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Abstract 31 

The state of knowledge regarding trends and an understanding of their causes is presented 32 

for a specific subset of extreme weather and climate types. For severe convective storms 33 

(tornadoes, hail storms, and severe thunderstorms), differences in time and space of practices 34 

of collecting reports of events make the use of the reporting database to detect trends 35 

extremely difficult. Overall, changes in the frequency of environments favorable for severe 36 

thunderstorms have not been statistically significant. For extreme precipitation, there is strong 37 

evidence for a nationally-averaged upward trend in the frequency and intensity of events. The 38 

causes of the observed trends have not been determined with certainty, although there is 39 

evidence that increasing atmospheric water vapor may be one factor. For hurricanes and 40 

typhoons, robust detection of trends in Atlantic and western North Pacific tropical cyclone (TC) 41 

activity is significantly constrained by data heterogeneity and deficient quantification of internal 42 

variability. Attribution of past TC changes is further challenged by a lack of consensus on the 43 

physical linkages between climate forcing and TC activity. As a result, attribution of trends to 44 

anthropogenic forcing remains controversial. For severe snowstorms and ice storms, the 45 

number of severe regional snowstorms that occurred since 1960 was more than twice that of 46 

the preceding 60 years. There are no significant multi-decadal trends in the areal percentage of 47 

the contiguous U.S. impacted by extreme seasonal snowfall amounts since 1900. There is no 48 

distinguishable trend in the frequency of ice storms for the U.S. as a whole since 1950. 49 

50 



 

 

 

 

Capsule Summary 51 

The state of knowledge regarding trends and an understanding of their causes is presented for 52 

severe convective storms, extreme precipitation, hurricanes and typhoons, and severe 53 

snowstorms and ice storms. 54 

55 



 

 

 

 

1. Introduction 56 

The record for the number of weather and climate disasters that exceeded $1 billion (U.S.) 57 

or more in losses was set in 2011 (http://www.ncdc.noaa.gov/oa/reports/billionz.html). Twelve 58 

of the fourteen events counted in this record were related to storms, including severe local 59 

weather (tornadoes), storm related excessive precipitation, snowstorms/blizzards, and 60 

hurricane/tropical storms1. There is broad recognition that our climate is non-stationary and 61 

changing (Global Climate Change Impacts in the US 2009), not only in mean conditions but in its 62 

extremes as well (Katz 2010). However, there is less certainty in our ability to detect multi-63 

decadal changes in each of these phenomena, and to understand the causes for any changes 64 

we can detect.  This motivates our interest in a status report on our ability to detect, analyze, 65 

and understand changes in the risk of weather and climate extremes. Due to the intense media 66 

coverage of and great public interest in the 2011 disasters, we suspect that many BAMS readers 67 

have received inquiries or have a personal interest about the nature of these events in the 68 

context of long-term trends and potential climate change. This paper is meant to present a 69 

clear record that can be used by meteorological professionals about what is known and 70 

unknown and why. 71 

This paper examines a specific subset of extreme weather and climate types affecting the 72 

United States. For our purposes, storm-related extremes here refer to those short duration 73 

                                                             
1
 The observed changes in losses represent a combination of the effects of both physical climate and socio-

economic variability (e.g., Pielke et al. 2008), and it is difficult to attribute any of these changes to climate (Bouwer 

2011). Here we will concentrate on physical climate variability. The non-storm disasters were the Texas, Arizona, 

New Mexico wildfires and the Southern Plains/Southwest drought and heat wave. 

http://www.ncdc.noaa.gov/oa/reports/billionz.html


 

 

 

 

events that have levels/types of wind and/or precipitation at local to regional scales that are 74 

uncommon for a particular place and time of year (Peterson et al. 2008). The categories of 75 

storms described herein were chosen because they often cause property damage and loss of 76 

life, but the identification of an extreme occurrence is based on meteorological properties, not 77 

on the destructiveness. Our primary purpose is to examine the scientific evidence for our 78 

capability to detect trends and understand their causes for the following weather types: (1) 79 

severe convective storms (tornadoes, hail storms, and severe thunderstorms), (2) extreme 80 

precipitation, (3) hurricanes and typhoons, and (4) severe snowstorms and ice storms. These 81 

storm categories are not independent. Extreme precipitation can occur in any of the other 82 

three. Categories 1 and 4 are both typically associated with extratropical cyclones and 83 

sometimes in the same one. Nevertheless, the particular impacts are distinct and thus a 84 

separate examination of each of these is warranted. 85 

The reason society ultimately cares about variability and change in the above physical 86 

phenomena is that these translate into socio-economic and biophysical impacts (e.g. life, 87 

property, ecosystems).  The assessment of changes in the physical phenomena is just the first 88 

step. It is essential that trends in the impacts also be assessed in a comprehensive manner. As 89 

will be addressed later, this second step is quite challenging. 90 

2. Severe Convective Storms: Thunderstorms, Tornadoes, and Hail Storms 91 

Severe thunderstorms (hail of at least 2.5 cm or wind gusts of more than 95 km/h) and 92 

tornadoes pose challenging problems in efforts to establish temporal trends. In general, reports 93 

of such events in the US are collected to verify weather warnings and, as such, changes in 94 



 

 

 

 

verification efforts and emphasis are likely to have led to most, if not all, of the reported 95 

changes in frequency. The problems have been discussed by Doswell et al. (2005) and Verbout 96 

et al. (2006). The occurrence of F1+ tornadoes shows no trend since 1954, the first year of near 97 

real-time data collection, with all of the increase in tornado reports resulting from an increase 98 

in the weakest tornadoes, F0 (Fig. 1). Stronger events may be more reliably reported than 99 

weaker events, but changes in tornado damage assessment procedures still lead to problems in 100 

trend identification (Doswell et al. 2009). Changnon and Changnon (2000) used reports from 101 

first-order station observers for the 20th century to assess severe weather conditions and found 102 

considerable regional variability in the incidence of hail—increasing trends in some areas, 103 

decreasing trends elsewhere. The change from human observers to automated stations 104 

beginning in the 1990s influences the comparability of observations from the past to the future. 105 

Due to the changing practices and the nature of rare events, we have little confidence in the 106 

accuracy of trends in the meteorological occurrence of severe thunderstorms (including hail 107 

storms) and tornadoes.  108 

Since raw reports are fraught with difficulties, attention has focused on examining the 109 

environmental conditions associated with severe thunderstorms to estimate the frequency and 110 

distribution of events (Brooks et al. 2003). This is guided by our understanding of the 111 

ingredients for severe thunderstorm occurrence derived from studies of day-to-day weather 112 

forecasting (Rasmussen and Blanchard 1998). The quality of severe thunderstorm forecasts 113 

indicates that the understanding of the physical processes is relatively good (Moller 2001). For 114 

example, using measures of the potential energy available for storms and the organizing 115 



 

 

 

 

potential of tropospheric shear, discrimination between severe and non-severe thunderstorms 116 

is possible (Fig. 2). Severe thunderstorms occur in an environment with large values of potential 117 

energy and wind shear, and tornadoes, in particular, are favored in high shear environments. 118 

Moist enthalpy, combining temperature and moisture content, near the earth’s surface has 119 

been increasing in recent decades (Peterson et al. 2011). By itself, this would lead to an 120 

increase in thunderstorms, but changes above the Earth’s surface could reduce or counteract 121 

that effect with unknown impacts on the initiation of thunderstorms.  Brooks and Dotzek (2008) 122 

found long-term changes in the overall occurrence of favorable conditions for severe 123 

thunderstorms, but the interannual variability in their study was so large as to make the results 124 

statistically insignificant.  Trapp et al. (2009) used an ensemble of global climate model 125 

simulations for the second half of the 20th century and found qualitatively similar changes in the 126 

severe thunderstorm environments; however, the large observed interannual variability implies 127 

that statistical significance of trends may not be reached for several more decades.  The use of 128 

high-resolution models to dynamically downscale such climate data has the potential of 129 

providing an alternative to the observation-based and storm-environment-based approaches 130 

mentioned above (Trapp et al. 2011).  131 

3. Extreme Precipitation 132 

The occurrence of extreme precipitation rates requires abundant atmospheric water vapor 133 

and strong upward motion. Upward motion arises from three principal mechanisms: dynamical 134 

forcing, release of convective instability, and orographic forcing. Depending on the situation, all 135 

of these mechanisms can make a significant contribution to a specific event. In the U.S., the 136 



 

 

 

 

principal meteorological phenomena associated with extreme precipitation events include 137 

extratropical cyclones (ETCs), tropical cyclones (TCs), mesoscale convective systems, and the 138 

North American Monsoon (Kunkel et al. 2011). 139 

The U.S. observing network is better suited for the assessment of changes in very heavy 140 

precipitation than for any other class of extreme storm.  For instance, the NWS Cooperative 141 

Observer Network (COOP) network has largely employed the same standard 8” nonrecording 142 

precipitation gauge throughout its history (Yang et al. 1998), minimizing time-dependent biases 143 

resulting from changes in instrumentation.  Furthermore, the gauge itself exhibits only a minor 144 

wind-driven bias in measuring large amounts of liquid precipitation (Groisman and Legates 145 

1994).  In addition, field experiments (Sevruk 1982) and theoretical results (Folland 1988) show 146 

that gauge undercatch is not substantial in very heavy rainfall. From a spatial perspective, the 147 

U.S. COOP network is of sufficient density for the detection of changes in very heavy 148 

precipitation over most regions (Groisman et al. 2005), except for some high elevations in the 149 

west. The COOP data do not distinguish between convective and non-convective precipitation. 150 

There are a variety of extreme precipitation metrics, analysis methods, observing stations 151 

sets, and time periods used in published trends studies, reflecting tradeoffs among these 152 

choices. Statistical methodological approaches tend to fall into two basic categories: purely 153 

empirically-based or those with a more theoretical basis. For the empirically-based methods, 154 

thresholds are defined in terms of the data distribution, statistics such as the frequency of 155 

threshold exceedance are calculated and aggregated across space, and trends fitted. For the 156 

theoretically-based methods, distributions from the statistical theory of extreme values (e.g., 157 



 

 

 

 

Coles 2001) are fitted to extreme statistics including seasonal or annual maxima and excesses 158 

over a high threshold, and with the provision for trends in the parameters of these extremal 159 

distributions. The advantages of the purely empirical approach include being automatically 160 

applied and relatively powerful in detecting any trends, and being relatively easy to explain to 161 

non-specialists; its disadvantages include providing information only in aggregate terms for 162 

large regions and only applicable to moderately extreme events.  The advantages of methods 163 

based on extreme value theory include providing information in a form useful to decision and 164 

policy makers (i.e., in terms of return levels that apply locally and to the most extreme events 165 

of greatest societal relevance); its disadvantages include difficulty in being routinely applied 166 

(e.g., requiring a choice of threshold for the statistical theory to be a reasonable approximation) 167 

and the lack of a straightforward way to account for the spatial dependence of extremes in 168 

trend analyses. The choice of metrics often involves a tradeoff between the desire to examine 169 

trends in the low probability events that are most societally-relevant and the need to minimize 170 

sampling uncertainty by including less extreme, but more frequent events. The time period is 171 

often chosen on the basis of the number of stations with relatively complete data. In this case, 172 

there is a tradeoff between the desire to examine as long of a period as possible, but longer 173 

periods reduce the number of stations, and the need to minimize sampling uncertainty by 174 

including a minimum number of stations. The different choices that can be made are 175 

represented in the following set of analyses that are described below. 176 

Many studies have found a statistically significant increase in the number and intensity of 177 

extreme precipitation events of durations ranging from hourly to a few days (Karl et al. 1996; 178 



 

 

 

 

Karl and Knight 1998; Groisman et al. 2004; 2005; 2011; Kunkel et al. 2003, 2007; Global 179 

Climate Change Impacts in the United States 2009; Alexander et al. 2006). Given that trends in 180 

mean precipitation (+0.6% per decade; NOAA 2011) are less than extreme precipitation (2% per 181 

decade in top 1% of events; Kunkel et al. 2008), this apparently reflects a change in the tails of 182 

the distribution, rather than a shift in the entire distribution, over several decades compared to 183 

previous decades of the 20th century. The consistency of the results from these analyses reflects 184 

a degree of confidence in our ability to measure such changes in the U.S.  For example, a set of 185 

precipitation-observing COOP stations with records extending back to around the turn of the 186 

20th Century has been used to examine the temporal and spatial variations in number of 187 

extreme precipitation totals of 2-day duration exceeding a recurrence interval of 5 years. This 188 

duration was used to minimize instances of a single extreme precipitation event straddling the 189 

time of observation and the amount being split across the two days. Recurrence interval 190 

thresholds are used extensively in design of runoff control structure, which motivates their use 191 

as one component of a metric. Time series of station events were aggregated over decadal 192 

periods into 7 regions2 of the coterminous U.S. and expressed as a spatially-averaged index (Fig. 193 

3). There is considerable decadal-scale variability whose behavior often varies spatially (e.g. 194 

Mass et al. 2011). However, since 1991, all regions have experienced a greater than normal 195 

occurrence of extreme events. In the eastern regions, the recent numbers are the largest since 196 

reliable records begin (1895). For western regions, the recent decades are comparable to the 197 

early part of the historical record.  Using the non-parametric Kendall’s tau test for trends, the 198 

                                                             
2
 These are the regions being used for the 2013 National Climate Assessment Report 



 

 

 

 

increase is statistically significant for the U.S. as a whole and the individual regions of the 199 

Midwest and Southeast (Table 1). Over the period 1957-2010, the Northeast region trend is 200 

also statistically significant. An analysis of another metric, the total amount of precipitation 201 

accumulated on days whose precipitation exceeds the 99th percentile for daily amounts, 202 

indicates a highly statistically significant upward trend for the period of 1957-2010 for the same 203 

set of regions (Midwest, Southeast, and Northeast) and the U.S. as a whole (Table 1); in this 204 

case, the results are robust to the choice of metric. No significant extreme precipitation trends 205 

are found in the western U.S. (see also Mass et al. 2011). Since the nature and magnitude of 206 

some impacts is sensitive to the duration of excessive precipitation, the sensitivity of results to 207 

the duration and return period has been studied (e.g. Kunkel et al. 2003, 2008) and qualitatively 208 

similar results have been found for durations of 1 to 90 days and return periods of 1 to 20 years 209 

in the definition of the metric. 210 

The estimated change from 1948 to 2010 in the twenty year precipitation return value at 211 

individual stations based on daily accumulated precipitation station data (Fig. 4) from the 212 

Global Historical Climate Network-daily (Durre et al. 2008) were calculated using extreme value 213 

analysis (Tomassini and Jacob 2009; Cooley and Sain 2010). (see Supplemental Online Material 214 

for details). About 76% of all stations experience increases in extreme precipitation, with 15% 215 

showing a statistically significant increase based on station-specific hypothesis testing. From the 216 

central states to the north Atlantic these exhibit a high degree of spatial coherence. Regions 217 

with greater numbers of stations with decreases are of smaller spatial extent; the largest are in 218 

the northwest U.S. and the southern Appalachian Mountains. A field significance test was highly 219 



 

 

 

 

statistically significant. The choice of a 20-year return period in Fig. 4 is solely for illustrative 220 

purposes, with the estimated changes in return values for longer return periods being identical 221 

for this simplified form of extreme value analysis (see Supplementary Online Materials). 222 

Figs. 3 and 4 and Table 1 display results for 3 different metrics. They are in best agreement 223 

over roughly the eastern half of the U.S., all indicating general upward trends. For the western 224 

half, the agreement is not as good; over the Great Plains and Southwest, the 20-yr return 225 

period threshold exhibits general upward trends in contrast to the lack of trends exhibited by 226 

the other two metrics. 227 

Identification of the causes of long-term trends in extreme precipitation remains an area of 228 

active research, but some cogent work has already been completed. Globally, Min et al. (2009, 229 

2011) have linked changes in extreme precipitation during the past several decades to human-230 

caused changes in atmospheric composition.  Karl and Trenberth (2003) have empirically 231 

demonstrated that for the same annual or seasonal precipitation totals, warmer climates 232 

generate more extreme precipitation events compared to cooler climates.  This is consistent 233 

with water vapor being a critical limiting factor for the most extreme precipitation events. A 234 

number of analyses have documented significant positive trends in water vapor concentration 235 

and have linked these trends to human fingerprints in both changes of surface (Willet et al. 236 

2007) and atmospheric moisture (Santer et al. 2007).   237 

It is logical therefore to explore the connection.  The evidence in Table 2 from a pilot study 238 

(see Supplementary online material for details) depicts significant increases in the water vapor 239 

associated with extreme precipitation events, particularly east of the Rockies, and is suggestive 240 



 

 

 

 

that increases in water vapor in the environment of precipitation-producing systems may be a 241 

physical cause for the increase in intense precipitation events over the U.S.3 In addition to the 242 

amount of water available for the generation of extreme precipitation events, dynamical 243 

factors must also be important.  Even though there is no trend in U.S. landfalling Tropical 244 

Cyclones (TCs) (Global Climate Change Impacts in the United States, 2009), two studies found 245 

an upward trend in the number of extreme precipitation events associated with TCs (Knight and 246 

Davis 2009; Kunkel et al. 2010) while a third (Groisman et al. 2011) did not. There is also an 247 

upward trend in the number of extreme precipitation events in the vicinity of fronts associated 248 

with extra-tropical cyclones (Kunkel et al. 2011). However, there is no research indicating 249 

whether there has been a trend in the number and/or intensity of fronts. Gutowski et al. (2008) 250 

stated that the observed increases in extreme precipitation are “consistent with the observed 251 

increases in atmospheric water vapor, which have been associated with human-induced 252 

increases in greenhouse gases”. While the role of water vapor as a primary cause for the 253 

increase in extreme precipitation events is compelling, the possibility of changes in the 254 

characteristics of meteorological systems cannot be ruled out. There may also be regional 255 

influences from the temporal redistribution of the number of El Nino events versus La Nina 256 

events and from land use changes such as the 20th Century increase in irrigation over the Great 257 

Plains and the post-World War II increase of corn and soybean acreage and planting density 258 

over the Midwest (DeAngelis et al. 2010; Groisman et al. 2011). 259 

                                                             
3
 In this analysis, each extreme precipitation event was assigned a precipitable water value, which was the 

maximum value from any radiosonde station within 300 km of the event location and within 24 hours of the 

observation time of the precipitation value. 



 

 

 

 

4. Hurricanes and Typhoons 260 

Detection of long-term changes in tropical cyclone (TC) activity has been hindered by a 261 

number of issues with the historical records. Heterogeneity introduced by changing technology 262 

and methodology is the major issue (e.g., Landsea et al. 2004). Data used to construct the 263 

historic “best track” archives are often initially collected and analyzed to support short-term 264 

forecasting needs using the best information, technology, and models of the day with no 265 

mandates in place to maintain heterogeneity. Improvements are generally implemented 266 

without any overlap or calibration against existing methods to document the impact of the 267 

changes on the longer-term climate record. The introduction of aircraft reconnaissance in some 268 

basins in the 1940s and satellite data in the 1960s had an important effect on our ability to 269 

identify and estimate the intensity of tropical cyclones, particularly those that never 270 

encountered land or a ship. The cessation in 1987 of regular aircraft reconnaissance into 271 

western North Pacific typhoons created a void in available in situ intensity measurements and 272 

our ability to calibrate satellite estimates against ground-truth, which adds further uncertainty 273 

to the records there. Efforts towards mitigation of these issues are ongoing, typically in the 274 

form of estimating storm frequency undercounts in the earlier parts of the Atlantic record (e.g., 275 

Vecchi and Knutson 2011), and using satellite data to construct less heterogeneous global 276 

records of storm intensity (e.g., Kossin et al. 2007). The latter efforts can be effective but at 277 

best are limited to the meteorological satellite era that began in the 1960’s, which limits their 278 

influence on trend detection on multi-decadal or longer time-scales. For example, comparisons 279 

between an index of tropical cyclone power dissipation (Emanuel 2005) derived from best track 280 



 

 

 

 

data versus a more homogeneous satellite reconstruction indicate high temporal consistency 281 

for the North Atlantic and somewhat less consistency for the western North Pacific since 282 

around 1980 (Fig. 5). The observed upward trend in the North Atlantic best track is robust to 283 

reanalysis, while the upward trend in the Pacific best track appears to be inflated by data 284 

heterogeneity issues. 285 

Attempts to detect trends in intra-basin regions such as those defined by islands and 286 

archipelagos, or along coastlines are further constrained by the reduced data sample size 287 

associated with sub-setting the data. Intra-basin regional trend detection is also substantially 288 

challenged by variability in tropical cyclone tracks (e.g., Kossin et al. 2010; Holland 2007; Elsner 289 

1998), which is driven largely by random fluctuations in atmospheric steering currents, but also 290 

is observed in response to more systematic climatic forcings such as El Niño / Southern 291 

Oscillation (ENSO). Landfalling tropical cyclone activity in the US, as well as East Asia, shows no 292 

significant long-term trends (e.g., Landsea 2005). 293 

While data issues confound robust long-term (i.e., ~40-years or more) trend detection, 294 

trends in Atlantic TC frequency are robustly observed in the modern satellite period from 295 

around 1970 to present. In this case, the main challenge lies in attribution of these trends. A 296 

number of linkages between climate variability and TC activity have been well documented. In 297 

the tropical North Atlantic (tNA), observed climate variability and trends have been attributed 298 

using global climate models (e.g. Santer et al. 2006; Zhang 2007; Gillett et al. 2008; Ting et al. 299 

2009; Zhang and Delworth 2009; Chang et al. 2011; Booth et al. 2012) or speculatively linked 300 

(e.g., Mann and Emanuel 2006; Evan et al. 2009) to a number of natural and anthropogenic 301 



 

 

 

 

factors. Natural multi-decadal internal variability of the North Atlantic is often referred to 302 

generically as the Atlantic Multi-decadal Oscillation (AMO) and has been linked, in modeling 303 

studies, to ocean thermohaline circulation variability (Delworth and Mann 2000). This variability 304 

is thought to contribute to the observed decadal variability of the tNA, but the robustness of 305 

evidence for this is presently a matter of debate. Natural tNA variability on shorter time-scales 306 

is also introduced by the North Atlantic Oscillation and remotely by ENSO via teleconnections. 307 

Uncertainties in the contribution of internal climate variability remain an important 308 

confounding factor (Hegerl et al. 2010) in the detection and attribution of climate trends in the 309 

tNA region. Owing to pronounced multidecadal variability evident in longer term records of 310 

Atlantic basin-wide or U.S. landfalling tropical cyclone frequency (e.g., Vecchi and Knutson 311 

2011, see their Fig. 5), the period since around 1970 (e.g., Fig. 5) appears to be too short to 312 

draw confident inferences about longer term (e.g., century scale) trends in Atlantic tropical 313 

cyclone activity. 314 

External forcing of the tropical climate can be natural or anthropogenic. Volcanoes are an 315 

important natural forcing agent, while greenhouse gas forcing has predominantly 316 

anthropogenic underpinnings. Attribution of forcing via aerosols is generally less clear. For 317 

example, sulfate aerosols occur naturally and are also a constituent of human-induced 318 

pollution. Sulfate aerosol concentration is associated with atmospheric dimming effects (e.g., 319 

Mann and Emanuel 2006) as well as changes in cloud albedo (e.g., Booth et al. 2012), both of 320 

which affect local external forcing. Concentrations of these and other aerosols have been 321 

reduced in the tNA subsequent to the US Clean Air Act amendments of the 1970s, but 322 



 

 

 

 

development in Asia has led to increased emissions in regions of the Indian and Pacific oceans, 323 

and one study has proposed a link between black carbon aerosol pollution and increased 324 

tropical cyclone intensity in the Arabian Sea (Evan et al. 2011). Mineral aerosols, such as dust 325 

transported westward over the tNA from the Sahara, are of natural origin, but may be at least 326 

partly modulated by human-induced land-use change. All of these forcings have been linked to 327 

tNA sea surface temperature (SST) variability, but significant questions remain about their 328 

relative contributions to the overall observed Atlantic hurricane variability. In terms of century-329 

scale variability, only anthropogenic forcing has a prima facie expectation of introducing a 330 

significant trend on such time-scales, while inter-annual tropical variability can be largely 331 

attributed to natural fluctuations such as ENSO. Comparatively, attribution of the observed 332 

multi-decadal tNA variability is particularly uncertain and hypotheses span the range from 333 

mostly natural internal variability (e.g., Zhang and Delworth’s (2009) attribution study for  tNA 334 

vertical wind shear changes)  to mostly external anthropogenic forcing (e.g., Mann and Emanuel 335 

2006). 336 

In addition to uncertainty about the relative contributions of the above forcings to the 337 

observed tNA variability, there is also uncertainty about how TCs respond to the 338 

ocean/atmosphere variability attributed to each individual forcing. Aerosol concentrations 339 

emanating from source regions are generally more spatially heterogeneous than greenhouse 340 

gas concentrations, and the AMO is generally associated with larger amplitude SST variations in 341 

the North Atlantic than in other basins. The nature of the forcing is important, because the 342 

response of tropical cyclone activity can be quite different for a given change in SST depending 343 



 

 

 

 

on the type of forcing. Thus, for example, reduced surface wind speeds will increase SSTs and 344 

also increase the thermodynamic potential for tropical cyclones, but the rate of increase in 345 

thermodynamic potential with SST will, in general, be much larger than if the same SST increase 346 

is brought about by increasing greenhouse gases (Emanuel 2007). This is because the degree of 347 

thermodynamic disequilibrium between the oceans and atmosphere depends directly on the 348 

net surface radiative flux, but inversely on surface wind speed. Thus SST is an imperfect proxy 349 

for the thermodynamic environment of tropical cyclones and it should not be used as the sole 350 

thermodynamic predictor of changing tropical cyclone activity. Nonetheless, analyses of 351 

potential intensity projections for the 21st century from CMIP3 climate models demonstrate 352 

that these modeled potential intensity changes are well correlated with changes in relative SST 353 

(i.e., the local SST relative to the tropical mean SST; Vecchi and Soden 2007). 354 

In summary, robust detection of trends in Atlantic and western North Pacific TC activity is 355 

significantly constrained by data heterogeneity and deficient quantification of internal 356 

variability. Attribution of past TC changes is further challenged by a lack of consensus on the 357 

physical linkages between climate forcing and TC activity. As a result, attribution of any 358 

observed trends in TC activity in these basins to anthropogenic forcing remains controversial. 359 

5. Severe Snow Storms and Ice Storms 360 

Quantifying changes in the frequency, duration, and severity of winter storms requires the 361 

ability to accurately and consistently measure the amount of snow that falls and ice that 362 

accumulates during individual storms and throughout entire seasons. Changes in observing 363 

practices, reporting procedures, and observing technologies through time complicate these 364 



 

 

 

 

analyses. These include a transition from primarily afternoon to morning observation times, a 365 

gradual move to direct measurement from previous estimation of precipitation by “ten to one” 366 

snow to water ratio, and periodic changes in observer training practices. Although resulting 367 

artifacts in the climate record make analyses more difficult to accomplish, robust conclusions 368 

can be reached by selecting a subset of stations for which the snowfall record is of highest 369 

quality and which appear to have been minimally affected by non-climatic influences (Kunkel et 370 

al. 2009a, 2009b, 2009c).  In addition, identification of extreme events such as severe regional 371 

snowstorms included here is likely less affected by changes in observing practices and 372 

procedures than the analysis of mean conditions.  373 

The two most dominant factors that influence U.S. winter storm characteristics (trajectory, 374 

frequency, intensity) are the El Niño/Southern Oscillation (ENSO) and the North Atlantic 375 

Oscillation/Arctic Oscillation (N)AO phenomena. La Niña favors a more northerly storm track, 376 

bringing enhanced snow to the northern and central Rockies, while El Niño favors a more 377 

southerly storm track and potentially heavy precipitation in the southern states (e.g., Redmond 378 

and Koch 1991; Smith and O’Brien 2001). Over the last 110 years, ENSO behavior has varied 379 

greatly, with a period of low activity from the early 1930s into the late 1940s.  During the most 380 

active periods, El Niño was favored early in the 20th century and from the mid-1970s to the late 381 

1990s, while La Niña was most prominent from the 1950s to the mid-70s (Wolter and Timlin 382 

2011). 383 

The (N)AO, a dominant influence on eastern U.S. weather patterns also has undergone 384 

similar ‘regime changes’, favoring its positive phase in the early part and latter decades of the 385 



 

 

 

 

20th century. More prominent spells of its negative phase occurred from the middle of the 20th 386 

century into the late 1960s. The last 15 to 20 years have seen a more even distribution of both 387 

phases, favoring the negative phase in the recent winters of 2009-2010 and 2010-2011 (Hurrell 388 

et al. 2003; Seager et al. 2010). Contributing factors to these regime changes are under 389 

investigation (e.g., L’Heureux et al. 2008; Allen and Zender 2011). The decadal scale variability 390 

of storm properties associated with each phenomenon can appear in observed records as a 391 

“trend,” illustrating a need for caution before attribution to anthropogenic climate change.  392 

The characteristics of what constitutes a severe winter storm vary regionally. Snowfall 393 

greater than 10 inches is common in many parts of the Northeast, and thus often only a short-394 

term inconvenience. However, the same snowfall across the Southeast might cripple the region 395 

for a week or longer. A Regional Snowfall Index (RSI, Squires et al. 2009) has been formulated 396 

that takes into account the typical frequency and magnitude of snowstorms in each region of 397 

the eastern two-thirds of the U.S., providing perspectives on decadal changes in extreme 398 

snowstorms since 1900. An analysis based on the area receiving snowfall of various amounts 399 

shows there were more than twice the number of extreme regional snowstorms from 1961-400 

2010 (21) as there were in the previous 60 years (9) (Figure 6). The greater number of extreme 401 

storms in recent decades is consistent with other findings of recent increases in heavier and 402 

more widespread snowstorms (Kocin and Uccellini 2004). 403 

These extreme storms occurred more frequently in snow seasons that were colder and 404 

wetter than average (Fig. 6), but not exclusively. Approximately 35% of the snow seasons in 405 

which these events occurred were warmer than average and 30% drier than average.  The 406 



 

 

 

 

implications are that even if temperatures continue to warm as they have over the past several 407 

decades, for the next few decades, at least, such record storms are possible as they have been 408 

observed during otherwise warmer- and drier-than-average seasons. 409 

The impact of individual snowstorms is often immediate and dramatic, but the cumulative 410 

effects of all snowstorms in a season can also be costly and disruptive. Snowfall measured at 411 

approximately 425 high quality stations was used to assess variation and change in the 412 

percentage of the contiguous U.S. affected by extreme high or low seasonal snowfall since 1900 413 

(Kunkel et al. 2009c). Observations do not show significant century-scale trends in either high or 414 

low seasonal totals. The areal percentage of the U.S. experiencing seasons with the heaviest 415 

accumulated snowfall (top 10%) was greatest in the 1910s, the 1960s and 1970s (Figure 7a). 416 

The areal percentage of the contiguous U.S. with unusually light seasonal snowfall totals (those 417 

in the lowest 10%) decreased from 1940 through the mid-1970s (Figure 7b). Areal coverage of 418 

extremely low seasonal snowfall has been steady or slightly increasing since that time.  419 

It may appear contradictory that the number of extreme snowstorms could increase in the 420 

latter half of the 20th century (Fig. 6) without a coinciding decrease in areal coverage of 421 

extremely low seasonal snowfall totals (Fig. 7b). However, there should be no expectation that 422 

changes in the frequency of such extreme short-duration events, which can occur during 423 

otherwise unusually warm and snow-free seasons, would be correlated with trends in low 424 

seasonal snowfall totals. This is especially true in northern areas of the U.S. where seasonal 425 

snowfall totals can be lower than average even during years when an extreme snowstorm has 426 

occurred. 427 



 

 

 

 

Severe winter conditions are not limited to heavy snowfall. Ice storms can disrupt 428 

transportation, and those exceeding certain threshold accumulations can cause catastrophic 429 

damage to ecosystems and infrastructure. Most freezing rain events occur east of the Rocky 430 

Mountains (Changnon and Creech 2003), and generally with less frequency than snow, 431 

particularly outside the South. Freezing rain climatologies typically begin in the mid-20th 432 

century, are generally limited to daily (“days with”) values for a subset of stations, and at best 433 

only coarsely distinguish between different magnitudes. National and regional trends in the 434 

number of freezing rain days show no systematic trends since about 1960, after some regions 435 

experienced a relative maximum during the 1950s (Gay and Davis 1993; Changnon and Karl 436 

2003). 437 

Frozen precipitation and associated impacts will not disappear in a warmer world (Kodra et 438 

al. 2011), and means and extreme events may even increase, for example at elevations and 439 

latitudes where warmer conditions still remain below freezing.  Snow measurements are 440 

among the most challenging of all climate elements (Doesken and Judson 1996; Yang et al. 441 

1998; Yang et al.2001), and climate analysis depends on a robust national system of reference 442 

stations, spanning all elevations, designed to track snow properties through time and to 443 

develop relations to other sensing technologies. Such a national system is especially important 444 

in measuring and assessing variations and trends in smaller amounts of snow and water 445 

content typical of low elevations (e.g., many cities and airports).  446 

6. Discussion and Conclusions 447 

The main conclusions of this scientific assessment are: 448 



 

 

 

 

 Severe convective storms: thunderstorms, tornadoes, and hail storms- Differences in 449 

time and space of practices of collecting reports of events make the use of the reporting 450 

database to detect trends extremely difficult. Although some ingredients that are favorable for 451 

severe thunderstorms have increased over the years others have not, so that, overall, changes 452 

in the frequency of environments favorable for severe thunderstorms have not been 453 

statistically significant. 454 

 Extreme precipitation-There is strong evidence for a nationally-averaged upward trend 455 

in the frequency and intensity of extreme precipitation events. The COOP network is 456 

considered adequate to detect such trends. The causes of the observed trends have not been 457 

determined with certainty, although there is evidence that increasing atmospheric water vapor 458 

may be one factor. 459 

 Hurricanes and typhoons- Robust detection of trends in Atlantic and western North 460 

Pacific TC activity is significantly constrained by data heterogeneity and deficient quantification 461 

of internal variability. Attribution of past TC changes is further challenged by a lack of 462 

consensus on the physical linkages between climate forcing and TC activity. As a result, 463 

attribution of any observed trends in TC activity in these basins to anthropogenic forcing 464 

remains controversial. 465 

 Severe snowstorms and ice storms-The number of severe regional snowstorms that 466 

occurred since 1960 was more than twice the number that occurred during the preceding 60 467 

years. There are no significant multi-decadal trends in the areal percentage of the contiguous 468 



 

 

 

 

U.S. impacted by extreme seasonal snowfall amounts since 1900. There is no distinguishable 469 

trend in the frequency of ice storms for the U.S. as a whole since 1950. 470 

Figure 8 summarizes our scientific assessment of the current ability to detect multi-471 

decadal changes and understand the causes of any changes, putting each phenomenon into 472 

one of three categories of knowledge from less to more. The position of each storm type was 473 

determined through extensive verbal discussion at a meeting of the author team to reach a 474 

group consensus. In terms of detection, the existing data for thunderstorm phenomena (hail, 475 

tornadoes, thunderstorm winds) are not considered adequate to detect trends with confidence. 476 

This is also the case with ice storms. The data adequacy for hurricanes and snow storms was 477 

judged to be of intermediate quality; although trends have been studied, there are a number of 478 

quality issues that add uncertainty to the results of such studies. The data adequacy for 479 

precipitation is of higher quality than the rest of the types, leading to higher confidence in the 480 

results of trend studies. 481 

Knowledge of the potential physical causes of trends is higher for extreme precipitation 482 

than for other storm types while knowledge of causes for hail, tornadoes, hurricanes, and snow 483 

storms is intermediate among the types. The adequacy of knowledge is quite low for 484 

thunderstorm winds and ice storms.  485 

Improving the status of the data and understanding can be advanced through the 486 

following steps: 487 

 Severe convective storms- Consistent collection of severe thunderstorm and tornado 488 

reports that does not depend upon the severe weather warning process would be necessary 489 



 

 

 

 

to make the time series of reports useful for climate-scale purposes. Alternatively, 490 

development of objective remotely-sensed observations, most likely based upon radar, that 491 

serve as proxies for actual severe weather events could address issues, although challenges 492 

will exist as radar technology changes. 493 

 Extreme precipitation-It is essential that the high quality data network be maintained so 494 

that future variations and trends can be detected. The role of water vapor trends as 495 

possible cause of extreme precipitation trends should be more thoroughly explored.  496 

 Hurricanes and typhoons-Better understanding of factors controlling tropical cyclone 497 

variability will be realized through the development of improved theoretical frameworks, 498 

numerical and statistical modeling, and observations. Improved observations will most likely 499 

result from additional observing platforms, both in situ (e.g., expanded manned or 500 

unmanned aircraft reconnaissance and/or tethered blimps such as the Aeroclipper) and 501 

remote (e.g., better microwave and scatterometer coverage). Consistency of the data is 502 

essential, and calibration periods are needed when new instruments or protocols are 503 

introduced so that biases can be quantified and data heterogeneity can be minimized. 504 

 Severe snow storms and ice storms-A high priority is reducing uncertainties in the historical 505 

record through the incorporation of new sources of data and development and application 506 

of techniques that properly account for changing technologies and observing practices that 507 

have occurred through time. This should be done while also creating a robust national 508 

system of observing stations with sufficient density spanning all elevations, integrating new 509 



 

 

 

 

technologies, and employing well documented and consistent observing and reporting 510 

practices 511 

The identification and understanding of trends in impacts shares many of the same 512 

difficulties, such as data quality and attribution of impacts, found for trends in the 513 

meteorological phenomena discussed here. For example, temporal and spatial changes in social 514 

vulnerability (Cutter and Finch 2008) make detection of robust trends on outcomes of small-515 

scale meteorological events very challenging. As with the physical climate extreme data, 516 

changes in practices of economic loss reporting and attribution over time have occurred. 517 

Different datasets record information on different classes of events, not all parameters are 518 

collected, and the duration of the record is variable as well (Gall et al. 2009). Metrics that are 519 

recorded vary in precision and, in some cases, techniques attempting to adjust for population, 520 

wealth, mortality, or type of loss (insured/uninsured; direct/indirect) are inconsistent making 521 

cross-database comparisons very difficult. 522 
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Figure Captions 779 

Figure 1.  Reported tornadoes in NWS database from 1950-2011.  Blue line is F0 tornadoes, red 780 

dots are F1 and stronger tornadoes. 781 

Figure 2.  Convective parameters from 0000 UTC soundings in US 1997-9.  “Wmax” is vertical 782 

velocity based on parcel theory estimate of updraft associated with convective available 783 

potential energy.  “Shear” is magnitude of vector wind difference between surface winds and 6 784 

km winds.  Red dots are associated with F2 and stronger tornadoes, blue dots are associated 785 

with non-tornadic significant severe thunderstorms (hail of at least 5 cm diameter and/or winds 786 

of hurricane force), grey dots are non-severe thunderstorms.  Data from Craven and Brooks 787 

(2004). 788 

Figure 3. Time series of decadal values of an index (standardized  to 1) of the number of 2-day 789 

precipitation totals exceeding a threshold for a 1 in 5-yr occurrence for 7 regions and the U.S. as 790 

a whole. This was based on an individual analysis of 930 long-term stations. Station time series 791 

of the annual number of events were gridded and then regional annual values were determined 792 

by averaging grid points within the region. Finally, the results were averaged over decadal 793 

periods. 794 

Figure 4. Changes in observed twenty year return value of the daily accumulated precipitation 795 

from 1948 to 2010. Units: inches. Only locations for which data from at least 2/3 of the days in 796 

the 1948-2010 period were recorded are included in this analysis. The change in the return 797 

value at each station is shown by a circle whose relative size portrays its statistical significance: 798 

the large circles indicate the z-score (estimated change in the return value divided by its 799 



 

 

 

 

standard error) is greater than two in magnitude, medium circles indicate the z-score is 800 

between one and two in magnitude, and the small circles indicate the z-score is less than one in 801 

magnitude. 802 

Figure 5. Comparisons of tropical cyclone Power Dissipation Index (PDI; defined in Emanuel 2005) 803 

in the North Atlantic and western North Pacific. The red curves show the annual values derived 804 

from the best track data and the blue curves show annual values derived from the more 805 

homogeneous satellite-based intensity reconstructions. Thin lines show the raw values, thick 806 

lines show the smoothed time series, and least-squares linear trend lines calculated from the 807 

raw series are shown. The data are updated and adapted from Kossin et al. (2007). 808 

Figure 6. Number of extreme snowstorms (upper 10 percentile) occurring each decade within 809 

the six U.S. climate regions in the eastern two-thirds of the contiguous U.S. (Based on an 810 

analysis of the 50 strongest storms for each of the six climate regions from October 1900-April 811 

2010). The inset map shows the boundaries of each climate region. These regions were selected 812 

for consistency with NOAA’s monthly to annual operational climate monitoring activities. The 813 

map includes standardized temperature anomalies and precipitation departures from the 20th 814 

century mean calculated across all snow seasons in which each storm occurred. The snow 815 

season is defined as December-March for the South and Southeast regions and November-April 816 

for the other four regions. 817 

Figure 7. (a). Area weighted annual percentage of U.S. homogenous snowfall stations exceeding 818 

their own 90th percentile seasonal totals, 1900-01 to 2010-11. Reference period is 1937-38 to 819 

2006-07. Adapted from Kunkel et al. (2009c). Thick blue line: 11-year running mean of the 820 



 

 

 

 

percentages. Dashed line: Number of grid cells with active stations each year. (b) as (a) but for 821 

the percentage of the contiguous U.S. snowfall data below the 10th percentile. 822 

Figure 8. Authors’ assessments of the adequacy of data and physical understanding to detect 823 

and attribute trends. Phenomena are put into one of three categories of knowledge from less to more. 824 

The dashed lines on the top and right sides denote that knowledge about phenomena in the top 825 

category is not complete.826 



 

 

 

 

Table 1. Nonparametric test for trend in extreme precipitation based on Kendall’s τ for the 827 

number of occurrences of 2-day precipitation exceeding a threshold for a 1-in-5yr return period 828 

over the period of 1895-2010 and over the period of 1957-2010, as well as the total precipitation 829 

exceeding the 99 percentile for daily amounts over the period of 1957-2010. 830 

 831 

Region Kendall’s τ 
(2-dy,5-yr) 

1895-2010 

Kendall’s τ 
(2-dy,5-yr) 

1957-2010 

Kendall’s τ 
(99%ile) 

1957-2010 

United States 0.240*** 0.388*** 0.340*** 

Northeast 0.065 0.266*** 0.360*** 

Southeast 0.242*** 0.192** 0.188** 

Midwest 0.206*** 0.224** 0.301*** 

N. Great 

Plains 

0.032 0.146 0.085# 

S. Great Plains 0.097 0.053 ------- 

Northwest -0.006 0.063 0.062 

Southwest 0.012 0.121 0.048 

 832 

*Significant at 0.10 level 833 

**Significant at 0.05 level 834 

***Significant at 0.01 level 835 

#Results for combined Northern and Southern Great Plains 836 

Notes on Table 1:  Kendall’s τ can be used to perform a nonparametric test for trend (Chapter 8, 837 

Hollander and Wolfe 1973). The statistic τ is a measure of association between the variable and 838 



 

 

 

 

time, ranging between −1 and 1 like an ordinary correlation coefficient. The P-value is based on 839 

the null hypothesis of no trend (i.e., the time series is uncorrelated with time). Positive values of 840 

τ indicate indices increasing with time, but not necessarily linearly. Kendall’s τ is commonly 841 

used to test for trends in hydrologic time series (Chapter 8, Helsel and Hirsch 1993: Villarini et 842 

al. 2009). 843 
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Table 2. Differences between two periods (1990-2009 minus 1971-1989) for daily, 1-in-5yr 845 

extreme events and maximum precipitable water values measured in the spatial vicinity of the 846 

extreme event location and within 24 hours of the event time. 847 

Region Extreme Precipitation 

Frequency index Difference 

(%) 

Precipitable Water Difference 

(%) 

Northeast +55** +2 

Southeast +11* +9*** 

Midwest +21** +6** 

North Great Plains +18* +16*** 

South Great Plains +15 +8*** 

Northwest +36* +4 

Southwest +36* -4 

 848 

*Significant at 0.10 level 849 

**Significant at 0.05 level 850 

***Significant at 0.01 level 851 

852 
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 854 

 855 

Figure 1.  Reported tornadoes in NWS database from 1950-2011.  Blue line is F0 tornadoes, red dots are 856 

F1 and stronger tornadoes. 857 

858 



 

 

 

 

 859 

Figure 2.  Convective parameters from 0000 UTC soundings in US 1997-9.  “Wmax “is vertical velocity 860 

based on parcel theory estimate of updraft associated with convective available potential energy.  861 

“Shear” is magnitude of vector wind difference between surface winds and 6 km winds.  Red dots are 862 

associated with F2 and stronger tornadoes, blue dots are associated with non-tornadic significant severe 863 

thunderstorms (hail of at least 5 cm diameter and/or winds of hurricane force), grey dots are non-severe 864 

thunderstorms.  Data from Craven and Brooks (2004). 865 



 

 

 

 

 866 
 867 

Figure 3. Time series of decadal values of an index (standardized  to 1) of the number of 2-day 868 

precipitation totals exceeding a threshold for a 1 in 5-yr occurrence for 7 regions and the U.S. as a 869 

whole. This was based on an individual analysis of 930 long-term stations. Station time series of the 870 

annual number of events were gridded and then regional annual values were determined by averaging 871 

grid points within the region. Finally, the results were averaged over decadal periods. 872 



 

 

 

 

 873 

Figure 4. Changes in observed twenty year return value of the daily accumulated precipitation 874 

from 1948 to 2010. Units: inches. Only locations for which data from at least 2/3 of the days in 875 

the 1948-2010 period were recorded are included in this analysis. The change in the return 876 

value at each station is shown by a circle whose relative size portrays its statistical significance: 877 

the large circles indicate the z-score (estimated change in the return value divided by its 878 

standard error) is greater than two in magnitude, medium circles indicate the z-score is 879 

between one and two in magnitude, and the small circles indicate the z-score is less than one in 880 

magnitude. 881 



 

 

 

 

 882 
Figure 5. Comparisons of tropical cyclone Power Dissipation Index (PDI; defined in Emanuel 2005) in the 883 

North Atlantic and western North Pacific. The red curves show the annual values derived from the best 884 

track data and the blue curves show annual values derived from the more homogeneous satellite-based 885 

intensity reconstructions. Thin lines show the raw values, thick lines show the smoothed time series, and 886 

least-squares linear trend lines calculated from the raw series are shown. The data are updated and 887 

adapted from Kossin et al. (2007).888 
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 890 

Figure 6. Number of extreme snowstorms (upper 10 percentile) occurring each decade within 891 

the six U.S. climate regions in the eastern two-thirds of the contiguous U.S. (Based on an 892 

analysis of the 50 strongest storms for each of the six climate regions from October 1900-April 893 

2010). The inset map shows the boundaries of each climate region. These regions were selected 894 

for consistency with NOAA’s monthly to annual operational climate monitoring activities. The 895 

map includes standardized temperature anomalies and precipitation departures from the 20th 896 

century mean calculated across all snow seasons in which each storm occurred. The snow 897 

season is defined as December-March for the South and Southeast regions and November-April 898 

for the other four regions. 899 
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 903 

 904 

Figure 7. (a). Area weighted annual percentage of U.S. homogenous snowfall stations exceeding 905 

their own 90th percentile seasonal totals, 1900-01 to 2010-11. Reference period is 1937-38 to 906 

2006-07. Adapted from Kunkel et al. (2009c). Thick blue line: 11-year running mean of the 907 

percentages. Dashed line: Number of grid cells with active stations each year. (b) as (a) but for 908 

the percentage of the contiguous U.S. snowfall data below the 10th percentile. 909 
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 911 

 912 

Figure 8. Authors’ assessments of the adequacy of data and physical understanding to detect and 913 

attribute trends. Phenomena are put into one of three categories of knowledge from less to more. The 914 

dashed lines on the top and right sides denote that knowledge about phenomena in the top category is 915 

not complete.916 



 

 

 

 

Supplementary Online Material 917 

1. Time dependent peaks over threshold methodology 918 

To produce figure 4, we used data for 1948-2010 from the Global Historical Climate 919 

Network-daily dataset for stations in the contiguous United States including only stations 920 

providing data for at least 2/3 of the days in that period.  At each station, we found the station-921 

specific 97th percentile of daily precipitation based on the entire time period, using only days 922 

with at least 1 mm of precipitation. We then fit a station-specific time-varying statistical 923 

extreme value model (Coles 2001) to daily exceedances of the 97th percentile.  We used only 924 

the maximum daily value when consecutive days exceeded the threshold to avoid temporal 925 

dependence from multi-day storms (i.e., runs declustering with parameter r = 1, Coles 2001).  926 

We used a point process model for exceedances over a high threshold (or peaks over 927 

threshold), as in Tomassini and Jacob (2009) and Cooley and Sain (2010). The model is 928 

equivalent to a generalized Pareto distribution for excesses over a threshold combined with a 929 

Poisson process for the occurrence of  threshold exceedances and is consistent with a 930 

generalized extreme value (GEV) distribution for block maxima. The basic parameters of the 931 

point process model can be expressed in terms of those of a GEV, namely location, scale, and 932 

shape. The shape parameter determines the heaviness of the tail of the distribution, 933 

encompassing the Weibull (bounded tail), Fréchet (heavy tail), and Gumbel (light tail) 934 

distributions.  We allowed the location parameter to vary linearly in time, while assuming the 935 

shape and scale parameters were constant over time. To minimize complexity, any seasonality 936 

in these parameters was ignored. As a result of this parameterization, the change over time in 937 

the return level (for any return period) is linear with the same slope as that for the location 938 

parameter (Coles 2001). An additional consequence is that the change is not a function of the 939 

return period considered - that is the 1948-2010 change in the 20-year return level is the same 940 

as the 1948-2010 change in the X-year return level for any X.  Note that by fitting a separate 941 

shape parameter value at each location, we allowed for the possibility that the heaviness of the 942 

tail differs by location.  Uncertainty estimates were based on the Hessian of the point process 943 

likelihood according to standard maximum likelihood theory, with the standard error for the 944 

return level depending on not only the standard error for the linear trend parameter, but on 945 

the standard errors of the other parameters of the GEV as well. Standard diagnostics for 946 

extreme value distributions (Coles 2001) indicated no obvious lack of fit, and analysis with 947 

thresholds based on percentiles other than the 97th (90, 95, 98, 99, 99.5) indicated the results 948 

did not change substantially apart from the expected bias-variance tradeoff as the percentile 949 

increased. The station-specific results are noisy because of the uncertainty in estimating the 950 

behavior of extremes from short time series. Statistical approaches that smooth over the noise 951 



 

 

 

 

are feasible, but standard techniques have not been developed, so we show the station-specific 952 

results without smoothing. The results are not sensitive to the available data criterion. We 953 

repeated the analysis for stations with 90% and 95% available data. We found that the stations 954 

excluded by these criterion levels exhibited the same spatial patterns as the stations with more 955 

complete data. 956 

To account for multiple testing, we carried out a field significance analysis. Each of 1000 957 

simulations consisted of 63 years of synthetic data resampled with replacement from the 63 958 

years of observations comprising 1948-2010. Each resampled year included all the data from all 959 

locations for that year, thereby preserving the spatial dependence and within-year temporal 960 

structure, but breaking the between-year dependence. This produced simulated datasets under 961 

the null hypothesis of no temporal trend across years. For each of the 1000 simulated datasets, 962 

we carried out the point process model analysis, calculating the field significance P-value based 963 

on the number of locations with z-score (change in return level divided by its standard error) 964 

exceeding 1, 1.64, and 1.96. In all three cases, none of the simulations had as high a proportion 965 

of stations with z-scores exceeding the value as the proportion of stations in the original 966 

analysis, giving P < 0.001.   967 

 968 

2. Extreme Precipitation Water Vapor Analysis 969 

A set of extreme precipitation events (daily, 1-in-5yr recurrence) used in Kunkel et al. (2011) was 970 

the basis for this analysis. For each station event, radiosonde data from the Integrated  Global 971 

Radiosonde Archive were used to find the highest precipitable water value occurring within 3 degrees 972 

latitude and longitude and on the day before or the day of the event. This was assumed to be the best 973 

representation of the water vapor environment available to the precipitation-producing system. 974 

 For each of the NCA regions, we averaged these precipitable water values for two 975 

periods: 1971-1989 and 1990-2009. We also averaged the values of the extreme precipitation 976 

index. The statistical significance of the differences was tested using the two-sample t-test. 977 

These two periods were compared because they span a period of sizeable changes in extreme 978 

precipitation occurrences and the data from the Integrated Global Radionsonde Archive (Durre 979 

et al. 2006) are most complete after 1970. 980 
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