates, each participant

completed up to 56 questionnaires. SCFswere operationalized

as occasions on which the participant failed to resist tempta-

tion—that is, enacted a conflict-laden desire.

Self-reports of trait self-control

Participants’ self-evaluations of trait self-control were assessed

with a German version of the Brief Self-Control Scale (BSCS;

Bertrams &Dickhäuser, 2009; Tangney et al., 2004). The BSCS

comprises 13 items (e.g., BI am good at resisting temptation^;

BPeople would say that I have iron self-discipline^; BSometimes

I can’t stop myself from doing something, even if I know it is

wrong^) and is one of the most widely used questionnaires in

self-control research (Duckworth & Kern, 2011). High BSCS

scores indicate high levels of trait self-control.

Stroop task and computation of PES

Error-related brain activity was measured using blood-oxygen

level-dependent (BOLD) fMRI in a counting Stroop task

(Bush et al., 1998), with a rapid event-related design.

Figure 1 illustrates an exemplary sequence of trials. Each trial

started with the presentation of a fixation cross with a jittered

Fig. 1 Exemplary sequence of two trials in the counting Stroop task.

After a jittered interstimulus interval (2–4 s), a row of identical digits

was shown. Participants had to indicate the number of digits while

ignoring the digits’ denotations by pressing one of four response keys.

The number and denotation of the digits were either congruent (B1,^

B22,^ B333,^ B4444^) or incongruent (B111,^ B2222,^ B3,^ B44^). In

all, 40 congruent and 40 incongruent trials were presented in

randomized order
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duration of 2–4 s (2.0, 2.5, 3.0, 3.5, or 4.0 s). The fixation

cross was then replaced by a row of either one, two, three, or

four identical digits from 1 to 4 for 1 s, yielding an average

trial duration of 4 s. Participants held the index and middle

fingers of both hands over four response buttons and were

instructed to respond as quickly as possible to the number of

digits while ignoring the denoted numbers. The stimulus–re-

sponse mapping was natural: a one-digit stimulus required a

response on the leftmost button, a two-digit stimulus required

a response on the second-leftmost button, and so forth. The

task-relevant number of digits and the task-irrelevant denota-

tion of the digits were either congruent (B1,^ B22,^ B333,^

B4444^) or incongruent (B111,^ B2222,^ B3,^ B44^). A total

of 80 trials (40 congruent, 40 incongruent) were presented in a

randomized sequence, yielding a total task duration of 5 min

20 s. To clarify the task, participants completed a practice

session of 15 trials inside the scanner before the actual exper-

iment started.

As Dutilh et al. (2012) have demonstrated, PES calculated

in the traditional way (posterror vs. postcorrect) is prone to

global fluctuations in response times (RTs) over the course of

the experiment. To reduce noise and minimize the impact of

global RT fluctuations, we applied the robust method of PES

calculation (Dutilh et al., 2012): The mean RT of correct pre-

error trials was subtracted from the mean RT of correct

posterror trials [RT (E+1) – RT (E–1)] (Table 1). Only the RTs

from correct pre- and posterror trials were used for the PES

calculation. For each participant, the z-standardized PES score

was incorporated into subsequent hierarchical linear modeling

(HLM) analyses predicting real-life SCFs as a Level-2 predic-

tor (see below).

fMRI data acquisition and analysis

Functional images were acquired using a T2*-weighted

gradient-echo echo-planar imaging (EPI) sequence (TE = 25

ms, TR = 2 s, flip angle 78°, slice thickness 3.2 mm, matrix

64 × 64, FOV 19.2 cm, in-plane resolution 3 × 3 mm) on a

Siemens MAGNETOM Trio A Tim 3-T scanner with a 32-

channel head coil. Thirty-four axial slices, oriented parallel to

the AC–PC line covering the whole brain, were acquired. In

addition, high-resolution anatomical images were acquired (TE

= 2.26 ms, TR = 1,900 ms, flip angle 9°, matrix 256 × 256,

FOV 25.6 cm, 176 sagittal slices, slice thickness 1 mm) and co-

registered with the functional images. SPM8 (www.fil.ion.ucl.

ac.uk/spm/) was used for preprocessing and statistical analyses

of the fMRI data. After realignment and slice-time correction

(to the middle slice), the data were normalized to standard

Montreal Neurological Institute (MNI) space, using a unified

segmentation approach based on the separation of gray matter,

white matter, and cerebrospinal fluid (voxel size 3 mm). The

data were spatially smoothed using an 8-mm full-width at half-

maximum (FWHM)Gaussian filter. For baseline correction, the

data were high-pass-filtered with a cutoff period of 128 s.

We derived whole-brain measures of error-related brain ac-

tivity by estimating a general linear model (GLM) of BOLD

activity, which included six regressors of interest: (i) congruent

correct trials, (ii) incongruent correct trials, (iii) congruent error

trials, (iv) incongruent error trials, (v) postincongruent error

trials, and (vi) postincongruent correct trials.1 Motion parame-

ters were included as regressors of no interest, and the regres-

sors were convolved with a canonical form of the hemodynam-

ic response. Two first-level single-subject contrasts were com-

puted to assess the neural correlates of error processing during

and after error commission: an error contrast (incongruent error

vs. incongruent correct trials), and a posterror contrast

(postincongruent error vs. postincongruent correct trials).2 The

corresponding contrasts for congruent errors were not calculat-

ed because of the low number of errors on congruent trials (see

Table 1). At the second level, group contrasts were computed

using one-sample t tests on both of the previously described

single-subject contrasts.

Extraction of parameter estimates from regions
of interest (ROIs)

At first we confirmed that the PMNwas activated during error

trials and that the rIFG was activated during posterror trials

Table 1 Behavioral results of the Stroop task across participants (N =

118)

RT (ms, M ± SD) PES (ms, M ± SD) N Errors (M ± SD)

Congruent Incongruent

Pre-

Error Posterror Congruent Incongruent

605 ± 56 656 ± 61 617 ± 91 651 ± 99 1.02 ± 1.6 2.99 ± 2.48

RT = response time, PES = posterror slowing, ms = milliseconds

1
Regressors iv (incongruent error) and ii (incongruent correct) were modeled

in order to assess error-related brain activity during the Stroop task. Congruent

errors (iii) were rare and possibly reflect a different process that is not compa-

rable with errors in incongruent trials, which occurred under high cognitive

demand. Still, congruent errors were modeled in order to improve our model.

Regressors v (postincongruent error) and vi (postincongruent correct) were

modeled in order to assess posterror activity, which should reflect the imple-

mentation of cognitive control. Regressor i (congruent correct) was also

modeled in order to improve our model. Both congruent and incongruent trials

were included in regressors v and vi. Across participants, we observed no

significant difference between the proportions of incongruent trials in

postincongruent correct trials (49.14%) and postincongruent error trials

(47.19%), t(117) = 0.575, p = .566. Thus, conflict levels were equal for both

trial types.
2
Different approaches were applied for the calculation of posterror brain ac-

tivity (posterror vs. postcorrect) and posterror slowing (PES; posterror vs. pre-

error) because fMRI data have very low temporal resolution and are thus—

unlike PES (Dutilh et al., 2012)—barely affected by global RT fluctuations on

the observed scale.
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(see the Results and Appendix 2 for whole-brain activations).

Then we defined ROIs as the overlap between the anatomical

masks and task activity, thresholded at p < .001 (FWE-

corrected, whole-brain). We constructed one mask for the

PMN (bilateral MCC, SMA, and INS; Uddin, 2015;

Ullsperger et al., 2014) and a second mask for the rIFG (pars

triangularis, pars orbitalis, and pars opercularis; Aron et al.,

2014) using the Automated Anatomical Labeling (AAL) tool-

box (Tzourio-Mazoyer et al., 2002). Since we were exclusive-

ly interested in error-related brain activity within the PMN and

rIFG ROIs, parameter estimates were extracted from those

voxels that were significantly activated in the respective con-

trast (error or posterror contrast) and that overlapped with the

respective mask (PMN or rIFG).

TheMarsbar Toolbox (http://marsbar.sourceforge.net/) was

used to extract raw parameter estimates. For each participant,

z-standardized parameter estimates were incorporated into the

HLM analyses as Level-2 predictors.

Integration of fMRI and experience sampling data
with hierarchical linear modeling

To test whether error-related brain activity and PES predicted

SCFs while taking into account the nested structure of the

experience sampling data, fMRI, behavioral, and experience

sampling data were subjected to multilevel regression analy-

ses, using the Hierarchical Linear Modeling software package

(HLM 7; Raudenbush, Cheong, Congdon, & DuToit, 2011).

Since desire enactment indicates a lack of self-control only

when the desires are at conflict with superordinate goals, only

those situations in which such a conflict was reported were

analyzed. Because the dependent variable, enactment, was

binary, logistic multilevel regression analyses were applied

using the Bernoulli model in the HLM. For each analysis, a

hierarchical two-level model was built with situations (Level

1) nested within participants (Level 2). In each model, the

Level-1 predictors were person-mean centered, whereas the

Level-2 predictors were grand-mean centered. To avoid

overparameterization and keep computational complexity

low, only significant random variance components were kept

in the models (Hox, 2010).

In a first step, a basic model was built to examine how

behavior enactment was affected by desire strength and conflict

strength, while controlling for possible effects of desire content

by including desire type as a set of effects-coded variables at

Level 1. In a second step, this basic model was extended by

incorporating individually averaged parameter estimates from

the PMN (aMCC, preSMA, aINS) and the rIFG, as well as PES

slowing scores as z-standardized Level-2 predictors. To avoid

problems due to collinearity among the predictor variables,

three separate analyses were applied in which only one Level-

2 predictor at a time was included. In a third step, each of these

three models was extended by including z-standardized BSCS

scores as a second Level-2 predictor.

Results

Experience-sampling response rates

On average, participants responded to 42.83 (SD = 10.17) of

the 56 issued alarms. They reported 30.64 (SD = 10.53) de-

sires, 10.48 (SD = 6.33) of which were conflict-laden. SCFs

were operationalized as all occasions on which the participant

failed to resist temptation and enacted a desire that conflicted

with a long-term goal. Of the conflict-laden desires, 5.64 (SD

= 4.67) were reported to result in SCFs, on average (for a

categorization of occasions by desire types, see Appendix 3).

Behavioral results of the Stroop task

Table 1 shows RTs and numbers of errors for the different

conditions of the Stroop task. As is commonly found in

Stroop experiments, increased RTs, t(117) = 24.753, p <

.001, and errors, t(117) = 12.38, p < .001, were found on

incongruent as compared to congruent trials: In the incongru-

ent condition, the mean RTwas increased by 51ms (SD = 23),

and the mean number of errors was increased by 1.97 (SD =

1.73). Moreover, significant PES (using the robust method;

Dutilh et al., 2012) was observed following incongruent errors

(M = 34 ms, SD = 106), t(117) = 3.49, p < .001.3 No corre-

sponding PES effect was observed following congruent errors

(M = – 10 ms, SD = 123), t(57) = – 0.43, p = .669.

Significant PES was also observed when using the traditional

method for calculation (posterror minus postcorrect;M = 34 ms,

SD= 106ms), t(117) = 3.49, p< .001. PES calculated in thisway

was not correlatedwith error-related activity in either the PMN (r

= .115, p = .215) or rIFG (r = .102, p = .271) and did not

significantly predict SCFs (blog = – 0.102, p = .116, one-sided).

Note that PES was not accompanied by posterror changes

in response accuracy (PIA): Response accuracy was 94.6% on

trials following incongruent hits and 96.1% on trials following

incongruent errors; thus, there was a posterror accuracy in-

crease of 1.5%. This increase was not statistically significant,

t(117) = 1.33, p = .187. Note, however, that the interpretability

of PIA in this dataset is limited due to a marked ceiling effect

in postincongruent error response accuracies (104 of 118 par-

ticipants showed a response accuracy of 100% on trials fol-

lowing incongruent errors; Danielmeier & Ullsperger, 2011).

3
Across participants, we observed no significant difference between the pro-

portions of incongruent trials in pre- (53.55%) and posterror trials (47.19%),

t(117) = 1.257, p = .211. Distortion of PES by unequal conflict levels in pre-

and posterror trials can thus be excluded.
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Error-related brain activity

Figure 2 shows whole-brain activations (p < .001, FWE-

corrected) in the error and posterror contrasts. As expect-

ed, the PMN was activated on error trials, and the rIFG

was activated on posterror trials. Global peak activations

in the error- and posterror contrasts were located in the

right aINS (30/20/– 8) and the rIFG (57/26/– 2), respec-

tively (for all peak activations, see Appendix 2).

Correlations with PES were nonsignificant for error-

related brain activity in both the PMN (r = .115, p =

.216) and rIFG (r = .091, p = .329).

Prediction of SCFs

Situational variables First, the effects of the situational vari-

ables, desire strength and conflict strength, on the occurrence

of SCFs were examinedwithout considering any predictors on

the second level (Table 2). As one would expect (Hofmann,

Baumeister, et al., 2012), the frequency of SCFs increased

with desire strength (blog = 0.40, p < .001) and decreased with

conflict strength (blog = – 0.78, p < .001): SCFs were most

likely in situations in which desire strength was high and/or

conflict strength was low.

Error-related brain activity and PES Consistent with our first

prediction, we observed that participants showing weaker ac-

tivation in the PMN (blog = – 0.20, p = .018, one-tailed) on

error relative to correct trials weremore likely to commit SCFs

than were participants showing stronger error-related activa-

tion of the PMN (Table 2 and Fig. 3). Consistent with our

second prediction, SCFs were also significantly predicted by

activity in the rIFG on posterror trials: More SCFs were re-

ported by participants showing weaker posterror activation in

the rIFG (blog = – 0.25, p = .004, one-tailed) (Fig. 3, Table 2).

Consistent with our third prediction, we found that reduced

PES predicted more SCFs (blog = – 0.19, p = .013, one-tailed).

Note that (despite reduced sample sizes) the results

remained consistent when participants were excluded who

committed only one error on incongruent trials (n = 81;

PMN: blog = – 0.35, p = .001; rIFG: blog = – 0.31, p = .011),

two errors on incongruent trials (n = 52; PMN: blog = – 0.42, p

= .014; rIFG: blog = – 0.39, p = .047), or three errors on

incongruent trials (n = 37; PMN: blog = – 0.44, p = .038;

rIFG: blog = – 0.44, p = .074.

In none of the analyzed brain regions did error-related ac-

tivity significantly interact with desire or conflict strength.

Because analyses of correctly performed conflict trials might

also be of interest, these results can be found in Appendix 4.

The results for between-group analyses are reported in

Appendix 1.

Of note, SCFs were also significantly predicted by higher

numbers of incongruent errors (blog = 0.317, p = .013).

Nonetheless, error rates did not explain the effects of error-

related brain activity and PES on SCFs: Even after including

the number of errors as an additional predictor, the effects of

Fig. 2 Whole-brain activations for the error and posterror contrasts,

thresholded at p < .001 (FWE-corrected; for all peak activations, see

Appendix 2). The performance-monitoring network (PMN; including

aMCC, preSMA, and aINS) was activated in the error contrast, and the

right inferior frontal gyrus (rIFG) was activated in the posterror contrast.

Overlaps between these activations and predefined anatomical masks

were used as the regions of interest from which parameter estimates were

extracted in order to predict self-control failures (see Fig. 3)
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PMN (blog = – 0.189, p = .028) and rIFG (blog = – 0.216, p =

.015) activity, as well as of PES (blog = – 0.191, p = .014), on

SCF remained significant. Error rates were not correlated with

PES (r = – .061, p = .514).

Trait self-control The negative main effects of error-related

brain activity and PES remained significant when BSCS

scores were included as an additional Level-2 predictor

(Table 2), showing that these neural and behavioral measures

of performance monitoring predicted variability in SCFs that

was not explained by trait self-control. SCFs were nonetheless

also significantly predicted by BSCS scores in all models: As

expected, participants with low as compared to high trait self-

control were significantly more likely to commit SCFs.

Significant cross-level interactions of BSCS scores with desire

and conflict strength indicated that the effect of trait self-

control on SCFs was stronger for weak desires and strong

conflicts.

Discussion

The goal of the present study was to further elucidate the

neurocognitive mechanisms underlying individual differ-

ences in real-life SCFs. Therefore, we combined neuroim-

aging (fMRI) with ecological assessment of self-control

via experience sampling in a large sample of participants.

Whereas it is commonly assumed that impaired self-

control reflects the reduced implementation of cognitive

control, here we investigated the more specific assump-

tion that the reduced implementation of cognitive control

during real-life SCFs may result from insufficient

mobilization of control processes due to deficient perfor-

mance monitoring. Consistent with this idea, our results

showed that individual differences in real-life self-control

were reliably predicted by error-related brain activation in

the performance-monitoring network, comprising the

pMFC and aINS, posterror activation of the rIFG, and,

on a behavioral level, PES. These results suggest that

individual differences in real-life self-control reflect vari-

ability in both initial (error detection) and subsequent (im-

plementation of cognitive control) components of perfor-

mance monitoring.

This pattern goes beyond previous reports of associa-

tions between SCFs and activation of the rIFG (Berkman

et al., 2011; Lopez et al., 2014), and emphasizes the role

of performance monitoring in real-life self-control:

Consistent with conflict-monitoring theory (Botvinick

et al., 2001; Kerns et al., 2004; Miller & Cohen, 2001),

according to which the implementation of cognitive con-

trol depends on a signal generated by the PMN, we

showed that real-life SCFs were more likely in those in-

dividuals who exhibited low error-related activation of the T
ab
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PMN in a Stroop task. This indicates that among individ-

uals with low self-control, unwanted action outcomes or

desires conflicting with superordinate goals may be less

likely to be detected and/or do not elicit sufficiently

strong salience signals, leading to reduced recruitment of

cognitive control. Converging, albeit more indirect, evi-

dence supporting this view comes from the fact that PMN

dysfunctions are often found in substance-related and ad-

dictive disorders, of which impaired self-control is a core

characteristic (Carey, Nestor, Jones, Garavan, & Hester,

2015; Goschke, 2014; Luijten et al., 2014).

Note that although correlates of impaired cognitive

control implementation (reduced posterror rIFG activa-

tion, reduced PES) also predicted real-life SCFs, this does

not necessarily imply a lack of cognitive control

competencies in those individuals who act in a less self-

controlled way. In line with current models of self-control

that have incorporated conflict-monitoring theory

(Inzl icht , Bartholow, & Hirsh, 2015; Kotabe &

Hofmann, 2015), less self-controlled behavior could alter-

natively be explained by reduced mobilization of cogni-

tive control as a consequence of insufficient performance

monitoring. This is consistent with the more general view

that strong control competencies alone are not sufficient

for successful self-control. Instead, even individuals with

high capacities for exerting cognitive control may exhibit

low self-control if they fail to efficiently mobilize control

in response to desire-goal conflicts.

Fig. 3 Effects of error-related performance-monitoring network (PMN)

and right inferior frontal gyrus (rIFG) activity, desire strength, and con-

flict strength on the probability of real-life self-control failures (SCFs).

Anatomically defined ROI masks are shown in red in the online figure.

Brain activity was extracted from voxels that were significantly activated

in response to errors (p < .001, FWE-corrected, whole-brain) and that

overlapped with the ROI masks (shown in yellow in online version).

Predicted log-odds for SCFs have been transformed into probabilities.

The x-axes range from the 5th to the 95th percentiles of values for

PMN activation and rIFG activation, respectively. Separate plots are

shown for high (1 SD above the mean) and low (1 SD below the mean)

desire and conflict strength. SCFs were less likely to occur with low

desire strength or high conflict strength, and in participants who showed

stronger PMN and rIFG activations
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In contrast to Lopez et al. (2014), we did not find an

interaction between desire strength and rIFG activation.

Furthermore, we found no interactions between neural

and behavioral measures of error processing and conflict

strength. This suggests that, in contrast to the ability to

exert sustained inhibitory control, which may be especial-

ly important when facing strong desires, an efficient mo-

bilization of control is crucial for self-control regardless

of desire and conflict strength. An alternative explanation

for the lack of interaction with desire and conflict strength

is that third variables that are unrelated to desire and con-

flict strength may explain the observed association be-

tween error-related brain activity and SCFs.

We found no correlation between PES and PMN activ-

ity. This might be explained by the fact that the PMN as

defined in the present study (preSMA, MCC, insula) only

partially overlaps with neural substrates described for

PES, which, in addition to the preSMA, also include

right-hemispheric lateral frontal areas and the subthalamic

nucleus (Danielmeier & Ullsperger, 2011).

Response conflicts and resulting performance prob-

lems have been shown to be inherently aversive (Aarts,

De Houwer, & Pourtois, 2012), and this negative affect

appears to play a functional role in initiating required

adjustments in cognitive control (Dreisbach & Fischer,

2012; Inzlicht et al., 2015; Saunders, Lin, Milyavskaya,

& Inzlicht, 2017; Wiswede, Münte, Goschke, &

Rüsseler, 2009). This suggests that impaired mobilization

of control in self-control situations may reflect a relative

inability to process conflict-related aversive states adap-

tively. Instead of effectively reducing negative affect by

mobilizing control, thus addressing the conflict itself and

solving it in accordance with superordinate goals, indi-

viduals with low self-control may use less conflict-

centered emotion regulation strategies or even ruminate

about the emotion itself. In line with this conjecture, in a

recent study (Wolff et al., 2016) we found that high

executive control competencies predicted lower prone-

ness to daily SCFs in individuals with a disposition to-

ward Baction orientation^ (who have been shown to

efficiently recruit control in response to conflict;

Goschke & Bolte, 2018; Kuhl & Beckmann, 1994), but

not in Bstate-oriented^ individuals, who tend to respond

to conflicts with rumination rather than enhanced control

recruitment (Fischer, Plessow, Dreisbach, & Goschke,

2015; Jostmann & Koole, 2007).

Apart from ineffective responses to negative affect,

reduced mobilization of control and low error-related

PMN activations may also result from low control mo-

tivation—that is, a low expected payoff in relation to

costs from engaging control (Shenhav, Botvinick, &

Cohen, 2013). Thus, in line with previous evidence sug-

gesting an inverse relationship between cognitive de-

mand avoidance and the efficacy of self-control (Kool,

McGuire, Wang, & Botvinick, 2013), our finding of low

error-related brain activity in individuals with low self-

control may in part reflect individual differences in ef-

fort discounting.

Since SCFs are a core characteristic of various mental

disorders such as addiction, depression, and certain anxi-

ety disorders (Goschke, 2014), our study is also of theo-

retical and practical relevance for clinical conditions:

Besides attempts to improve control competencies with,

for instance, working memory training (Karbach &

Verhaeghen, 2014; Klingberg, 2010) or training of inhib-

itory control (Berkman, Kahn, & Merchant, 2014), pa-

tients might also benefit from therapeutic interventions

that include modules to strengthen performance monitor-

ing—for example, via mindfulness-based interventions

(e.g., Jha, Krompinger, & Baime, 2007; Mrazek,

Franklin, Phillips, Baird, & Schooler, 2013; Witkiewitz,

Bowen, Douglas, & Hsu, 2013; Saunders, Rodrigo, &

Inzlicht, 2016).

Note that although we showed that predictions based

on conflict-monitoring theory yield convincing results

with regard to real-life self-control, this does not mean

that alternative accounts of cognitive control are less

valid. We are aware of the fact that a simple conflict

monitoring view has been challenged (e.g., Grinband

et al., 2011), and we do not suggest that the role of

the medial prefrontal cortex is restricted to a single

cognitive function (Ebitz & Hayden, 2016). Rather,

apart from multiple forms of performance monitoring

(Neta, Schlaggar, & Petersen, 2014), the medial prefron-

tal areas have been implicated in reward processing

(Holroyd & Coles, 2002; Holroyd & Yeung, 2012),

learning (Alexander & Brown, 2011), execution of con-

trol, action selection and computing the value and cost

of control (Shenhav et al., 2013). At the same time,

however, we stress that our conclusion that real-life

SCFs can partly be explained by insufficient perfor-

mance monitoring leading to reduced behavioral adapta-

tions is neither invalidated by alternative accounts of

cognitive control nor inconsistent with accounts accord-

ing to which brain structures involved in performance

monitoring may serve more general functions such as

cost-benefit analyses underlying the adaptive regulation

of control (Shenhav et al., 2013).

Having shown that everyday SCFs are predicted by

neural processes related to performance monitoring and
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cognitive control, the present study demonstrates that

brain data serve as an informative window into the psy-

chological processes underlying important real-life be-

haviors. When following such a brain-as-predictor ap-

proach, it is critical to consider whether the predictive

information of neural data goes beyond what could be

obtained otherwise (Berkman & Falk, 2013). Here we

found error-related brain activity (and PES) to predict

variability in SCFs that was not explained by trait

self-control, indicating that these measures have unique

predictive power and show discriminant validity with

respect to self-reports.

A potential methodological limitation of the present study

results from the necessity of using a task that produces max-

imally salient—and thus relatively rare—error events, which

might have led to a decreased signal-to-noise ratio in error-

and posterror trials. Nevertheless, consistent with current

models of cognitive control (Aron et al., 2014; Ridderinkhof

et al., 2004; Ullsperger et al., 2014), we found extremely ro-

bust task activations related to performance monitoring (aINS,

aMCC, SMA) and inhibition (rIFG), even when using a very

conservative threshold (p < .001 FWE-corrected; see Fig. 2

and Appendix 2)—and these were indeed predictive of real-

life self-control. However, to obtain more error trials while

preserving error saliency, future studies might employ longer

tasks or administer the tasks repeatedly.

To conclude, our findings suggest that real-life SCFs

may result from deficient performance monitoring, lead-

ing to insufficient recruitment of cognitive control in re-

sponse to action outcomes that conflict with superordinate

goals. The present study adds to the still sparse attempts

to bridge the gap between experimental laboratory re-

search and the assessment of real-life self-control using

a brain-as-predictor approach and provides further support

for the validity of that approach. Although currently cor-

relational, this promising approach allows for identifying

possible neurocognitive mechanisms underlying real-

world behavioral problems. This may serve as the basis

for future prospective and interventional studies testing

causal relations and may help improve the prediction, di-

agnosis, and modification of self-control impairments in

mental disorders as well as of maladaptive social and eco-

nomic behaviors.
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Appendix 1 Addiction symptoms in the study
sample and analysis of group differences

Participants were recruited to be assigned to one of three

groups that differed in terms of symptoms of addictive

disorders and addiction-like behaviors: a substance-

related symptoms group (Group A; 26 participants includ-

ed in final analyses; two or more DSM-5 criteria for al-

cohol and/or tobacco use disorder),4 a non-substance-

related symptoms group (Group B; 38 participants; two

or more DSM-5 criteria for gambling disorder and/or

adapted criteria for addiction-like behaviors), and a con-

trol group (Group C; 54 participants; no more than one

criterion of any category). Table 3 summarizes the fulfill-

ment of diagnostic criteria by study participants across the

sample.

To explore whether the relationship between SCFs and

the neural and behavioral correlates of error processing

was affected by group membership, the original multilevel

regression models were extended by including two effect-

coded dummy variables (indicating membership in

Groups A and B) and their interactions with error-related

brain activity and PES. Table 4 summarizes the three re-

spective models. Significant interactions were found be-

tween membership in the substance-related symptoms

group and both PMN and rIFG activity: The substance-

related symptoms group (Group A) showed a stronger

effect of PMN activity and a reversed effect of rIFG ac-

tivity on SCFs. Whereas the stronger PMN effect in the

substance group is consistent with the PMN effect across

groups, the reversed effect of rIFG activity in the sub-

stance group is surprising. Please note that although this

exploratory result is potentially interesting and points to-

ward the possibility that substance-related and non-

substance-related addictions are characterized by related

but distinct neurocognitive impairments (Bühringer,

Kräplin, & Behrendt, 2012; Goschke, 2014), we had no

hypotheses about between-group effects, since they were

not the focus of the present study. Table 5 summarizes

results for the participants in the control group only.

Note that the parameter estimates for PMN and rIFG in

this analysis are consistent with the main results.

4
The estimated time interval (in minutes) since last consumption was not

correlated with neural and behavioral measures of error processing for either

nicotine (PMN: r = .00, p =.976; rIFG: r = .02, p = .887; incongruent errors: r =

.09, p =.531; PES: r = – .09, p = .527) or alcohol (PMN: r = – .19, p = .052;

rIFG: r = – .09, p =.354; incongruent errors: r = .16, p =.096; PES: r = – .02, p

= .837).
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Table 4 Multilevel logistic regression results: Predicting SCFs from desire strength, conflict strength, neural correlates of error processing, and group

membership

blog (p)

Level-2

Predictor

Intercept ROIa/PESa Group A Group B ROI/PES

× Group A

ROI/PES

× Group B

Desire Strength Desire Strength

× ROI/PES

Desire Strength

× Group A

PMN ROI – 0.13 (.255) – 0.25 (.005) 0.12 (.443) 0.15 (.322) – 0.31 (.004) 0.26 (.054) 0.35 (<.001) – 0.06 (.513) – 0.15 (.196)
rIFG ROI – 0.08 (.502) – 0.13 (.188) 0.11 (.477) 0.09 (.540) 0.47 (.001) – 0.26 (.099) 0.39 (<.001) – 0.15 (.060) – 0.17 (.135)
PES – 0.15 (.180) – 0.25 (.004) – 0.01 (.935) 0.21 (.138) – 0.21 (.098) 0.04 (.717) 0.36 (<.001) – 0.06 (.368) – 0.18 (.057)

blog (p)

Level-2

Predictor

Desire

Strength

× Group B

Desire

Strength

× ROI/PES

× Group A

Desire

Strength

× ROI/PES

× Group B

Conflict

strength

Conflict

Strength

× ROI/PES

Conflict

Strength

× Group A

Conflict

Strength

× Group B

Conflict

Strength

× ROI/PES ×

Group A

Conflict

Strength

× ROI/PES ×

Group B

PMN ROI – 0.01 (.909) 0.03 (.773) 0.08 (.596) – 0.78
(<.001)

– 0.01 (.855) 0.01 (.929) – 0.03 (.761) 0.01 (.925) – 0.05 (.655)

rIFG ROI – 0.03 (.760) 0.06 (.580) – 0.13 (.266) – 0.79
(<.001)

0.03 (.622) 0.06 (.460) – 0.06 (.527) 0.16 (.102) – 0.18 (.107)

PES – 0.01 (.909) 0.01 (.910) – 0.06 (.573) – 0.80 (.001) – 0.10 (.080) 0.02 (.825) – 0.05 (.600) 0.02 (.853) 0.04 (.671)

Population-averagemodel with robust standard errors forN = 118 participants, using z-standardized predictors. blog = predicted log odds; PES = posterror

slowing following errors in incongruent trials, PMN = performance-monitoring network (aMCC/SMA, aINS); rIFG = right inferior frontal gyrus; ROI =

region of interest; Group A = substance-related symptoms group; Group B = non-substance-related symptoms group. a In accordance with the expected

effects of error-related brain activity and PES on SCFs, one-tailed p values are reported for the respective main effects.

Table 3 Numbers of participants fulfilling diagnostic criteria for addictive disorders and addiction-like behaviors

Number of Criteria Fulfilled

Addictive Disorder/Addiction-Like Behavior 0 1 2 3 4 5 6 7 8

Nicotinea 124 2 1 4 4 1 3 3 –

Alcoholb 88 32 10 6 3 2 1 – –

Gamblingc 141 1 – – – – – – –

Gamingd 126 3 3 2 2 2 2 2 –

Internet used 76 22 15 11 9 5 3 – 1

Compulsive buyingd 141 1 – – – – – – –

According to the DSM-5, a substance use disorder can be diagnosed when 2 or more criteria for the respective disorder are met. Substance use disorder

severity is specified as either mild (2–3 criteria met), moderate (4–5), or severe (6 or more). Gambling disorder can be diagnosed when 4 or more criteria

are met. Gambling disorder severity is specified as either mild (4–5 criteria met), moderate (6–7), or severe (8–9). aDSM-5 nicotine use disorder. bDSM-

5 alcohol use disorder. cDSM-5 gambling disorder. dThese addiction-like behaviors are not recognized as addictive disorders according to DSM-5.

Criteria were adapted from DSM-5 criteria for substance use disorders.
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Appendix 2 Whole-brain peak activations

Table 6 Whole-brain peak activations (N = 118, p < .001, FWE-corrected)

Contrast Region

x y z Cluster Size T

Incongruent error > Incongruent correct

rINS 30 20 – 8 487 11.78

rIFGoper 51 20 10 8.68

rIFGtri 42 17 28 6.24

lINS – 30 17 – 8 332 11.57

lINS – 30 23 4 9.79

ACC 6 32 28 822 9.06

rSMA 6 20 49 8.90

MCC 6 23 37 8.68

THA 6 – 19 4 38 6.81

THA – 3 – 19 4 6.71

BS 9 – 25 – 5 5.99

SMG 60 – 43 25 10 5.92

BS – 6 – 25 – 5 2 5.86

Postincongruent error > Postincongruent correct

rIFGtri 57 26 – 2 77 7.48

rMFG 27 56 25 92 7.35

CB – 45 – 58 – 29 121 7.22

CB – 24 – 70 – 32 6.98

CB – 33 – 79 – 29 5.91

rSMA 6 20 61 88 7.13

rSupFrontMed 0 29 52 6.29

rIPL 51 – 46 52 61 6.93

PCL 3 – 43 70 2 5.78

Degrees of freedom [1,117]; r = right; l = left; INS = insula; IFGoper = inferior frontal gyrus, pars opercularis; IFGtri = inferior frontal gyrus, pars

triangularis; ACC = anterior cingulate cortex; SMA = supplemental motor area; MCC = middle cingulate cortex; THA = thalamus; BS = brainstem;

SMG = supramarginal gyrus; MFG =middle frontal gyrus; CB = cerebellum; SupFrontMed = superior frontal medial gyrus; IPL = inferior parietal lobe;

PCL = paracentral lobule

Table 5 Multilevel logistic regression results (healthy controls only): predicting SCFs from desire strength, conflict strength, neural correlates of error-

processing, and trait self-control

blog (p)

Step/Level-2

Predictors

in Model

Intercept Desire

Strength

Conflict

Strength

ROI/PESa ROI/PES

× Desire

Strength

ROI/PES

× Conflict

Strength

BSCSa BSCS

× Desire

Strength

BSCS ×

Conflict

Strength

1. Prediction by situational variables:
– – 0.26 (.136) 0.58 (<.001) – 0.78 (<.001)

2. Prediction by situational variables and neural and behavioral measures of performance monitoring:
PMN ROI – 0.30 (.098) 0.54 (<.001) – 0.77 (<.001) – 0.23 (.107) – 0.21 (.093) 0.02 (.734)
rIFG ROI – 0.20 (.251) 0.61 (<.001) – 0.80 (<.001) – 0.34 (.001) – 0.08 (.485) 0.05 (.455)
PES – 0.27 (.542) 0.58 (<.001) – 0.78 (<.001) – 0.09 (.271) – 0.03 (.673) – 0.14 (.136)

3. Prediction by situational variables, neural and behavioral measures of performance monitoring, and self– reports of trait self– control:
PMN ROI, BSCS – 0.28 (.116) 0.52 (<.001) – 0.72 (<.001) – 0.22 (.122) – 0.23 (.036) 0.03 (.631) – 0.08 (.274) 0.22 (.015) – 0.20 (.024)
rIFG ROI, BSCS – 0.19 (.271) 0.59 (<.001) – 0.75 (<.001) – 0.35 (.001) – 0.08 (.365) 0.05 (.450) – 0.06 (.335) 0.22 (.016) – 0.22 (.016)
PES, BSCS – 0.27 (.131) 0.55 (<.001) – 0.74 (<.001) – 0.07 (.318) – 0.06 (.430) – 0.11 (.269) – 0.06 (.351) 0.22 (.016) – 0.18 (.060)

Population-average model with robust standard errors for N = 54 participants, using z-standardized predictors. blog = predicted log odds; BSCS = Brief

Self-Control Scale; PES = posterror slowing following errors in incongruent trials; PMN = performance-monitoring network (aMCC,SMA, aINS; error

contrast); rIFG = right inferior frontal gyrus (posterror contrast); ROI = region of interest. a In accordance with the expected effects of error-related brain

activity, PES, and trait self-control on SCFs, one-tailed p values are reported for the respective main effects.

Cogn Affect Behav Neurosci (2018) 18:622–637 633



Appendix 3: Types of desires, conflicts,
and self-control failures

Appendix 4: Conflict-related brain activity
as a predictor of real-life self-control failures

To investigate whether self-control failures were predicted by

brain activity in successfully resolved conflict trials, the same

data analysis approach was used as for error-related brain ac-

tivity. Thus, one additional GLM, two additional fMRI con-

trasts, and one additional HLM were computed. Since partic-

ipants without error trials could be included, the sample size

for this supplementary analysis was N = 139 (76 female, 63

male; ages 20 to 26 years, M = 22.03 years, SD = 1.75).

In addition to the error (incongruent error > incongruent

correct trials) and posterror (postincongruent error >

postincongruent correct trials) contrasts, a third contrast was

computed in order to assess the brain activity associated with

resolved conflicts: the resolved-conflict contrast (incongruent

correct > congruent correct trials). To investigate BOLD ac-

tivity after resolved conflicts, a second GLM was estimated,

including four regressors of interest: (i) postincongruent cor-

rect trials, (ii) postcongruent correct trials, (iii) congruent error

trials, and (iv) incongruent error trials. A fourth contrast was

computed in order to assess BOLD activity after resolved

conflicts: the post-resolved-conflict contrast (postincongruent

correct > postcongruent correct trials).

To investigate the brain activity associated with resolved con-

flicts, the same PMN and rIFG masks were used as for the

investigation of error-related brain activity in the original analy-

sis. ROIs were again defined as the overlap between the anatom-

ical masks and task activity, thresholded at p < .001, FWE-

corrected (whole-brain). Peak activations are listed in Table 7.

Note that activations of midcingulate and presupplementary mo-

tor areas but not the aINS were found in the resolved-conflict

contrast. Parameter estimates were extracted from those voxels

within the PMN mask that showed significant activation in the

resolved-conflict contrast. Since there was no overlap between

task activity in the post-resolved-conflict contrast and the rIFG

mask, no parameter estimates could be extracted for this contrast.

Table 8 shows HLM results predicting SCFs from the sit-

uational variables and conflict-related PMN activity. In con-

trast to error-related PMN activity, conflict-related PMN

Fig. 4 Total numbers of desires, conflicts, and SCFs reported by the 118 included participants during the experience-sampling period, by desire type.
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activity did not predict real-life SCFs (blog = 0.13, p = .161).

This suggests that the observed association between SCFs and

error-related brain activity may have been due to the fact that

both real-life desire–goal conflicts and errors (but not resolved

conflicts) in a Stroop task are relatively rare, salient events that

are perceived consciously. In accordance with this assump-

tion, error but not resolved-conflict trials activated the aINS,

which is assumed to play a major role in salience processing

(Sridharan, Levitin, & Menon, 2008; Uddin, 2015) and has

been identified as a neural substrate of conscious error aware-

ness (Ullsperger, Harsay, Wessel, & Ridderinkhof, 2010).

Note, however, that conflict-monitoring theory makes no as-

sumptions regarding the conscious awareness of conflict-

induced performance problems.

Table 7 Whole-brain activations (N = 139, p < .001, FWE corrected)

Contrast Region

x y z Cluster Size T

Incongruent Correct > Congruent Correct

lSFG – 24 – 7 55 470 9.17

lIPL – 33 – 40 43 6.97

lSMA – 6 2 55 6.86

Undefined 21 – 4 49 45 7.09

rPostCENT 45 – 28 40 39 6.78

lSPL – 21 – 64 49 52 6.45

lMidOccL – 24 – 67 37 5.94

lPREC – 6 – 58 43 10 6.06

rMCC 12 20 34 1 6.06

lPreCENT – 54 5 34 3 5.93

lCB – 27 – 52 – 23 2 5.91

lTHA – 9 – 22 10 12 5.89

lTHA – 12 – 13 4 5.84

lITG – 48 – 52 – 11 5 5.79

rTHA 15 – 16 7 1 5.77

lCALC – 9 – 73 10 2 5.75

rTHA 9 – 19 1 1 5.72

lPreCENT – 36 – 1 34 1 5.67

Postincongruent Correct > Postcongruent Correct

lPostCENT – 45 – 28 61 83 6.64

Degrees of freedom [1,138]; r = right; l = left; SFG = superior frontal gyrus; IPL = inferior parietal lobe; SMA = supplemental motor area; PostCENT =

postcentral gyrus; SPL = superior parietal lobe; MidOccL = middle occipital lobe; PREC = precuneus; MCC = middle cingulate cortex; PreCENT =

precentral gyrus; CB = cerebellum; THA = thalamus; ITG = inferior temporal gyrus; CALC = calcarine

Table 8 Multilevel logistic regression results: Predicting SCFs from desire strength, conflict strength, and conflict-related brain activity

blog (p)

Level-2 Predictor Intercept Desire Strength Conflict Strength ROI ROI × Desire Strength ROI × Conflict Strength

PMN ROI – 0.12 (.364) 0.39 (<.001) – 0.86 (<.001) 0.12 (.163) 0.04 (.511) 0.14 (.175)

Population-average model with robust standard errors for N = 139 participants, using z-standardized predictors. blog = predicted log odds; PMN =

performance monitoring network (aMCC/SMA, aINS); ROI = region of interest.
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