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Abstract

In this study, we demonstrated that the Landsat-8 Operational Land Imager (OLI) sensor is a 

powerful tool that can provide periodic and system-wide information on the condition of drinking 

water reservoirs. The OLI is a multispectral radiometer (30 m spatial resolution) that allows 

ecosystem observations at spatial and temporal scales that allow the environmental community and 

water managers another means to monitor changes in water quality not feasible with field-based 

monitoring. Using the provisional Land Surface Reflectance (LSR) product and field-collected 

chlorophyll-a (chl-a) concentrations from drinking water monitoring programs in North Carolina 

and Rhode Island, we compared five established approaches for estimating chl-a concentrations 

using spectral data. We found that using the 3 band reflectance approach with a combination of 

OLI spectral bands 1, 3, and 5, produced the most promising results for accurately estimating chl-a 

concentrations in lakes (R2 value of 0.66; RMSE value of 8.9 μg l−1). Using this model, we 

forecast the spatial and temporal variability of chl-a for Jordan Lake, a recreational and drinking 

water source in piedmont North Carolina and several small ponds that supply drinking water in 

southeastern Rhode Island.
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1. Introduction

The US Environmental Protection Agency (USEPA) estimates that between 30 and 50 

million people in the United States use drinking water from lakes and reservoirs that may be 

vulnerable to algal blooms that cause human and animal health risks, anoxia and fish kills, 

and taste and odor issues. Typically, algal blooms occur in eutrophic or hypereutrophic 

waters in association with elevated levels of nitrogen and phosphorus (Ohio EPA, 2013). 

Freshwater algal blooms consist of phytoplankton (composed of green algae and 

cyanobacteria) which contain chlorophyll-a (chl-a), a spectrally active compound that is 

commonly used as a key indicator of water quality (Reif, 2011; Mishra and Mishra, 2012), a 

proxy for biomass (Vos et al., 1986; Wynne et al., 2012; Keith et al., 2014; Kudela et al., 

2015) and as a human health guideline for cyanobacteria monitoring (WHO, 2003). Some 

blooms are classified as harmful algal blooms (HABs) due to the release of toxins (Ohio 

EPA, 2013). HABs are a global problem that have been implicated in human and animal 

illness and death in more than 45 countries (Graham, 2006).

There are 16.9 million hectares of lakes, ponds, and reservoirs in the United States of which 

6.5 million hectares (39%) are assessed by state agencies (USEPA, 2009). Of the lakes that 

were assessed, 4.2 million hectares (64%) were identified as impaired or not supporting one 

or more of their designated uses such as fishing or swimming (USEPA, 2009). Leading 

causes of impairment were nutrients, metals, sewage, sedimentation, and nuisance species. 

The USEPA has estimated that approximately 769,000 hectares (25%) of lakes, reservoirs, 

and ponds have poor water quality because of nitrogen and phosphorus pollution (USEPA, 

2009). Economically, the increased frequency and duration of algal blooms, particularly 

during warm months, has resulted not only in increased costs associated with drinking water 

treatment but also impacts on tourism, real estate values, commercial fishing and 

recreational uses.

An effective method for monitoring algal blooms and HABs in coastal and offshore waters is 

to derive chl-a concentrations from remotely sensed spectral data (Schalles et al., 1998; 

Keith, 2010; Klemas, 2012) based on the optical properties of these waters. For HAB 

monitoring, chl-a is the preferred pigment because most existing satellite imagers are better 

suited to capture the chl-a reflectance peak in the near-infrared (NIR) region of the visible 

spectrum than the narrow peak at 620 nm, which is associated with phycocyanin, the 

pigment diagnostic of freshwater cyanobacteria (also known as blue-green algae).

The objective of this study was to use spectral data generated by the Landsat-8 OLI sensor to 

estimate algal biomass in inland lakes and reservoirs from Land Surface Reflectance (LSR) 

imagery using a reflectance based algorithm. The goals of this study were to: 1) retrieve 

atmospherically and sun-glint corrected spectral reflectance signatures of chl-a laden 

reservoir and lake waters from Jordan Lake, a temperate reservoir in central North Carolina, 

and several small drinking water reservoirs in southeastern Rhode Island; 2) identify several 

published approaches that have previously retrieved chl-a concentrations from inland water 

bodies using spectral data from Landsat-7 and Landsat-8; 3) assess and validate the 

performance of these approaches against laboratory measured chl-a datasets from field 

collected sampling using statistical measures; and 4) use the best performing algorithm to 
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predict algal biomass and map the spatial and temporal variability of chlorophyll-a within 

Jordan Lake and the Rhode Island ponds and reservoirs.

2. Methods

2.1 Study Areas

B. Everett Jordan Lake is a man-made lake located in the largest watershed in North 

Carolina to provide ecosystem services such as flood control from hurricanes, recreational 

areas, and fish and wildlife habitat. Jordan Lake has a surface area of 5,625 hectares and 

drains approximately 4,367 km2 from 10 surrounding counties (Figure 1; NCDENR, 2014). 

Jordan Lake serves also as a drinking water reservoir (Jordan Lake Reservoir) for the rapidly 

growing greater Raleigh-Durham (North Carolina) regional area (population > 2 million) 

that has historically been one of the most eutrophic reservoirs in North Carolina. The 

eutrophic nature of the reservoir is linked to excessive nitrogen and phosphorous loading 

from both point (wastewater treatment plants) and non-point (housing developments, 

farmlands, stormwater runoff) sources in the watershed (NCDENR, 2014). Point sources 

contribute an average of 6,803,885 kg of nitrogen and 63,503 kg of phosphorus to the 

reservoir annually. Non-point sources contribute an average of 11,339,809 kg of nitrogen 

and 158,757 kg of phosphorus annually to the reservoir (NCDENR, 2007).

In southeastern Rhode Island (RI), nine surface water bodies which are interconnected 

through a complex network of piping and pump stations, referred to as the Newport Water 

Supply, serve as drinking water reservoirs to a population of approximately 70, 000 (Figure 

2). These coastal plain ponds supply 60,567 m3 day−1 of drinking water to the city of 

Newport, which is urban, and the towns of Middletown and Portsmouth (Rhode Island) 

which are historically farming communities that are presently undergoing urbanization 

(Town of Portsmouth, RI, 2002).

The major threat to the water quality of the reservoirs is the nature of land use and non-point 

pollution within the watershed (Town of Portsmouth, RI, 2002). Monitoring by the Rhode 

Island Department of Environmental Management (RIDEM) has shown that all nine water 

bodies exhibit eutrophic conditions due to moderately to severely elevated phosphorous and 

nitrogen concentrations resulting in violations of aquatic life use criteria, excessive algal 

growth and frequent cyanobacteria blooms (RIDEM, 2015). Additionally, the RI Department 

of Health (RI DOH) has determined that these reservoirs should be listed on the Clean Water 

Act 303d list of impaired waters due to excessive algal growth, which has resulted in 

elevated levels of Total Organic Carbon (TOC) at the intake of water treatment plants on 

Lawton Valley Pond and Green End Pond (Figure 2).

2.2 Field Sampling

In situ data were provided by the Division of Water Quality (DWQ) at the North Carolina 

Department of Environmental Quality and Natural Resources (NCDENR) and RIDEM.

DWQ routinely collects surface water quality data at 9 sites within Jordan Lake (Figure 1) in 

support of water quality monitoring (NCDENR, 2014). During the period of this study, 11 

more monitoring sites were added to the monitoring plan to support a demonstration project 

Keith et al. Page 3

Int J Remote Sens. Author manuscript; available in PMC 2019 January 29.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



sponsored by NCDENR, per 2013 NC legislative directive. For samples collected at the 20 

sites, field collection followed State approved Standard Operating Procedures as included in 

the Ambient Lakes Monitoring Program (ALMP) Quality Assurance Project Plan Version 

2.0 (March 2014). Chl-a samples were processed according to EPA Method 445 (Modified 

Option) (Arar and Collins, 1997).

Newport Water Supply locations were sampled biweekly from early May through October 

2015 by field crews from RIDEM following State approved Standard Operating Procedures 

as included in the 2015 Sample Plan for RIDEM Water Quality Monitoring in the Newport 

Reservoirs (Figure 2; RIDEM, 2015). Each reservoir was sampled at a single location above 

its deepest point based on existing bathymetric data (RIDEM, 2015). Water samples were 

collected at the surface, mid-depth, and bottom for a variety of parameters (e.g., nitrogen, 

dissolved organic carbon, total phosphorus, orthophosphate) with surface water samples 

collected for chl-a concentrations. Samples were analyzed according to US EPA Atlantic 

Ecology Division (AED) Operating Procedure “Non-Acid Determination of Chlorophyll-a 

Using a Turner Designs AU-10 Fluorometer” (LOP-AED/WDB/GBT/2015-01-00), which is 

based on EPA Method 445.0 (Arar and Collins, 1997).

2.3 Landsat-8 image processing

Landsat-8 (L8) Land Surface Reflectance (LSR) images were accessed from the Landsat 

archive at the US Geological Survey (USGS) Earth Resources Observation and Science 

(EROS) Center using the EarthExplorer (EE; http://earthexplorer.usgs.gov) client/server 

interface (USGS, 2016). This study used images processed using LSR version 0.3.1 to 

retrieve surface reflection data and these output products are provisional (USGS, 2016). 

Constraints on processing Landsat-8 LSR include hyper-arid or snow covered regions, 

scenes with low sun angle conditions (sun angles < 14°), coastal regions where land area is 

small relative to adjacent water, and areas with extensive cloud contamination (USGS, 

2016). LSR output contained: surface reflectance data files (bands 1–7), Cloud QA band 

(sr_cloud), Interpolation Flag QA band (sr_ipflag), CFmask (sr_cfmask), CFmask cloud 

confidence band (sr_cfmask_conf), and surface reflectance metadata file (.xml). Filenames 

utilized the original sceneID followed by “_sr_,” for example, 

“LC82330132014265LGN00_sr_*” (USGS, 2016).

Generally, OLI data are nominally processed using the Level 1 Product Generation System 

(LPGS) into 185 km × 180 km Level 1 terrain-corrected (L1T) products that have a typical 

950 MB compressed GeoTiff file. OLI spectral bands are stored as geo-located 16-bit digital 

numbers (DN). An associated metadata file stores spectral band gain and offset numbers that 

can be used to linearly convert the digital numbers to top-of-the-atmosphere radiance (W m
−2 sr−1 μm−1) and to convert the OLI digital numbers to at-sensor reflectance (unitless). The 

Landsat 8 L1T data processing includes radiometric calibration, systematic geometric 

correction, precision correction assisted by ground control chips, and the use of a digital 

elevation model to correct parallax error due to local topographic relief (Lee et al., 2004; 

Storey et al., 2008). The LSR data used in this study were generated from the provisional 

Landsat-8 Surface Reflectance (L8SR) algorithm, which is a specialized software originally 

developed at the NASA Goddard Space Flight Center (GSFC) to convert top-of-the-
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atmosphere (TOA) L1T spectral radiances to TOA reflectance. The LSR product is 

generated at 30-meter spatial resolution on a Universal Transverse Mercator (UTM) or Polar 

Stereographic (PS) mapping grid. The default file format is GeoTIFF, but options for 

delivery in Hierarchical Data Format – Earth Observing System – 2 (HDF-EOS-2; *.hdf), or 

ENVI binary (*.img) are available (USGS, 2016). LSR products are available for Landsat-8 

scenes beginning from April 2013 to within one week of most recent acquisition.

During L8 LSR processing, atmospheric correction is conducted using a USGS algorithm 

for radiative transfer modelling. Aerosol correction is accomplished using the “sr_cloud” 

band. The sr_cloud band is used to determine cloud presence as well as the level of surface 

reflectance correction needed as determined from aerosol levels. For land pixels, aerosol 

levels are classified according to values in the Cloud QA band. Water pixels are routinely 

flagged and removed from further processing (USGS, 2016).

Landsat-8 LSR images were retrieved using procedures in the Surface Reflectance product 

guide (USGS, 2016). Initially, images were identified by Path 16, Row 35, (North Carolina) 

and Path 12, Row 31 (Rhode Island and southeastern Massachusetts) and browsed by date 

range (Table 1). For algorithm development and evaluation, 11 LSR images (and metadata) 

from May 2013 to September 2014 (for Jordan Lake) and May 2015 to August 2015 (for 

Rhode Island reservoirs) were downloaded and saved in the default GeoTIFF format for OLI 

bands 1 – 6.

2.4 Image Processing

A key challenge in retrieving accurate satellite-based measurements is the removal of 

unwanted contributions to reflectance from water pixels due to atmospheric effects. The 

steps for atmospherically correcting Landsat-8 images for aerosol scattering were based on 

the theory that reflectance (ρ) at the top of the atmosphere (TOA) could be derived from 

TOA radiance measured by a satellite sensor (Gordon and Wang, 1994):

ρTOA = (πL)/(F0cosθ0) Equation (1)

where L is the upward radiance from the earth surface, F0 is the extraterrestrial solar 

irradiance, and θ0 is the solar zenith angle (Vanhellemont and Ruddick, 2015). The TOA 

reflectance (ρTOA) could be written as:

ρTOA = ρr + ρA + tρw Equation (2)

where ρTOA is the total reflectance measured at the top of the atmosphere, ρr is the 

reflectance resulting from multiple scattering by air molecules (Rayleigh scattering) in the 

absence of aerosols, ρA is the reflectance resulting from multiple scattering by aerosols in 

the absence of air, t is the diffuse transmittance of the atmosphere, and ρw is the water-

leaving reflectance just above the surface. The purpose of atmospherically correcting an 

image is to retrieve ρw.
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The Rayleigh-corrected reflectance values of water pixels (ρLSR)water pixels in the 

Landsat-8 LSR images were represented as:

(ρLSR)
water pixels

= ρTOA − ρr Equation (3)

Equation 3 could then be rewritten to reflect that water pixels in the LSR product still 

contained aerosol and water-leaving reflectance contributions:

(ρLSR)
water pixels

= ρA + tρw Equation (4)

Because the OLI is an instrument designed for land-based studies, the sensor was not 

equipped with the appropriate bands required by traditional water-based atmospheric 

correction algorithms. The general approach for water-based atmospheric correction is to use 

spectral bands for which ρw is known to make an assessment of the aerosol contribution 

(Gordon and Wang, 1994). The most widely-used technique to retrieve aerosol reflectance 

over water pixels and correct satellite imagery based on the assumption that ρw in the NIR 

(700 nm < λ < 1000 nm, where λ equals wavelength) is negligible. For open ocean pixels 

the assumption was that any reflectance signal observed in this spectral region is solely due 

to atmospheric effects and is an indicator of aerosol contribution to all wavelengths 

(Emberton et al., 2016; Gordon and Wang, 1994). However, this assumption does not hold 

for coastal and lake waters as moderate - high concentrations of suspended particles 

characteristically produce appreciable scattering and non-zero contributions to the water 

leaving signal at the NIR bands (Vanhellemont and Ruddick, 2015; Mobley, 2015; Knaeps et 

al., 2012; Wang and Shi, 2005; Ruddick et al., 2000; Siegel et al., 2000; Stumpf et al., 2003). 

In these instances, the approach would lead to overestimation of ρA(λ) in the NIR region as 

particle scattering from surface waters would be treated as if it were atmospheric aerosol 

scattering. The overestimation of atmospheric effects would result in very low, possibly 

negative ρw(λ) values at short wavelengths in the visible region (Ruddick et al., 2000; 

Moses et al., 2009). We found that the water leaving signal at the NIR band (band 5) 

contained appreciable scattering and non-zero contributions, which were characteristic in 

Landsat-8 images in this study.

This problem required using the short-wave infrared wavelengths (SWIR) for atmosphere 

correction (Vanhellemont and Ruddick, 2015; Wang and Shi, 2005). The use of SWIR bands 

for atmosphere correction is not commonplace because not many ocean color sensors have 

SWIR bands and existing SWIR bands often have significant noise levels (Vanhellemont and 

Ruddick, 2015). The major assumption of using SWIR wavelengths is ρw(λ) is virtually 

zero (i.e., black), even for turbid water, due to the high absorption of water in this spectral 

region (Kou et al., 1993; Pope and Fry, 1997). As such, any signal in this region is assumed 

to be solely due to atmospheric effects. This assumption has been shown to be mostly valid 

at the shorter SWIR wavelengths (up to 1240 nm) for turbid marine waters (Emberton et al., 

2016; Li et al., 2003). However, non-zero reflectances have been observed at wavelengths λ 
< 1.6 μm in extremely turbid estuarine, lake and river waters (Knaeps et al., 2012; Wang et 
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al., 2011; Shi and Wang, 2009a). At the longer SWIR wavelengths (λ > 1.6 μm), Shi and 

Wang (2009a) reported that even extremely turbid waters were effectively black. Currently 

there is no generic processing method for the retrieval of ρA(λ) using bands from 1.0 μm < 

λ < 3.0 μm; however, several approaches have successfully demonstrated the value of using 

the SWIR wavelengths as a means to improve ocean color products from turbid coastal 

waters measured by the MODIS-Aqua sensor (Wang, 2007; Wang et al. 2007; Shi and 

Wang, 2009a). Gerace and Schott (2012) and Concha and Schott (2016) have developed 

atmospheric correction routines for the OLI that incorporated the dark pixel assumption and 

used the ratio of NIR/SWIR reflectance to create a Look-Up Table (LUT) from which an 

atmosphere could be chosen to estimate the spectral reflectance due to water column.

In the following steps, OLI LSR data were processed using Microsoft Excel to correct for 

aerosol scattering and retrieve remotely sensed reflectance.

• Step 1: Sun elevation data in the header file was used to determine the solar 

zenith angle (θs).

θs = 90° − sun elevation Equation (5)

• Step 2: Obtain Rayleigh coefficients (τ) for the OLI (Franz et al. 2015, Table 2).

• Step 3: Derive the atmospheric diffuse transmission (t0(λ)) from Sun to surface 

for each band using:

t0(λ) = exp( − 0.5τ /cosθs) Equation (6)

• Step 4: LSR digital values were converted into reflectance (unitless) by dividing 

by 10,000 (Step 4).

• Step 5: Use reflectance in OLI band 6 to identify land and cloud pixels and 

remove when values were greater than 0.0215 (Vanhellemont and Ruddick, 

2015; Vanhellemont and Ruddick, 2014a).

In Steps 6 – 10, Landsat-8 water pixels were atmospherically corrected for aerosol 

reflectance to retrieve water-leaving reflectance using the OLI near Infrared (NIR; band 5) 

and short-wave infrared (SWIR; band 6) bands based on the VIR-SWIR atmospheric 

correction method (Vanhellemont and Ruddick, 2015).

• Step 6: Aerosol type (ε) was determined from the ratio of band 6 to band 5 

reflectance (ε6,5) for each pixel over water.

• Step 7: If it is assumed that the aerosol type is constant across the image then the 

median value of ε6,5 from pixels derived in Step 6 is used for additional 

processing. Otherwise, the image was processed using individual ε6,5 values.

• Step 8: The spectral ε for each band (λi) is derived from (Gordon and Wang, 

1994):
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ε
i, L = (εS,L)

σi
Equation (7)

where σi = (λL − λi)/(λL − λS) Equation (8)

L = 1.610 μm, the longest wavelength used

S = 0.443 μm, the shortest wavelength used

• Step 9: Derive water leaving reflectance (ρw) values for each band (ρi):

ρw(λ) = 1/t0(λ)ρ
i − ((εi, 6)ρ(band 6)) Equation (9)

where (εi,6) = spectral aerosol type at each band i and band 6

ρi = the pixel reflectance at band i

• Step 10: Remote sensing reflectance (Rrs) was calculated using Hu et al. (2004)

Rrs(λ) = ρw(λ)/(π/t0(λ)) Equation (10)

In order to demonstrate that the atmospheric correction of OLI data for aerosols provided an 

added-value to the estimation of chl-a concentrations, the percent difference of chl-a derived 

from spectral data corrected for aerosols and those corrected only for Rayleigh scattering 

was used as a metric for comparison. The percent difference was determined from:

difference = ((V1 − V2)/((V1 + V2/2))) × 100% Equation (11)

where:

V1 = chl-a derived from pixels corrected for Rayleigh atmospheric effects

V2 = chl-a derived from pixels corrected for Rayleigh and Aerosol atmospheric 

effects

2.5 Sun-glint Removal

An additional challenge in retrieving accurate satellite-based measurements based on the 

spectral characteristics of water bodies is the removal of unwanted reflectance contributions 

to the signal due to sun-glint effects. Sun-glint occurs when sunlight reflects off the surface 

of the water into the field of view of the sensor (Cox and Munk, 1954; Wang and Bailey, 

2001; Zhang and Wang, 2010). For push-broom sensors like the OLI, Mustard et al. (2002) 

and Dekker et al. (2013) recommended that, in order to avoid sun-glint problems, solar 

zenith angles be constrained to angles between 30° – 60°.
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Several approaches have been proposed for the detection of sun-glint including labelling 

high ρw values as contaminated (Hooker et al., 2002); calculating the ratio between bright 

and dark pixels through histogram analysis (Garaba and Zielinski, 2013); spectral matching; 

and directly computing sun-glint contributions from total radiances and Rayleigh corrected 

radiances (Shanmugan, 2012). However, the Landsat-8 OLI is not equipped with the 

appropriate wavelengths in the red and infrared regions required by many glint correction 

algorithms.

Using the recommended criteria for solar zenith angles, a sun-glint correction was applied 

for those images whose solar zenith angles were less than 30°. During image processing, 

each pixel was corrected for sun-glint using the approach of Hochberg et al., 2003 and 

revised by Hedley et al., 2005.

The major assumptions of the Hochberg et al. (2003) approach are that: 1) water was 

strongly absorbing at the near-infrared (NIR) wavelengths and that any signals represent 

sun-glint reflected from the sea surface and a spatially constant ‘ambient’ NIR component, 

2) the amount of sun-glint in the visible bands was linearly related, using regression 

analysis, to the brightness of the NIR band and visible bands (Hedley et al., 2005; Hochberg 

et al., 2003), and 3) sun-glint effects could be removed by subtracting reflectance from a 

“glint free or clear water” pixel (i.e. the pixel with the lowest NIR value) (Wicaksono, 2012).

To correct for sun-glint at each band, the approach of Hedley et al. (2005) was used to 

remove glint effects for Landsat-8 images with zenith angles less than 30°. An additional 

assumption of this approach is that a linear relationship exists between NIR reflection 

brightness and amount of sun-glint in the visible bands (Hochberg et al., 2003). In the 

Hedley et al. (2005) method, glint effects were removed from image pixels using the 

reflectance (ρ) brightness for each visible (VIS) band (i) (ρi(VIS)) and the brightness of the 

NIR band (ρ(NIR)). ρi(VIS) is defined as the reflectance of the ith visible band. Linear 

regression of a subset of image pixels was used to establish the relationship between ρ(NIR) 

and ρi(VIS) for each band. The slope (m) of the regression equation at each ith visible band 

was used to derive band reflectance corrected for sun-glint effects (ρ(λ)′) according to:

ρ(λ)′ = ρi(VIS) − mi(ρ(NIR) − ρmin(NIR)) Equation (12)

where ρmin(NIR) represented the NIR brightness of a pixel (i.e., a clear water pixel) with no 

sun glint and estimated from the minimum OLI band 5 reflectance found in the subset of 

pixels used in the regression.

The importance of identifying the clear water pixels is critical as the third assumption may 

not hold valid for coastal or inland reservoir and recreational waters.

2.6 Algorithm Development

Since sampling locations were georeferenced, it was possible to compare matchups between 

field data and corresponding Landsat-8 pixels to assess the published predictive chl-a 

algorithms. In this study, we applied the geometrically and radiometrically corrected Rrs data 
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to five established reflectance-based approaches to derive chl-a and to assess their feasibility 

to accurately estimate chl-a in CDOM dominated, turbid productive lake waters and drinking 

water reservoirs. The model/approaches consisted of a simple three band reflectance model 

(Dall’Olmo et al., 2003), a blue-green band reflectance model (Gordon and Morel, 1983), a 

green-blue reflectance model (Turner, 2010), and two four band reflectance models 

(Fluorescence Line Height (FLH) Blue and Violet models, Beck et al., 2016).

Model coefficients were determined using model I linear regression analysis based on a 

subset of Landsat-8 spectral data and laboratory measured chl-a values from 20 stations in 

North Carolina and Rhode Island covering 2013 – 2015 (Table 3). Because NCDENR and 

RIDEM field sampling dates were not specifically timed to coincide with L-8 overpass 

times, the difference between the field and satellite datasets varied from same day to 4 days 

post-overflight. Regressions relationships were graphically illustrated.

2.7 Algorithm Validation

The prediction quality of the developed models was validated using model II linear 

regression analysis (i.e., major axis method) with the goal of estimating the relationship 

between chlorophyll predicted from L-8 images and laboratory measured chl-a to derive 

Pearson’s correlation coefficient (r) as well as the coefficient of determination (R2). We also 

used root-mean-square error (RMSE), Mean Absolute Error (MAE) and Mean Absolute 

Percent Error (MAPE) of laboratory measured and model predicted chl-a. Predicted values 

were adjusted for bias using the Normalized Forecast Metric (NFM). Note that the Landsat-8 

Rrs pixel values used to evaluate the effectiveness of the models were not the same as those 

used to construct the models.

The best performing algorithm was used to predict chl-a concentrations and map the spatial 

distribution of algal biomass within Jordan Lake for Autumn 2014 though Spring 2015 and 

as a synoptic view of Newport Water Supply ponds and reservoirs in late Summer 2015. 

Chlorophyll-a concentrations for each image were mapped using the nearest neighbor 

resampling method in SeaDAS Version 7.4.

Models were validated using predicted chl-a values and extracted chl-a from 15 stations in 

Jordan Lake and Rhode Island which were not used to derive model coefficients (Table 4). 

The Landsat 8 locations used for validation were centered at the latitude and longitude 

locations of field stations. Chlorophyll-a concentrations ranged from 24 -72 μg l−1 in Jordan 

Lake and 6 to 147 μg l−1 in the Newport Water Supply ponds. Samples were collected either 

on the same day or within two days of a Landsat-8 overpass (Table 4).

3. Results and Discussion

3.1 Landsat-8 Image Processing

Landsat-8 images from North Carolina and Rhode Island were atmospherically corrected for 

aerosol scattering using the OLI SWIR (band 6) and NIR (band 5) for sun glint removal. 

Landsat-8 image LC80160352014137LGN00_sr from Jordan Lake is an example of the 

change in the magnitude of reflectance from the aerosol correction and sun-glint removal 

processes resulting in the retrieval of remote sensing reflectance (Figure 3).
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3.2 Sun-glint Removal

As indicated previously, we observed that Landsat-8 NIR (band 5) contained significant 

reflectance values in all images that could be due to backscatter from suspended sediments 

(e.g., Doxaran et al., 2002) and floating algae (Hu, 2009).

Figure 3 also shows an example of the effect of the sun-glint correction on SWIR corrected 

reflectance data using image LC80160352014137LGN00_sr (solar zenith angle = 24.2°) 

from Jordan Lake.

3.3 Typology of Jordan Lake and RI Ponds Based on Remotely Sensed Reflectance

Phytoplankton productivity in open and coastal ocean and estuarine environments is often 

inferred from the shape of the visible spectra observed by earth orbiting sensors. Spectral 

variation can therefore be used to identify constituents in the water column. The shape and 

magnitude of the remotely sensed spectra are due to variability in the inherent optical 

properties (IOPs) of these waters which are influenced by regional geology, land use, land 

cover, and nutrient concentrations in the water column.

From the reflectance properties of 44 lakes in the Adirondack mountain region of New York 

State, Vertucci and Likens (1989) described five distinct types of reflectance spectra and 

demonstrated that small changes in concentration of plant pigments, dissolved organic 

carbon (DOC) and suspended material changed the relationships between reflectance and 

water quality.

In this study, Rrs values for OLI bands 1 – 6 were averaged for each image to create a 

general spectral curve. The averaged spectral curves were compiled to graphically illustrate 

the variability observed between remotely sensed reflectance spectra within the L-8 images 

used in this study (Figure 4a and 4b). It should be noted that these spectra have not been 

corrected for mixed pixel effects or the effects that bottom reflectance and adjacency to land 

can have on the water leaving signal.

In general, these curves show that Jordan Lake and the Newport ponds commonly exhibit 

prominent reflectance peaks in the OLI green band (band 3: 530-590 nm). Jordan Lake, 

three images had spectra which were reflective in the OLI NIR band (band 5: 850-880 nm) 

(Figure 4a). The Newport drinking water ponds showed two sites with spectra which were 

reflective in the (Figure 4b). Similar peaks in the NIR have also been observed in Terra and 

Aqua MODIS, HJ-1, and Landsat-5 and 7 coastal and open ocean images and were 

associated with macroalgae floating on the water surface (Xing and Hu, 2016; Hu, 2009).

For both locations, reflectance was usually low in the OLI coastal (band 1: 430-450 nm) and 

blue (band 2: 450-510 nm) bands, due to CDOM and chl-a absorption. A reflectance minima 

was also observed in the OLI red band (band 4: 640-670 nm).

When the spectra in Figure 4 are compared to the spectral classification scheme of Vertucci 

and Likens (1989), the Jordan Lake and Newport drinking water ponds Rrs spectra were very 

similar their Type 3 spectra. Type 3 spectra were characterized by maximum reflectance 

between 550-575 nm with reflectance values that declined sharply at wavelengths on each 
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side of the maximum. Vertucci and Likens (1989) indicated that this spectral type was 

characteristic of lakes that were green in color with varying water clarity.

3.4 Reflectance Band-ratio Algorithms

We conducted a review of the scientific literature in order to understand the optical character 

of freshwater environments and how inherent optical properties such as coloured dissolved 

organic matter (CDOM), non-algal particle (NAP), water, and phytoplankton absorptions 

matchup with the position of Landsat-8 OLI visible bands. We found such studies were rare, 

with the exception of Thrane et al. (2014) which used the inherent optical properties of 75 

large lakes in Norway and Sweden to derive a bio-optical model to estimate primary 

production in boreal lakes. Using this optical dataset, the OLI visible bands, located around 

their center bandwidths (Table 2), were overlain onto phytoplankton, CDOM, NAP, and 

water absorption curves generated by Thrane et al. (Figure 5).

Using the spectral curves of the Thrane et al. optical datasets as a frame of reference, we 

overlaid the bandwidth positions of the OLI bands onto the absorption characteristics of 

these waters. In terms of phytoplankton absorption, chlorophyll absorption peaks coincide 

with bands 1 and 2. Bands 3 and 4 coincide with areas of absorption minima (Figure 5a). 

Not unexpectedly, CDOM would be the dominant absorber of light in OLI bands 1-3 (Figure 

5b). Characteristically, CDOM absorption rapidly declines across band 4 approaching zero 

in the red spectral region (Figure 5b). The curves also show that NAP absorption reached 

average maximum values within the bandwidth of OLI band 2, although several boreal lakes 

showed maximum absorptions in OLI band 3 (Figure 5c). Finally, water absorption has 

negligible impact in OLI bands 1-3 but is the dominant light absorber in red portion (band 4) 

of the spectrum.

From a spectrophotometric perspective, OLI band 1 is positioned to capture the chl-a 

absorption peak at 430 nm in the violet-blue portion of the spectrum (Rabinowitch and 

Govinjee, 1969; Jeffrey et al., 1997). OLI band 2 is positioned to capture the chl-b 

absorption peak at 480 nm in the blue-green portion of the spectrum (a locally oxidized 

derivative of chlorophyll-a, (Rabinowitch and Govinjee, 1969; Jeffrey et al., 1997). OLI 

band 3 is positioned to capture the phycoerythin peak at 562 nm (Lemasson et al., 1973; 

Poryvkina et al., 2000). OLI band 4 (640-670 nm) is positioned to capture secondary chl-b 

absorption at 650 nm in the red portion of the spectrum (Jeffrey et al., 1997) but not centered 

to retrieve chl-a absorption between 670-680 nm.

Coefficients for the algorithms developed in this study were determined using linear 

regression of band ratios and laboratory measured chl-a values from 19 stations in Jordan 

Lake and Rhode Island centered at the latitude and longitude of field samples (Table 6). Chl-

a concentrations ranged from a minimum of 6 to 147 μg l−1. Samples were collected on the 

day of a Landsat 8 overpass or within 4 days of the sensor overflight.

3.4.1 Three-band reflectance models—The three-band reflectance model of Gitleson 

et al. (2009) and Dall’Olmo et al. (2003) used change in the reflectance spectrum at different 

wavelengths to quantify chlorophyll absorption by spectral difference (Blondeau-Patissier et 
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al., 2014). In theory, the relationship between chlorophyll and the three band spectrum can 

be expressed as:

chlorophyll−a = [(Rrs(λ1)−1) − (Rrs(λ2)−1)]Rrs(λ3) Equation (13)

where λ1 corresponds to a wavelength that is maximally sensitive to chl-a absorption, λ2, is 

closely located to λ1 and corresponds to a region least sensitive to chl-a absorption while λ3 

corresponds to a region minimally affected by absorption by chl-a, suspended sediments, 

and CDOM (Gitelson et al., 2007). Gitelson et al. (2007) suggested that λ3 be selected in the 

NIR range beyond 710 nm.

In order to determine which OLI band to assign to λ1, laboratory-derived chlorophyll-a 

values (which ranged from 6 – 147 μg l−1) and Rrs data from 20 sampling stations in North 

Carolina and Rhode Island were regressed with λ1 as band 1 (443 nm), band 2 (482 nm), 

and band 4 (655 nm) (Figure 6). During this exercise, OLI band 3 (centered at 562 nm) was 

chosen for λ2 because the bandwidth corresponds to a chlorophyll-a absorbance minimum 

in standard laboratory spectra (Jeffrey et al., 1997) and corresponds with a depression in 

phytoplankton absorption curves in Thrane et al. (Figure 5A). OLI band 5 (centered at 865 

nm) was chosen for λ3 because it meets the Gitelson et al., (2007) criteria of being 

positioned beyond 710 nm in the NIR where water absorption is at its maximum and light 

absorption by CDOM, chl-a and NAP is zero.

Results showed that OLI band 1 (centered at 443 nm) best satisfied the Dall’Olmo et al. 

(2003) criteria for λ1 selection with the resulting coefficient of determination of 0.83 (Figure 

6). When λ1 was assigned to band 2, the resulting coefficient of determination continued to 

be strong (R2= 0.86; Figure 6). When λ1 was assigned to band 4, the resulting coefficient of 

determination was also strong (R2= 0.67; Figure 6). Linear regression of chlorophyll-a 

versus Rrs resulted in the following three-band relationships:

chl−a = 32.989[(Rrs(443)−1 − Rrs(562)−1)Rrs(865)] + 12.116 Equation (14)

chl−a = 60.703[(Rrs(482)−1 − Rrs(562)−1)Rrs(865)] + 10.386 Equation (15)

chl−a = 61.176[(Rrs(655)−1 − Rrs(562)−1)Rrs(865)] + 26.186 Equation (16)

3.4.2 Blue and green band ratio combinations

Empirical blue-green (440 – 550 nm) spectral band ratios are the most common types of 

ocean color algorithms used for chl-a retrievals because most of the phytoplankton 

absorption occurs within this region of the visible spectrum (Blondeau-Patissier et al., 2014). 
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However, in optically complex waters such as inland and coastal waters, reflectance band 

ratios become less sensitive to changes in chlorophyll concentrations because of increasing 

absorption of light by CDOM (Figure 5b; Dierssen, 2010; Keith et al., 2002) and total 

suspended matter (Figure 5c). Linear regression of chl a versus OLI band 2 (BN2) to OLI 

band 3 (BN3) Rrs ratios resulted in the following relationship (Figure 6):

chl−a = 247.6exp[ − 3.582(Rrs(482)/Rrs(562))] Equation (17)

Linear regression of laboratory measured chl-a values versus Landsat-8 band 3/band 2 Rrs 

ratios resulted in the following relationship (Figure 6):

chl−a = 3.112exp[1.223(Rrs(562)/Rrs(482))] Equation (18)

3.4.3 Fluorescent Line Height (FLH) Blue and Violet reflectance models—The 

FLH Blue and Violet models are also band difference algorithms that were specifically 

formulated for Landsat-8 to quantify solar-induced fluorescence (Beck et al., 2016). FLH 

Blue and Violet algorithms are based on the difference in height of the green peak in the 

visible spectrum relative to the blue or violet minima, respectively, in spectral data (Beck et 

al., 2016; Figure 6A). The FLH Violet algorithm was designed to incorporate spectral data 

from the newly added Coastal band (Band 1; Beck et al, 2016).

Linear regression of laboratory measured chlorophyll-a values versus Rrs resulted in the 

following relationships (Figure 6):

FLH Blue reflectance model

chl−a = 6059.4(Rrs(562) − [(Rrs(655) + (Rrs(482) − Rrs(655))]) + 15.083 Equation (19)

FLH Violet reflectance model

chl−a = 4705.2(Rrs(562) − [(Rrs(655) + (Rrs(443) − Rrs(655))]) + 16.578 Equation (20)

Model validation was conducted using measured chl-a values from 15 stations in Jordan 

Lake and the Rhode Island ponds and model predicted values (Table 4).

Results showed that the best performing algorithms were the three-band algorithms with λ1 

centered at 443 nm (R2 = 0.66) and 482 nm (R2 = 0.58) (Table 5; Figure 7). The FLH violet 

and blue reflectance algorithms had similar R-squared values (R2 = 0.52 and R2 = 0.51, 

respectively; Figure 7). The blue and green ratio combinations were poor performers (R2 = 

0.18) for both ratio combinations (Figure 7). Results from the three-band algorithm with λ1 

centered at 655 nm were not graphically presented due to its very poor performance (R2 = 
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0.05, RMSE = 19.8 μg l−1, MAPE = 102 %). A comparison of all algorithms for the best 

predictive ability (Table 5; Figure 7) showed that the three-band algorithm with λ1 centered 

at 443 nm had the lowest RMSE (8.9 μg l−1), MAPE (33.5%) and MAE (7.0 μg l−1) (Table 

5).

Scatterplots of the differences between observed and predicted chl-a values showed that the 

residuals were randomly distributed, indicating that the linear models provided a decent fit 

to the data (Figure 8).

3.4.4 Evaluation of SWIR atmospheric correction on the estimation of chl-a 

values—Using Jordan Lake images from Autumn 2014 (October 25), Winter 2015 (28 

January 2015), Spring 2015 (2 April 2015) and Summer 2015 (7 July 2015), comparisons 

were made between chl-a predicted from Equation 13, Rrs corrected for Rayleigh effects 

only, and Rrs corrected for both Rayleigh and aerosol effects. Results showed that for the 

four example images used in this comparison, predicted chl-a concentrations were higher 

(overestimated) by an overall average of approximately 19% for those pixels not corrected 

for aerosols. For each image, the range varied from approximately 13 - 32 % (Table 6).

4. Spatial and Temporal Maps of Chlorophyll a and Trophic State of Jordan 

Lake and Newport Water Supply Reservoirs

As a demonstration of the potential of the OLI to forecast algal bloom distribution as well as 

trophic state (Carlson, 1977) for drinking water reservoirs at a variety of spatial scales, we 

derived chl-a concentrations for Jordan Lake and the Newport Water Supply using the 

validated three-band algorithm (Equation 13). Using the NASA SeaDAS program to extract 

pixels from Landsat-8 imagery, the magnitude of algal blooms and their location are mapped 

for each water body from five Landsat-8 images from 2014 and 2015 (Figures 8 and 9).

Figure 9 shows an example of the spatial and temporal distribution of chl-a in Jordan Lake 

for three L-8 images representing Autumn 2014 (image date - October 24, 2014), Winter 

2015 (image date - January 28, 2015), and Spring 2015 (image date - April 2, 2015). During 

Autumn 2014, Jordan Lake and adjoining feeder streams and creeks ranged from 

mesotrophic (chl-a less than 20 μg l−1; Carlson, 1977) to eutrophic (chl-a ranging from 20 - 

56 μg l−1; Carlson, 1977) conditions along the main stem of Jordan Lake and Haw River. In 

contrast, the northern reach was characterized as highly eutrophic (chl-a greater than 56 μg l
−1; Carlson, 1977). During Winter 2015, the entire Jordan Lake system was characterized as 

predominantly mesotrophic (Figure 9). In Spring 2015, Jordan Lake was characterized as 

predominantly eutrophic (Figure 9).

For the Newport Water Supply reservoirs, Landsat image LC80120312015224LGN00_sr on 

August 12, 2015 (Figure 10) acquired concurrently with field sampling showed the nine 

reservoirs generally ranged from mesotrophic to eutrophic conditions. Hypereutrophic areas 

of intense algal blooms were embedded in northwest-southeast trending bands of elevated 

chlorophyll-a in Watson Reservoir and in Nonquit Pond (Figure 10). Generally, these 

reservoirs were characterized by mesotrophic to eutrophic conditions with floating 

macroalgae (as suggested by a spectral peak at 865 nm). In comparison, the seven remaining 
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ponds were characterized as generally mesotrophic to eutrophic reservoirs with low to 

moderate chl-a levels.

5. Conclusions

The most promising approach for routinely monitoring algal blooms and HABs in lakes, 

ponds, and reservoir systems is to use sensors with high spatial resolutions and low signal-

to-noise ratios on space-based platforms. By linking these systems with simple reflectance 

algorithms, concentrations of chl-a derived from spectral data can be used to maximize 

temporal and spatial coverage of inland lakes, coastal freshwater ponds and estuaries for 

algal bloom detection. Forecasts of changes in biomass concentration or phytoplankton 

bloom location within a lake or reservoir can then be used as an early warning indicator to 

identify potential areas (such as water system intakes) for additional field-based 

investigations (Augusto-Silva et al., 2014).

In this study, we used spectral data from the Landsat-8 OLI sensor and a 3 band reflectance 

model to map algal blooms in a large recreational and drinking water reservoir and several 

smaller drinking water reservoirs which ranged in size from tens of thousands to hundreds of 

acres. This capability provides water managers with a new tool to assess the condition of 

their water bodies more frequently and synoptically which allows them to focus limited 

resources on risk mitigation of potential harmful blooms. Using Landsat-8 LSR 30 m data 

acquired from drinking water reservoirs in North Carolina and Rhode Island, we evaluated 

several established satellite reflectance algorithms for estimating chl-a concentrations as 

potential resources to monitor changes in water quality. Through this evaluation process, a 

simple approach and 3 band spectral algorithm was validated that uses the OLI sensor violet, 

green and NIR spectral bands to accurately predict chl-a concentrations in drinking water 

reservoirs of various areal extents. We applied the algorithm to several atmospherically and 

sun-glint corrected Landsat-8 LSR images to map the spatial and temporal distribution as 

well as the seasonal variability of chlorophyll in the Jordan Lake reservoir.

We showed, in a single day image of the reservoirs of the Newport Water Supply, that a 

synoptic image can provide valuable information on the magnitude of localized high 

phytoplankton concentrations that may be the short-term environmental response to point 

source and non-point source nutrient loading.
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Figure 1. 

NCDENR Jordan lake monitoring stations used in this study.
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Figure 2. 

Map of ponds and reservoirs that serve as drinking water sources for the Newport Water 

Supply (RIDEM, 2015).
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Figure 3. 

An example of the retrieval of the remote sensing reflectance from the LSR data using OLI 

SWIR1 (center bandwidth = 1610 nm) for atmospheric correction and NIR (center 

bandwidth = 865 nm) for sun-glint removal on Landsat-8 image 

LC80160352014137LGN00_sr from Jordan Lake on May 17, 2014.
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Figure 4. 

a) Summary of all remote sensing reflectances (Rrs) retrieved from 14 L-8 images of Jordan 

Lake, North Carolina collected during August 2014 to July 2015. b) Summary of Rrs 

retrieved from L-8 image LC80120312015224LGN00_sr on August 12, 2015 from 

Newport, Rhode Island drinking water ponds.
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Figure 5. 

Locations of Landsat 8 OLI spectral bands (BN) 1 - 4 in relation to light absorption by (a) 

phytoplankton, (b) coloured dissolved organic matter (CDOM), (c) non-algal particles 

(NAP), and (d) water from optical data from 75 boreal lakes in Northern Europe. The solid 

black lines represent the average of all lakes. The gray lines represent individual lakes. 

(Figure modified with permission from Thrane et al., 2014).
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Figure 6. 

Scatterplots from the linear regression of measured chl-a values from Jordan Lake and 

Newport ponds against remote sensing reflectances at 443 nm (Rrs(443)); 482 nm 

(Rrs(482)); 562 nm (Rrs(562)); and 865 nm ((Rrs)865)) used in algorithm development.
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Figure 7. 

Log-log scatterplots of predicted chl-a concentrations derived from spectral algorithms and 

laboratory extracted chlorophyll values from Jordan Lake and Newport Water supply 

reservoirs. Results from Equation 16 are not shown due to its very poor performance.
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Figure 8. 

Scatterplots of residual versus chl-a predicted from the spectral algorithms.
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Figure 9. 

Chlorophyll-a distribution in Jordan Lake during Autumn 2014 (L-8 image: 

LC80160352014265LGN00_sr), Winter 2015 (L-8 image: LC80160352015044LGN00_sr), 

and Spring 2015 (L-8 image: LC80160352015092LGN00_sr).
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Figure 10. 

Chlorophyll-a distribution for Newport Water Supply ponds and reservoirs on August 12, 

2015 from Landsat Image LC80120312015224LGN00_sr.
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Table 1

Landsat-8 images used for algorithm development.

Landsat-8 image Path/Row Location Image Date

LC80160352013134LGN03_sr 16/35 North Carolina 14 May 2013

LC80160352014137LGN00_sr 16/35 North Carolina 17 May 2014

LC80160352014169LGN00_sr 16/35 North Carolina 18 June 2014

LC80160352014217LGN00_sr 16/35 North Carolina 5 August 2014

LC80160352014233LGN00_sr 16/35 North Carolina 21 August 2014

LC80160352014249LGN00_sr 16/35 North Carolina 6 September 2014

LC80120312015128LGN00_sr 12/31 Rhode Island 10 May 2015

LC80120312015176LGN00_sr 12/31 Rhode Island 25 June 2015

LC80120312015192LGN00_sr 12/31 Rhode Island 11 July 2015

LC80120312015224LGN00_sr 12/31 Rhode Island 12 August 2015

LC80120312015240LGN00_sr 12/31 Rhode Island 28 August 2015
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Table 6

Comparisons of the difference between chl-a concentrations predicted using the 3 band algorithm and spectral 

data not corrected/corrected for aerosol effects using the L-8 SWIR 1 band

Landsat-8 Image Date n Average difference (%) between chl-a predicted using non-aerosol and 
aerosol corrected Rrs

LC80160352014233LGN00_sr 24 October 2014 599 14.8

LC80160352015028LGN00_sr 28 January 2015 637 16.0

LC80160352015092LGN00_sr 2 April 2015 594 13.2

LC80160352015188LGN00_sr 7 July 2015 258 31.8

Average 18.9
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