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Abstract 8 

Wastewater treatment plants use many sensors to control energy consumption and discharge 9 

quality. These sensors produce a vast amount of data which can be efficiently monitored with 10 

automatic systems. Consequently, several different statistical and learning methods are proposed 11 

in literature which can automatically detect the faults. While these methods showed promising 12 

results, the nonlinear dynamics and complex interaction of the variables in wastewater data 13 

necessitate more powerful methods with higher learning capacities. In response, this study 14 

focusses on modelling faults in oxidation and nitrification process. Specifically, this study 15 

investigates a method based on Deep Neural Networks (specifically Long Short-Term Memory) 16 

compared with statistical and traditional machine learning methods. The network is specifically 17 

designed to capture temporal behaviour of sensor data. The proposed method is evaluated on a 18 

real-life dataset containing over 5.1 million sensor data points. The method achieves fault 19 

detection rate (recall) of over 92%, thus outperforming traditional methods, and enabling timely 20 

detection of collective faults. 21 

 22 
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 25 

Introduction 26 

 27 

Water collected from households and industrial plants must be treated before being discharged 28 

into rivers or other water bodies. In this respect, Waste Water Treatment Plants (WWTPs) play 29 

an essential role in reducing environmental pollution through removing or breaking down 30 

pollutants and reclaiming wastewater. However, WWTPs are complex systems that must 31 

maintain high performance, despite temporal dynamics, such as daily and seasonal changes or 32 

human activity. To safely and optimally operate a WWTP, it is necessary to monitor the treatment 33 

process online which is costly and requires specialized equipment. In response, several sensors 34 

are used to monitor the WWTPs influents such as ammonia, dissolved oxygen, several nutrients, 35 
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suspended solids, and organic matter. Yet, it is practically impossible to always either deploy 36 

perfectly working sensors, have human experts monitor them or redesign sensor placement 37 

(Villez et al., 2016). Consequently, an important research direction is to precisely monitor faults 38 

in the sensors. Faults can be of different types and occur at different locations, however this work 39 

focuses on fault detection in influent sensors, specifically ammonia measurements sensors in the 40 

nitrification oxidation tank. As WWTPs generate a large amount of data, a promising solution 41 

lies in automatic detection of such faults in the system using machine learning methods and 42 

algorithms to automatically process the data. This information then can be integrated into 43 

Environmental Decision Support Systems (EDSS) (Poch et al.,2004), that would enable WWTPs 44 

to maintain high performance and low emissions at all times, where faults can be acted upon in 45 

a timely manner. 46 

The challenge of fault detection in the nitrification oxidation tank 47 

 48 

A part of the degradation processes of macro pollutants takes place in the nitrification oxidation 49 

tank. In this tank the carbon is oxidized, and the ammonia is converted into nitrate. The process 50 

is guaranteed by the insufflation of air into the tank. The control of the blowers is a priority in 51 

order to perform a correct and efficient management of the purifier, obtaining high purifying 52 

performance at an adequate energy cost. The control of the oxidation and nitrification process is 53 

mainly regulated by setting a static oxygen set point and modulating the air flow necessary to 54 

maintain the set point. The main limit of this system is that under conditions of low load treated 55 

by the purifier, the minimum air flow delivered by the blowers is greater than that required to 56 

maintain the oxygen set point with consequent increase of dissolved oxygen and energy waste. 57 

As a solution, a control process is used in these tanks (based on the concentration of ammonia 58 

nitrogen present in the oxidation tank) that dynamically calculates the oxygen set point to be kept 59 

in the tank, arriving to set the set point to zero when the concentration of ammonia decreases 60 

below a predetermined value. Although the management of the purification process based on 61 

ammonia measurements has shown a great functionality over the years, an erroneous ammonia 62 

measurement can lead to non-compliance with the discharge quality required by law or to a high 63 

unjustified energy consumption. Therefore, the focus of the proposed work is to detect these 64 

types of faults in the ammonia measurements as early and as precisely as possible. 65 

Faults categorisation 66 

 67 

In general, faults can be categorized into three groups: i) individual faults, which are unexpected 68 

single data instances with respect to other data points; ii) contextual faults that include the 69 

individual instances which are anomalous in a specific context and normal in another context; 70 

and iii) collective faults, which are manifested through the occurrence of an irregular collection 71 

of instances with respect to other data trends (Chandola et al., 2009). The instances in collective 72 

faults are not necessarily irregular themselves but a sequence of them is considered anomalous. 73 

For instance, when the data points in a sequence happen in an unexpected order or in an 74 

unacceptable combination, it is considered as a collective fault. While, several studies have been 75 

conducted in using machine learning techniques to detect the first two types of faults in WWTPs 76 

sensors, the third and the most complex one, the collective faults have not received enough 77 

attention. 78 

 79 

Fault detection methods 80 
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 81 

Apart from categorization of faults, fault detection methods can also be categorized into three 82 

main groups: statistical methods, learning models, and time series models, in the order of 83 

utilization. The most studied methods to monitor WWTPs sensor data are the statistical methods. 84 

These approaches range from a simple data trend checking using Mann-Kendall test, to statistical 85 

process control (SPC) methods which track process variables of interest over time using 86 

statistical control charts. These charts can be univariate such as Shewhart charts, cumulative sum 87 

(CUSUM) charts, and exponentially weighted moving average (EWMA) or multivariate 88 

methods based on Principal Component Analysis (PCA) (Garcıa-Alvarez, 2009; Padhee et al., 89 

2012) and Kernel PCA (KPCA) (Cheng et al., 2010; Deng and Tian, 2013). 90 

The approaches in the second category, learning models, consider fault detection as a two-class 91 

classification problem. Fuzzy classification (Grieu et al., 2001), Support Vector Machines (Fan 92 

et al., 2004), Random Forests (Zhou et al., 2019a; Zhou et al., 2019b) and Neural Networks 93 

(Hamed et al., 2004; Grieu et al., 2006; Du et al., 2018) are some of the most studied methods in 94 

this category. There are several studies on the comparison of statistical and learning methods on 95 

wastewater sensor data (Oliveira-Esquerre et al., 2004; Jin and Englande Jr, 2006; Corominas et 96 

al., 2018). Neural networks such as Multi-Layer Perceptron (MLP), Self-Organizing Maps 97 

(SOM), Radial Bases Functions (RBF) and Functional-Link Neural network are found as the 98 

most successful learning methods in fault detection of WWTPs data (Maier and Dandy, 2000). 99 

Both of the above categories can successfully capture the individual faults and contextual 100 

anomalies. However, these methods cannot accurately detect complex temporal patterns in 101 

collective faults. Therefore, time series modelling methods like ARIMA (Xiao et al., 2017) and 102 

Time Delay Neural Networks (TDNN) (Dellana and West, 2009) were introduced to capture 103 

temporal patterns in the WWTPs data. ARIMA is a univariate linear method that predicts the 104 

next data value using the previous data sequence. Subsequently, a conventional control chart is 105 

used to plot the prediction error and decide on the normality of data. On the contrary, TDNN is 106 

a multivariate Neural Network with short-term memory structure, which receives segmented 107 

windows of data in time and models non-linear time dependencies of signal (Waibel, 1989). A 108 

comparison between linear ARIMA and TDNN is presented in (Dellana and West, 2009) where 109 

a clear advantage of TDNN over ARIMA emerges, using eight artificial datasets. However, a 110 

shortcoming of TDNN is its dependency on the size of the window to segment the data. The 111 

larger the window size is, the higher the dimensions of the network and its parameters become. 112 

On the other hand, small window size might not cover all the important information describing 113 

system dynamics. 114 

The proposed approach 115 

 116 

Recently, deep Recurrent Neural Networks (RNN) such as Long-Short Term Memory networks 117 

(LSTM) have shown breakthrough results over state-of-the-art machine learning methods in 118 

many applications with non-linear temporal data including robotics, high-energy physics and 119 

computational geometry (Goodfellow et al., 2016). These methods can successfully engineer 120 

appropriate long-term temporal dependencies and variable length features, significantly 121 

lessening the need to pre-process data with respect to traditional machine learning methods or 122 

statistical approaches. It is the ability to capture the long-term dependencies that make LSTM 123 

networks particularity fitting for the problem at hand. 124 

Although, there is an enormous scope for the possible applications of deep neural networks in 125 

management of WWTPs, very few studies (Zhang et al., 2018, 2017) are devoted to this topic 126 
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and none have addressed fault detection problem, despite the potential of these methods as 127 

highlighted by Sun et al. in their recent review (Sun et al., 2019). This is surprising, considering 128 

WWTP operators have vast streams of data at their hands (Corominas et al., 2018), while deep 129 

neural networks typically provide highest performance with vast amounts of data. As such, 130 

potentially valuable information remains locked in databases, rightfully described as data 131 

graveyards (Corominas et al., 2018), unexploited and unable to be processed in timely fashion 132 

(Yoo et al., 2008). 133 

 134 

Main contribution 135 

 136 

This work is the first to evaluate a fully automatic fault detection method using a LSTM network, 137 

which learns the relevant features in WWTPs sensor data without manual intervention. More 138 

specifically, a stacked LSTM network is used to detect collective faults in wastewater sensor 139 

data at runtime. While, there have been other work in fault detection methods, such as using 140 

Multiparametric Programming (Che et al. 2018), fuzzy neural networks (Honggui et al. 2014), 141 

and PCA (Sanchez-Fernández et al., 2015), (Chen et al., 2016), (Carlsson et al. 2016) all these 142 

works rely on manual selection of the relevant input features for the corresponding algorithms, 143 

typically carried out by the domain expert. This contrasts with the proposed method whereby the 144 

LSTM network automatically learns relevant features, consequently reducing domain expert’s 145 

time and providing superior fault performance detection. The performance of the proposed 146 

approach is evaluated on a real-world WWTP dataset gathered in Valdobbiadene wastewater 147 

treatment plant in Northern Italy. The dataset contains sensor data spanning a year, where 12 148 

sensors (including chemical and operational sensors) are continuously sampled every minute. 149 

Analysis of the resulting dataset of over 5.1 million data samples has shown that stacked LSTM 150 

network outperforms all other methods in almost every measure, achieving correct identification 151 

of faults (recall) of over 92%. Identifying faults in a timely manner and with high precision will 152 

enable increased efficiency in the management of WWTPs, especially in terms of optimising 153 

energy use and increasing treatment effectiveness. 154 

 155 

The remainder of this paper is organized as follows: the proposed architecture and the LSTM 156 

unit are described in following section. Next, the experimental results are presented, while the 157 

main conclusions are described in the final section. 158 

Methods 159 

 160 

The main objective of the proposed method is to detect collective faults in the WWTP sensor 161 

data, considering multivariate, non-linear and temporal behaviour of this data. LSTM based 162 

methods have shown breakthrough results in dealing with temporal data such as audio, video, 163 

and general time series data. These neural networks can model both long term and short-term 164 

correlations in a multivariate data sequence. This section briefly outlines the structure of Long 165 

Short-Term Memory nodes along with the architecture of the proposed neural network. 166 

LSTM 167 

 168 

Hochreiter et al. firstly introduced Long-Short Term Memory in 1997 as a powerful Recurrent 169 

Neural Network for time series prediction (Hochreiter and Schmidhuber, 1997). Basically, a 170 

Recurrent Neural Network extracts historical context of the input using a memory cell. The 171 
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general formulation of an RNN with xt and ht as input at time t and hidden state or memory at 172 

time t respectively is presented in Equation 1. 173 

 ht = σ(Whht−1 + Wxxt + b) (1) 174 

where Wh, Wx, and b are the weights of the hidden state, weights of the input and the bias 175 

respectively in which all of them are learned through backpropagation through time. It seems 176 

like this approach is good enough for learning long-term sequences as well but Hochreiter et al. 177 

(Hochreiter and Schmidhuber, 1997) proved it wrong theoretically and practically due to its 178 

exponentially decaying error. Consequently, they offered a solution by adding internal contextual 179 

state cells which are able to learn when and what to memorize or forget. To do so, instead of one 180 

cell state, they use two cell states, a memory cell C and a hidden cell H. Furthermore, three gates 181 

are introduced; I, to process the input and select the addition to the cell state, F to remove 182 

unwanted information from cell state, and O to extract the output from what stored in cell state. 183 

The LSTM formulation given X as input is provided in Equation 2. 184 

 185 𝐼 =  𝜎(𝑥𝑡𝑈𝑖 + 𝑠𝑡−1𝑊𝑖)                                                          (2) 186 𝐹 =  𝜎(𝑥𝑡𝑈𝑓 + 𝑠𝑡−1𝑊𝑓)                                                               187 𝑂 =  𝜎(𝑥𝑡𝑈𝑜 + 𝑠𝑡−1𝑊𝑜)                                                               188 𝐺 =  tanh(𝑥𝑡𝑈𝑔 + 𝑠𝑡−1𝑊𝑔)                                                         189 𝑐𝑡 = 𝑐𝑡−1 ∘ 𝐹 + 𝐺 ∘ 𝐼                                                                     190 𝑠𝑡 =  tanh(𝑐𝑡) ∘ 𝑂                                                                          191 𝑦 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝑠𝑡)       192 

 193 

where W and U are the weights and the biases that should be learned and ∘  implies the 194 

elementwise multiplication. The overall schema of an RNN unit is compared to LSTM in Figure 195 

1. 196 

 197 

Fig. 1 The general schema of an RNN unit versus a LSTM one (adapted from (Olah, 2015)). 198 

Overall framework 199 



6 

 

 200 

The overall view of the proposed system architecture is presented in Figure 2. The data is 201 

gathered from the sensors in the corresponding WWTP to be processed further. Several 202 

challenges have been encountered during processing of the data, which are outlined in the 203 

subsequent section, followed by a detailed description of the neural network architecture. 204 

Challenges in data processing 205 

 206 

Sensor data typically have several challenges that must be addressed before using them in a 207 

learning system. The first challenge is the existence of missing values in the data. Poor 208 

connection, sensor failures, fading signal strength, are some of the causes. There are number of 209 

techniques in the literature of time series data to deal with missing values such as simply ignoring 210 

the whole data point with a missing value, filling it with statistically related data or using more 211 

complicated methods to estimate the missing value. Since the ongoing research is focused on 212 

real-time fault detection, this work follows a less computationally complex approach in which 213 

the features with more than 90% of missing values are ignored, while other missing values are 214 

filled with the last known value. 215 

 216 

Fig. 2 The overall view of the architecture and the proposed method. The data is gathered from the WWTP sensors and 217 
is pre-processed. The data from each sensor is considered a feature in the dataset and the value in each time step is a 218 
sample record. These are fed to a multi-layer LSTM network to extract the important features. Finally, the classification 219 
layer is used to categorize the data, either faulty or normal. 220 

The other challenge addressed by this work is finding a suitable size of windows used as samples. 221 

Sensor data is a continuous time series where the data at each time step is related to its previous 222 

values in time. This characteristic of the time series data leads the solution into a recursive 223 

approach where a window of data is processed to understand each time step. The window size 224 

can greatly influence the performance of the algorithm and therefore should be chosen carefully. 225 

A small window can miss the longer relations and large windows can dampen the effect of the 226 

short-term relations. This work addresses this problem using LSTM units which receive a 227 
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relatively large window of data and automatically learn the effective windows of the problem at 228 

hand using training data. As mentioned earlier, LSTM units leverage their input and forget gates 229 

to control when and what to learn and forget. Therefore, in case of a large window, the unit learns 230 

when to replace the old and useless information with the new ones.  231 

Neural Network architecture 232 

 233 

As shown in Figure 2, the proposed method consists of stacked LSTM layers for feature 234 

extraction and a Softmax layer for classification. The increase in the depth of a neural network 235 

results in more abstract features and commonly is attributed as the reason of success in deep 236 

learning methods (Hermans and Schrauwen, 2013). This will allow the network to process the 237 

data in different time scales. 238 

Considering the output of the pre-processing step in time t as X = {X1,X2,...,Xt} where each 239 

element Xt ∈ Rd is a d dimensional vector as 𝑋𝑡 = {𝑥1𝑡 , 𝑥2𝑡 , … , 𝑥𝑑𝑡 } which contains the values from 240 

different sensors at time t. The input layer has one unit for each dimension which is fed to the 241 

stacked layers of LSTM. In each layer, the unrolled LSTM blocks through time are shown in 242 

Figure 2. Each LSTM block receives the vector Xt and process it with several fully connected 243 

hidden units inside it. Note that each LSTM layer is succeeded by batch normalization, ReLU 244 

activation and Dropout layers. 245 

The data flows in the LSTM layers through time, and the output is a set of carefully extracted 246 

features which is given to a softmax classification layer. The output layer has one unit which 247 

classifies whether the data sample is faulty or not. 248 

Results and discussion 249 

 250 

This section outlines the evaluation of data and its characteristics. Three different models are 251 

applied to the dataset including the proposed method. The models’ parameters and comparative 252 

results are also presented. 253 

Data and labelling 254 

 255 

Valdobbiadene is a 10.000 Population Equivalent (PE) sized WWTP located in Treviso province, 256 

Italy. Being in the region where Prosecco wine is produced, there is a significant increase of 257 

organic mass during the harvest period (late August to early October) reaching 13.000 PE. As 258 

such, the aim was to capture not only daily and seasonal variations (typical of WWTP operation) 259 

but also other variations that cause significant shifts in plant’s load. Consequently, the dataset 260 

includes also these load shifts that allowed us to investigate whether the proposed method can 261 

capture atypical variations. In this process, data from 12 different sensors (both chemical and 262 

operational sensors), including ammonia, are collected from 20/1/2017 to 20/12/2017 at 1-minute 263 

intervals. In total there are 438.181 values for each sensor, resulting in over 5.1 million data 264 

points (see Table 1).  265 

Table 1 Summary of dataset 266 

 Instances Sensor Data Percent 



8 

 

Normal 376.190 4.514.280 88.5 % 

Faults 48.816 585.792 11.5 % 

Total 425.006 5.100.072 100 % 

 267 

The data is labelled by an expert to classify normal and faulty data points. The classification rules 268 

are as follows: with the increase in the level of ammonia, the oxygen is released; consequently, 269 

the ammonia level decreases, and the oxygen flow is stopped. This cycle is repeated through 270 

time. The fault occurs when the ammonia level does not decrease although oxygen is released. 271 

An example of normal and faulty behaviour of the data is shown in Figure 3a and 3b respectively 272 

where the level of ammonia and oxygen are shown. 273 

 274 

 (a) Normal behaviour (b) Faulty behaviour 275 

Fig. 3 A sample of faulty and normal data 276 

Table 2 Description of variables and Spearman correlation with the label (normal or faulty) 277 

Variable Description Correlation 

AOS blower frequency 0.24 

AUS blower operational mode -0.52 

DOPLC PLC operating parameters -0.13 

DOS blower gear status 0.05 

FRS operating frequency of the blower 0.17 

MAS blower run signal 0.19 

NH4 ammonia measurement 0.03 

NO3 nitrates measurement 0.24 

OX oxygen measurement 0.25 

SP oxygen set-point -0.1 

Temp tank temperature 0.15 

 278 

Description of all sensors (chemical as well as operational) is presented in Table 2 along with 279 

the Spearman correlation of each sensor data with the labels (normal or fault). Regardless of the 280 

sign, a correlation value shows the strength of association between variables in question. While 281 

‘AUS’ shows a moderate relation to the label, the other features show insignificant relation with 282 

the label and are not individually discriminative enough. Therefore, a multivariate detection 283 

algorithm is a necessity to detect these faults which would exclude most traditional univariate 284 

statistical methods. 285 
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To help the analysis of ammonia better, several statistical measures are extracted from this 286 

feature such as Mean, Maximum, Minimum, Variance and Standard Deviation which increase 287 

total number of features to 16. The data is segmented to a maximum window size to create the 288 

sequences for the LSTM neural network. LSTM network would learn the proper amount of 289 

information to learn from this window. The larger the window size is, the higher the dimensions 290 

of the network and its parameters would become. On the other hand, small windows might not 291 

cover all the important information of system dynamics. Therefore, the size of the window is 292 

considered as a hyperparameter for the model and a Grid Search is applied to find the optimal 293 

value. The best value is found to be 60 minutes. The samples with at least 10 minutes of faults 294 

are labelled as faults and the rest of the data are labelled as normal. 70% of data points are 295 

considered as the training set and rest of data points are held for the test set. The statistics of the 296 

dataset is summarized in Table 1. 297 

 298 

Experiments and evaluation 299 

 300 

Four sets of experiments are reported in this section, comparing traditional methods with the 301 

proposed method. First, a basic statistical analysis is done on the data. Next, ARIMA, a well-302 

known time series model is applied on the dataset. Then, a learning model using PCA and SVM 303 

is also evaluated. The results of the proposed LSTM-based method are presented in the last 304 

section. All the settings and parameters are provided in each section. The experiments are 305 

implemented in Python programming language using Keras (Chollet et al., 2015) and 306 

TensorFlow (Abadi et al., 2015), two open-source neural network libraries designed to build 307 

models based on deep neural networks. Keras offers a high-level set of abstractions that make it 308 

easier to develop deep learning models and interfaces with TensorFlow as a backend to 309 

implement and execute the models. 310 

Variance 311 

 312 

Since the faults occur in direct relation to the ammonia level, it is only logical to first analyse 313 

this type of sensor data statistically. As the type of fault is known to be collective, the properties 314 

of its distribution (mean and variance) change in case of faults. Analysing the mean of the data 315 

from ammonia sensors shows that the mean of the data in both normal and fault events are the 316 

same. On the other hand, the variance has an apparent difference in these two classes of data. To 317 

analyse the variance of data, the segmented 60 minutes of windows are used to calculate the 318 

variances and a threshold is set to categorise the window as normal or fault. The threshold is 319 

considered as a hyperparameter and it is set based on the training data using a Grid Search. The 320 

optimal value is found to be 0.01. The results of this method are shown in Table 4 where it is 321 

compared to the other methods. 322 

ARIMA 323 

 324 

ARIMA, short for AutoRegressive Integrated Moving Average, is a statistical univariate model 325 

that learns the normal sequence of a time series to predict its next value in time. This algorithm 326 

is widely used as a time series forecasting method (Boyd et al., 2019; Zhang et al., 2019) and a 327 

general anomaly detection algorithm for time series data. The ability to detect collective faults 328 

on sensor data (Tron et al., 2018; Yaacob et al., 2010; Pena et al., 2013) is tested. 329 
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ARIMA is a general form of Moving Average which is applicable only on the stationary 330 

sequences. Time series data are stationary if its statistical properties such as mean and variance 331 

remain steady over time. ARIMA relies on the idea that a non-stationary data can become 332 

stationary by differencing. Particularly, ARIMA assumes that each data point in time series can 333 

be derived using a polynomial combination of a number p, of its past values which are 334 

differenced d times plus a number q of error variables and a constant c, as in Equation 3. 335 

 Yt = φ1ydt−1 + ... + φpydt−p + θ1et−1 + ... + θqet−q + c (3) 336 

Therefore, this algorithm can be summarised as ARIMA(p,d,q) with three parameters: the 337 

AutoRegressive parameter (p), the number of differencing steps (d), and the moving average 338 

parameter (q). The algorithm should be trained on the data to learn the coefficients, φ and θ. 339 

Since ARIMA is univariate, the data from ammonia sensor which includes both faults and normal 340 

values is set as its input. Next, the predicted value is compared with the previously seen value 341 

and in case of meaningful difference, the occurrence of anomaly is reported. 342 

To set these parameters, the Auto Correlation Function (ACF) of the data and its first difference 343 

are plotted in Figure 4a and 4b. The plots show a strong correlation between the time series data 344 

points and no correlation in the differenced ones. Therefore, the parameter d is set to 1. 345 

 346 

(a) The Auto Correlation Function 347 
(ACF) of the data 348 

 349 

(b) The Auto Correlation Function 350 
(ACF) of the data after differencing 351 

Figure 4: The Auto Correlation Function (ACF) of the data and its first difference to set the parameters of ARIMA 352 

For other parameters, p and q, a Grid Search is used to estimate their best values among (0,10). 353 

This method searches thorough all possible combinations of p and q in order to obtain minimum 354 

Akaike for Information Criterion (AIC). The best parameters are derived as ARIMA (4,1,4) and 355 

the model is trained on normal data to set the coefficient for predicting future values. In other 356 

words, to predict the next value in the sequence of data, the data from 4 previous steps are 357 

integrated once and multiplied by the learned coefficients in addition to 4 error terms with their 358 

learned coefficients are all summed up. 359 

Next the ARIMA model is tested on the test data which contains both normal data and faults and 360 

the overall Root-Mean-Square Error between the predictions and the real data is 0.07. This result 361 

is very good in terms of prediction, but it does not help on detecting faults. The Root-Mean-362 

Square Error is even lower in case of faulty data and the prediction is too exact. Consequently, 363 

it is not possible to detect the collective fault behaviour with the ARIMA model in the test data. 364 

The main reason is that ARIMA considers only a short-term memory of the data and it does not 365 

learn the longer patterns which is a significant factor in detecting collective faults. 366 

 367 

PCA and SVM 368 

 369 
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The fault detection problem can be interpreted as a binary classification of the normal data and 370 

the faults. Support vector machines (SVM) are powerful binary classifiers which can be adopted 371 

as time series classification method when combined with a feature extraction approach (George, 372 

2012). SVM classifiers simultaneously maximize the performance of the machine, while 373 

minimizing the complexity of the model. A variant of this method, support vector regressor, is 374 

successfully applied to forecast wastewater quality indicators (Granata et al., 2017). Also, SVM 375 

and ARIMA are compared in predicting influent flow rate of a sewage treatment plant in which 376 

SVM showed lower error rates (Ansari et al., 2018). 377 

As previously mentioned, the data samples include a window of 60 minutes with 16 features for 378 

each minute and consequently the training vectors have more than a thousand feature each. To 379 

reduce the feature space PCA (Bo and Wu, 2009; Smith, 2002) method is applied on the data and 380 

the data is mapped to lower dimensions in regard to its principal components with the maximum 381 

variances. Using PCA improves accuracy while reducing the complexity of SVM model. 382 

Furthermore, the unbalanced nature of the data is addressed through the use of weighted SVM. 383 

To evaluate the performance, three measures are calculated for each class: precision, recall and 384 

F1 score. These measures are defined as in Equation 4. 385 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 386 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 387 

            𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙     (4) 388 

  389 

Since the data is highly unbalanced with 11% faulty data and 89% normal, the learning algorithm 390 

is penalized to increase the cost of mistakes in the minority class (fault detection). The final 391 

results are presented in next section along with the proposed method in Table 4. 392 

LSTM 393 

 394 

As a last step, the proposed LSTM network is trained and tested on pre-processed data. As 395 

explained in previous section, the proposed method has several hyperparameters, which are 396 

chosen according to the resulted prediction error on the validation set. Random search is used to 397 

find the best value for hyperparameters to achieve the lowest prediction error among the 398 

following ranges: The number of hidden layers, h ∈ {1,2,3,4,5,6}, number of LSTM units in each 399 

layer, u ∈{20,40,60,80,100,120} and the dropout factor, d ∈ {0.2,0.4,0.6,0.8}. The best 400 

combination is found as 4 layers, 60 units and 0.2 of dropout. Also, rectified linear unit (ReLU) 401 

is used as the nonlinear activation function. At each time step, several samples b, are grouped as 402 

a batch and fed to the network. Using batch training improves both the learning accuracy and 403 

speed. A summary of the network architecture and the number of its learning parameters are 404 

presented in Table 3. For each layer, the size of the output matrix is shown as matrix shape where 405 

b represents the batch size. The input layer receives b samples of shape 60 × 16 and passes it to 406 

the next LSTM layer with 60 hidden units and 60 time steps. 407 

To the train the network Adam stochastic optimiser (Kingma and Ba, 2014) is used. The batch 408 

size is set to 128 examples and the network is trained for 20 epochs using Back Propagation 409 
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Through Time with early stopping on the training set. The trained model is applied on the test 410 

data and Table 4 illustrates the results. 411 

Table 3 The number of learning parameters of the proposed network in each layer and the total (b represents the 412 
batch size) 413 

Layer Output shape # parameters 

Input (b,60,16) 0 

LSTM (b,60,60) 18240 

LSTM (b,60,60) 29040 

LSTM (b,60,60) 29040 

LSTM (b,60,60) 29040 

Softmax (b,2) 122 

Total  105,482 

 414 
Table 4 Results comparing the proposed method (LSTM) with statistical analysis (Variance) and traditional machine 415 
learning methods (PCA - SVM); Highlighted is the best performance of each method on accuracy, F1-score, precision 416 
and recall. 417 

 418 

Method VARIANCE PCA - SVM LSTM 

Accuracy 0.9325 0.9300 0.9652 

F1-Score Average 0.8575 0.8667 0.9267 
Fault  0.7542 0.7748 0.8736 

Precision Average 0.8390 0.8247 0.9038 
Fault  0.7067 0.6586 0.8167 

Recall Average 0.8796 0.8667 0.9267 
Fault  0.8086 0.9409 0.9391 

 419 

Discussion 420 

 421 

High detection performance of the tested models, shown in Table 4, highlights the power of 422 

machine learning methods in automatic fault detection of real world WWTP data. Since the data 423 

is highly unbalanced, accuracy is not the most appropriate measure. Instead, precision, as the 424 

classifier’s exactness, recall, as the classifier’s completeness, and F1-score, as the balance 425 

between precision and recall, are considered more accountable. Furthermore, the objective of 426 

this work is to minimise missed faults (False Negatives) at the expense of slight increase in false 427 

alarms (False Positives). Therefore, the measures on each class are presented separately, 428 

highlighting results pertaining to fault detection.  429 

The results show that LSTM network proposed provides superior performance with respect to 430 

the other methods considered in this work. This is because LSTM has a high capacity to model 431 

complex dependencies between temporal data. Other methods are not well equipped to handle 432 

multi-variate time series data and model effectively their dependencies. This ability plays a 433 



13 

significant role to detect cumulative faults which have a different pattern in comparison to the 434 

typical operational patterns. Furthermore, LSTM is relatively robust to noise and other outliers, 435 

which is very common in real-life time series data. 436 

There is a continuous push to improve purification performance of WWTPs while at the same 437 

time decreasing energy consumption. This has resulted in increased automation of operation of 438 

these plants and, consequently, an increase in the number of measurement sensors. These sensors 439 

are being increasingly used, not only for the environmental monitoring, but they are also 440 

becoming an important tool in the management of the plants. As such detection of sensors faults 441 

is essential in ensuring correct operation of the plant. Furthermore, sensor failure is difficult to 442 

be manually detect by the human operator, especially when dealing with large plants with 443 

multitude of sensors or small unstaffed plants. While the current systems are very efficient, there 444 

is a clear need to develop methods that can reliably detect sensor faults and provide ample time 445 

to the plant operators, such that environmental damage is limited when faults occur. A system 446 

such as the work presented in this paper, is the first step towards implementing a fully automated 447 

fault detection system that can address the issues arising from automatic management of 448 

WWTPs. 449 

Conclusions 450 

 451 

WWTPs are key infrastructure for the protection of environment. However, being a major energy 452 

consumer, it is particularly important to ensure that these plants are operated in a manner that 453 

optimises treatment efficiency and energy consumption. One important aspect is detection and 454 

management of faults in timely manner. Results presented in this paper have shown that there is 455 

a vast potential in using Deep Neural Networks in managing WWTP faults and this work is only 456 

the first step in this direction. Not only the proposed method outperformed traditional methods, 457 

but the performance achieved in fault detection (recall) of over 92% will enable a new class of 458 

WWTP monitoring and management that require very little human supervision. In addition, these 459 

methods allow integration with Environmental Decision Support Systems that enable WWTPs 460 

to maintain high performance and low emissions, even in response to unexpected events, where 461 

faults can be acted upon in a timely manner with minimal environmental impact. It is expected 462 

that the work will further encourage the use of Deep Neural Networks, not only in WWTP 463 

management, but also in general field of environmental protection. 464 

 465 

References 466 

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, 467 
J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., 468 
Kudlur, M., Levenberg, J., Man´e, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, 469 
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Vi´egas, F., Vinyals, O., Warden, P., 470 
Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous 471 
systems. http://tensorflow.org/. 472 

Ansari, M., Othman, F., Abunama, T. and El-Shafie, A., 2018. Analysing the accuracy of machine learning techniques 473 
to develop an integrated influent time series model: case study of a sewage treatment plant, Malaysia. Environmental 474 
Science and Pollution Research, 25(12), pp.12139-12149. 475 

Bo, C., Wu, M., 2009. Research of intrusion detection based on principal components analysis. In: 2009 Second 476 
International Conference on Information and Computing Science. pp. 116–119. 477 

http://tensorflow.org/
http://tensorflow.org/


14 

Boyd, G., Na, D., Li, Z., Snowling, S., Zhang, Q. and Zhou, P., 2019. Influent Forecasting for Wastewater Treatment 478 
Plants in North America. Sustainability, 11(6), p.1764. 479 

Carlsson, B.; Zambrano, J. Fault detection and isolation of sensors in aeration control systems. Water Sci. Technol. 2016, 480 
73, 648–653. 481 

Che Mid, E. and Dua, V., 2018. Fault detection in wastewater treatment systems using multiparametric programming. 482 
Processes, 6(11), p.231. 483 

Chen, A.; Zhou, H.; An, Y.; Sun, W., 2016. Pca and pls monitoring approaches for fault detection of wastewater treatment 484 
process. In Proceedings of the 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), Santa Clara, 485 
CA, USA, 8–10 June 2016; pp. 1022–1027. 486 

Chandola, V., Banerjee, A., Kumar, V., 2009. Anomaly detection: A survey. ACM computing surveys (CSUR) 41 (3), 487 
15. 488 

Cheng, C.-Y., Hsu, C.-C., Chen, M.-C., 2010. Adaptive kernel principal component analysis (kpca) for monitoring small 489 
disturbances of nonlinear processes. Industrial & Engineering Chemistry Research 49 (5), 2254–2262. 490 

Chollet, F., et al., 2015. Keras. https://github.com/fchollet/keras. 491 
Corominas, L., Garrido-Baserba, M., Villez, K., Olsson, G., Cort´es, U., Poch, M., 2018. Transforming data into 492 

knowledge for improved wastewater treatment operation: A critical review of techniques. 493 
Environmental modelling & software 106, 89–103. 494 

Dellana, S. A., West, D., 2009. Predictive modeling for wastewater applications: Linear and nonlinear approaches. 495 
Environmental Modelling & Software 24 (1), 96–106. 496 

Deng, X., Tian, X., 2013. Nonlinear process fault pattern recognition using statistics kernel pca similarity factor. 497 
Neurocomputing 121, 298–308. 498 

Du, X., Wang, J., Jegatheesan, V., Shi, G., 2018. Dissolved oxygen control in activated sludge process using a neural 499 
network-based adaptive pid algorithm. Applied Sciences 8 (2), 261. 500 

Fan, X.-w., Du, S.-x., Wu, T.-j., 2004. Rough support vector machine and its application to wastewater treatment 501 
processes. Control and Decision. 19, 573–576. 502 

Granata, F., Papirio, S., Esposito, G., Gargano, R. and de Marinis, G., 2017. Machine learning algorithms for the 503 
forecasting of wastewater quality indicators. Water, 9(2), p.105. 504 

Garcıa-Alvarez, D., 2009. Fault detection using principal component analysis (pca) in a wastewater treatment plant 505 
(wwtp). In: Proceedings of the International Students Scientific Conference. pp. 1–10. 506 

George, A., 2012. Anomaly detection based on machine learning: dimensionality reduction using pca and classification 507 
using svm. International Journal of Computer Applications 47 (21). 508 

Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y., 2016. Deep learning. Vol. 1. MIT press Cambridge. 509 
Grieu, S., Thiery, F., Traor´e, A., Nguyen, T. P., Barreau, M., Polit, M., 2006. Ksom and mlp neural networks for on-510 

line estimating the efficiency of an activated sludge process. Chemical Engineering Journal 116 (1), 1–11. 511 
Grieu, S., Traor´e, A., Polit, M., 2001. Fault detection in a wastewater treatment plant. In: Emerging Technologies and 512 

Factory Automation, 2001. Proceedings. 2001 8th IEEE International Conference on. IEEE, pp. 399–402. 513 
Hamed, M. M., Khalafallah, M. G., Hassanien, E. A., 2004. Prediction of wastewater treatment plant performance using 514 

artificial neural networks. Environmental Modelling & Software 19 (10), 919–928. 515 
Hermans, M., Schrauwen, B., 2013. Training and analysing deep recurrent neural networks. In: Advances in neural 516 

information processing systems. pp. 190–198. 517 
Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural computation 9 (8), 1735–1780. 518 
Honggui, H.; Ying, L.; Junfei, Q. A fuzzy neural network approach for online fault detection in waste water treatment 519 

process. Comput. Electr. Eng. 2014, 40, 2216–2226 520 
Jin, G., Englande Jr, A., 2006. Prediction of swimmability in a brackish water body. Management of Environmental 521 

Quality: An International Journal 17 (2), 197–208. 522 
Kingma, D. P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. 523 
Maier, H. R., Dandy, G. C., 2000. Neural networks for the prediction and forecasting of water resources variables: a 524 

review of modelling issues and applications. Environmental modelling & software 15 (1), 101–124. 525 
Olah, C., 2015. http://colah.github.io/posts/2015-08-Understanding-LSTMs. 526 
Oliveira-Esquerre, K. P., Seborg, D. E., Bruns, R. E., Mori, M., 2004. Application of steady-state and dynamic modeling 527 

for the prediction of the bod of an aerated lagoon at a pulp and paper mill: Part i. linear approaches. Chemical 528 
Engineering Journal 104 (1-3), 73–81. 529 

Olsson, G., Newell, B., 1999. Wastewater treatment systems. IWA publishing. 530 
Padhee, S., Gupta, N., Kaur, G., 2012. Data driven multivariate technique for fault detection of waste water treatment 531 

plant. International Journal of Engineering and Advanced Technology 1, 45. 532 
Pena, E. H. M., de Assis, M. V. O., Proena, M. L., Nov 2013. Anomaly detection using forecasting methods arima and 533 

hwds. In: 2013 32nd International Conference of the Chilean Computer Science Society (SCCC). pp. 63–66. 534 

https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs


15 

Poch, M., Comas, J., Rodríguez-Roda, I., Sanchez-Marre, M. and Cortés, U., 2004. Designing and building real 535 
environmental decision support systems. Environmental Modelling & Software, 19(9), pp.857-873. 536 

Sanchez-Fernández, A.; Fuente, M.J.; Sainz-Palmero, G.I. Fault detection in wastewater treatment plants using 537 
distributed pca methods. 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), 538 
Luxembourg, Germany, 8–11 September 2015; pp. 1–7 539 

Shewhart, W. A., 1931. Economic control of quality of manufactured product. ASQ Quality Press. 540 
Smith, L. I., 2002. A tutorial on principal components analysis. Tech. rep., Department of Computer Science, University 541 

of Otago, New Zealand. 542 
Sun, A.Y. and Scanlon, B.R., 2019. How can big data and machine learning benefit environment and water management: 543 

A survey of methods, applications, and future directions. Environmental Research Letters. 544 
Tron, T., Resheff, Y. S., Bazhmin, M., Weinshall, D., Peled, A., 2018. Arima-based motor anomaly detection in 545 

schizophrenia inpatients. In: Biomedical & Health Informatics (BHI), 2018 IEEE EMBS International Conference 546 
on. IEEE, pp. 430–433. 547 

Villez, K., Vanrolleghem, P. A., Corominas, L., 2016. Optimal flow sensor placement on wastewater treatment plants. 548 
Water research 101, 75–83. 549 

Waibel, A., 1989. Modular construction of time-delay neural networks for speech recognition. Neural computation 1 (1), 550 
39–46. 551 

Xiao, H., Huang, D., Pan, Y., Liu, Y., Song, K., 2017. Fault diagnosis and prognosis of wastewater processes with 552 
incomplete data by the auto-associative neural networks and arma model. Chemometrics and Intelligent Laboratory 553 
Systems 161, 96–107. 554 

Yaacob, A. H., Tan, I. K. T., Chien, S. F., Tan, H. K., Feb 2010. Arima based network anomaly detection. In: 2010 555 
Second International Conference on Communication Software and Networks. pp. 205–209. 556 

Yoo, C. K., Villez, K., Van Hulle, S. W., Vanrolleghem, P. A., 2008. Enhanced process monitoring for wastewater 557 
treatment systems. Environmetrics: The official journal of the International Environmetrics Society 19 (6), 602–617. 558 

Zhang, D., Hølland, E. S., Lindholm, G., Ratnaweera, H., 2017. Hydraulic modeling and deep learning based flow 559 
forecasting for optimizing inter catchment wastewater transfer. Journal of Hydrology, 567, 792-802. 560 

Zhang, D., Holland, E. S., Lindholm, G., Ratnaweera, H., 2018. Enhancing operation of a sewage pumping station for 561 
inter catchment wastewater transfer by using deep learning and hydraulic model. arXiv preprint arXiv:1811.06367. 562 

Zhang, Q., Li, Z., Snowling, S., Siam, A. and El-Dakhakhni, W., 2019. Predictive models for wastewater flow forecasting 563 
based on time series analysis and artificial neural network. Water Science and Technology, 80(2), pp.243-253. 564 

Zhou, P., Li, Z., Snowling, S., Baetz, B.W., Na, D. and Boyd, G., 2019a. A random forest model for inflow prediction at 565 
wastewater treatment plants. Stochastic Environmental Research and Risk Assessment, 33(10), pp.1781-1792. 566 

Zhou, P., Li, Z., Snowling, S., Goel, R. and Zhang, Q., 2019b. Short-Term Wastewater Influent Prediction Based on 567 
Random Forests and Multi-Layer Perceptron. JOURNAL OF ENVIRONMENTAL INFORMATICS LETTERS, 568 
1(2), pp.87-93. 569 


