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The interplay of unitary evolution and local measurements in many-body systems gives rise to a stochastic
state evolution and to measurement-induced phase transitions in the pure state entanglement. In realistic settings,
however, this dynamics may be spoiled by decoherence, e.g., dephasing, due to coupling to an environment
or measurement imperfections. We investigate the impact of dephasing and the inevitable evolution into a
non-Gaussian, mixed state, on the dynamics of monitored fermions. We approach it from three complementary
perspectives: (i) the exact solution of the conditional master equation for small systems, (ii) quantum trajectory
simulations of Gaussian states for large systems, and (iii) a renormalization group analysis of a bosonic replica
field theory. For weak dephasing, constant monitoring preserves a weakly mixed state, which displays a robust
measurement-induced phase transition between a critical and a pinned phase, as in the decoherence-free case.
At strong dephasing, we observe the emergence of a new scale describing an effective temperature, which is
accompanied with an increased mixedness of the fermion density matrix. Remarkably, observables such as
density-density correlation functions or the subsystem parity still display scale invariant behavior even in this
strongly mixed phase. We interpret this as a signature of gapless, classical diffusion, which is stabilized by the
balanced interplay of Hamiltonian dynamics, measurements, and decoherence.
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I. INTRODUCTION

Hamiltonian evolution, measurements, and decoherence
due to coupling to an environment (bath) are three fundamen-
tal aspects, shaping the time evolution of quantum many-body
systems. Each individual aspect, or their interplay, can give
rise to collective phenomena and phase transitions in and
out of equilibrium. Recently, the interplay between Hamilto-
nian, or more generally, unitary evolution and measurements
has gained much attention, since monitored quantum systems
have been found to undergo a measurement-induced or entan-
glement phase transition [1–37]. This transition is rooted in
the noncommutativity between the generators of the unitary
dynamics and the measured operators, which gives rise to
macroscopically distinct stationary states. The latter is shared
in common with more familiar quantum phase transitions,
where the ground state is governed by a Hamiltonian Ĥ =
Ĥ1 + gĤ2 with noncommuting [Ĥ1, Ĥ2] �= 0.

However, in contrast to ground state quantum phase tran-
sitions and also to finite temperature or dissipative phase
transitions [38–40], measurement-induced phase transitions
are not manifest at the level of the average density matrix.
Rather they are detectable on the level of individual “mea-
surement trajectories.” For pure state trajectories, roughly
three different kinds of (measurement-induced) phases can

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

be distinguished: “area law” entangled phases, “volume law”
phases, and critical phases (“log law”). In contrast, for the lin-
ear average over trajectories, the macroscopic configurational
entropy of all possible measurement outcomes eliminates all
marks of the underlying quantum dynamics.

This naturally poses the question, to what extent the frag-
ile purity of a state is important to resolve the features of
the measurement-induced evolution, and to what extent this
picture is altered by sources of decoherence. This question
is particularly relevant since experimental setups, such as,
e.g., trapped ions or Rydberg atom arrays [41–44], are often
exposed to decoherence. At a qualitative level, unitary evolu-
tion, measurements and decoherence affect the system density
matrix ρ̂ quite differently: closed system unitary evolution, for
instance, may scramble information but will never change the
purity of the state tr[ρ̂2]. This is obvious, technically from its
formulation, but also physically from the fact that it does not
change the entanglement of the system with its environment.
Adversely, generic decoherence, or an imperfect measure-
ment, roots in the coupling to an environment, i.e., in the gen-
eration of system-environment entanglement, and typically
increases the mixedness of the system, apart from particularly
engineered scenarios [45,46]. In contrast, repeated measure-
ments extract information from the system and monotonically
reduce its entanglement with the environment, and therefore
the mixedness of the state. Under the suitably combined evo-
lution of perfect (projective or continuous) measurements and
unitary gates, it has been shown that any mixed initial state
purifies. The purification speed is characteristic for the under-
lying measurement-induced phase [5,6,34,47], distinguishing
between, e.g., fast purification for weakly entangled phases
and slow purification for strongly entangled phases.
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Adding decoherence to the picture, recent works argued
that a measurement-induced area law phase, characterized
by, e.g., finite long-range correlations, is robust against
weak decoherence, e.g., in monitored (Z2-symmetric) Clifford
circuits [15,48]. However, the robustness of the transition
between critical phases and area law phases, indicated by,
e.g., algebraically versus exponentially decaying correlation
functions (independently of the mixedness), is a priori not
obvious. In fact, one might expect the critical phase to be more
fragile towards perturbations.

We address this question for a fermionic model, con-
sisting of U(1)-symmetric, i.e., particle number conserving,
unitary evolution stemming from a quadratic hopping Hamil-
tonian, which tends to delocalize the particles over the entire
system. The delocalization is counteracted by continuous
measurements of the local particle number n̂i, which tend
to localize particles at individual lattice sites. Decoherence
is added by coupling the system to Hermitian Lindblad op-
erators L̂i = n̂i, which mimic density-dependent interactions
with some Markovian environment or imperfect measure-
ments. In the absence of decoherence, the model hosts a
scale invariant, critical phase for weak measurement strengths,
characterized by algebraically decaying correlations, and a
logarithmic entanglement growth. This phase is separated
by a measurement-induced Berezinskii-Kosterlitz-Thouless
(BKT) phase transition from a pinned or localized phase
with exponentially decaying correlations, and an area law
entanglement [15,27,28]. Our two main findings are the
following: (i) we confirm the robustness of both measurement-
induced phases against the environmental dephasing and
detect a stable, extended critical regime; and (ii) we show
that the decoherence enriches the dynamics and gives rise to
a novel, strongly mixed phase, characterized by an emergent
decoherence-induced temperature scale.

In order to approach the dynamics analytically, we express
the model as a replicated Keldysh field theory [28,29,40],
which readily allows us to include dephasing and provides
access to the fermion correlation functions (see also, e.g.,
Refs. [10,15,25,26,34,49] for related replica approaches). The
robustness of the critical phase can be rationalized in terms
of an effective bosonic, non-Hermitian variant of the sine-
Gordon model, where the critical phase corresponds to the
gapless theory with vanishing interactions. Using a renor-
malization group (RG) analysis, we determine the degree
of relevance of perturbations, revealing the finite extent of
the critical phase as well as the two aforementioned phases
(localized or decoherence-induced), dominated by different
interactions. The limiting cases are related to the Gaussian
conformal field theory (CFT) studied in Ref. [30].

II. KEY RESULTS

In order to treat measurements (with strength γM), deco-
herence (dephasing with strength γB), and unitary evolution
(hopping Hamiltonian with strength J) of fermions on equal
footing, we compare three different approaches: (i) we per-
form exact numerical simulations of individual measurement
trajectories of the conditional (non-Gaussian) density matrix
for small systems (L = 10 sites), (ii) we numerically simulate
the time evolution of the fermion correlation matrix in the

FIG. 1. (a) Sketch of phase diagram, synthesized from (i) small
scale numerics for the full system, (ii) larger scale simulations based
on an ensemble of pure states, and a (iii) RG analysis. The three
phases are a scale invariant, weakly mixed phase (C), scale invariant
and strongly mixed (CD), and a measurement-induced phase (M).
The (blue) dotted line corresponds to the rough, tentative phase
boundary suggested by the numerics. Including the second-order RG
calculation, we indicate our synthesized estimate of the transition
region from (CD) to (M) in “grey,” not further resolvable in our
analysis. (b) Qualitative properties of the bosonic models, see text
for discussion.

framework of measured quantum trajectories, and (iii) we
construct an effective bosonic replica field theory and extract
the phase diagram from a perturbative RG analysis. The syn-
thesis of our results from (i)–(iii) is displayed qualitatively in
Fig. 1. The different phases and transitions are extracted from
the continuum field theory and the corresponding renormal-
ization group analysis. This picture is qualitatively confirmed
by the numerical analysis. However, the restricted system size
for simulations does not allow us to confirm a sharp transition
and to identify the precise location of the phase boundary. We
will now summarize the individual aspects of our analysis.

Classification. We perform an analytical classification of
the different phases based on the results of the replica field
theory. This approach is based on bosonization, within which
the fermion densities are approximated by a continuous boson
field n̂x ∼ ∂xφ̂x, see Sec. IV A and Ref. [28] for details. The
simultaneous presence of measurements and dephasing then
makes the effective Hamiltonian for the density field gener-
ally non-Hermitian and nonlinear. However, we can extract
three distinct Gaussian fixed point theories. Depending on
the structure of each Gaussian theory, i.e., whether it is scale
invariant or gapped, we associate the fixed points to different
macroscopic phases. Density-dependent observables, such as
density-density correlations or the subsystem parity can then
be extracted readily from the corresponding Gaussian theory.

Robustness. One key observation is that the measurement-
induced dynamics, obtained previously for the decoherence-
free case [15,27,28], is robust against weak decoherence. Both
a scale invariant, critical phase [(C) in Fig. 1] as well as
a phase of measurement-induced pinning or localization of
fermions [(M) in Fig. 1] continue to exist for weak but nonzero
dephasing rate. In the absence of decoherence, this transi-
tion is an entanglement phase transition, separating a phase
with logarithmic growth of the von Neumann entanglement
entropy (C) from an area law phase (M). In the replica field
theory, the former is described by a scale invariant Gaussian
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theory, and a propagator (G−1
0 )ab ∼ (ε2

ab∂
2
t − η2

ab∂
2
x ) (for the

classical and quantum fields, see Sec. III E for further details).
The latter, on the contrary corresponds to a massive theory,
for which the measurements induce a nonzero and imaginary
spectral gap, G−1

0 → G−1
0 + mMr σx + imMi1 (see Sec. III E).

Increasing the dephasing strength also increases the mixed-
ness of the system density matrix and eventually leads to a
breakdown of the scale invariant phase (C). Integrating the
second-order RG equations provides us with a stability crite-
rion and allows us to faithfully predict the extension of (C)
into the regime of nonzero dephasing, see Fig. 1.

Decoherence-induced temperature scale. When increasing
the strength of the decoherence, the interplay of measure-
ments, dephasing, and Hamiltonian gives rise to a new
emergent scale mD, which enters the action in the form of
an effective temperature, G−1

0 + imD(1 − σz ), see Fig. 1(b).
The generation of this scale is ruled out, either by symmetry
or by the structure of the RG equations, as soon as any of
the couplings (Hamiltonian, measurement strength, dephasing
strength) is set to zero, thus being a consequence of their
simultaneous presence. Surprisingly, this emergent scale will
not modify the structural form of the density-dependent ob-
servables that we consider in this work. This is due to the
unconventional structure of the measurement-induced prop-
agator, which we discuss below. However, it will suppress
fluctuations of the Keldysh quantum field on large distances,
which is equivalent to suppressing off-diagonal entries of the
density matrix and of projecting onto its diagonal. In gen-
eral, as long as the system is not in a pure eigenstate of the
measurement operators, this projection strongly increases the
mixedness of the state. We therefore term the corresponding
regime decoherent-scale invariant (CD). We will discuss our
phenomenological interpretation of this regime below. The
second-order perturbative RG approach robustly predicts the
stability of regime (C) against the generation of a scale for
weak decoherence and weak measurements. However, esti-
mating the exact phase boundary between the regimes (CD)
and (M) from the flow equation is not always unambiguous
due to the presence of runaway solutions, which are generic
in RG approaches for sine-Gordon models. The corresponding
tentative phase diagram is obtained by tracing the scales with
the most dominant divergent behavior. It is shown in Fig. 5
and sketched in Fig. 1(a) (see Sec. IV A 2 for more details).

Numerical approach. The predictions from the replica
field theory are complemented by numerical simulations of
the conditioned density matrix ρ̂ (c). The conditioned den-
sity matrix describes the evolution of the state during one
measurement trajectory in the presence of decoherence. It
corresponds to the state obtained after a particular set of
measurement outcomes, but in the presence of dephasing it
is generally not pure. For small systems (L = 10), we di-
rectly simulate the evolution of ρ̂ (c). For large systems, we
use quantum trajectories [50–53] to determine ρ̂ (c). In the
quantum trajectories framework, decoherence is interpreted
as the consequence of a series of unread (or imperfect)
measurements, and ρ̂ (c) is expressed as a sum of quantum
trajectories, with partly read out and partly not read out
measurement outcomes [53,54]. In our case, each individual
quantum trajectory is described by a Gaussian state, but their

sum ρ̂ (c) itself is non-Gaussian. The quantum trajectory ap-
proach requires the simulation of a large number of auxiliary
trajectories for a single measurement trajectory ρ̂ (c), which
makes it numerically costly and limits the system sizes we
consider to L � 256. This leaves a remaining uncertainty in
the precise location of the phase transition from the numerical
perspective.

In the quantum trajectory framework, entanglement prop-
erties of ρ̂ (c) are generically hard to access. Instead we use
the density-density correlation function Ci j , the subsystem
parity P|A| [defined below in Eqs. (21) and (22)] and the aver-
age purity of the density matrix tr[ρ̂ (c)2] (for small systems)
as quantifiers for the different phases. In general, we use
O to indicate that the observable O is averaged over many
different measurement trajectories ρ̂ (c). In the measurement-
induced localization phase (M), the state quickly evolves
into a nearly pure state tr[ρ̂ (c)2] ≈ 1, which is close to
an eigenstate of the measurement operators. For large sys-
tems, we expect exponentially decaying correlations Ci j ∼
exp(−|i − j|/ξ ) and a well-defined, constant parity P|A|. In
both complementary phases (C) and (CD), the delocalizing
Hamiltonian dominates over the tendency of the measure-
ments to localize the particles, and the correlation functions
decay algebraically with the distance Ci j ∼ |i − j|−2, and
the subsystem parity decays algebraically as well [15]. For
small systems, we use the correlations at the largest distance
|i − j| = L/2 to get a qualitative overview (dotted line in
Fig. 1). In order to distinguish the two regimes (C) and (CD)
at small system sizes, we use the purity of the density matrix:
it remains large in (C), and is reduced significantly in (CD). At
large system sizes, the quantum trajectory evolution does not
grant efficient access to the purity. There we rely on the analyt-
ical predictions to distinguish the regimes of small and large
purity via the presence or absence of the effective temperature
scale in the replica field theory. This matches well with the
simulations at small system sizes for a large parameter regime,
see Fig. 1.

Synthesis (and limitations). The RG analysis and the quan-
tum trajectory simulations confirm an extended regime with
scale invariant correlation functions and strongly reduced
half-system parity at weak measurement and decoherence
rates, summarized in the combination of (C) and (CD). A
measurement-induced phase transition separates this regime
from a localized phase (M), described by almost pure states
with strongly (exponentially) decaying correlations and well-
defined half-system parity (consistently inferred from the
analytical and numerical approaches). A transition between
the two scale invariant regimes, (C) and (CD), is indicated by
the emergence of a temperaturelike mass scale in the replica
field theory and a significant reduction of the purity of ρ̂ (c) in
the numerical simulations for small system sizes. While the
replica field theory predicts a sharp phase transition between
(C) and (CD), the numerically approachable system sizes are
too small to confirm a sharp transition in the purity in the
thermodynamic limit.

The precise position of the transition between phase
(CD) and (M) cannot be unambiguously determined from
our approaches. Numerical simulations show that strong
dephasing supports a transition into the short-ranged cor-
related, measurement-induced phase, and the corresponding
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transition region is indicated by the dotted line in Fig. 1. This
befits a phenomenological perspective: strong dephasing leads
to a diffusive spreading of particles and at the same time sup-
presses the rate of diffusion, roughly as ∼1/γB. This increases
the tendency of the particles to become localized due to
measurements and an estimate for the critical dephasing rate
is γ c

B ∼ 1/γM , confirmed by the behavior of the dotted line.
Integrating the second-order RG equations, however, puts the
phase boundary between (CD) and (M) at larger measurement
rates (right border of grey area in Fig. 1). We stress that close
to this particular phase boundary, the RG equations contain
a large number of flowing couplings. The determination of
the most dominant ones (which in turn determine the corre-
sponding Gaussian theories) is challenging and not entirely
unambiguous. Therefore we here rely more strongly on the
prediction from the quantum trajectory simulations and our
phenomenological argument for the phase boundary (dotted
line). We mark the ambiguous region in parameter space as
“grey” to indicate that the analytical and numerical results
leave room for a discrepancy.

Phenomenological interpretation. The phenomenology
discussed so far can be understood on an intuitive level by
considering the effect of measurements, dephasing, and hop-
ping onto the conditional density matrix ρ̂ (c) in the occupation
number basis. In this basis, both measurements and dephasing
push the evolution of the density matrix towards the diagonal,
and lead to the rapid decay of any off-diagonal elements.
Measurements localize particles on individual lattice sites,
and thereby evolve a diagonal density matrix into a pure state.
In contrast, dephasing commutes with the diagonal and does
not prefer any particular configuration, evolving any initial
state that is not an eigenstate of the measurement operators
into a mixed state.

The Hamiltonian on the other hand, delocalizes particles
by creating off-diagonal matrix elements. In the limit where
the dephasing is weak compared to the measurement rate
(γM > γB), the system will approach a nearly pure state, either
diagonal in the occupation number when measurements domi-
nate, or off-diagonal when the Hamiltonian dominates. In this
case, measurements are the source of purity of the state, even
though the Hamiltonian is dominantly delocalizing the state.
If dephasing dominates over measurements, the situation be-
comes more subtle: the projection onto the diagonal then
reduces the effect of the Hamiltonian and destroys coherent
propagation of particles. In second-order perturbation theory,
it yields classical diffusion of particles on the diagonal of the
density matrix with a rate J2/γB.1

This classical diffusion is then counteracted by the localiz-
ing measurements. If the measurements succeed in localizing
(γM > J2/γB) the state again purifies and is in phase (M).
If the measurements do not succeed, however, the dynamics
on the diagonal remains scale invariant while the state of the
system is strongly mixed.

1For perturbative treatments of Lindblad operators, see, e.g.,
Refs. [91–93]. Related to our model: Refs. [90,94,95] (quantum
diffusive XX model, open quantum symmetric simple exclusion pro-
cess, also Ref. [96]). See Ref. [97] for another perturbative method.

III. WEAK MEASUREMENTS AND DEPHASING: FROM
SINGLE FERMIONS TO MANY-BODY DYNAMICS

A. Measured single fermions

We start by giving a general introduction to the concept of
continuous measurements and by deriving the time evolution
equation for fermions subject to continuous measurements
and decoherence, following Refs. [16,52,53,55]. In addition,
we define suitable averaged observables in the presence of
measurements.

We consider an elementary model of free spinless
fermions, for which both measurements and dephasing have
been shown to individually lead to nontrivial modifications
of the dynamics. Free fermions subject to local measurements
have been studied in Refs. [16,17,27,29,56–60]. The impact of
dephasing on fermions (or the related XX-model or hard-core
bosons) has been discussed in, e.g., Refs. [61–68] (see also
Ref. [69] with focus on unravellings for fermions). Here we
study the situation where both measurements and dephasing
are present simultaneously.

We first illustrate the different aspects of measurements
and dephasing on a simple toy model. The latter can result
from either imperfect measurements or the coupling to a de-
phasing bath. Consider the two-dimensional Hilbert space of
one fermion on a two-site lattice with basis states {|01〉, |10〉}
and creation (annihilation) operators c†

i (ci) for each site.
Then any state has the form |ψ〉 = α|01〉 + β|10〉. Now let us
consider projective measurements of an operator whose eigen-
basis is given by the set {|ν〉}. This measurement is described
by projection operators P̂ν = |ν〉〈ν| and Born probabilities pν :

P̂ν |ψ〉 = |ν〉〈ν|ψ〉 ∝ |ν〉,
∑

ν

P̂ν = 1, (1)

pν = 〈ψ |P̂ν |ψ〉. (2)

We want to consider the more general case, where we take
measurements, which only reveal very little information about
the state (“weak measurements”). Then one introduces “posi-
tive operator valued measures” (POVM). Here the projectors
P̂ν are replaced by operators Êν , which fulfill [55,70]∑

ν

Êν = 1, pν = tr[ρ̂Êν], Êν = Â†
ν Âν . (3)

The operators Âν are not uniquely defined by Êν .
On the two-site lattice, the projective measurement of the

particle number at site i, n̂i = c†
i ci, is based on

P̂(i)
0 = 1 − n̂i, P̂(i)

1 = n̂i, (4)

where the subscript indicates whether a particle has been
measured (1) or not (0). A “weak” version of this projec-
tive measurement is described by Ê (i)

0 , Ê (i)
1 (and A(i)

0 , A(i)
1 ) for

generalized measurement outcomes mi ∈ {0, 1}, which corre-
spond to measuring an ancilla instead of the system directly.
It can, e.g., be written as (see in particular Ref. [55])

Ê (i)
0|1 = 1

2 (1 ± p)P̂(i)
0 + 1

2 (1 ∓ p)P̂(i)
1 , (5)

Â(i)
0|1 =

√
1

2
(1 ± p) P̂(i)

0 +
√

1

2
(1 ∓ p) P̂(i)

1 . (6)
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Here, p ∈ [0, 1], such that p = 0 corresponds to performing
no measurement (no information gained) and p = 1 cor-
responds to a projective measurement with all information
revealed. The corresponding measurement probabilities for
lattice site i are

p(i)
0|1(ρ̂) = 1

2 (1 ± p(1 − 2〈n̂i )〉), 〈n̂i〉 := tr[ρ̂ n̂i]. (7)

In this case, the different measurement outcomes are nearly
equal for p � 1 and the state is only weakly altered, which
opens the possibility of a continuous process in time.

Successive weak measurements describe a stochastic dy-
namical process, such that for fixed value p and time step
between measurements δt the “measurement rate” γ is de-
fined via p = √

γ δt . In one time step δt , the wave function
update for the state |ψ (c)〉, conditioned onto the measurement
outcome, is

|ψ (c)′〉 =

⎧⎪⎨
⎪⎩

Â(i)
0 |ψ (c)〉√

p(i)
0

with probability p(i)
0 ,

Â(i)
1 |ψ (c)〉√

p(i)
1

with probability p(i)
1 .

(8)

This turns into a continuous process for δt → 0 (or p → 0).
Using the definitions of Â(i)

0|1 and p(i)
0|1 and expanding up to

first order in δt , the evolution equation for individual mea-
surements of site 1 and 2 becomes [55] (h̄ = 1)

|ψ (c)′〉 − |ψ (c)〉 (9)

≈
2∑

i=1

[
−γ

2
δt (n̂i − 〈n̂i〉)2 + √

γ�Wi(n̂i − 〈n̂i〉)

]
|ψ (c)〉,

�Wi = ±
√

δt, �Wi = 0, �Wi�Wj = δtδi j . (10)

Here (. . . ) describes the average over measurement-
outcomes. This evolution is called quantum state diffusion
(QSD) (for the measurement of the occupation number) [50].
Most importantly, the dynamics saturates once the state is a
number eigenstate: |ψ (c)〉 = |n1, n2〉.

Weak/continuous measurements of this type, which alter
the state only slightly per time step δt , can be realized by
coupling the site i to an ancilla via some Hamiltonian Hanc.
We consider an ancilla qubit with basis {|0〉, |1〉}: assume that
initially the system is described by |ψ〉 and the ancilla by |0〉,
such that the coupling leads to an entangled state:

|ψ〉 ⊗ |0〉 → Â(i)
0 |ψ〉 ⊗ |0〉 + Â(i)

1 |ψ〉 ⊗ |1〉. (11)

A projective measurement of the ancilla reproduces the weak
measurement on the system described before, Eq. (8), since
the system is not directly measured.

A stochastic process results from repeated projective mea-
surements of the ancillas, which after each measurement are
reset in the state |0〉. An important consequence of the projec-
tive measurements is that it disentangles the ancilla from the
system. In particular, any initial pure state of the system re-
mains pure after ancilla measurements, allowing one to write
Eq. (9).

The purity of the system state can be spoiled in several
ways. This can happen, for instance due to imperfect mea-
surements, in which the ancillas themselves are either subject
to only weak measurements or, with a certain probability, the

ancilla is not measured at all [52,53,55]. We consider the latter
case: the measurement of the ancilla is then described by [55]

Ê0 = η|0〉〈0|, Ê1 = η|1〉〈1|, Ê2 = (1 − η)1, (12)

meaning that with probability η (not to be confused with the
measurement outcome probability) the ancilla is measured
projectively and with probability 1 − η it is not measured in
this time step. Following the previous steps, we formulate
a stochastic process for the conditional density matrix ρ̂ (c),
conditioned onto the measurements outcomes (which are ob-
tained with probability η):

ρ̂ (c)′ − ρ̂ (c) =
∑

i

−γ δt

2
[n̂i, [n̂i, ρ̂

(c)]] (13)

+ √
γ�Wi{n̂i − 〈n̂i〉, ρ̂ (c)}, (14)

�Wi = 0, �Wi�Wj = ηδtδi j . (15)

Note the occurrence of an extra factor of η in the noise cor-
relations here. For η = 1, this equation is the density matrix
formulation of QSD. Any pure state remains pure and even
an initially mixed state will purify under the evolution (for
a more precise statement see, e.g., Ref. [71]). In contrast to
that, for η < 1, the imperfect measurements will leave some
residual entanglement between the system and the ancilla and
the system state will become mixed.

If none of the ancillas are measured, i.e., for η = 0, the
evolution equation reduces to the Lindblad master equa-
tion (adding a Hamiltonian for completeness) [52]:

∂t ρ̂
(c) = −i[Ĥ, ρ̂ (c)] − γ

2

∑
i

[n̂i, [n̂i, ρ̂
(c)]]. (16)

Due to the uncompensated build up of entanglement between
the system and the ancillas, the state of the system evolves
into a fully mixed state, even though the joint state of system
+ ancillas remains pure.

This latter situation of η = 0 is equivalent to the decoher-
ing evolution of a system coupled to a dephasing bath. This
yields two different physical interpretations of the time evo-
lution including dephasing and measurements: we can either
imagine that (i) dephasing is caused by an imperfect readout
of the ancillas in a weak measurement setup or that (ii) the
weak measurements are read out perfectly and the dephasing
is caused by a separate set of ancillas, which couples to the
system but is not read out at all. If not stated explicitly, we
will in the following assume the latter case, and refer to the
unmeasured ancillas simply as “the (dephasing) bath,” for
which we introduce the dephasing rate γB. In the measure-
ment and bath setting, we always assume perfect continuous
measurements with rate γM . Both scenarios (i) and (ii) bear
the same theoretical description and are formally related to
each other by following Table I.

To conclude this introduction, we briefly discuss suitable
“observables” and their averages in the presence of mea-
surements. Each individual trajectory with a particular set
of measurement outcomes {mi,t } at sites i at time t yields a
random state ρ̂

(c)
t after time t , which will, just like the mea-

surement outcomes, differ from realization to realization. In
order to make meaningful statements about the dynamics, we
have to define a reproducible average over observables, which
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TABLE I. Relation of a dephasing bath and imperfect measure-
ments. Any set (γM , γB ) for measurements in the presence of a bath
corresponds to a set (η, γ ) for imperfect measurements.

coupling to a bath imp. measurement

Lindblad prefactor γM + γB γ

Noise strength γM ηγ

Conversion η = γM
γM +γB

is independent of the set of measurement outcomes. This is
similar to disordered systems, where one has to consider suit-
able averages over disorder realizations. When averaging over
all possible measurement outcomes, only objects nonlinear in
the state ρ̂ (c) reveal nontrivial information [1]. To see this,
consider the expectation value of some operator Ô:

〈Ô〉 = tr[ρ̂ (c)Ô], (17)

where the overbar in ρ̂ (c) denotes that one has taken the
average over all possible measurement outcomes. This is
equivalent of taking the average over all possible measure-
ment outcomes in each time step δt , which eliminates the
randomness in Eq. (14) and yields Eq. (16) for the averaged

evolution (due to �W = 0). The stationary solution for ρ̂
(c)
t

is then the totally mixed state ρ̂
(c)
t→∞ ∝ 1 under certain condi-

tions.2 Obviously, this state reveals no information about the
interplay of measurements and the Hamiltonian Ĥ .

Instead, one has to focus on higher moments of ρ̂ (c), which
coincide with the nonlinear observables mentioned above. An
example for a higher moment is

〈Ô〉〈Ô〉 = tr[Ôρ̂ (c)]2 �= tr[Ôρ̂ (c)]2, (18)

which has a similar appearance as the Edwards-Anderson or-
der parameter [15,22,33,72–74] in the theory of spin glasses.

B. Continuously measured fermions with
decoherence - many-body formulation

Here we introduce the concrete fermionic model that
we study in this work and discuss the qualitative pic-
ture of the particular limiting cases in the dynamics. We
focus on (free) spinless fermion models in (1 + 1) di-
mensions [16,17,24,27,28,56,57], and consider a particle
number conserving evolution on a lattice. The unitary part
of the evolution is described by the nearest-neighbor hopping
Hamiltonian:

Ĥ = J
L∑

i=1

c†
i ci+1 + c†

i+1ci, (19)

for L lattice sites with N = L/2 fermions (half-filling) and
periodic boundary conditions. The unitary dynamics com-
petes with weak measurements of the local density n̂i (with
a strength γM), and a dephasing (Markovian) bath coupled to
each site. The bath is described by Lindblad-operators L̂i = n̂i

2For conditions, see, e.g., Refs. [98–100].

(with strength γB) as in Eq. (16). Both the measurements
and the dephasing result from coupling each lattice site to an
ancilla system as discussed above. This yields the continuous,
stochastic master equation

d ρ̂ (c) = − i[Ĥ, ρ̂ (c)]dt − γB + γM

2

L∑
i=1

[n̂i, [n̂i, ρ̂
(c)]]dt

+ √
γM

L∑
i=1

dWi(t ){n̂i − 〈n̂i〉, ρ̂ (c)}. (20)

Here, dWi(t )dWj (t ′) = dtδi jδ(t − t ′) is the Gaussian mea-
surement noise and (. . . ) denotes the average over all possible
measurement outcomes, which is equivalent to all possible
noise realizations.

C. Qualitative picture of the dynamics

To set the stage for the later discussion, we will now
individually discuss the three limiting cases: (1) γB = 0, (2)
γM = 0, and (3) J = 0 at a qualitative level.

1. Measurements and Hamiltonian

The Hamiltonian tends to delocalize the fermions over the
lattice, whereas the local measurements tend to “localize” the
state into an occupation number eigenstate. Intuitively, this
effect is shown in the distribution of the expectation values
〈n̂i〉: delocalization would correspond to 〈n̂i〉 ≈ 1/2 for each
individual trajectory most of the time, and localization to
〈n̂i〉 ≈ 0, 1. A quantitative measure of how close the state is
to a number eigenstate is the local parity: 2n̂ j − 1 or globally,
the subsystem parity [15,22]:

P|A|(t ) =
〈∏

j∈A

(2n̂ j − 1)

〉2

=
〈∏

j∈A

exp(iπ n̂ j )

〉2

, (21)

where A is a contiguous subset of the lattice of length |A|.
Similarly, we compute local density correlations [27]

Ci j (t ) = 〈n̂i〉〈n̂ j〉 − 〈n̂in̂ j〉. (22)

At large scales, the behavior of Ci j becomes qualitatively dif-
ferent depending on the phase: it either decays algebraically or
exponentially, hallmark of the BKT phase transition [15,27],
for an overview of BKT-physics see, e.g., Ref. [75]. Simi-
larly, P|A| decays algebraically with the subsystem size |A|
or becomes independent of |A|, see Fig. 3(a). Anticipating
conformal invariance for weak measurements, we plot P|A| as
a function of L/π sin(π |A|/L) [27,57,76].

Besides this stationary picture, also the dynamics can be
used to distinguish the different phases. Here we focus on
the bridging topic of purification [6,47]. In the presence of
any finite strength of measurements, an initially mixed state
will purify over time,3 see Fig. 2(a). The system size depen-
dence of the time it takes to approach the state can differ
qualitatively in parameter space, indicating the presence of

3For a more precise statement and necessary conditions see, e.g.,
Ref. [71].
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FIG. 2. (a) Purification in the presence of measurements and a
Hamiltonian (γM/J = 1), starting from ρ̂

(c)
t=0 ∼ 1; (b) mixing without

measurements in the presence of a bath for L = 10 (decay towards
the (maximally low) purity of the infinite temperature state tr[ρ̂2

t→∞]
with ρ̂t→∞ ∼ 1).

phase transitions. As was introduced in Refs. [6,47] (see
also Refs. [31,77]), this timescale t0(L) will grow with the
system-size if we are in the weakly measured phase. For
large measurement rates, t0(L) will only weakly depend on
the system size [see Sec. IV B 1 for further details of the
calculation and definition of t0(L)].

A convenient approach to detect the purification dynamics
is to couple a few sites of the system (S) to a reference ancilla
qubit (R) with basis {|0R〉, |1R〉} and to initially prepare the
system and ancilla in a fully entangled state [6,47]:

|ψt 〉SR =
∑

α=0,1

√
pα|ψ (α)

t 〉|αR〉, ρ̂SR = |ψt 〉〈ψt |,

|ψt=0〉SR =
√

1
2 |ψ (0)〉|0R〉 +

√
1
2 |ψ (1)〉|1R〉, (23)

FIG. 3. Overview of the system subject to measurements.
(a) Subsystem size (|A|) resolved parity P|A| for L = 256, 512 and
768 (square, triangle, circle) on a log-log scale, plotted for the
rescaled length L/π sin(π |A|/L) (anticipating a conformal field the-
ory). For γM/J � 1, the parity decays roughly algebraically and
for γM/J ∼ 1, the parity saturates, indicating a phase transition in
between. (b) Scaling of the purification timescale t0 with L (log-log
scale) of an ancilla coupled to two sites (L = 32, 64, 128, 256, 512,
and 768); α denotes the exponent of an algebraic best fit. For γM/J =
0.2, t0(L) grows with L, whereas for γM/J = 1.0, it saturates, giving
a dynamical indicator of the two different phases.

such that ρ̂R,t=0 = trS[ρ̂SR] = 1
212×2 for 〈ψ (0)|ψ (1)〉 = 0 ini-

tially. The reduced density matrix of the system evolves
according to Eq. (20) for γB = 0. The purification of the
system is then related to the entanglement between the sys-
tem and the ancilla qubit. Tracking the entanglement for
long times, the purification timescale t0 can be extracted, see
Fig. 3(b). Time scales for weak measurements (γM/J = 0.2)
and strong measurements (γM/J = 1.0) are shown, exhibiting
either a linear growth in L or a saturation. The entanglement
vanishes over time, because initially orthogonal states |ψ (0)〉
and |ψ (1)〉 start to overlap more and more and finally collapse
onto each other, describing the very purification process. The
growth of t0(L) with the system size for weak measurements
supports the earlier findings of an extended critical phase,
featuring logarithmic entanglement growth and algebraically
decaying correlations [15,16,27,57] (see also Refs. [24,25]).
The growth being nearly linear fits as well to a scale invariant
(“conformal”) phase [77] with a dynamical critical exponent
z = 1.

2. Bath and Hamiltonian

In stark contrast, in the absence of any measurements but in
the presence of a dephasing bath, any initial state will become
fully mixed under the combined dynamics of unitary evolution
and dephasing. This is a consequence of the Hamiltonian not
commuting with the dephasing (local particle density) opera-
tors, which here gives rise to a unique stationary state.

As discussed above, from the perspective of measurements,
‘dephasing’ is equivalent to not reading out any measurement
outcomes, and thus to averaging over all possible outcomes in
each step. Over time, this leads to a maximum uncertainty (or
to a minimum of knowledge) on the underlying state, reflected
in a maximum entropy, i.e., fully mixed, state. Even though
each single measurement trajectory |ψ (α)〉 may be in a pure
state, the maximum uncertainty of the measurement outcomes

ρ̂ (c) =
∑

α

pα|ψ (α)〉〈ψ (α)| t→∞→ ∼ 1, (24)

describes a maximally mixed state, see Fig. 2(b). Here, 1 is
the identity in the particle number conserving Hilbert space
of L/2 fermions for L lattice sites. (For this particular model
exact results regarding the dynamics, e.g., its integrability,
have been obtained, see, e.g., Ref. [63].)

3. Measurements and bath

Without a scrambling Hamiltonian, the dephasing bath
will increase the mixedness of any initial state by projecting
it onto the diagonal elements in the particle number basis.
At the same time, the measurements, which do commute
with the dephasing operators, increase the knowledge on the
system by projecting the diagonal elements into states with
well-defined local particle number. The asymptotic dynamics
without Hamiltonian is therefore always purifying.4 If we

4Given that measurement and bath operators commute and mea-
surements are applied on each lattice site.
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FIG. 4. Overview of measured systems coupled to a bath (top) and the alternative view point of imperfect measurements (bottom) for
L = 10 (and L/2 fermions), the formal relation is given in Table I; dashed lines indicate contours as a visual add. (a) Logarithm of the
half-system parity P|A|=L/2 in the (γM/J, γB/J ) and (γ /J, 1 − η) plane, respectively, indicating roughly two regimes of large and small parity.
(b) Density-density correlations at distance l = L/2, giving rise to a similar bipartition. (c) Logarithm of the average purity of the conditional
density matrices, indicating a third regime with low purity but still larger correlations to the left(above) of the dashed line in the top(bottom)
plot. (top) For large γB/J the purity is again increasing (in accord with a measurement-induced phase, supported by strong dephasing). (d) Prob-
ability density ρ(〈n̂i〉) of the local expectation values 〈n̂i〉 (extracted from histograms), indicating a qualitative difference between the regimes
[γM/J = 0.3 (top) and γ /J = 1.0 (bottom)].

consider a generic initial state in the occupation number basis

ρ̂
(c)
t=0 =

∑
α,α′

ραα′ |{n}α〉〈{n}α′ |, (25)

the off-diagonal elements will decay exponentially fast and
ρ̂

(c)
t will evolve into an eigenstate of all the local particle num-

ber operators. The probabilities pα ≡ ραα for each eigenstate
are dictated by the diagonal elements of the initial state:

ρ̂
(c)
t→∞ = |{n}α〉〈{n}α| with probability pα. (26)

4. Measurements, bath, and Hamiltonian

This yields an overall picture of the dynamics, where
the bath tends to eliminate the off-diagonal elements and
to project the system onto its diagonal in the measurement/
dephasing basis. The measurements then purify the diagonal
by projecting it onto eigenstates with well-defined particle
number. The Hamiltonian scrambles this information and en-
codes it in the off-diagonal elements of ρ̂ (c), where it is either
destroyed by the dephasing or recovered by the measure-
ments. The interplay of all three mechanisms gives rise to a
diverse phase diagram, discussed below.

D. Phase structure for small system sizes

In the presence of dephasing or imperfect measurements,
the state ρ̂ (c) of the system is mixed and no longer Gaussian
(e.g., Wick’s theorem is not applicable for γB �= 0). Therefore
it cannot be efficiently simulated by the numerical methods
developed for free fermions in previous works [16,27,29,56].

Larger system sizes (L = 128–256) are then only numerically
accessible via quantum trajectory simulations of the fermion
covariance matrix (see below). However, due to the non-
Gaussianity of the state, the covariance matrix cannot be used
to extract typical entanglement measures, such as, e.g., the
entanglement negativity, the mutual information or the purity
of the state.

In order to gain some insight into the dynamics of the
purity, we perform exact numerical simulations of Eq. (20)
for small system sizes (L � 10 sites). We identify the three
qualitatively different regimes [(C), (CD), (M)] discussed in
the summary for γB � 0 and γM � 0. These regimes are an-
ticipated in Fig. 4 and characterized by

(C): scale invariant, weakly mixed,
(CD): scale invariant, strongly mixed,
(M): short correlation length and weakly mixed.
For such small systems, we can only distinguish strongly

and weakly decaying correlations, but will not be able to
identify, e.g., scale invariance. Anticipating the field-theoretic
discussion, we nevertheless already label the regimes as “scale
invariant” or having a short correlation length.

1. Competition (small systems) - Hamiltonian
versus measurement versus bath

From the limiting cases discussed in Sec. III C, we can
deduce the behavior for competing measurements γM and
dephasing bath γB.

γM > 0, γB = 0. This is the well-studied limit of contin-
uous measurements, discussed in Refs. [16,27–29,58]. The
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measurement strength induces a transition (or crossover for
small system sizes) from a scale invariant phase to a gapped
and short-ranged correlated phase, which is indicated by, e.g.,
the subsystem parity P|A| or the correlator Ci j .

γM = 0, γB > 0. The state evolves towards the fully mixed
state with exponentially small purity.

γM > 0, γB > 0. When all scales in the problem start to
compete, the dynamics becomes more diverse and we show
the results from the exact numerical simulations (L = 10)
in Fig. 4 for measurements+bath (top) and imperfect mea-
surements (bottom). Starting from γB = 0, we observe a
qualitative change in the parity and the correlations along the
γM-axis. Notably, the regime of large half-system parity is in-
creasing, once we increase the bath strength, see Fig. 4(a). In a
similar manner, the regime of longer-ranged (‘scale invariant’)
correlations is decreasing, Fig. 4(b). For γB > γM , we observe
a significantly decreased purity due to the faster decay of the
off-diagonal elements of ρ̂ (c), see Fig. 4(c).

When approaching the limit of strong dephasing, γB � γM ,
the situation is reversed again and we observe states with
higher purity, enforced by strong dephasing and moderate
measurements, see Fig. 4(c). The behavior of the observables
in this regime corresponds to the strong measurement phase
(M): In this limit, strong dephasing prevents the Hamiltonian
from scrambling the information on the local particle numbers
gained by previous measurements and traps the system into a
quantum-Zeno regime, where even moderate measurements
can lead to a purification of the diagonal of ρ̂ (c).

The simulations confirm a phase diagram consisting of
three regimes: (C) longer-ranged correlations, weakly mixed;
(CD) longer-ranged correlations, strongly mixed; (M) short-
ranged correlated and weakly mixed. For small systems, there
cannot be a sharp phase transition separating the different
regimes, but we can already extract qualitative differences
on short distances. To understand how this translates into
potentially different phases in the thermodynamic limit, we
complement this numerical analysis below with an analytical
field theory approach and numerical simulations of the corre-
lation matrix for larger systems.

2. Competition (small systems) - imperfect measurements

The coupling to a dephasing bath and imperfect weak mea-
surements are different sides of the same coin, where instead
of γM and γB, we use γ and the imperfection rate η � 1 (see
Table I). We therefore extract a similar qualitative picture as
above.

η < 1. Now regime (CD) roughly covers the upper part in
the (γ /J, 1 − η) plane, see Figs. 4(a)–4(c) (bottom). Picking
up the qualitative discussion from the beginning, the different
regimes can be distinguished from the statistics of the local
expectation values 〈n̂i〉. Starting from the strong measure-
ment phase, increasing the imperfection rate, the distribution
starts from a bimodal distribution and turns into a distribution
closely centered around 〈n̂i〉 = 1/2, see Fig. 4(d).

E. Long-wavelength theory: replicas, Dirac fermions
and bosonization

In order to confirm the picture developed for the dy-
namics of small systems, we develop and analyze an

analytical approach, which is based on (i) a replica the-
ory [73,74,76,78,79], and (ii) the mapping to a bosonic
description in the continuum limit (see Refs. [28,29,80]). This
allows us to study higher moments of the density matrix and
to perform a RG analysis of the different regimes. We show
below that the three regimes discussed above correspond to
three different quadratic models, which in turn can be viewed
as different fixed points of the bosonized replica field theory
action.

The analytical approach needs to account for the com-
putation of higher moments in the stochastic variable ρ̂ (c).
This can be done efficiently by analyzing the replicated object
ρ̂ (c) ⊗ ρ̂ (c), i.e., two identical copies of the state in the repli-
cated Hilbert space H(2R) = H ⊗ H. In terms of the replicated
state, the quadratic moments are (defining P̂A = eiπ

∑
j∈A n̂ j ):

Ci j = − 1
2 tr
[(

n̂(1)
i − n̂(2)

i

)(
n̂(1)

j − n̂(2)
j

)
ρ̂ (c) ⊗ ρ̂ (c)

]
, (27)

P|A| = 1 − 1
2 tr
[(

P̂(1)
A − P̂(2)

A

)2
ρ̂ (c) ⊗ ρ̂ (c)

]
= tr[eiπ

∑
j∈A(n̂(1)

j −n̂(2)
j )ρ̂ (c) ⊗ ρ̂ (c)]. (28)

Here Ô(1) = Ô ⊗ 1, Ô(2) = 1 ⊗ Ô for any operator Ô de-
fined on the single replica Hilbert space. Both observables
are determined from the deterministic evolution of the average
ρ̂ (2R) = ρ̂ (c) ⊗ ρ̂ (c).

We follow the approach outlined in Refs. [28,29],
where the universal long-wavelength dynamics of monitored
fermions was analyzed in terms of a continuum field theory.
This directly enables the powerful tool of bosonization, which
in turn has the major advantage that the properties of the
different (thermodynamic) phases are encoded in a quadratic
theory, serving as an effective description for RG fixed points.
In terms of Dirac fermions, the free Hamiltonian is

Ĥ = iν
∫

x
�̂†

x σz∂x�̂x, (29)

with �̂ = (�̂R, �̂L )T being the common left- and right-
moving fermion operators [80]. The measured density oper-
ators (both measured with the same strength γM) are

Ô1,x = �̂†
x �̂x, (30)

Ô2,x = �̂†
x σx�̂x. (31)

This formulation allows for an equivalent description in terms
of bosons, described by the operators [28]

Ĥ = ν

2π

∫
x
[(∂x θ̂x )2 + (∂xφ̂x )2], (32)

Ô1,x = − 1

π
∂xφ̂x, (33)

Ô2,x = m cos(2φ̂x ), (34)

where m is a regularization dependent constant and the oper-
ators fulfill: [∂x θ̂x, φ̂y] = −iπδ(x − y).

In this setting, Ĥ and Ô1,x constitute a quadratic theory,
which is exactly solvable and will be the ground for further
treatments of the nonlinearities, Eq. (34).
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At this level, ρ̂ (2R) can be decomposed into a product state
in the “absolute/relative”-basis:

φ̂(a)
x := φ̂(1)

x + φ̂(2)
x√

2
, φ̂(r)

x := φ̂(1)
x − φ̂(2)

x√
2

(35)

(discussed in detail in Appendix B), such that ρ̂ (2R) = ρ̂ (a) ⊗
ρ̂ (r), where ρ̂ (a) heats up indefinitely, while ρ̂ (r) encodes the
nontrivial correlations. To see this, consider Ci j and P|A|: in
both expressions only the combination n̂(1)

i − n̂(2)
i appears.

Slightly simplified, we can identify

n̂(1)
i − n̂(2)

i
∼→ − 1

π
∂x
(
φ̂(1)

x − φ̂(2)
x

) = −
√

2

π
∂xφ̂

(r)
x , (36)

where in the last part, we have used Eq. (35). Most impor-
tantly, these observables only depend on the relative operators.
Furthermore, we are able to write down a path integral and
effective action for the relative modes only [28]. The replica
field theory for the relative coordinate is derived in two major
steps: (1) performing a coordinate transformation to absolute
and relative replica coordinates, Eq. (35); and (2) introducing
Keldysh coordinates and integrating out the absolute modes
(as detailed in the Appendix B). Observables, which only
depend on the relative coordinate, Ô(r), can therefore be cal-
culated from this path integral; X := (t, x)]:

tr[Ô(r) ρ̂ (c) ⊗ ρ̂ (c)]

≈
∫

D
[
φ(r)

c , φ(r)
q

]
O(r) ei

∫
X

1
2 �T

X G−1
0 �X +i�Sr , (37)

with �T
X = (φ(r)

c,X , φ
(r)
q,X ). After rescaling t → νt , the inverse

propagator G−1
0 reads

G−1
0 = − 1

π

(
i 1
π

2 γM

ν
∂2

x ∂2
t − ∂2

x

∂2
t − ∂2

x i 1
π

2 (γM+γB )
ν

∂2
x

)
. (38)

Most importantly, the quadratic part of the action is scale
invariant, the property which determines the phase of weak
measurements, e.g., the linear growth of the purification time
(with system size). At second order in the nonlinearities, also
additional derivative terms are generated under RG transfor-
mations in G−1

0 [see Appendix Eq. (B39) for the more general
form]. The interaction part takes the sine-Gordon form (where
we suppress the index (r) in the fields for now):

�Sr =
∫

d2X
[
iλc cos(4φc,X ) + iλq cos(4φq,X )

+ iλ(c)
cq cos(2φc,X ) cos(2φq,X )

+ λ(s)
cq sin(2φc,X ) sin(2φq,X )

]
, (39)

featuring four different, real valued, interactions described by
λ(c)

cq , λ(s)
cq , λc, λq. In the next section, we will analyze in more

detail, which of these interactions can turn relevant, at large
scales, dominating the physics. For now, it is sufficient to
distinguish three possible, different scenarios:

TABLE II. Overview of the subsystem parity and density-density
correlations in the different regimes. K is a real valued exponent,
depending on the details of the propagator G.

Cy P|A|

case (C),(CD) ∼|y|−2 |A|−K

case (M) ∼ exp(−|y|/ξ ) const.

(C): no interaction is relevant;
(CD): λq is relevant,5 or
(M): λcq’s are relevant.
These three cases lead to an effective, quadratic model

with a modified inverse propagator G−1:

(C) : G−1 = G−1
0 , (40)

(CD) : G−1 = G−1
0 + imD(1 − σz ), (41)

(M ) : G−1 = G−1
0 + mMr σx + imMi1. (42)

Here, mMr,i are measurement-induced parts of a complex mass
term mM = mMr + imMi , and mD is a dephasing-induced real
valued mass.

The observables in this effective description are deter-
mined by quadratic correlators,6

Cy ≈ − 1

π2

〈
∂xφ

(r)
x ∂xφ

(r)
x+y

〉
, (43)

P|A| ≈ 〈ei
√

2(φ(r)
0 −φ

(r)
|A| )
〉 ≈ e−〈(φ(r)

0 −φ
(r)
|A| )

2〉, (44)

which can be directly evaluated using iG(x, y) = 〈φ(r)
x φ(r)

y 〉.
The equal-time correlators in real space are

〈
φ

(r)
0 φ(r)

y

〉 ∼
⎧⎪⎨
⎪⎩

ln(|y|) in(C),

ln(|y|) in (CD),

exp(−|y|/ξ ) in(M ),

(45)

and the corresponding observables are shown in Table II.
In the absence of interactions, correlations and subsys-

tem parity are algebraic functions of the distance, reflecting
the scale invariant nature of the theory (C). As expected,
the measurement-induced mass(es) mM leads to short-ranged
density-correlations for (M). Surprisingly though, these “ob-
servables” are insensitive to the presence of the dephasing-
induced scale mD. There is an important difference between
(C) and (CD): the dephasing-induced mass mD enters the prop-
agator, Eq. (41), in the same way as an effective temperature
scale (qq sector) in a single-replica Keldysh theory [40,81].
In a single-replica, equilibrium framework, this scale would
impose all correlations to be exponentially suppressed in
time and in space. However, in the replica and measurement
framework here, nonzero entries in the cc sector of Eqs. (38)
and (B39) prevent correlations from becoming exponentially
localized (in equilibrium, a nonzero cc entry is ruled out by
causality). The effect of a nonzero mD in the measurement

5At first order in the RG, λc will never turn relevant before any of
the other couplings as we will see later.

6We assume that the equal time correlation function 〈φ̂X φ̂Y 〉 is
determined by the dominant contribution of 〈φc,X φc,X 〉 or 〈φq,X φq,Y 〉.
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setup is an exponential suppression of fluctuations of the
“quantum field” φq. The quantum field has a direct correspon-
dence to the off-diagonal entries of the density matrix [40,81]
and a nonzero mD therefore also implies an exponential decay
of the off-diagonal elements of ρ̂ (2R). This allows for the
following interpretation: the emergence of a nonzero scale
mD indicates a strong confinement of the dynamics onto the
diagonal of the density matrix, due to a dominant impact
of dephasing over the coherent scrambling. This behavior
is very similar to the thermalization in generic Hamiltonian
systems [82,83], where the density matrix is effectively pro-
jected onto its diagonal in the energy eigenbasis. In contrast
to thermalization, the structure on the diagonal depends on the
strength of the measurements. If the measurements dominate,
the density matrix is close to a pure state, corresponding to
mMr , mMi > 0. If the measurements are not dominant, diffu-
sion of particles leads to a homogenization of the diagonal
and to a diagonal ensemble with very high mixedness. Thus
mD > 0 and mMr , mMi = 0 corresponds to the mixed, but scale
invariant phase (CD).

IV. RESULTS: RG ANALYSIS AND QUANTUM
TRAJECTORY SIMULATIONS

In the following, we analyze the phase structure of the
fermion model at large distances. To do so, (i) we use a RG
calculation of the boson model to track the competition of the
different nonlinearities with the free, scale invariant part, and
(ii) we simulate the dynamics of the fermionic density matrix
numerically by using quantum trajectories for an ensemble of
(Gaussian) states. Our main findings are the following.

(1) In a first-order perturbative RG approach, we identify
four different scenarios: (1) all interaction couplings are irrel-
evant [corresponding to phase (C) ], (2) only λq is relevant
(phase (CD)), (3) only λcq’s are relevant [phase (M) ], and (4)
multiple interaction couplings are relevant (phase (CD) or (M),
depending on the dominant divergence). Including second-
order RG equations, i.e., the renormalization of the kinetic
coefficients, a robust and extended, scale invariant phase (C)
with vanishing interaction strengths can still be identified and
fits well to the numerical results for phase (C). Outside of this
phase, several coefficients of the nonlinear contributions di-
verge, which is generic for sine-Gordon models. The different
phases can then be estimated by identifying the most strongly
diverging interaction coupling. It corresponds to the shortest
and therefore most dominant length- or timescale.

(2) The numerical quantum trajectory simulations reveal
a regime of algebraically (∼1/l2 where l is the distance)
decaying correlations, corresponding to either phase (C) or
phase (CD). In addition, we identify a regime of strongly sup-
pressed correlations, qualitatively matching exponential decay
in space as expected from the field theory for phase (M). The
distinction between the different regimes is further confirmed
by a qualitative change in the distribution function of the local
averages 〈n̂i〉, though the numerically accessible system sizes
are too small to observe a sharp transition.

(3) These findings provide strong evidence for the robust-
ness of the critical phase at weak measurement, including in
the presence of dephasing or imperfect measurements.

A. Construction replica-field theory and RG analysis

To set the stage for the detailed RG analysis, we briefly
discuss a set of symmetries, which distinguish between the
presence or absence of a bath.

The path integral is constructed from the two-replica mas-
ter equation according to the conventional Keldysh path
integral technique [40,81]. It contains four different fields
{φ(1)

± , φ
(2)
± }: one field per each replica and per each Keldysh

contour. In the presence of both measurements and dephasing,
the action is invariant under exchanging labels on all contours
simultaneously:

φ
(1)
+ ↔ φ

(2)
+ and φ

(1)
− ↔ φ

(2)
− . (46)

In the absence of dephasing, there is an additional symmetry:
the action is invariant even under exchanging labels only on a
single contour:

φ
(1)
+ ↔ φ

(2)
+ or φ

(1)
− ↔ φ

(2)
− . (47)

The second symmetry, Eq. (47), forbids the generation of a
temperature scale, i.e., it pins mD = 0. This implies that phase
(CD) is excluded by symmetry in the absence of dephasing,
a fact that is reflected in the RG equations. In terms of the
relative and absolute modes (and in Keldysh coordinates) with
the bare propagator Eq. (38), the additional coupling to a
bath, γB �= 0 only enters the last entry in Eq. (38). At this
level, the additional symmetry for γB = 0 is given by φ(r)

q ↔
φ(r)

c (the still remaining symmetry for γB �= 0 is {φc, φq} →
{−φc,−φq}).

1. First-order RG analysis

To study the fate of the different interaction terms in �Sr

at large length scales, we use a perturbative momentum shell
RG scheme, see, e.g., Refs. [28,75] and further details in
Appendix B 3. We show that for γB = 0, only one kind of
interaction can turn relevant, but for γB �= 0 a competition
between different interactions becomes possible. A summary
of the relevant terms, depending on the parameters in the
(γM/ν, γB/ν) plane, is shown in Fig. 5(c).

For the RG scheme, momentum modes in a shell below the
ultraviolet cutoff �, k ∈ [�/b,�] for b > 1, are integrated
out. To this end, we separate the fields φ(X ) = φ>(X ) +
φ<(X ) into long-distance (>) and short-distance modes (<),
and integrate out φ<(X ) (where X = (t, x)) [28,75]. Since
we are interested in the stability of the “conformal” phase,
we use an appropriate symmetric rescaling of space and time
(dynamical critical exponent z = 1):

x → x̃ = x/b, k → k̃ = kb,

t → t̃ = t/b, ω → ω̃ = ωb. (48)

The fields φc, φq are dimensionless (at the Gaussian fixed
point) and will not be rescaled. Combining the renormal-
ization and the rescaling, we get the flow equations (using
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FIG. 5. (a) Tentative phase diagram from the bosonic theory at
second order (including derivative corrections). We identify a stable
regime (C) (light orange), where all interactions vanish. Beyond this
regime, interactions diverge and/or the flow breaks down at s = s f

(see text). To get a rough estimate of the phase structure beyond
(C), we indicate the most strongly growing interaction strength at
s f , corresponding to (CD), if either λq (or λc) is growing, or (M), if
λ(c)

cq or λ(s)
cq grows the strongest. In the region between (C) and (CD),

λcq’s display in parts an oscillatory behavior (red island). (b) Re-
solved flows of the interactions λ (in units of m2) are shown for the
pairs (γM/ν, γB/ν ): (0.2,0.5) [left, (C)], (0.2,1.0) [middle, (CD)], and
(0.6,0.5) [right, (M)]. (c) First-order phase diagram: in the orange
area no interaction is relevant. In (CD), only λq is relevant and in (M)
only λcq’s. In the top right corner, multiple interactions are relevant.

b = es)7

∂sλc ≈
(

2 − 8

π
αcc

)
λc, (49)

∂sλq ≈
(

2 − 8

π
αqq

)
λq, (50)

∂sλ
(c)
cq ≈

(
2 − 2

π
(αcc + αqq)

)
λ(c)

cq − 4

π
αcqλ

(s)
cq , (51)

∂sλ
(s)
cq ≈

(
2 − 2

π
(αcc + αcq)

)
λ(s)

cq + 4

π
αcqλ

(c)
cq . (52)

The last two flow equations can be decoupled, introducing
complex parameters λ± = (λ(c)

cq ± iλ(s)
cq )/2:

∂sλ+ ≈
(

2 − 2

π
(αcc + αqq) + i

4

π
αcq

)
λ+, (53)

∂sλ− ≈
(

2 − 2

π
(αcc + αqq) − i

4

π
αcq

)
λ−. (54)

7Note that αcc, αqq and αcq are real, therefore λ(s)
cq is generated as a

real coupling and λ(c)
cq and λ(s)

cq stay purely real during the flow.

They are then seen to follow the typical form of BKT flow
equations at first order [75,80], describing a threshold phe-
nomenon: only once the prefactor is positive, the operators
turn relevant. The coefficients αab in the prefactors are directly
related to the equal-time correlators in momentum-space
[see again Eq. (38)]:

〈φa(0, k), φb(0,−k)〉 = χab
αab

|k| , χab =
{

1 a = b
−i a �= b

.

(55)

In particular, we find

⎛
⎜⎝

αcc

αqq

αcq

⎞
⎟⎠ =

⎛
⎜⎝

γM+γB

ν
γM

ν

π
2 (1 − |z|2)

⎞
⎟⎠ · f (z), (56)

where we have defined

z2 = 1 + i
2

π

√
γM (γM + γB)

ν2
,

f (z) = i
1

|z|2(z − z∗)
. (57)

In the absence of a bath (γB = 0), we have the additional
symmetry φc ↔ φq, which implies αcc = αqq and therefore
the λcq’s are always more relevant than λc, λq. This gives rise
to either phase (C), where no interaction is relevant, or phase
(M), where measurements induce an effective mass mM .

For nonzero γB, the symmetry Eq. (47) is no longer present
and λq can become more relevant than λcq as soon as γB �
2γM . This gives rise to the phase (CD). The corresponding
regimes in the (γM/ν, γB/ν)-plane, where the individual cou-
plings become relevant, are shown in Fig. 5(c). In the limit
where both γB = 0 and γM/ν → 0, the couplings λcq become
marginal (in agreement with the limit of free fermions at
half filling [80]). Nevertheless, the interaction couplings will
become less relevant at second order (for small γM/ν), similar
to a sine-Gordon model with imaginary couplings [84] (see
also Ref. [28] for more details).

2. Second-order RG analysis

The first order RG equations offer three different regimes,
where either (C) no interaction is relevant, (M) (amongst
others) a cos(2φc) cos(2φq)-term is relevant or (CD) only
cos(4φq) is relevant. While this explains the origin of the three
different phases, in terms of different couplings, it yields a
premature estimate of the actual phase boundaries, especially
in the presence of real and imaginary couplings [28,84]. For
instance, without a bath, the Gaussian fixed point is always
unstable according to the first order equations. In order to
obtain an improved estimate for the phase boundaries, we
consider a second-order RG approach, for which the deriva-
tive terms are renormalized. Then the scale invariant Gaussian
phase is stable in an extended parameter regime of small but
nonzero measurement strengths. At second order, one needs
to track the RG flow of 10 couplings: 4 interaction couplings
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and 6 derivative terms in the quadratic sector, see Eq. (B39).8

The full set of flow equations is rather involved and is not
discussed here. We refer to Appendix B 4 g, and Eq. (B108).

Integrating the RG equations numerically, we identify three
main features: (i) the scale invariant phase (C) is robust
in an extended parameter regime in the parameter plane,
shown in light orange in Fig. 5(a). In particular, at γB = 0,
a measurement-induced transition takes place at a nonzero
measurement-strength γM/ν.9 (ii) for nonzero γB, but γM → 0
a dephasing-induced transition into the phase (CD), as pre-
dicted by the first order equations, is confirmed Figs. 5(a)
and 5(b). (iii) Increasing the dephasing strength, the regime in
which λcq’s become relevant and which is associated with the
measurement-induced phase (M), extends to smaller values
of the measurement strength γM/ν. This is qualitatively in
line with the quantum trajectory simulations and the exact
simulations for small systems. However, the predicted value
of the phase boundary between phase (M) and (CD) fluctuates
between the RG approach and the quantum trajectory simu-
lations (see below), as expected for nonuniversal quantities
determined in a long wavelength effective theory.

A word of caution is at order at this point. In the parameter
regime associated with phases (CD) and (M), it may happen
that the poles of the propagator fully move onto the real axis
and their imaginary part vanishes. In this case, the RG flow
breaks down and all correlation functions become formally
infinite. This behavior is familiar from the situation of pure
dephasing (γM = 0, γB > 0) and, e.g., discussed in Ref. [85].
It reflects the unbounded fluctuations of the fields φ if the
system reaches an infinite temperature (maximally mixed)
state. To which extent this behavior reflects a truly physical
approach towards the infinite temperature state, or may be
cured by higher order contributions to the RG equations, is
beyond the scope of this paper. For the tentative phase diagram
in Fig. 5(a), we take the dominant coupling to be the one
with the largest derivative when the integration of the flow
equations breaks down.

B. Numerical investigation: ensemble of Gaussian states

For γB = 0, any initial Gaussian state (product state),
remains Gaussian due to the quadratic nature of the
Hamiltonian and the measurement operators n̂2

i = n̂i for
fermions. This allows for an efficient numerical simula-
tion [16,27,29,56,57,59,60] as well as evaluation of correla-
tors (using Wick theorem) and, e.g., entanglement [56]. For
γB > 0, the system is described by a statistically weighted
sum, i.e., an ensemble of nens (Gaussian) states, labeled by
the index α

ρ̂
(c)
t =

nens∑
α=1

pα (t )
∣∣ψ (α)

t

〉〈
ψ

(α)
t

∣∣. (58)

8Compared to (essentially) 2 complex ones without a bath, see
Appendix B 4 d and Ref. [28].

9The quantitative extension of the regime depends on the initial
conditions and two constants in the RG equations, whose values are
a priori not known from the microscopic model.

Such an ensemble approach was introduced in Refs. [53,54]
and we use a similar scheme, explained below, combined with
the efficient simulation of pure, Gaussian states presented in
Ref. [56]. The necessary numerical approximation is to limit
the ensemble size in Eq. (58) to a fixed number of states nens.

The advantage of this approach is that the each ensemble
member is still a Gaussian and therefore observables are still
easy to evaluate, e.g.,

(tr[Ôρ̂ (c)])2 =
(∑

α

pα〈Ô〉α
)2

, 〈Ô〉α := 〈ψ (α)|Ô|ψ (α)〉.
(59)

The drawback of this representation is that we do not have
direct access to quantities like entanglement entropies any-
more, which for Gaussian states can be inferred directly from
the correlation matrix. In addition, this approach is challenged
by strongly mixed states, which, due to the limited ensemble
size (i.e., much smaller than the exponentially large dimension
of the Hilbert space of L/2 fermions on a lattice of site L),
cannot be efficiently represented. In the following, we sketch
the (approximate) time evolution of the states and weights pα

in this framework. A major simplification for the numerical
simulation of the ensemble in Eq. (58) is the above outlined
equivalence between dephasing and unread measurements.
Dephasing corresponds to an evolution where each individual
state |ψ (α)

t 〉〈ψ (α)
t | is measured separately, and the measure-

ment outcome is not recorded. In contrast, in a true (read
out) weak measurement, the whole ensemble is measured
collectively and the result is recorded.

In order to realize this evolution protocol, we define two
types of Trotterized evolution operators10

Ûα ≡ exp

[∑
j

√
γB�W (α)

j (n̂ j − 〈n̂ j〉α ) − γBδt (n̂ j − 〈n̂ j〉α )2

]
,

V̂ ≡ exp

[∑
j

√
γM�Wj (n̂ j −〈〈n̂ j〉〉) − γMδt (n̂ j − 〈〈n̂ j〉〉)2

]
,

where 〈n̂ j〉α = 〈ψ (α)
t |n̂ j |ψ (α)

t 〉 is the individual state average
and 〈〈n̂ j〉〉 :=∑α pα〈n̂ j〉α is the ensemble average of n̂ j .

The dephasing noise �W (α)
j is state specific �W (α)

j �W (α′ )
j′ =

δα,α′δ j, j′δt and the measurement noise �Wj is the same for the
whole ensemble �Wj�Wj′ = δ j, j′δt . The update reads [54]

ρ̂
(c)
t+δt =

∑
α

pα (t + δt )
∣∣ψ (α)

t+δt

〉〈
ψ

(α)
t+δt

∣∣,
∣∣ψ (α)

t+δt

〉 = e−iĤδtV̂ Ûα

∣∣ψ (α)
t

〉√
〈ψ (α)

t |ÛαV̂ 2Ûα

∣∣ψ (α)
t

〉 ,
pα (t + δt ) = pα (t )

〈
ψ

(α)
t

∣∣ÛαV̂ 2Ûα

∣∣ψ (α)
t

〉
. (60)

Therefore ρ̂ (c) can still be simulated using Gaussian states,
though with the additional overhead of evolving nens states

10Formally, Ûα can be any unravelling of the Lindblad dynamics.
In practice, we use a unitary unravelling of the Lindblad dynamics,
see Appendix A 2.
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with individual weights pα at the same time (significantly
reducing the accessible system sizes).

1. Application: purification for γB = 0

As we already discussed in Sec. III B (see also again
Refs. [6,47]), the timescale t0 of disentangling or decorrelation
of the system with an ancillary system is another indicator
of a (critically) entangled phase (t0 grows with system size)
or weakly entangled phases (t0 saturates with system size).
Here we briefly review the numerical side of the analysis,
as it connects the physical intuition of purification and the
numerical implementation (for mixed states) discussed before.

The general idea is to couple the system to a reference
ancilla {|kR〉} = {|0R〉, |1R〉}, such that system+ancilla are de-
scribed by a pure state [6,47], see again Eq. (23), where we
choose

|ψ (0)〉 = |0101 . . . 〉,
|ψ (1)〉 = |100101 . . . 〉, 〈ψ (0)|ψ (1)〉 = 0,

and initially the ancilla is fully entangled with the system. The
overall pure state is not necessarily a Gaussian state, but the
state of the system itself, trR[|ψt 〉〈ψt |SR] = ρ̂

(c)
S,t is still a sum

of two Gaussian states:

ρ̂
(c)
S,t = p0(t )

∣∣ψ (0)
t

〉〈
ψ

(0)
t

∣∣+ p1(t )
∣∣ψ (1)

t

〉〈
ψ

(1)
t

∣∣, (61)

which can be directly simulated, using the ensemble approach
discussed above, Eq. (60). Purification means that the overlap
〈ψ (0)

t |ψ (1)
t 〉 → 1 with the timescale t0(L) shown in Fig. 3(b),

as already discussed. Since the overall state |ψ〉SR is pure,
this timescale can be extracted from the decay of the averaged
entanglement SE between the reference ancilla and the system
SE (t ) ∼ e−t/t0(L), expected for long times11 with

SE (t ) = −tr
[
ρ̂

(c)
R,t ln ρ̂

(c)
R,t

] = −tr
[
ρ̂

(c)
S,t ln ρ̂

(c)
S,t

]
(62)

and ρ̂
(c)
R and ρ̂

(c)
S the corresponding reduced density matrices

(the entanglement entropy as a function of time is plotted in
Appendix, Fig. 7).

2. Application: finite coupling to a bath

In the following, we discuss the results from simulating en-
sembles for a finite bath strength or finite imperfection rate.12

From simulations of small systems and the analytical results,
we expect a regime with Cl ∼ |l|−2, P|A| ∼ |A|−K and a regime
with Cl < |l|−2, P|A| ∼ const. [we will not investigate the pu-
rity here and will not distinguish between phase (C) and (CD)].
To get an overview, we plot the half-system parity in Fig. 6(a)

11In the scale invariant (or critical) phase, initially an algebraic
decay in time is expected [6,28,47,77], turning into an exponential
decay for long times.

12A technical remark: due to the necessity to use an ensemble, the
accessible system sizes are smaller than for single Gaussian states,
due to a massive increase in the number of trajectories and the
need to keep track of nens of them at once. Therefore we investigate
system sizes from L = 128 to at most L = 256. We use nens = 500,
50 realizations and δt = 0.05 if not stated differently.

for L = 128, suggesting a similar qualitative bipartition of
the phase diagram compared to the small-scale simulations,
Fig. 4(a). More quantitatively, the decay of correlations is
shown in Fig. 6(b). For small γB/J , the decay is still roughly
|l|−2, but for γB/J � 1 the decay is stronger (∼|l|−5/2 as a
guide to the eye).13 At these intermediate system sizes, the
behavior could still be associated with an algebraic decay,
nevertheless it could also be a transient towards an exponential
decay, such that for the accessible system sizes a prediction
of a sharp transition is not possible. A qualitative change
though is again supported by the change in the 〈n̂i〉-histograms
towards a bimodal distribution, see Fig. 6(c). As expected for
larger noise strengths, the observables become more noisy
towards larger γB/J , partly due to insufficient number of runs
and partly due to limitations of the method itself.

Imperfect measurements. Starting in the measurement
dominated phase (γM/J ∼ 1), reducing η leads to less
strongly decaying correlation functions, Fig. 6(b) and a
change in the 〈n̂i〉 distribution [comparable to Fig. 4(d)],
Fig. 6(c). Complementing the correlation picture, we plot the
subsystem-resolved parity for fixed L = 128 and 192, which
turns from saturation into an (∼ algebraically) decaying func-
tion for small η, see Fig. 6(a) (bottom).

In summary, the numerical findings qualitatively support
the existence of a finitely extended scale invariant phase on
the one hand, and a measurement-induced phase with more
strongly decaying correlations as well as 〈n̂i〉 being closer to
0 or 1 on the other hand. Nevertheless, the accessible system
sizes do not allow us to claim a sharp phase transition. Fur-
thermore, the used method should become less trustworthy the
larger the bath strength is (or the lower η), since the fixed-size
ensemble we use will turn too small.

V. CONCLUSION AND OUTLOOK

The interplay of local measurements and unitary evolution
can give rise to phase transitions, manifesting in, e.g., either
delocalized, strongly entangled or localized, weakly entangled
conditional states ρ̂ (c).

A tractable example, numerically as well as analytically,
are spinless fermions subject to a hopping Hamiltonian
and local measurements of the particle number, featur-
ing a BKT transition,14 separating a scale invariant phase
from a measurement-induced, pinned phase [27,28] (also
Refs. [15,57]).

We investigated the question how a residual coupling to
a dephasing environment (measurement and bath operators
commute) will modify such a transition and identified three
qualitatively different phases: a scale invariant, weakly mixed
phase (C) (robust against weak dephasing), a scale invari-

13We use the rescaled coordinates l → L/π sin(π l/L), anticipating
that (C) is described by a conformal theory.

14The universal behavior at the transition was analyzed numerically
by performing finite size scaling in Refs. [27,58], and it was found
to be consistent with the BKT universality class. The BKT scenario
was confirmed analytically for a corresponding continuum model in
Ref. [28] and for a related model in Ref. [15].
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FIG. 6. Overview of measured systems coupled to a bath (top) and imperfect measurements (bottom), the formal relation is given in Table I.
(a) Overview of the half-system (|A| = L/2) parity for L = 128 (top) and subsystem resolved parity for L = 128, 192 (triangles, circles) on a
log-log scale for γ /J = 1.0 (bottom). A regime of low half-system parity can be identified (top), which results from a strongly (approximately
algebraically) decaying P|A| as a function of |A|. For imperfect measurements (bottom), examples are shown, ranging from saturation (η = 1.0)
to strong decay (η = 0.2). (b) Correlations Cl (log-log) for different bath strengths for L = 192 and γM/J = 0.3 (top) (also L = 256 (triangles)
for γB/J = 0.5) and for different imperfection rates η and γ /J = 1.0 (bottom); (c) Probability density ρ(〈n̂i〉) of the local expectation values
〈n̂i〉 (extracted from histograms), turning from unimodal to bimodal for γM/J = 0.3 (top; L = 192) and γ /J = 1.0 (bottom; L = 192).

ant, but more strongly mixed phase (CD) (only present for
finite dephasing), and a measurement-induced phase (M). In-
terestingly, (C) and (CD) cannot be distinguished based on
“observables,” which only depend on the local densities n̂i,
but are separated in terms of a weak or strong mixedness.

The mixedness is also a challenge: the numerical method
we used for larger systems is not well-suited to analyze
strongly mixed regimes. Therefore it would be desirable to
investigate and classify the phase (CD) by means of alternative
methods like, e.g., matrix product states [14,64,66,86] and to
extract the purity, mutual information or entanglement mea-
sures for mixed states (e.g., the (fermionic) logarithmic entan-
glement negativity [87] (see also Refs. [30,32,37,67,88]))—
the only requirement being that the expectation values in the
conditional master equation can be included in the dynamics.
The benefit of such an investigation would be to clarify the
properties of the phase (CD), and possibly sharpen the charac-
ter of the transition towards the measurement-induced phase
(M).

On the contrary, the strong suppression of off-diagonal
elements in ρ̂ (c) also opens the possibility for simplification
(see also Ref. [89]): we introduced a phenomenological per-
spective, where dephasing and the hopping Hamiltonian lead
to effective diffusion on the diagonal entries of the density

matrix, counteracted by measurements, favoring localization.
An interesting question is whether for related models, this
competition could lead to a transition, which is described by
an effectively classical model.

Finally, we connect the imperfect measurement scenario

with practical attempts to calculate observables like 〈Ô〉2.
The main obstruction lies in extracting the expectation value
〈Ô〉, which formally requires multiple copies of the state.
This poses a tremendous challenge, because it would require
multiple measurement trajectories with the same measure-
ment outcomes. A follow up question could be whether it
were sufficient to have a set of n measurement trajectories,
which only have partly agreeing measurement outcomes, say
�m, to faithfully detect measurement-induced transitions. Such
a set of trajectories corresponds approximately to the density
matrix ρ̂

(c)
�m , conditioned onto the outcomes �m (where all other

outcomes are unknown):

ρ̂
(c)
�m ≈ 1

n

n∑
i=1

∣∣ψ (i)
�m
〉〈
ψ

(i)
�m
∣∣. (63)

If we are using ρ̂
(c)
�m to approximate 〈Ô〉, we are formally work-

ing in a regime of η < 1 (or γB �= 0). Therefore, depending
on the fraction of equivalent outcomes, the observable might

033001-15



B. LADEWIG, S. DIEHL, AND M. BUCHHOLD PHYSICAL REVIEW RESEARCH 4, 033001 (2022)

indicate the “wrong” phase: as we have seen, tuning η can
itself lead to a phase transition and therefore a “wrong phase,”
where, e.g., the phase of weak measurements is detected in-
stead of the phase of strong measurements.
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APPENDIX A: NUMERICAL METHODS

In the following, we discuss some details of the numer-
ical implementation of density matrix evolution as well as
the ensemble evolution (used for larger system sizes). In
both cases, we rely on “Trotterized” time-evolution operators,
which are accurate to order δt . For single trajectories (α),
we define three different stochastic time evolution operators
(M̂i := L̂i − 〈L̂i〉):

Û (R)
α ≡ exp

[∑
j

√
γB�W (α)

j (n̂ j −〈n̂ j〉α ) − γBδt (n̂ j − 〈n̂ j〉α )2

]
,

Û (I )
α ≡ exp

[
i
∑

j

√
γB�W (α)

j n̂ j

]
,

V̂ ≡ exp

[∑
j

√
γM�Wj (n̂ j − 〈〈n̂ j〉〉) − γMδt (n̂ j −〈〈n̂ j〉〉)2

]
.

(A1)

Unravellings. The operators Ûα can be seen as yielding
two different unravellings of the master equation ∂t ρ̂ (c) =
− 1

2γB
∑

i[n̂i, [n̂i, ρ̂ (c)]], such that an average over nens differ-

ent trajectories gives an approximation to ρ̂ (c):

ρ̂
(c)
t+δt ≈ 1

nens

nens∑
α=1

Ûα

∣∣ψ (α)
t

〉〈
ψ

(α)
t

∣∣Û †
α , (A2)

which is an approximation for finite nens. The operators Ûα

act independently on the different states |ψ (α)〉〈ψ (α)| and
the sum formally corresponds to the summation over dif-
ferent, independent measurement trajectories/outcomes. The
two different Ûα’s correspond to different weak measure-
ments, which could be performed on the system (see, e.g.,
Ref. [55]). Here, Û (R)

α corresponds to the one discussed in
the main text and Û (I )

α corresponds to an effectively unitary
unravelling. (For some recent work on (complex) unravellings
in the setting of fermions, see Ref. [69]). The overall sum over

TABLE III. Numerical parameters used for the small scale simu-
lations (longer times for γM/J = 0.1, 0.2): L (system size), Jδt (time
step), JT (running time), and navg (number of independent runs).
Initial state is ρ̂

(c)
t=0 = |ψ〉〈ψ |, |ψ〉 = |0101 . . . 〉.

L Jδt JT navg

Fig. 4 (top) 10 0.01 40 400
Fig. 4 (bottom) 10 0.02 20-80 400

trajectories should be independent of the choice of unravel-
ling, but it is important to note that single members in the sum
will have very different physical properties, depending on the
choice of Û (R)

α or Û (I )
α .

Measurements. In contrast, V̂ describes real measurements
and acts the same onto all members of the ensemble; it is con-
trolled by the ensemble expectation value 〈〈n̂ j〉〉 = tr[ρ̂ (c)n̂ j].

1. Small-scale simulations

We numerically solve the conditional master equa-
tion Eq. (20), using the following scheme (based on a
Trotterization and re-exponentiation, accurate to first order in
δt):

ÛH = exp(−iĤδt ), (A3)

Ôi j :=
(

L∑
l=1

n(i)
l n( j)

l

)
|{n}i〉〈{n} j |, (A4)

D̂ = exp

((
Ô − L

2
1

)
γBδt

)
, (A5)

ρ̂
(c)
t+δt = D̂ · (V̂ ÛH ρ̂

(c)
t Û †

HV̂ †
)
, (A6)

where D̂ · (. . . ) indicates the element-wise multiplication,
which describes the dephasing of off-diagonal elements in
the density matrix. All operators are constructed in the fixed
particle-number Hilbert space with N = L/2 fermions. The
parameters used for the different plots are given in Table III.

2. Ensemble simulations

The ensemble simulation is based on evolving the density
matrix

ρ̂
(c)
t ≈

nens∑
α=1

pα (t )
∣∣ψ (α)

t

〉〈
ψ

(α)
t

∣∣, (A7)

where |ψ (α)
t 〉 are Gaussian states. The entire dynamics is en-

coded in the time evolution of these states and the weights
pα (t ).

General procedure. The combined dynamics can be split
into two steps [54].

(1) Bath step: evolve each member with |ψ (α)
t+δt 〉(pre) =

Ûα|ψ (α)
t 〉 and normalize.

(2) Measurement step: evolve each member with
|ψ (α)

t+δt 〉 = ÛHV̂ |ψ (α)
t+δt 〉(pre), where V̂ is the same for all
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members, update the norm: pα → pα〈ψ (α)
t+δt |ψ (α)

t+δt 〉, and
normalize the states as well as the probabilities.

The main aspects of the ensemble simulations are the fol-
lowing. All states |ψ (α)

t 〉 are subject to the same measurement
noise and ensemble expectation value (described by V̂ ). The
bath is modelled by (independent) noise processes on each
state (unravelling with Ûα). As said before, the physical prop-
erties of single ensemble members will depend on the choice
of the unravelling (only the sum should be independent).
Since we want to study the stability of the scale invariant,
weakly mixed phase against the measurement induced pin-
ning phase, we want to avoid an artificial bias towards the
measurement induced phase. Therefore we model the bath
by choosing Û (I )

α (also referred to as “fluctuating chemical
potential” or “unitary unravelling” [56]). This model (without
additional measurements) is very similar to the one discussed
in Ref. [90]. One physical property of individual states for
such an unravelling is that they still evolve into a volume-law
entangled state [56] (quite in contrast to the measurements
we have considered before). In particular, such a noise pro-
cess on its own will not “localize” the states into number
eigenstates.

Gaussian state evolution. Based on the approach developed
in Ref. [56] (see also Refs. [16,60]), we parametrize a Gaus-
sian state for system size L and fixed particle number N as

|ψt 〉 =
N∏

i=1

(
L∑

j=1

Uji(t )c†
j

)
|0〉, (A8)

U †(t )U (t ) = 1, (A9)

〈ψ ′|ψ〉 = det((U ′)†U ). (A10)

The time evolution is described by updating U (t ) (see
Ref. [56] for more details), directly encoding the correlation
matrix, see Eq. (A11). Given an un-normalized state |ψ〉 (U ),
we can perform a QR decomposition, such that U = QR →
Ũ = Q and 〈ψ |ψ〉 =∏ j |Rj j |2, which gives us a normalized
state |ψ̃〉, corresponding to Ũ and the norm of the old state
(needed for the ensemble approach).

Extracting observables (Gaussian states). Physical proper-
ties of a state |ψ (α)〉 are extracted from the correlation matrix
D(α) [16,27,56]:

D(α) = UU †, D(α)
i j = 〈ψ (α)|c†

i c j |ψ (α)〉 = 〈c†
i c j〉α,

C(α)
i j = |〈c†

i c j〉α|2, P(α)
|A| = det(2 · D(α)|A − 1|A)2, (A11)

where D|A is the subset of the matrix D with indices in
region A.

Approximation for the ensemble. Besides this general for-
malism, the size of the ensemble has to be limited. The
effect of the measurement is to change the weights pα in the
ensemble, such that after some time most weights become
very small. Therefore we use the simple recycling procedure,
discussed in Ref. [54]: once some pα falls below a threshold
pthres, the corresponding state |ψ (α)〉 is discarded. To keep the
ensemble at a fixed size, the discarded state is replaced by
a duplicate of the most likely state |ψ (β )〉 in the ensemble

TABLE IV. Numerical parameters used for the larger scale sim-
ulations (with and without a bath): L (system size), Jδt (time step),
JT (running time), nens (ensemble size), and navg (number of inde-
pendent runs). Initial state is ρ̂

(c)
t=0 = |ψ〉〈ψ |, |ψ〉 = |0101 . . . 〉, only

for Fig. 6(a) top an ensemble of random number eigenstates has been
chosen.

L Jδt JT nens navg

Fig. 6(a) (top) 128 0.05 200 500 50
Figs. 6(b) and 6(c) (top) 192 0.05 200-300 500 400

256 0.05 200 500 200
Fig. 6 (bottom) 128, 192 0.05 200 500 50
Fig. 3(a) 256-512 0.05 300 – 400

768 0.05 300 – 200

with pβ = pmax. Since we now have two copies of |ψ (β )〉, we
give both copies half the weight: pmax → pmax/2, whereby the
overall state ρ̂ (c) is (nearly) unchanged, according to:

pα|ψ (α)〉〈ψ (α)| + pβ |ψ (β )〉〈ψ (β )|

≈ pβ/2|ψ (β )〉〈ψ (β )| + pβ/2|ψ (β )〉〈ψ (β )|.
Afterwards, the set of probabilities is normalized again. If
not stated differently, we use pthres = 10−4 for nens = 500. An
overview of the numerical parameters is given in Table IV.

Observables (sum of Gaussian states): density-density cor-
relations. One observable is the density-density correlator:

Ci j = 〈〈n̂i〉〉 · 〈〈n̂ j〉〉 − 〈〈n̂in̂ j〉〉, (A12)

〈〈Ô〉〉 = tr[Ôρ̂ (c)] :=
nens∑
α=1

pα〈Ô〉α. (A13)

Here, the overline corresponds to the average over different
measurement trajectories. From Eq. (A8) we have direct ac-
cess to the correlations of the Gaussian ensemble members
D(α)

i j = 〈ψ (α)|c†
i c j |ψ (α)〉 = 〈c†

i c j〉α . To access the second part
in the correlator, 〈〈n̂in̂ j〉〉, we can still make use of the Wick
theorem, before we average:

〈c†
j c jc

†
kck〉α (A14)

= 〈c†
j c j〉α〈c†

kck〉α − 〈c†
j ck〉α〈c†

kc j〉α − 〈c†
j ck〉αδ j,k . (A15)

This means that we can rewrite

〈〈n̂in̂ j〉〉 =
∑

α

pα

(
D(α)

ii D(α)
j j − |D(α)

i j |2 + D(α)
ii δi j

)
(A16)

and therefore, knowledge of D(α)
i j and pα is enough to calculate

the density-density correlator according to

Ci j =
∑
α,α′

pα pα′D(α)
ii D(α′ )

j j

−
∑

α

pα

(
D(α)

ii D(α)
j j − |D(α)

i j |2 + D(α)
ii δi j

)
. (A17)
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FIG. 7. Decay of SE (logarithmic scale) of the ancilla, coupled
to the fermionic system for (a) weak measurements γM/J = 0.2
(L = 32: navg = 105; L = 64 − 256: navg = 4×103; L = 512: navg =
1000; L = 768: navg = 250) and (b) strong measurements γM/J =
1.0. For weak measurements, the timescale of relaxation grows lin-
early in the system size. For strong measurements, the timescale
roughly saturates for large enough system sizes L � 256 (L � 256,
navg = 4×104; L = 512 and 768: navg = 4×103).

Remark. For strong noise (γB/J or γM/J large) the fluc-
tuations in Eq. (A17) become large and can even lead to
negative values, which might be avoidable by using larger
ensemble-sizes (but which is not very feasible). The strong
fluctuations can be seen in, e.g., the lower curves in Fig. 6(b)
(top, γM/J = 4.0).

Purification dynamics. As discussed in the main text, the
ensemble approach allows us to study the purification dy-
namics of the system, locally coupled to an ancilla. The
corresponding time resolved plots for different measurement
strengths are shown in Fig. 7.

APPENDIX B: DETAILS ABOUT THE REPLICA ACTION
AND RG ANALYSIS

In the following, we derive the explicit form of the replica
action and describe the details of integrating out the abso-
lute modes (following Ref. [28]). Afterwards, we discuss the
first-order [O(λ1

ab)] RG equations. Finally, we construct the
second-order [O(λ2

ab)] RG equations and give the full set of
flow equations in Eq. (B108).

The path integral description of the dynamics of ρ̂ (2R) =
ρ̂ (c) ⊗ ρ̂ (c) will be the key object to study the large distance
properties of our effective, bosonic model. As we already said,
ρ̂ (c) ⊗ ρ̂ (c) consists of two identical copies. The dynamics
of each copy is given by Eq. (20), where the noise dWi is
identical for both copies. The roles of measurements and
dephasing are again rather different: (i) measurements will,
after averaging, induce a coupling between replicas; and (ii)
dephasing acts onto each replica individually.

Before averaging, ρ̂ (c) ⊗ ρ̂ (c) stays in a product state, be-
cause there are no interactions between the copies. After
averaging though, a coupling is induced and ρ̂ (2R) will become
correlated, the corresponding conditional 2-replica master

equation reads

ρ̂
(2R)
t+δt = ρ̂

(2R)
t + iδt

[
ρ̂

(2R)
t , Ĥ (1) + Ĥ (2)

]
− 1

2
(γM + γB)δt

∑
i

([
L̂(1)

i ,
[
L̂(1)

i , ρ̂
(2R)
t

]]
+ [L̂(2)

i ,
[
L̂(2)

i , ρ̂
(2R)
t

]])
+ γMδt

∑
i

{
M̂ (2)

i ,
{
M̂ (1)

i , ρ̂
(c)
t ⊗ ρ̂

(c)
t

}}
︸ ︷︷ ︸

measurement-induced interaction between replicas

, (B1)

where M̂ (i) := L̂(i) − 〈L̂(i)〉. The exact expression of the last
term will depend on higher replicas (due to the nonlinearities,
see Ref. [28] for further details), but we are seeking for a
closed expression for ρ̂ (2R) only. Introducing

〈〈. . . 〉〉 = tr[. . . ρ̂ (2R)], (B2)

an approximate, norm-conserving version can be written as{
M̂ (1)

i , {M̂ (2)
i , ρ̂ (c) ⊗ ρ̂ (c)}} ≈ −4C̃iρ̂

(2R) (B3)

+ {L̂(2)
i − 〈〈L̂(2)

i

〉〉
,
{
L̂(1)

i − 〈〈L̂(1)
i

〉〉
, ρ̂ (2R)

}}
, (B4)

where C̃i is defined as

C̃i = 〈〈L̂(1)
i L̂(2)

i

〉〉− 〈〈L̂(1)
i

〉〉〈〈
L̂(2)

i

〉〉
. (B5)

The approximation is based on the assumption that the sta-
tistical average over expectation values and the two-replica
density matrix can be factorized, leading to

〈L̂i〉ρ̂ (c) ⊗ ρ̂ (c) ≈ 〈L̂i〉 · ρ̂ (2R) (B6)

= 〈〈L̂(1)
i

〉〉 · ρ̂ (2R),

〈L̂i〉2ρ̂ (c) ⊗ ρ̂ (c) ≈ 〈L̂i〉2 · ρ̂ (2R)

= 〈〈L̂(1)
i L̂(2)

i

〉〉 · ρ̂ (2R). (B7)

It was shown in Ref. [28] that in the case of linear measure-
ment operators and a quadratic Hamiltonian, this decoupling
is exact. In general, the approximation is justified when the
averages only contain the center of mass replica mode, and are
independent of relative replica fluctuations. Adding decoher-
ence, which is linear in the system operators, does not modify
this result and provides exactly solvable relative correlations
(replacing γ → γM + γB in the linear terms and γ → γM in
the nonlinear ones in Ref. [28] [Eqs. (B8) and (B9)] (see also
Ref. [30]).

In the following, we switch to the bosonic description, in
which case there are two different kinds of measurement oper-
ators, but the structure is the same as in Eq. (B1). Introducing
�̂ = ∂x θ̂/π , we have a pair of conjugate variables, which we
use to construct the path integral based on 〈φx|�x〉 = ei�xφx .
Based on the conjugate operators φ̂x, �̂x we can express
tr[ρ̂ (2R)

t ] as a (Keldysh) path integral:15

Z = tr[ρ̂ (2R)] =
∫

D
[
θ

(1,2)
± , φ

(1,2)
±
]
eiS, (B8)

S = S(0)
1 + S(0)

2 + �S1,2, (B9)
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FIG. 8. Phase diagram obtained from solving the second-order
flow equations, Eq. (B108). At each point, the color indicates,
whether no coupling is relevant (light orange) or which coupling is
most relevant (orange to black), as specified in the text. Beyond the
regime of no relevant interaction (light orange), the RG flow breaks
down at a finite flow-parameter s = s f due to real poles emerging
in the propagator. In these cases, we estimate the most relevant
interaction by tracking the derivatives of the couplings. The one
with the largest (absolute) change is indicated in the plot. The initial
conditions are given in Eq. (B110).

where �S1,2 incorporates all nonquadratic terms, which cou-
ple the replicas. The ± indices denote the contour indices,
which stem from operators acting from the left or right onto
the density matrix.

The formulation in Eq. (B9) is not ideal, because it contains
cross-couplings, even at the quadratic level (S(0)

1,2). To make
this transparent, we rearrange the master equation using only
Ô(1) ± Ô(2) instead:

ρ̂
(2R)
t+δt = +iδt

[
ρ̂

(2R)
t , Ĥ (1) + Ĥ (2)

]
+ 1

2
γB

∑
i

δt
(
LM̂ (1)

i +M̂ (2)
i

[
ρ̂

(2R)
t

]+ LM̂ (1)
i −M̂ (2)

i

[
ρ̂

(2R)
t

])
︸ ︷︷ ︸

heating Lindblad terms

+ δt
∑

i

γM
(
M̂ (1)

i + M̂ (2)
i

)
ρ̂

(2R)
t

(
M̂ (1)

i + M̂ (2)
i

)︸ ︷︷ ︸
(heating) contour coupling

− δt

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2
γM

∑
i

(
M̂ (1)

i − M̂ (2)
i

)2
︸ ︷︷ ︸

non-Hermitian Hamiltonian

, ρ̂
(2R)
t

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

− 4γMδt
∑

i

C̃iρ̂
(2R)
t , (B10)

where we introduced the Lindblad superoperators

LÔ[ρ̂] := − 1
2 [Ô, [Ô, ρ̂]]. (B11)

15See, e.g., Ref. [40] for details on such a construction.

If the corresponding operators Ô(1) ± Ô(2) are linear in the
operators φ̂x, θ̂x, we can rotate the basis into the “relative” and
“absolute” space:

φ̂(a)
x := φ̂(1)

x + φ̂(2)
x√

2
, φ̂(r)

x := φ̂(1)
x − φ̂(2)

x√
2

, (B12)

which will decouple the dynamics: ρ̂
(2R)
t = ρ̂

(a)
t ⊗ ρ̂

(r)
t (for

factorized initial conditions).
The action reads accordingly

Z :=
∫

D[θ (a,r)
± , φ

(a,r)
± ]eiS, (B13)

S = S(0)
a + S(0)

r + �Sr,a, (B14)

where �Sr,a incorporates all nonquadratic terms, which cou-
ple the absolute and relative mode and S(0)

l have the form (after
integrating out the field θX , which only appears quadratically):

S(0)
l = 1

2

∫
dω

2π

∫
dk

2π
(�(l )

−Q)T G−1
l �

(l )
Q , (B15)

�
(l )
Q := (φ(l )

+ , φ
(l )
− )T . (B16)

Following the strategy outlined in Ref. [28], we integrate out
the absolute mode, which is “heating” up. An indicator is
already given at the quadratic level (remember: t → νt):

G−1
a = 1

π
(ω2 − k2)σz + i

γB

π2ν
k21 (B17)

− i
(γB + 2γM )

π2ν
k2σx, (B18)

where real poles in the frequency plane for the absolute mode
emerge (in contrast to the relative mode). In this “contour”
description, the roles of the measurement and the bath are
somewhat intermixed. A more transparent description is given
in terms of the Keldysh coordinates (c: classical, q: quantum):

φ(a,r)
c = φ

(a,r)
+ + φ

(a,r)
−√

2
, φ(a,r)

q = φ
(a,r)
+ − φ

(a,r)
−√

2
. (B19)

For a Lindblad master equation, this description is favourable,
since it makes use of some redundancies in the contour de-
scription (see, e.g., Ref. [40]). The quadratic part of the action
for the relative modes was already given in the main text
G−1

r = G−1
0 , Eq. (38).

In this description, measurements couple symmetrically to
the classical and quantum components and the bath couples
only to the quantum component.
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1. Full replica action

Using the conjugate variables to construct the path integral, we get the following translation table. If we consider a
superoperator:

L̂[ρ̂t ] =
∫

dx aL[φ̂x]ρ̂t L[φ̂x] + b{L2[φ̂x], ρ̂t }, (B20)

where L are functions of the operators φ̂x, it gives rise to a contribution in the action (once re-exponentiated):

iSL =
∫

dtdx{aL[φ+
x,t ]L[φ−

x,t ] + b(L2[φ+
x,t ] + L2[φ−

x,t ])}. (B21)

With this, we can directly translate the replica master equation into a field theoretic description (keeping the replica indices):

S = S(0)
r + S(0)

a + �S+,−. (B22)

The quadratic parts are given in Eqs. (38) and (B18) (but in the contour version), the interaction part reads (about dimensions:
[m] = [x]−1 = [t]−1):

i�S+,− = m2
∫

dtdx

{
2(γB + 2γM )

ν
cos
(√

2φ
(a)
+,X

)
cos
(√

2φ
(r)
+,X

)
cos
(√

2φ
(a)
−,X

)
cos
(√

2φ
(r)
−,X

)
(B23)

+2
γB

ν
sin
(√

2φ
(a)
+,X

)
sin
(√

2φ
(r)
+,X

)
sin
(√

2φ
(a)
−,X

)
sin
(√

2φ
(r)
−,X

)
(B24)

−1

2

(γB + γM )

ν

[
cos
(
2
√

2φ
(a)
+,X

)
cos
(
2
√

2φ
(r)
+,X

)+ cos
(
2
√

2φ
(a)
−,X

)
cos
(
2
√

2φ
(r)
−,X

)]
(B25)

+
∑
σ=±

1

2

γM

ν

[
cos
(
2
√

2φ
(a)
σ,X

)+ cos
(
2
√

2φ
(r)
σ,X

)]}
. (B26)

We have already left out the expectation values of the measured operators at this level (see Ref. [28] for more details).

2. Integrating out the absolute mode

The guiding principle for integrating out the absolute mode are the relations (based on the heating of the absolute mode, see
again Ref. [28]):

〈eiφ(a)
σ,X 〉a = e− 1

2 〈(φ(a)
σ,X )2〉a → 0, 〈ei(φ(a)

σ,X ±φ
(a)
σ,Y �=X )〉a = e− 1

2 〈(φ(a)
σ,X ±φ

(a)
σ,Y �=X )2〉a → 0. (B27)

We furthermore make the following assumption:

exp
(− 〈(φ(a)

+,X ± φ
(a)
−,Y

)2〉
a

)→ 0. (B28)

Using these inputs, we perturbatively calculate the action for the relative modes, according to

S[φ(r)] ≈ S(0)
r + 〈�S+,−〉(a) + i

2

(〈�S2
+,−〉(a) − 〈�S+,−〉2

(a)

)
︸ ︷︷ ︸

=:�Sr

. (B29)

The correction �Sr takes the form:

�Sr = m2
∫

dtdx

{
− i

2

γM

ν

∑
σ=±

cos
(
2
√

2φ
(r)
σ,X

)+ i

2

γM (γB + γM )

ν2

1

8

∑
σ=±

cos
(
2
√

2φ
(r)
σ,X

)

− i

2

1

4

[(
(2γM + γB)2

ν2
− (γB)2

ν2

)∑
σ=±

cos
(
2
√

2φ
(r)
σ,X

)+
(

(2γM + γB)2

ν2
+ (γB)2

ν2

)
cos
(
2
√

2φ
(r)
+,X

)
cos
(
2
√

2φ
(r)
−,X

)]}

(B30)

=:
∫

d2X

{
i

(
λ(c)

cq + iλ(s)
cq

2

)
cos
(
2
√

2φ
(r)
+,X

)+ i

(
λ(c)

cq − iλ(s)
cq

2

)
cos
(
2
√

2φ
(r)
−,X

)
+ i(λc + λq) cos

(
2
√

2φ
(r)
+,X

)
cos
(
2
√

2φ
(r)
−,X

)+ i
(
λq − λc

)
sin
(
2
√

2φ
(r)
+,X

)
sin
(
2
√

2φ
(r)
−,X

)}
, (B31)

=:
∫

d2X
[
iλc cos

(
4φ

(r)
c,X

)+ iλq cos
(
4φ

(r)
q,X

)+ iλ(c)
cq cos

(
2φ

(r)
c,X

)
cos
(
2φ

(r)
q,X

)+ λ(s)
cq sin

(
2φ

(r)
c,X

)
sin
(
2φ

(r)
q,X

)]
, (B32)
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where we have introduced the interactions λ with dimensions [λ] = [x]−2. Some of the couplings are zero initially, but will be
generated under the RG and we have already ignored terms of higher order, e.g., cos(4

√
2φ(r)

σ ). For comparison, we formulate
these interaction terms in the contour as well as the Keldysh language and use the couplings introduced in the main text (X :=
(t, x)), where we leave out the superscript (r) in the following.

3. First-order renormalization

Convention (Fourier transform). f (x, t ) = f (X ) = ∫∞
−∞

dω
2π

dk
2π

ei(ωt+kx) f (k, ω) = ∫ d2Q
(2π )2 ei �Q �X f (Q).

Formally, many of the following line of arguments are similar to, e.g., Ref. [75] for the RG analysis of the sine-Gordon model.
To study which of these interaction terms can actually become relevant, we use a perturbative momentum-shell RG scheme. To
this end, we separate the fields into φ(X ) = φ>(X ) + φ<(X ):

φ>(X ) =
∫

|k|<�/b

dk

2π

∫ ∞

−∞

dω

2π
φ(Q)ei �Q �X , φ<(X ) =

∫
|k|>�/b

dk

2π

∫ ∞

−∞

dω

2π
φ(Q)ei �Q �X . (B33)

The short-wavelength modes φ<(X ), defined in a shell �/b < |k| < �, will be integrated out. At the first order, we get16

S> ≈ S>
0 + 〈�S〉<. Under the renormalization step, we get for example:

〈cos(4(φ>
c (X ) + φ<

c (X )))〉< = cos(4φ>
c (X ))e−8〈(φ<

c (X ))2〉<, (B34)

〈cos(4(φ>
q (X ) + φ<

q (X )))〉< = cos(4φ>
q (X ))e−8〈(φ<

q (X ))2〉< . (B35)

The other interaction terms give rise to

〈cos(2(φ>
c (X ) + φ<

c (X ))) cos(2(φ>
q (X ) + φ<

q (X )))〉<
= 1

2 cos(2(φ>
c (X ) + φ>

q (X )))e−2〈(φ<
c (X )+φ<

q (X ))2〉< + 1
2 cos(2(φ>

c (X ) − φ>
q (X )))e−2〈(φ<

c (X )−φ<
q (X ))2〉<

= 1
2

[
cos(2φ>

c (X )) cos(2φ>
q (X )) − sin(2φ>

c (X )) sin(2φ>
q (X ))

]
e−2〈(φ<

c (X )+φ<
q (X ))2〉<

+ 1
2

[
cos(2φ>

c (X )) cos(2φ>
q (X )) + sin(2φ>

c (X )) sin(2φ>
q (X ))

]
e−2〈(φ<

c (X )−φ<
q (X ))2〉<, (B36)

〈sin(2(φ>
c (X ) + φ<

c (X ))) sin(2(φ>
q (X ) + φ<

q (X )))〉<
= − 1

2 cos(2(φ>
c (X ) + φ>

q (X )))e−2〈(φ<
c (X )+φ<

q (X ))2〉< + 1
2 cos(2(φ>

c (X ) − φ>
q (X )))e−2〈(φ<

c (X )−φ<
q (X ))2〉<

= 1
2 cos(2φ>

c (X )) cos(2φ>
q (X ))[−e−2〈(φ<

c (X )+φ<
q (X ))2〉< + e−2〈(φ<

c (X )−φ<
q (X ))2〉< ]

+ 1
2 sin(2φ>

c (X )) sin(2φ>
q (X ))[e−2〈(φ<

c (X )+φ<
q (X ))2〉< + e−2〈(φ<

c (X )−φ<
q (X ))2〉<]. (B37)

For b = es and s → 0, we can formulate the change in the couplings λ(s) as differential equations, given in Sec. IV A 1. An
overview is given in Fig. 8(a).

4. Second-order RG analysis: Details about the derivation

We calculate the second-order (in interaction strengths) correction to the action according to

�S(2nd) = i

2

(〈
�S2

r

〉
<

− 〈�Sr〉2
<

)
,

�Sr =
∫

d2X
[
iλc cos(4φc) + iλq cos(4φq) + iλ(c)

cq cos(2φc) cos(2φq) + λ(s)
cq sin(2φc) sin(2φq)

]
= i
∫

d2X [λ(c)
+− cos(2

√
2φ+) cos(2

√
2φ−) + λ

(s)
+− sin(2

√
2φ+) sin(2

√
2φ−) + λ+ cos(2

√
2φ+) + λ− cos(2

√
2φ−)],

(B38)

where we will use the formulation in terms of the Keldysh coordinates and the contour coordinates interchangeably. A qualitative
overview of the corrections is given below:

Second-order correction to neglected

λ2
q (∇φq)2 cos(8φq)

λ2
c (∇φc)2 cos(8φc)

λ2
+ (∇φq)2, (∇φc)2, (∇φc)(∇φq) cos(4

√
2φ+)

16The averages denote 〈O〉< := ∫ D[φ<]OeiS<
0 , 〈φa(X )φb(X )〉< := ∫

�/b<|k|<�
dk
2π

〈φa(t = 0, −k)φb(t = 0, k)〉.
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λ2
− (∇φq)2, (∇φc)2, (∇φc)(∇φq) cos(4

√
2φ−)

λ+λ
(c)
+−, λ+λ

(s)
+− cos(2

√
2φ−) cos(2

√
2(2φ+ ± φ−))

λ−λ
(c)
+−, λ−λ

(s)
+− cos(2

√
2φ+) cos(2

√
2(2φ− ± φ+))

λ+λ− cos(4φc), cos(4φq)

λcλq cos(4
√

2φ±)

(there are also other terms, which are generated, like derivative couplings coupled to an interaction term).
Convention. In the following, we define the quadratic part of the action as

S0 = 1

2

∫
dω

2π

∫
dk

2π
(φc(−Q) φq(−Q))

(
i
(
η2

qqk2 − ε2
qqω

2
)

ε2
cqω

2 − η2
cqk2

ε2
cqω

2 − η2
cqk2 i

(
η2

cck2 − ε2
ccω

2
))(φc(Q)

φq(Q)

)
. (B39)

This form implies that all (equal-time) correlators can be brought into the form

〈φa(0, k)φb(0,−k)〉 =: χab

∫
dω

2π

η2
abk2 − ε2

abω
2

�ε(ω − z|k|)(ω + z|k|)(ω − z∗|k|)(ω + z∗|k|) = χab

2

[
η2

ab√
�η

− ε2
ab√
�ε

]
i√

�ε(z − z∗)
,

(B40)

where we use (as in Sec. IV A 1)

χab =
{

1 a = b
−i a �= b

. (B41)

The pole structure is determined by z, given by

z2 = ±
√(

ε2
cqη

2
cq + 1

2

(
ε2

qqη
2
cc + ε2

ccη
2
qq

))2 − �η�ε

�ε2
+ ε2

cqη
2
cq + 1

2

(
ε2

qqη
2
cc + ε2

ccη
2
qq

)
�ε

, (B42)

�ε := ε2
ccε

2
qq + ε4

cq, �η := η2
ccη

2
qq + η4

cq. (B43)

In the following, we present one explicit example to identify the necessary integral expression for the second-order renormaliza-
tion:

λ2
q : �S2nd

qq = − i

4
λ2

q

∫
d2Xd2Y [(e−16〈φ<

q (X )φ<
q (Y )〉 − 1)e−16〈(φ<

q )2〉 cos(4(φ>
q (X ) + φ<

q (Y ))

+ (e+16〈φ<
q (X )φ<

q (Y )〉 − 1)e−16〈(φ<
q )2〉 cos(4(φ>

q (X ) − φ>
q (Y ))].

The correlators 〈φa(X )φb(X + δX )〉 are quickly decaying, therefore it is sufficient to consider X,Y being close by (see also, e.g.,
Ref. [75]). Since a term like cos(8φq(X )) is less relevant (from the first order RG analysis) compared to cos(4φq(X )), we ignore
those terms and only consider the second term:

cos(4(φ>
q (X ) − φ>

q (X + δX ))) ≈ 1 − 8
(
δX �∇φ>

q

)2
, (B44)

which gives rise to derivative corrections. Finally, we are interested in the flow equations of the couplings and therefore we are
only interested in the leading order in s (b = es) (our small parameter). Expressions like

(e±16〈φ<
q (X )φ<

q (Y )〉 − 1) ≈ (±16〈φ<
q (X )φ<

q (Y )〉)︸ ︷︷ ︸
∼O(s)

+O(s2) (B45)

contribute already linearly in s and therefore we can ignore any further corrections (e.g., from e−16〈(φ<
q )2〉 or b2 from the rescaling

step). For all expressions at second order, only two basic expressions are required (δX := (δt, δx)):

potential corrections:

Aab =
∫

d2(δX )〈φa(X )φb(X + δX )〉 ≈ χab
i√

�ε(z∗ − z)

(
η2

ab√
�η

− ε2
ab√
�ε

)
︸ ︷︷ ︸

=:Aab

(A1 · s); (B46)

derivative corrections:

B(t,x)
ab =

∫
d2(δX )

(
δt2

δx2

)
〈φa(X )φb(X + δX )〉 ≈ χab

(
η2

ab
�η

− ε2
ab

�ε

)
(A2 · s), (B47)

where A1, A2 are real constants, which we discuss in Appendix B 4 c, and we furthermore made the order in s explicit.
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a. Corrections of the potential terms at second order

Depending on the terms under consideration, working either in the contour language or the Keldysh language might be
favorable. A novelty compared to the standard BKT scenario is that we also get corrections of the potential terms at second
order. The corrections to the potential terms at leading order are

�S+,+− ≈ −2iλ+b2
∫

d2X [λ(c)
+−A++ − λ

(s)
+−A+−] cos(2

√
2φ−(X )), (B48)

�S−,+− ≈ −2iλ−b2
∫

d2X [λ(c)
+−A−− − λ

(s)
+−A+−] cos(2

√
2φ+(X )). (B49)

The corrections can be written as

�S±,+− =
∫

d2Xb2
[−4

[
iλcλ

(c)
cq Acc + iλqλ

(c)
cq Aqq − (λc + λq)λ(s)

cq Acq
]

cos(2φc) cos(2φq) (B50)

−4
[
λcλ

(s)
cq Acc − λqλ

(s)
cq Aqq + i(λc + λq)λ(c)

cq Acq
]

sin(2φc) sin(2φq)
]

(B51)

(there is an additional factor of 2 due to the cross product in �S2). The correction at lowest order in the λ+λ− sector reads

�S+,− ≈ −i4λ+λ−b2
∫

d2X [−(Acc − Aqq) cos(4φc(X )) + (Acc − Aqq) cos(4φq)]. (B52)

Therefore the flow of the potential terms up to second order takes the form (4πA1 =: Ā1):

∂sλc =
(

2 + 4

π
Acc

)
λc + 1

4π

((
λ(c)

cq

)2 + (λ(s)
cq

)2)
(Acc − Aqq )Ā1, (B53)

∂sλq =
(

2 + 4

π
Aqq

)
λq − 1

4π

((
λ(c)

cq

)2 + (λ(s)
cq

)2)
(Acc − Aqq )Ā1, (B54)

∂sλ
(c)
cq =

(
2 + 1

π
((1 − λcĀ1)Acc + (1 − λqĀ1)Aqq)

)
λ(c)

cq + i
1

π
((2 − (λc + λq)Ā1)Acq)λ(s)

cq , (B55)

∂sλ
(s)
cq =

(
2 + 1

π
((1 + λcĀ1)Acc + (1 + λqĀ1)Aqq)

)
λ(s)

cq − i
1

π
((2 + (λc + λq)Ā1)Acq)λ(c)

cq . (B56)

b. Derivative corrections

Derivative corrections emerge from λ2
j -like terms:

λ2
q : �Sqq = +2iλ2

q

∫
d2X

[
(e+16〈φ<

q (X )φ<
q (Y )〉 − 1)(δX∇φq )2

] ≈ 32iλ2
q

∫
d2X

(
B(t )

qq (∂tφq)2 + B(x)
qq (∂xφq)2

)
, (B57)

λ2
c : �Scc = +2iλ2

c

∫
d2X

[
(e+16〈φ<

c (X )φ<
c (Y )〉 − 1)(δX∇φc)2

] ≈ 32iλ2
c

∫
d2X

(
B(t )

cc (∂tφc)2 + B(x)
cc (∂xφc)2

)
, (B58)

λ2
+ : �S++ = +iλ2

+

∫
d2X

[
(e+8〈φ<

+ (X )φ<
+ (Y )〉 − 1)(δX∇φ+)2] (B59)

≈ i8λ2
+

∫
d2X

(
B(t )

++
[
(∂tφc)2 + (∂tφq)2 + 2(∂tφc)(∂tφq)

]+ B(x)
++
[
(∂xφc)2 + (∂xφq)2 + 2(∂xφc)(∂xφq)

])
, (B60)

λ2
− : �S−− = +iλ2

−

∫
d2X

[
(e+8〈φ<

− (X )φ<
− (Y )〉 − 1)(δX∇φ−)2

]
(B61)

≈ i8λ2
−

∫
d2X

(
B(t )

−−
[
(∂tφc)2 + (∂tφq)2 − 2(∂tφc)(∂tφq)

]+ B(x)
−−
[
(∂xφc)2 + (∂xφq)2 − 2(∂xφc)(∂xφq)

])
. (B62)

The flow equations for the quadratic sector of the action can be written as

∂sη
2
qq ≈

[
−64λ2

c

ε2
cc

�ε
− 4
[(

λ(c)
cq

)2 − (λ(s)
cq

)2](ε2
cc + ε2

qq

�ε

)
− 16λ(c)

cq λ(s)
cq

ε2
cq

�ε

]
A2, (B63)

∂sε
2
qq ≈

[
−64λ2

c

η2
cc

�η
− 4
[(

λ(c)
cq

)2 − (λ(s)
cq

)2](η2
cc + η2

qq

�η

)
− 16λ(c)

cq λ(s)
cq

η2
cq

�η

]
A2, (B64)

∂sη
2
cq ≈

[
−8λ(c)

cq λ(s)
cq

(
ε2

cc + ε2
qq

�ε

)
+ 8
[(

λ(c)
cq

)2 − (λ(s)
cq

)2] ε2
cq

�ε

]
A2, (B65)

∂sε
2
cq ≈

[
−8λ(c)

cq λ(s)
cq

(
η2

cc + η2
qq

�η

)
+ 8
[(

λ(c)
cq

)2 − (λ(s)
cq

)2] η2
cq

�η

]
A2. (B66)
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Important property of the flow equations. We assume that the constants A1, A2 are real-valued. This can be motivated along
two lines: (i) for A2 this will lead to the known result from Ref. [28] (the sign of A2 can be inferred from the special case of
γB = 0); (ii) from a symmetry point of view, the bare action is invariant under

φ+ → φ−,

φ− → φ+,

{gi} → {g∗
i },

(B67)

where {gi} is the set of all couplings. Choosing A1, A2 real preserves this structure and terms in the action S like
i
∫

X λ+ cos(2
√

2φ+) and i
∫

X λ− cos(2
√

2φ−) [see Eq. (B38)] are converted into each other under Eq. (B67) for λ+ = λ∗
−, this

relation being preserved during the full RG flow, Eq. (B108) for A1 real. The initial conditions read [again, for t → νt as given
in the main text, Eq. (38) together with Eq. (B39)]

η2
qq = 2

π2

γM

ν
, ε2

cq = 1

π
, (B68)

η2
cc = 2

π2

(γM + γB)

ν
, η2

cq = 1

π
. (B69)

(also λ(0)
c , λ(0)

q , and λ(c)
cq are initially real). This has an important consequence: all couplings stay real during the flow. The full

set of the corresponding flow equations are given in Eq. (B108).

c. About the coefficients

Our approach to the second-order RG calculation is strongly based on treating space and time on equal footing. We do not
specify the regularization scheme here, but assume that such a scheme exists. The idea is that once we introduce the coordinates
(reminder: z encodes the pole structure)

ω2 = |z|ω̃2, t2 = |z|−1t̃2, (B70)

k2 = |z|−1k̃2, x2 = |z|x̃2, (B71)

space and time coordinates in the propagators can essentially be exchanged. The main goal of this section is to identify the
scaling behavior of Aab and Bab. We first discuss Aab: to this end, we introduce the minimal building block:

A1(α) =
∫

d2X̃
∫

d2Q̃

(2π )2

ω̃2e−i �̃Q �̃X

(αω̃2 − α−1k̃2)(α−1ω̃2 − αk̃2)
(B72)

(α :=
√

z∗
z ), where the precise integration domain depends on the regularization scheme. There is an analogous expression with

a k̃2 term in the numerator instead of ω̃2. Here an important assumption comes in: we assume that both expressions are the same
under transformations of the kind: x̃ ↔ t̃, k̃ ↔ ω̃ (we assume that a proper regularization scheme exists, where space and time
can be treated equally). Using the “symmetrizing” rescalings as introduced above, we can write

Aab =
∫

d2X 〈φa(0)φb(X )〉< = χab

(
η2

ab

�ε|z|3 − ε2
ab

�ε|z|
)
A1(α), (B73)

�ε = ε2
ccε

2
qq + ε4

cq, �η = η2
ccη

2
qq + η4

cq. (B74)

The only inconvenience of this approach is that A1(α) has a residual dependence on α, which we can get rid of by noting:

(α − α−1)A1 =
∫

d2X̄ d2Q̄

(2π )2

1

ω̄2 − k̄2
e−i �̄Q �̄X =: A1(s) ≈ A1 · s, (B75)

where we rescaled α−1ω̃2 = ω̄2, αk̃2 = k̄2, etc. Here, A1(s) does not depend on the details of the propagator anymore and we
assume A1 to be a real number. Therefore we have A1(α) = i|z|

z∗−z A1. The structural form of A1(α) is very similar to the structure
of the first order calculation, in particular z − z∗ appears in the denominator.

Regarding the expression relevant for the derivative corrections Bab, we will first go back to the symmetric case ηcc = ηqq,
etc., meaning γB = 0 (or η = 1). We use the symmetric case as a starting point to show that the same Bab can also be written as a
constant times some propagator dependent prefactor. In the symmetric setting, it is much easier to work in the contour language,
since the contours essentially decouple. The correlator for the (+) contour reads

〈φ+(0)φ+(X )〉 =
∫

d2Q

(2π )2

−e−i �Q �X (ε2
−ω2 − η2

−k2)

(ε2+ω2 − η2+k2)(ε2−ω2 − η2−k2)
=
∫

d2Q

(2π )2

−e−i �Q �X ((z∗)−1ω2 − z∗k2)

ε+η+(z−1ω2 − zk2)((z∗)−1ω2 − z∗k2)
, (B76)

z2 := η2
+

ε2+
, (z∗)2 = η2

−
ε2−

. (B77)
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[See the next section for the connection of ε±/η± with the Keldysh versions.] Symmetrizing the expression as before, we get

(α :=
√

z∗
z ):

〈φ+(0)φ+(X )〉 = −
∫

d2Q̃

(2π )2

e−i �Q �X (α−1ω̃2 − αk̃2)

ε+η+(αω̃2 − α−1k̃2)(α−1ω̃2 − αk̃2)
. (B78)

We wish to evaluate the scaling of B(t,x)
ab , therefore we consider (d2(δX ) = d (δt )d (δx)):(

B(t )
++

B(x)
++

)
=
∫

d2(δX )

(
(δt )2

(δx)2

)
〈φ+(X )φ+(X + δX )〉 =

∫
d2(δX )

(
(δt )2

(δx)2

)
〈φ+(0)φ+(δX )〉. (B79)

By explicit evaluation, we get

B(t )
++ = − 1

|z|
∫

d2X̃ t̃2
∫

d2Q̃

(2π )2

e−iQ̃X̃

ε+η+(αω̃2 − α−1k̃2)
(B80)

= − α

|z|
1

ε+η+︸ ︷︷ ︸
= 1

η2+

∫
d2X̄ t̄2

∫
d2Q̄

(2π )2

πe−iQ̄X̄

(ω̄2 − k̄2)︸ ︷︷ ︸
=:A2(s)≈A2·s

= − 1

η2+
A2(s), (B81)

where we used a rescaling αω̃2 = ω̄2, etc. Here, A2(s) again does not depend on the details of the propagator and A2 is just
a constant. In the presence of an additional bath, this approach cannot be used (there will be no direct cancellation between
numerator and denominator). Nevertheless, we can also calculate the integral by splitting the numerator:

−
∫

d2Q̃

(2π )2

e−iQ̃X̃ α−1ω̃2

ε+η+(αω̃2 − α−1k̃2)(α−1ω̃2 − αk̃2)︸ ︷︷ ︸
:=− α−1

ε+η+ G(ω)

+
∫

d2Q̃

(2π )2

e−iQ̃X̃ αk̃2

ε+η+(αω̃2 − α−1k̃2)(α−1ω̃2 − αk̃2)︸ ︷︷ ︸
:= α

ε+η+ G(k)

, (B82)

G(y∈{k,ω}) :=
∫

d2Q̃

(2π )2

e−iQ̃X̃ ỹ2

(αω̃2 − α−1k̃2)(α−1ω̃2 − αk̃2)
. (B83)

Our expression of interest now takes the form(
B(t )

++
B(x)

++

)
=
∫

d2(δX )

(
(δt )2

(δx)2

)
〈φ+(X )φ+(X + δX )〉 =

∫
d2(δX̃ )

(|z|−1(δt̃ )2

|z|(δx̃)2

)[
− α−1

ε+η+
G(ω) + α

ε+η+
G(k)

]
. (B84)

We treat space and time on equal footing at this level, therefore we make the following “assumptions” (the same as we used for
A1): ∫

d2X̃ x̃2G(k)

︸ ︷︷ ︸
:=A(k)

x

=
∫

d2X̃ t̃2G(ω)

︸ ︷︷ ︸
:=A(ω)

t

=: C‖,
∫

d2X̃ t̃2G(k)

︸ ︷︷ ︸
:=A(k)

t

=
∫

d2X̃ x̃2G(ω)

︸ ︷︷ ︸
:=A(ω)

x

=: C⊥, (B85)

which are the building blocks for the correlators. Using these, we can write

B(t )
++ = 1

|z|
[
− α−1

ε+η+
C‖ + α

ε+η+
C⊥

]
=
[
− 1

ε+η+

1

z∗C‖ + 1

η2+
C⊥

]
, (B86)

B(x)
++ =

[
− 1

ε2+
C⊥ + z∗ 1

ε+η+
C‖

]
. (B87)

From before, we have

B(t )
++ = − 1

η2+
A2(s)

!=
[
− 1

ε+η+

1

z∗C‖ + 1

η2+
C⊥

]
,

B(x)
++ = 1

ε2+
A2(s)

!=
[
− 1

ε2+
C⊥ + z∗ 1

ε+η+
C‖

]
. (B88)

For the symmetric case (γB = 0): ε∗
+ = ε−, η∗

+ = η−, and z = η+/ε+, see the next section. Therefore, solving Eq. (B88), requires
comparing η+

ε+
1
z∗ = η+ε−

η−ε+
with ε+

η+
z∗ = η−ε+

η+ε−
. Since we are dealing with complex couplings, these ratios are not identical and

solving the two equations, Eq. (B88), yields C‖ ≡ 0. Therefore B(t,x)
++ is only related to C⊥ = −A2(s) ≈ −A2 · s. Nevertheless,
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the relation between the object A2(s) and C⊥(s) (which are only functions of s, not of any other parameters) holds generally for
complex z and we conclude (since C‖ = 0) also for γB �= 0:

B(t,x)
ab =

∫
d2(δX )

(
δt2

δx2

)
〈φa(X )φb(X + δX )〉 ≈ χab

(
η2

ab
�η

C⊥
− ε2

ab
�ε

C⊥

)
= −χab

(
η2

ab
�η

− ε2
ab

�ε

)
(A2 · s). (B89)

The only important information we still need is the sign of A2 (which we get by recovering the flow equations for the symmetric
case).

d. Recovering the symmetric case

The symmetric case, ηcc = ηqq, εcc = εqq, leads to many simplifications and allows us to determine the sign of A2. Most
importantly, the couplings λc and λq do not become relevant (before λ±). Therefore we neglect them from the start. For the
symmetric case, it is very convenient to work in the contour-description (±) instead of the Keldysh description (c, q):

G−1
0,± = i

((
η2

cc + iη2
cq

)
k2 − (ε2

cc + iε2
cq

)
ω2 0

0
(
η2

cc − iη2
cq

)
k2 − (ε2

cc − iε2
cq

)
ω2

)
:= i

(
η2

+k2 − ε2
+ω2 0

0 η2
−k2 − ε2

−ω2

)
, (B90)

〈φσ (Q)φσ (−Q)〉 = (η2
σ k2 − ε2

σω2
)−1

, (B91)

where we work with the complex couplings η2
± = η2

cc ± iη2
cq and ε2

± = ε2
cc ± iε2

cq, such that η∗
+ = η−, (ε2

+)∗ = ε2
−. Furthermore,

we can write z (encoding the pole structure ω2
P = z2k2) as

z2 = η2
cc + iη2

cq

ε2
cc + iε2

cq

= η2
+

ε2+
. (B92)

This should be seen as a definition (such that z,−z, z∗,−z∗ encode the whole pole structure). For the flow equations, we get

∂sη
2
cc = −16

[
λ2

+
1

ε2+
+ λ2

−
1

ε2−

]
A2, (B93)

∂sη
2
cq = 16

[
λ2

+
1

ε2+
− λ2

−
1

ε2−

]
A2, (B94)

∂sη
2
+ = −32λ2

+
1

ε2+
A2. (B95)

Analogously, we obtain

∂sε
2
+ = −32λ2

+
1

η2+
A2. (B96)

For the interaction couplings, we get

∂sλ+ = ∂s

(
λ(c)

cq + iλ(s)
cq

2

)
=
(

2 − 2

π
i

αz√
�ε(z − z∗)

[
η2

cc − iη2
cq√

�η
− ε2

cc − iε2
cq√

�ε

])
λ+ =

(
2 + 2

π

iαz

η+ε+

)
λ+, (B97)

�η = η2
+η2

−, �ε = ε2
+ε2

−. (B98)

We define K+ := iε+η+
αz

as the effective derivative coupling. Therefore we have the flow equations

∂sλ+ =
(

2 − 2

π

1

K+

)
λ+, (B99)

∂sK
2
+ = 64λ2

+A2, (B100)

where the sign of A2 has to be negative to recover the symmetric flow equations. The initial conditions read K+(0) = 1
π

√
1 − i 2γM

πν

(with αz = −1). The main difference to Ref. [28] is the ∂sK2
+ instead of ∂sK+, which we get by explicitly treating the K+

dependence in the propagator. One might wonder if these equations are really closed, since K+ still depends on αz. Nevertheless,
considering the full set of flow equations again, we realize

∂sz
2 = ∂s

(
η2

+
ε2+

)
= 0. (B101)

Therefore the sign αz is soley determined by the initial conditions (assuming that there can be no sudden jump in the otherwise
trivial dynamics of ∂sz).
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e. First-order RG in this framework

In the last sections, we assumed a regularization scheme, treating space and time on equal footing. Under the same assumption,
we can rederive the first order flow equations (but with an unknown constant). As an example consider again

λq

∫
d2X cos(4φq) → b2e−8〈(φq )2〉<λq

∫
d2X cos(4φq(X )), (B102)

∂sλq ≈ (2 − 8s−1 〈φ2
q〉<︸ ︷︷ ︸

O(s)

)λq, (B103)

where we can write for the equal-time, equal-space correlator (in the spirit of “symmetrizing”):

〈φaφb〉< = χab

(
η2

ab

�ε|z|3 − ε2
ab

�ε|z|
)
A0, (B104)

A0 :=
∫

d2Q̃

(2π )2

k̃2

(αω2 − α−1k2)(α−1ω2 − αk2)
, (B105)

(α − α−1)A0 = iA0(s), (B106)

where A0(s) ≈ A0 · s and A0 is a real number. This gives rise to the flow equation

∂sλq ≈
(

2 − 8
i

z − z∗

(
η2

qq

|z|2 − ε2
qq

�ε

)
|A0|
)

λq, (B107)

where we put A0 = −|A0| to recover the case with the sharp cutoff.

f. Collection of the full set of flow equations in explicit form

∂sη
2
cc =

[
−64λ2

q

ε2
qq

�ε
− 4

(
ε2

cc + ε2
qq

�ε

)((
λ(c)

cq

)2 − (λ(s)
cq

)2)− 16λ(c)
cq λ(s)

cq

ε2
cq

�ε

]
A2,

∂sη
2
qq =

[
−64λ2

c

ε2
cc

�ε
− 4

(
ε2

cc + ε2
qq

�ε

)((
λ(c)

cq

)2 − (λ(s)
cq

)2)− 16λ(c)
cq λ(s)

cq

ε2
cq

�ε

]
A2,

∂sη
2
cq =

[
−8λ(c)

cq λ(s)
cq

(
ε2

cc + ε2
qq

�ε

)
+ 8
((

λ(c)
cq

)2 − (λ(s)
cq

)2) ε2
cq

�ε

]
A2,

∂sε
2
cc =

[
−64λ2

q

η2
qq

�εz2
1z2

2

− 4

(
η2

cc + η2
qq

�εz2
1z2

2

)((
λ(c)

cq

)2 − (λ(s)
cq

)2)− 16λ(c)
cq λ(s)

cq

η2
cq

�εz2
1z2

2

]
A2,

∂sε
2
qq =

[
−64λ2

c

η2
cc

�εz2
1z2

2

− 4

(
η2

cc + η2
qq

�ηz2
1z2

2

)((
λ(c)

cq

)2 − (λ(s)
cq

)2)− 16λ(c)
cq λ(s)

cq

η2
cq

�εz2
1z2

2

]
A2,

∂sε
2
cq =

[
−8λ(c)

cq λ(s)
cq

(
η2

cc + η2
qq

�εz2
1z2

2

)
+ 8
((

λ(c)
cq

)2 − (λ(s)
cq

)2) η2
cq

�εz2
1z2

2

]
A2

∂sλc =
(

2 + 4

π

i

�ε(z1 + z2)

(
η2

cc

z1z2
+ ε2

cc

))
λc + 1

4π

((
λ(c)

cq

)2 + (λ(s)
cq

)2) i

�ε(z1 + z2)

(
η2

cc − η2
qq

z1z2
+ (ε2

cc − ε2
qq

))
A1,

∂sλq =
(

2 + 4

π

i

�ε(z1 + z2)

(
η2

qq

z1z2
+ ε2

qq

))
λq − 1

4π

((
λ(c)

cq

)2 + (λ(s)
cq

)2) i

�ε(z1 + z2)

(
η2

cc − η2
qq

z1z2
+ (ε2

cc − ε2
qq

))
A1,

∂sλ
(c)
cq =

(
2 + 1

π

i

�ε(z1 + z2)

(
(1 − λcA1)

(
η2

cc

z1z2
+ ε2

cc

)
+ (1 − λqA1)

(
η2

qq

z1z2
+ ε2

qq

)))
λ(c)

cq

+ 1

π

i

�ε(z1 + z2)
(2 − (λc + λq)A1)

(
η2

cq

z1z2
+ ε2

cq

)
λ(s)

cq ,

∂sλ
(s)
cq =

(
2 + 1

π

i

�ε(z1 + z2)

(
(1 + λcA1)

(
η2

cc

z1z2
+ ε2

cc

)
+ (1 + λqA1)

(
η2

qq

z1z2
+ ε2

qq

)))
λ(s)

cq

− 1

π

i

�ε(z1 + z2)
(2 + (λc + λq)A1)

(
η2

cq

z1z2
+ ε2

cq

)
λ(c)

cq . (B108)
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FIG. 9. Resolved flow of the different couplings, interactions and derivative couplings, for different parameters, using initial conditions
Eq. (B110). The first column shows the results inside the scale invariant, weakly mixed regime (C): all interactions vanish and the flow of all
couplings saturates. The second column shows the results in the regime of λq being most relevant (see plot above), which we identify with
(CD). Note that these flows terminate at a finite s f , where the flow breaks down. It is also important to note that none of the derivative couplings
are vanishing. The third column shows the flow for the phase (M): multiple couplings grow in magnitude. Column four shows the couplings
in the “blurry,” oscillatory region on top of (C).

The pole structure is encoded in

z2
± = ±

√(
ε2

cqη
2
cq + 1

2

(
ε2

qqη
2
cc + ε2

ccη
2
qq

))2 − �η�ε

�ε2
+ ε2

cqη
2
cq + 1

2

(
ε2

qqη
2
cc + ε2

ccη
2
qq

)
�ε

,

�ε = ε2
ccε

2
qq + ε4

cq,

�η = η2
ccη

2
qq + η4

cq. (B109)

In all these expressions, z1 and z2 are the roots of z2
± with poles in the upper half plane, respectively. In the simplest case,

we have z2 = −z∗
1. We always assume that there are no real poles. Initially, the “microscopic” initial interaction couplings result

from integrating out the absolute modes, as given in Eq. (B30) (which depend on γM/ν and γB/ν):

η2
cc(0) = 2

π2

(γM + γB)

ν
, η2

qq(0) = 2

π2

γM

ν
, η2

cq(0) = 1

π
, ε2

cc(0) = ε2
qq(0) = 0, ε2

cq(0) = 1

π
,

λc(0)/m2 = λq(0)/m2 = − 1

16

(
(2γM + γB)2

ν2
+ γ 2

B

ν2

)
,

λ(c)
cq (0)/m2 = − γM

ν
+ 1

8

γM (γM + γB)

ν2
− 1

4

(
(2γM + γB)2

ν2
− γ 2

B

ν2

)
. (B110)

For the two remaining constants A1 and A2, we choose A2 · m4 = −1/16 [which just compensates some prefactors in (B108)]
and A1 · m2 = −0.1 with a similar quantitative value.
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g. Solving the flow equations

The general feature of this class of flow equations, here
Eq. (B108), is that they lead to a run away flow beyond
the Gaussian regime. In our case, an additional complication
arises because poles of the propagator can turn real during
the flow, leading to a breakdown of our framework at some
finite s f ∼ O(1). We solve the flow equations, Eq. (B108),
with the aforementioned initial conditions, Eq. (B110) up to
smax = 100 using the scheme discussed below. In Fig. 8, the
coupling with the strongest growth at s = s f is indicated,
which we use as a hint for the qualitative features of the phase.
In Fig. 9, examples of the resolved flows are shown. The main
features in Fig. 8 are the following.

(1) Stable regime (C), where no interactions are relevant
[see Fig. 9(left)].

(2) Blurry region directly above (C), with no unique inter-
action coupling being most relevant (we observe oscillations
in this regime), see Fig. 9(right). For longer running times the
regime increases.

(3) Small orange region, surrounding (C), where λc grows
the strongest and (above) red region, where λq grows the
strongest. In both cases, we physically interpret the result
as only a mass term of the form (1 ± σz )mD being induced,
which in both cases leads to the same phenomenology of (CD).

(4) Towards γM/ν ≈ 0.4, λcq’s are most strongly growing
(dark colors) [actually multiple couplings will be strongly
growing, see Fig. 9 (mid right)], which we physically interpret
as generating a mass term mM , inducing short ranged correla-
tions.

(5) Red spot, for γM/ν ≈ 0.55: since we expect multiple
couplings to grow in this regime, we do not expect this region

to have a different physical interpretation than the surrounding
one.

Overall, the regime (CD) (red) shrinks by increasing γB/ν,
whereas the behavior changes once γB/ν ≈ 1.5 (though a
perturbative treatment becomes more questionable in this
regime). We emphasize again that this analysis beyond the
Gaussian, scale invariant and weakly mixed regime is not
controlled. Additionally, we show the flow of the different
couplings for four different points in the phase diagram, cor-
responding to (C), (CD), (M), and the oscillatory regime.

The scheme we use to determine this phase diagram is
based on the following.

(a) We terminate the flow once an interaction coupling λ

grows larger than |λ| > 102, and if the magnitude of the imag-
inary parts of any pole gets smaller than |Im[z1,2]| < 10−10. If
the flow is not terminated before reaching smax, we check if
any |λ| > 10−2. If so, we conclude that not all couplings are
vanishing, and we plot the coupling with the largest derivative
|∂sλ|. Another possibility is that higher-order poles emerge in
the propagator, so z1 → z2, which as well is not covered by
our flow equations.

(b) We solve the flow equations in Julia, using the
‘DifferentialEquations.jl’ package and the algorithm ‘AutoT-
sit5(Rosenbrock23())’ with ‘reltol=1e-7,abstol=1e-7’ up to
smax = 100 (we have also checked different A1 = −0.5,±0.1,
A2 = −1/2,−1/5,−1/10 and smax = 50, yielding a qual-
itatively similar picture (for ‘reltol=1e-6,abstol=1e-6’)).
Increasing |A2| leads to a decreased region (C). Using differ-
ent algorithms yields a different fine structure in the region
(M) (where, again, multiple couplings grow) with, e.g., larger
“red” islands.
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