
Monitoring Business Constraints

with Linear Temporal Logic:

An Approach Based on Colored Automata

Fabrizio Maria Maggi1,⋆, Marco Montali2,⋆⋆, Michael Westergaard1,⋆ ⋆ ⋆,
and Wil M.P. van der Aalst1

1 Eindhoven University of Technology, The Netherlands
{f.m.maggi,m.westergaard,w.m.p.v.d.aalst}@tue.nl

2 KRDB Research Centre, Free University of Bozen-Bolzano, Italy
montali@inf.unibz.it

Abstract. Today’s information systems record real-time information
about business processes. This enables the monitoring of business con-
straints at runtime. In this paper, we present a novel runtime verifica-
tion framework based on linear temporal logic and colored automata.
The framework continuously verifies compliance with respect to a pre-
defined constraint model. Our approach is able to provide meaningful
diagnostics even after a constraint is violated. This is important as in
reality people and organizations will deviate and in many situations it is
not desirable or even impossible to circumvent constraint violations. As
demonstrated in this paper, there are several approaches to recover after
the first constraint violation. Traditional approaches that simply check
constraints are unable to recover after the first violation and still foresee
(inevitable) future violations. The framework has been implemented in
the process mining tool ProM.

Keywords: Runtime Verification, Monitoring, Linear Temporal Logic,
Declare, Automata.

1 Introduction

Entities within an organization are supposed to operate within boundaries set
by internal policies, norms, best practices, regulations, and laws. For example,

⋆ This research has been carried out as a part of the Poseidon project at Thales
under the responsibilities of the Embedded Systems Institute (ESI). The project
is partially supported by the Dutch Ministry of Economic Affairs under the BSIK
program.

⋆⋆ This research has been partially supported by the NWO “Visitor Travel Grant”
initiative, and by the EU Project FP7-ICT ACSI (257593).

⋆ ⋆ ⋆ This research is supported by the Technology Foundation STW, applied science
division of NWO and the technology program of the Dutch Ministry of Economic
Affairs.

S. Rinderle-Ma, F. Toumani, and K. Wolf (Eds.): BPM 2011, LNCS 6896, pp. 132–147, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Monitoring Business Constraints with Linear Temporal Logic 133

requests of a particular type need to be followed by a decision. Also in a cross-
organizational setting, people and organizations need respect certain rules, e.g.,
a bill should be paid within 28 days. We use the generic term business con-

straint to refer a requirement imposed on the execution of an intra- or inter-
organizational process [12,10]. Business constraints separate compliant behavior
from non-compliant behavior.

Compliance has become an important topic in many organizations. Never-
theless, it is still difficult to operationalize compliance notions. Several authors
developed techniques to ensure compliance by designing process models that
enforce a set of business constraints [1,7]. Given a process model and a set of
constraints, e.g., expressed in some temporal logic, one can use model checking
[4] to see whether the model satisfies the constraints.

However, static verification techniques are not sufficient to tackle compliance
problems in a comprehensive way. First of all, some aspects cannot be verified a
priori as compliance may depend on the particular context and its participants.
Second, it cannot be assumed that the behavior of all actors is known or can
be controlled. Most processes involve autonomous actors, e.g., a specialist in a
hospital may deviate to save lives and another organization may not be very
responsive because of different objectives. Third, process designs are typically
the outcome of a collaborative process where only some constraints are taken into
account (to reduce complexity and increase flexibility). Due to the procedural
nature of most process modeling languages [12], incorporating all constraints
is unreasonable (especially in environments with a lot of variability): the model
would become unreadable and difficult to maintain. Last but not least, violations
do not always correspond to undesirable behavior. Often people deviate for good
reasons. In unpredictable and dynamic settings, breaking the rules is sometimes
justified by the inadequacy or incompleteness of rules.

All these issues call for runtime verification facilities, able to monitor the
running cases of a process and to assess whether they comply with the business
constraints of interest. Such facilities should provide meaningful information
to the stakeholders involved. Roughly speaking, the purpose of monitoring is
to check whether a running case satisfies or violates a correctness property,
which in our setting is constituted by a set of business constraints. Since runtime
verification and monitoring focus on the dynamics of an evolving system as time
flows, LTL (Linear Temporal Logic) have been extensively proposed as a suitable
framework for formalizing the properties to be monitored, providing at the same
time effective verification procedures. However, the majority of current LTL
runtime verification techniques limit themselves to produce as output only a
truth value representing whether the current trace complies with the monitored
property or not. Typically, a three or four-valued semantics is chosen for the LTL
entailment, in order to reflect the fact that it is not always possible to produce a
definitive answer about compliance (e.g., [2]). Furthermore, runtime verification
usually halts as soon as a (permanent) violation is encountered: from now on,
every possible extension of the current trace would still lead to a permanent
violation.

134 F.M. Maggi et al.

In this paper, we present a novel framework for compliance evaluation at
runtime. The framework offers the following:

1. intuitive diagnostics, to give fine-grained feedback to the end users (which
constraints are violated and why);

2. continuous support, to provide verification capabilities even after a violation
has taken place;

3. recovery capabilities, to realize different strategies for continuous support and
accommodate sophisticated recovery mechanisms.

Our proposed approach is based on colored automata, i.e., automata whose states
are associated to multiple relevant information (“colors”). Moreover, we adopt
Declare [11] as a constraint language. Declare constraints have an intuitive graph-
ical notation and LTL-based semantics.

Concerning the feedback returned to the monitor system, our approach does
not only communicate if a running case is currently complying with the con-
straint model, but also computes the state of each constraint. We consider three
possible states for constraints: satisfied, possibly violated and permanently vi-

olated. The first state attests that the monitored case is currently compliant
with the constraint. The second state indicates that the constraint is currently
violated, but it is possible to bring it back to a satisfied state by executing a
sequence of events. The last state models the situation where it has become
impossible to satisfy the constraint.

At runtime, two possible permanent violations may occur: (a) a forbidden
event is executed, or (b) a state is reached such that two or more constraints
become conflicting. The presence of a conflict means that there is no possi-
ble future continuation of the case such that all the involved constraints become
satisfied. Furthermore, when the case is terminated all the possibly violated con-
straints become permanently violated, because no further event will be executed
to satisfy them.

The approach has been implemented using ProM and Declare. Declare [11] is
a flexible workflow system based on the Declare language. ProM1 is a pluggable
framework for process mining providing a wide variety of analysis techniques
(discovery, conformance, verification, performance analysis, etc.). In the context
of ProM, we have developed a generic Operational Support (OS) environment
[14,17] that allows ProM to interact with systems like Declare at runtime. Our
monitoring framework has been implemented as an OS provider.

The remainder of this paper is organized as follows. Section 2 presents some
preliminaries: Declare as a specification language, RV-LTL as finite trace LTL se-
mantics, and a translation of LTL into automata to build the monitors. Section 3
explains how colored automata can be used to check compliance at runtime and
provide meaningful diagnostics. Section 4 presents three strategies for dealing
with violations. Section 5 shows that the Declare model can also be modified at
runtime, e.g., frequent violations may trigger an update of the model. Related
work is discussed in Sect. 6. Section 7 concludes the paper.

1 ProM and the runtime verification facilities described in this paper can be downloaded
from www.processmining.org.

www.processmining.org

Monitoring Business Constraints with Linear Temporal Logic 135

2 Background

In this section, we introduce some background material illustrating the basic
components of our framework. Using a running example, we introduce Declare
(Sect. 2.1). In Sect. 2.2, we present RV-LTL, an LTL semantics for finite traces.
In Sect. 2.3, we introduce an approach to translate a Declare constraint model
to a set of automata for runtime verification.

2.1 Running Example Using Declare

Declare is both a language and a system based on constraints [11]. The language
is grounded in LTL but is equipped with a graphical and intuitive language. The
Declare system is a full-fledged workflow system offering much more flexibility
than traditional workflow systems.

Figure 1 shows a fictive Declare model that we will use as a running example
throughout this paper. This example models two different strategies of invest-
ment: bonds and stocks. When an investor receives an amount of money, she
becomes in charge of eventually investing it in bonds or in stocks and she can-
not receive money anymore before the investment (alternate response). If the
investor chooses for a low risk investment, she must buy bonds afterwards (re-
sponse). Moreover, the investor can receive a high yield only if she has bought
stocks before (precedence). Finally, the investor cannot receive a high yield and
buy bonds in the same trace (not coexistence). The figure shows four constraints.
Each constraint is automatically translated into LTL. In particular, the response

constraint can be modeled as ϕr = �(Low Risk ⇒ ♦Bonds); the not coexistence

corresponds to ϕn = ♦Bonds ⇒ ¬♦High Y ield; the alternate response is trans-
lated into ϕa = �(Money ⇒ ©(¬Money ⊔ (Bonds ∨ Stocks))); and the prece-

dence constraint corresponds to ϕp = ♦High Y ield ⇒ (¬High Y ield⊔Stocks).
Unlike procedural languages, a Declare model allows for everything that is

not explicitly forbidden. Removing constraints yields more behavior. The not

coexistence constraint in Fig. 1 is difficult or even impossible to model in proce-
dural languages. Mapping this constraint onto a procedural language forces the
modeler to introduce a choice between Bonds and High Y ield (or both). Who
makes this choice? When is this choice made? How many times will this choice
be made? In a procedural language all these questions need to be answered,
resulting in a complex or over-restrictive model.

Low_Risk

High_YieldMoney Stocks

Bonds
=

alternate
response

response

precedence

not co-existence

Fig. 1. Reference Model

136 F.M. Maggi et al.

2.2 LTL Semantics for Runtime Verification

Classically, LTL is defined for infinite traces. However, when focusing on runtime
verification, reasoning is carried out on partial, ongoing traces, which describe
a finite portion of the system’s execution. Therefore, several authors defined al-
ternative finite-trace semantics for LTL. Here, we use the four-valued semantics
proposed in [2], called Runtime Verification Linear Temporal Logic (RV-LTL).
Differently from the original RV-LTL semantics, which focuses on trace suffixes
of infinite length, we limit ourselves to possible finite continuations. This choice
is motivated by the fact that we consider process instances that need to com-
plete eventually. This has considerable impact on the corresponding verification
technique: reasoning on Declare models is tackled with finite state automata.

Let us denote with u |= ϕ the truth value of an LTL formula ϕ in a partial
finite trace u (according to FLTL [9], a variant of the standard semantics for
dealing with finite traces). The semantics of [u |= ϕ]RV is defined as follows:

– [u |= ϕ]RV = ⊤ if for each possible continuation σ of u: uσ |= ϕ (in this case
ϕ is permanently satisfied by u);

– [u |= ϕ]RV = ⊥ if for each possible continuation σ of u: uσ �|= ϕ (in this case
ϕ is permanently violated by u);

– [u |= ϕ]RV = ⊤p if u |= ϕ but there is a possible continuation σ of u such
that uσ �|= ϕ (in this case ϕ is possibly satisfied by u);

– [u |= ϕ]RV = ⊥p if u �|= ϕ but there is a possible continuation σ of u such
that uσ |= ϕ (in this case ϕ is possibly violated by u).

Note that when monitoring a business process using LTL, it rarely happens that
a constraint is permanently satisfied. For the most part, business constraints
are possibly satisfied but can be violated in the future. For this reason, in this
paper, we make no difference between permanently satisfied and possibly satisfied

constraints but we refer to both of them as satisfied. The following example
explains how the above semantics can be used in practice to monitor a running
process case.

Example 1. Let us consider the Declare model represented in Fig. 1. Figure 2
shows a graphical representation of the constraints’ evolution: events are dis-
played on the horizontal axis. The vertical axis shows the four constraints.

Initially, all four constraints are satisfied. Let u0 = ε denote the initial (empty)
trace:

[u0 |= ϕr]RV = ⊤p [u0 |= ϕn]RV = ⊤p [u0 |= ϕa]RV = ⊤p [u0 |= ϕp]RV = ⊤p

Event Money is executed next (u1 = Money), we obtain:

[u1 |= ϕr]RV = ⊤p [u1 |= ϕn]RV = ⊤p [u1 |= ϕa]RV = ⊥p [u1 |= ϕp]RV = ⊤p

Note that [u1 |= ϕa]RV = ⊥p because the alternate response constraint becomes
possibly violated after the occurrence of Money. The constraint is waiting for the
occurrence of another event (execution of Bonds or Stocks) to become satisfied

Monitoring Business Constraints with Linear Temporal Logic 137

Fig. 2. One of the views provided by our monitoring system. The colors show the state
of each four constraints while the process instance evolves; red refers to ⊥, yellow refers
to ⊥p, and green refers to ⊤ or ⊤p.

again. Then, Bonds is executed (u2 = Money, Bonds), leading to a situation in
which constraint ϕa is satisfied again:

[u2 |= ϕr]RV = ⊤p [u2 |= ϕn]RV = ⊤p [u2 |= ϕa]RV = ⊤p [u2 |= ϕp]RV = ⊤p

The next event is High Yield (u3 = Money, Bonds, High Y ield), resulting in:

[u3 |= ϕr]RV = ⊤p [u3 |= ϕn]RV = ⊥ [u3 |= ϕa]RV = ⊤p [u3 |= ϕp]RV = ⊥

ϕn and ϕp become permanently violated because Bonds and High Yield cannot
coexist in the same trace. Moreover, the precedence constraint requires that
High Yield is always preceded by Stocks and this is not the case for trace u3.

After reporting the violation, the monitoring system should continue to mon-
itor the process. Suppose that the framework is able to provide continuous sup-
port and uses the strategy to simply ignore the violated constraints. If Money

is executed again, i.e., u4 = Money, Bonds, High Y ield, Money, ϕa becomes
possibly violated again:

[u4 |= ϕr]RV = ⊤p [u4 |= ϕn]RV = ⊥ [u4 |= ϕa]RV = ⊥p [u4 |= ϕp]RV = ⊥

However, this time the case completes its execution. We suppose that this is
communicated to the runtime verifier by means of a special complete event.
Using uf to denote the resulting total trace, we obtain:

[uf |= ϕr]RV = ⊤ [uf |= ϕn]RV = ⊥ [uf |= ϕa]RV = ⊥ [uf |= ϕp]RV = ⊥

Note that constraint ϕa that is the possibly violated when the case completes
becomes permanently violated (because it cannot become satisfied anymore).

2.3 Translation of a Declare Constraint Model to Automata

To automatically determine the state of each constraint of a Declare model
during runtime, we construct a deterministic finite state automaton (we will

138 F.M. Maggi et al.

simply refer to such an automaton as “automaton”). The automaton accepts a
trace if and only if it does not (permanently or possibly) violate the modeled
constraint. We assume that constraints are specified in LTL (with a finite trace
semantics). We use the translation in [6] for constructing the automaton.

For the constraints in the model in Fig. 1, we obtain the automata depicted
in Fig. 3. In all cases, state 0 is the initial state and accepting states are in-
dicated using a double outline. A transition is labeled with the initial letter of
the event triggering it (e.g., we use the label L to indicate that the Low Risk

event occurs). For example, the response constraint automaton starts in state 0,
which is accepting. Seeing an L (Low Risk) we transition to state 1, which is
not accepting. Only upon seeing a B (Bonds) do we transition back to state 0.
This models our understanding of the constraint: when we execute Low Risk we
have to subsequently execute Bonds. As well as transitions labeled with a single
letter, we also have transitions labeled with one or more negated letters (e.g., !L
for state 0 of the response constraint automaton and !H&!B for state 0 of the
not coexistence automaton). This indicates that we can follow the transition for
any event not mentioned (e.g., we can execute the event High Y ield from state
0 of the response automaton and remain in the same state). This allows us to
use the same automaton regardless of the input language.

When we replay a trace on the automaton, we know that if we are in an
accepting state, the constraint is satisfied and when we are in a non-accepting
state, it is possibly violated. To support also the case where the constraint is
permanently violated, we extend the original automaton (in fact, Fig. 3 already
shows the extended version of the automaton) by connecting all the “illegal”
transitions of the original automaton to a new state represented using a dashed
outline (e.g., state 3 in the not coexistence constraint automaton). When we
reach a state with a dashed outline during the execution of the automaton, we
know that the constraint is permanently violated.

We can use these local automata directly to monitor each constraint, but we
can also construct a single automaton for monitoring the entire system. We call
such an automaton a global automaton. The global automaton is needed to deal
with conflicting constraints. Conflicting constraints are constraints for which
there is no possible continuation that satisfies them all. Note that even when
all individual local automata indicate that the constraint is not permanently
violated, there can still be conflicting constraints.

s0 s1
L

!L

B

!B

(a) Response

s0

s1

s2

s3

!H&!B

B

H

!H

H

!B

B

-

(b) Not coexistence

s0 s2 s1

M

!M

MB

S

!S&!B&!M -

(c) Alternate response

s0

s1

s2

H

S

!S&!H

-

-

(d) Precedence

Fig. 3. Finite automata accepting traces satisfying (a) ϕr, (b) ϕn, (c) ϕa, and (d) ϕp

Monitoring Business Constraints with Linear Temporal Logic 139

The global automaton can be constructed in different ways. The simplest way
just constructs it as the automaton product of the local automata (or, equiva-
lently, as the automaton modeling the conjunction of the individual constraints).
[16] describes how to construct it efficiently.

The global automaton for the system under study is shown in Fig. 4. We use
as state names the state numbers from each of the automata from Fig. 3, so
state 1020 corresponds to constraint response being in state 1, constraint not

coexistence being in state 0, and so on. These names are for readability only and
do not indicate we can infer the states of local automata from the global states.
To not clutter the diagram, we do not show self loops. These can be derived; every
state also has a self-loop transition for any transition not otherwise explicitly
listed. State fail corresponds to all situations where it is no longer possible
to satisfy all constraints. Note that state 1202 is not present in Fig. 4 even
though none of the local automata is in a permanently violated state and it is in
principle reachable from state 0202 via a L. The reason is that from this state it is
never possible to ever reach a state where both response and not coexistence are
satisfied, i.e., the two constraints are conflicting (in order to satisfy the first, we
have to execute B which would move the latter to state 3). Executing the trace
from Example 1 (Money, Bonds, High Y ield, Money, complete), we obtain the
trace 0000 →M 0020 →B 0100 →H fail →M fail. Hence, we correctly identify
that after the first two events all constraints are satisfied, but after executing
High Y ield we permanently violate a constraint.

Fig. 4. Global automaton for the system in Fig. 1

140 F.M. Maggi et al.

3 Colored Automata for Runtime Verification

The global automaton in Fig. 4 allows us to detect the state of the entire system,
but not for individual constraints. In order to combine local and global infor-
mation in one single automaton, we use a colored automaton. This automaton
is also the product of the individual local automata, but now we include infor-
mation about the acceptance state for each individual constraint. In effect, we
color the states with a unique color for each constraint, assigning the color to the
state if the constraint is satisfied. Figure 5 shows the colored automaton for our
running example. We have indicated that a constraint is satisfied by writing the
first letter of its name in upper case (e.g., in state 0000 we have colors RNAP
and all constraints are satisfied) and that a constraint can be eventually satisfied
by writing the first letter of its name in lower case (e.g., in state 1202 we have
colors rNAP where constraint response is not satisfied, but it can be satisfied by
executing Bonds and transitioning to state 0302). If the first letter of the name
of a constraint does not appear at all, the constraint is permanently violated.
Figure 2 already used such a coloring, i.e., red refers to ⊥, yellow refers to ⊥p,
and green refers to ⊤ or ⊤p.

Comparing figures 4 and 5 shows that we now have many states with a dashed
outline, i.e., states from which we cannot reach a state where all constraints
are satisfied. This reflects our desire to continue processing after permanently

Fig. 5. Colored global automaton for the system in Fig. 1

Monitoring Business Constraints with Linear Temporal Logic 141

violating a constraint. In fact, by folding all states with a dashed outline in
Fig. 5, we obtain the original global automaton of Fig. 4. Note that states 1202
and 1222 have a dashed outline even though all constraints are satisfied or at
least can be satisfied in successor states. This is because it is not possible to reach
a state where all constraints are satisfied at the same time (we have basically
asked for low risk, requiring investment in bonds as well as asked for high yield,
which requires investment in stocks only). Executing the trace from Example 1
(Money, Bonds, High Y ield, Money, complete), we obtain 0000 →M 0020 →B

0100 →H 0301 →M 0321. The last state is colored with Ra, indicating that
the response constraint is satisfied, the alternate response constraint is possibly
violated, and the two remaining constraints are permanently violated.

Once the colored global automaton is constructed, runtime monitoring can be
supported in an efficient manner. The state of an instance can be monitored in
constant time, independent of the number of constraints and their complexity.
According to [16], the time to construct the global or colored automaton is 5-10
seconds for random models with 30-50 constraints. For models larger than this,
automata can no longer routinely be constructed due to lack of memory, even
on machines with 4-8 GiB RAM.

4 Strategies for Continuous Support

As discussed in Sect. 1, the monitoring system should continue to provide mean-
ingful diagnostics after a violation takes place. This section presents three ways
of recovering from a violation. These have been implemented in ProM.

4.1 Recovery by Ignoring Violated Constraints

The first recovery strategy simply ignores a constraint after it is permanently
violated. This was the approach we used for the trace discussed in Exam-
ple 1. Figure 2 illustrates the desired behavior when this strategy is used for
Money, Bonds, High Y ield, Money, complete. The colored automaton directly
supports this strategy. In Fig. 5, there are multiple states with a dashed outline
to be able to monitor the state of all constraints after a violation.

4.2 Recovery by Resetting Violated Constraints

The second recovery strategy resets a constraint when it is permanently vio-
lated. Constraints that are not violated progress as before. Consider, for in-
stance, trace Money, Bonds, Money, Stocks, High Y ield, Money, Stocks,
High Y ield, Money, Stocks, High Y ield, complete. The first four events can
be executed without encountering any problem: 0000 →M 0020 →B 0100 →M

0120 →S 0102. Executing High Y ield results in a failed state in the colored
automaton: 0102 →H 0302. The automaton modeling the not coexistence con-
straint is in state 3. Resetting the constraint results in global state 0002. The
remaining events can be executed without any problem: 0002 →M 0022 →S

0002 →H 0202 →M 0222 →S 0202 →H 0202.

142 F.M. Maggi et al.

Figure 6 shows the monitor in ProM using the reset strategy for this trace. Af-
ter the first violation (corresponding to the first occurrence of High Y ield), the
not coexistence constraint is reset and no violations are detected anymore even
when High Y ield occurs again (by resetting the constraint we do not preserve
information about the previous occurrence of Bonds).

We can provide support for the reset strategy in two different ways: (a) by
retaining the local automata for the system and translating back and forth be-
tween the global and local automata when an error is encountered or (b) by
making an automaton specifically tailored to handle this strategy.

The first approach requires a mapping from states of the colored automaton to
states of each of the local automata and vice versa. We can do this using a hash
mapping, which provides constant lookup for this table. When we encounter a
transition that would lead us to a state from which we can no longer reach a
state where all constraints are satisfied (a dashed state in Fig. 5), we translate
the state to states of the local automata. For instance, transition 0100 →H 0301
during the trace Money, Bonds, High Y ield, Money from Example 1 results in a
dashed state 0301. Two of the four local automata are in a permanently violated
state. These automata are reset resulting in state 0000.

The second approach creates a dedicated recovery automaton. Figure 7 shows
the recovery automaton for our running example. In this automaton, we take
the colored automaton and replace any transition to an error (dashed) state
with the state we would recover to, effectively precomputing recovery. We do
this by translating any transition to a dashed state to a transition to the correct
recovery state. In Fig. 7, we removed all dashed states, and introduced new states
not previously reachable (here 0200, 1200, 0220, and 1220). We have handled
recovery in states 1202 and 1222 by retaining both of the two conflicting (but
not yet violated) constraints response and not coexistence and handling the
conflict when the violation occurs.

From a performance point of view, a dedicated recovery automaton is prefer-
able. Each step takes constant time regardless of the size of the original model.
A possible disadvantage is its rigidity; the recovery strategy needs to be deter-
mined beforehand and the only way to switch to another recovery strategy is to
generate a new recovery automaton.

Fig. 6. Recovery by resetting violated constraints

Monitoring Business Constraints with Linear Temporal Logic 143

Fig. 7. Recovery automaton for the system in Fig. 1 using recovery strategy reset and
retaining states for conflicting constraints

4.3 Recovery by Skipping Events for Violated Constraints

The third recovery strategy skips events for permanently violated constraints
(but still executing it for non-violated constraints). Consider trace Money,

Bonds, Money, Stocks, High Y ield, Money, Stocks, High Y ield, Money,

Stocks, High Y ield, complete. When High Y ield occurs for the first time, the
not coexistence constraint is permanently violated. Under the skip strategy, this
constraint is made again active, by bringing it back to the last state before the
violation, i.e., the not coexistence constraint effectively ignores the occurrence of
High Y ield. In this way, when High Y ield occurs for the second time, the con-
straint is violated again and we have a third violation when High Y ield occurs
for the third time. Figure 8 shows the monitor in ProM using the skip strategy
for this trace. Figures 6 and 8 illustrate that the reset and skip strategies may
produce different results; the former detects one violation whereas the latter
detects three violations.

Similar to recovery by resetting violated constraints, it is possible to con-
struct a dedicated recovery automaton using the skipping events for violated
constraints. As a result, monitoring can be done in an efficient manner.

144 F.M. Maggi et al.

Fig. 8. Recovery by skipping events for violated constraints

In this section, we described three recovery strategies. There is no “best strat-
egy” for continuous support. The choice strongly depends on the application
domain and other contextual factors. Therefore, we have implemented all three
approaches in ProM.

5 Runtime Modification

Thus far we assumed that the model does not change during monitoring. In work-
flow literature one can find many approaches supporting flexibility by change

[15,13,5]. The basic idea is that the process model can be changed at runtime.
This generates all kinds of complications (see for example the well-known “dy-
namic change bug” [13]). Models may change due to a variety of reasons, e.g.,
the implementation of new legislation or the need to reduce response times. This
type of flexibility can easily be supported by Declare while avoiding problems
such as the “dynamic change bug”. Moreover, frequent violations of existing
constraints may trigger model changes such as removing a constraint.

Consider for example a trace containing both Bonds and High Y ield, thus
violating the not coexistence constraint, e.g., Money, Bonds, Money, Stocks,
High Y ield, Money, Low Risk, Bonds, Money, Stocks, Bonds, complete. In-
stead of applying one of the aforementioned recovery strategies, we could lever-
age on the possibility of modifying the model at runtime. In particular, we can
perform runtime modification using the algorithms for dynamic modifications
presented in [16]. The algorithms are able to update an automaton with changes
(such as adding and removing constraints). This approach is much faster than
regenerating the automaton from scratch.

In our example, we could remove the not coexistence constraint from the ref-
erence model adding at the same time a new not succession constraint, obtaining
the Declare model shown in Fig. 9. After this modification, events Bonds and
High Y ield can coexist but when Low Risk occurs, Stocks cannot occur any-
more. After the modification the trace is monitored w.r.t. the new model, leading
to the result reported in Fig. 10. Note that in correspondence of the second viola-
tion (involving the not succession constraint), a strategy for continuous support
is applied and the model does not change.

Monitoring Business Constraints with Linear Temporal Logic 145

Low_Risk

High_YieldMoney Stocks

Bonds

=

alternate
response

response

precedence

not succession

Fig. 9. Dynamic change of the model shown in Fig. 1

Fig. 10. Recovery by runtime change; at runtime the model shown in Fig. 1 is replaced
by the model shown in Fig. 9

6 Related Work

Several BPM researchers have investigated compliance at the model level [1,7].
In this paper, we focus on runtime verification and monitoring based on the
observed behavior rather than the modeled behavior. This has been a topic
of ongoing research, not only in the BPM domain, but also in the context of
software engineering and service oriented computing. Most authors propose to
use temporal logics (e.g., LTL) and model checking [4]. We refer to the survey
paper by Bauer et al. [2] for an overview of existing approaches. To implement
runtime verification, classical automata-based model checking techniques must
be adapted to reason upon partial traces. The monitored traces are finite, and
also subject to extensions as new events happen, making it not always possible
to draw a definitive conclusion about the property’s satisfaction or violation.
The approach presented in this paper is based on RV-LTL semantics [2] which
is a version of LTL on finite strings tailored for runtime verification.

Our verification technique is inspired by [6], where the use of (a finite-trace
version of) LTL is also considered to tackle runtime verification. In [6], a trans-
lation from arbitrary (next-free) LTL formulas is used to monitor any running
system. The main difference with our approach is that we consider the monitor
to be composed by several constraints, each of which can be violated, and we
report and recover based on individual automata instead of the entire system.

146 F.M. Maggi et al.

Other logic-based approaches have been proposed to deal with runtime veri-
fication of running traces. The work closest to our approach is [3], where Dec-
SerFlow (one of the constraint-based languages supported by Declare) is used to
model service choreographies. Here a (reactive version) of the Event Calculus [8]
is employed to provide the underlying formalization and monitoring capabilities.
Unlike our approach, in [3], the interplay between constraints is not considered.

The approach presented in this paper has been implemented as an Opera-
tional Support (OS) provider in ProM. The OS framework in ProM can be used
to detect, predict, and recommend at runtime. For example, [14] describes OS
providers related to time. Based on a partial trace the remaining flow time is
predicted and the action most likely to minimize the flow time is recommended.

7 Conclusion

Compliance has become an important topic in organizations that need to en-
sure the correct execution of their processes. Despite the desire to monitor and
control processes, there are events that cannot be controlled. For example, it
is impossible and also undesirable to control the actions of customers and pro-
fessionals. Therefore, we propose a comprehensive set of techniques to monitor
business constraints at runtime. These techniques are based on colored automata,
i.e., automata containing both global information about the state of the entire
system and local information about the states of all individual constraints. This
automaton can be precomputed, thus making monitoring very efficient.

Since constraints may be permanently violated, it is important to recover after
a violation (to still give meaningful diagnostics). We proposed and implemented
three recovery approaches (ignore, reset, and skip). Moreover, we showed that it
is possible to efficiently modify the constraint model while monitoring.

The approach has been applied in the Poseidon project where it has been used
to monitor “system health” in the domain of maritime safety and security. Future
work aims at more applications in typical BPM domains (banking, insurance,
etc.). Moreover, we would like to further improve our diagnostics and include
other perspectives (data, time, resources).

References

1. Awad, A., Decker, G., Weske, M.: Efficient Compliance Checking Using BPMN-Q
and Temporal Logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008.
LNCS, vol. 5240, pp. 326–341. Springer, Heidelberg (2008)

2. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL Semantics for Runtime
Verification. Logic and Computation 20(3), 651–674 (2010)

3. Chesani, F., Mello, P., Montali, M., Torroni, P.: Verification of Choreographies
During Execution Using the Reactive Event Calculus. In: Bruni, R., Wolf, K. (eds.)
WS-FM 2008. LNCS, vol. 5387, pp. 55–72. Springer, Heidelberg (2009)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

Monitoring Business Constraints with Linear Temporal Logic 147

5. Dadam, P., Reichert, M.: The ADEPT project: a decade of research and devel-
opment for robust and flexible process support. Computer Science - R&D 23(2),
81–97 (2009)

6. Giannakopoulou, D., Havelund, K.: Automata-Based Verification of Temporal
Properties on Running Programs. In: Proceedings of the 16th IEEE International
Conference on Automated Software Engineering (ASE 2001), pp. 412–416. IEEE
Computer Society, Los Alamitos (2001)

7. Governatori, G., Milosevic, Z., Sadiq, S.W.: Compliance Checking Between Busi-
ness Processes and Business Contracts. In: Proceedings of the 10th IEEE Inter-
national Enterprise Distributed Object Computing Conference (EDOC 2006), pp.
221–232. IEEE Computer Society, Los Alamitos (2006)

8. Kowalski, R.A., Sergot, M.J.: A Logic-Based Calculus of Events. New Generation
Computing 4(1), 67–95 (1986)

9. Lichtenstein, O., Pnueli, A., Zuck, L.D.: The glory of the past. In: Proceedings of
the Conference on Logic of Programs, London, UK, pp. 196–218. Springer, Heidel-
berg (1985)

10. Montali, M.: Specification and Verification of Declarative Open Interaction Models.
LNBIP, vol. 56. Springer, Heidelberg (2010)

11. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: Full Support for
Loosely-Structured Processes. In: Proceedings of the 11th IEEE International En-
terprise Distributed Object Computing Conference (EDOC 2007), pp. 287–300.
IEEE Computer Society, Los Alamitos (2007)

12. Pesic, M., van der Aalst, W.M.P.: A Declarative Approach for Flexible Business
Processes Management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006.
LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)

13. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W.M.P.: To-
wards a Taxonomy of Process Flexibility. In: Bellahsene, Z., Woo, C., Hunt, E.,
Franch, X., Coletta, R. (eds.) Proceedings of the Forum at the CAiSE 2008 Con-
ference. CEUR Workshop Proceedings, vol. 344, pp. 81–84 (2008)

14. van der Aalst, W.M.P., Pesic, M., Song, M.: Beyond process mining: From the
past to present and future. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp.
38–52. Springer, Heidelberg (2010)

15. Weber, B., Rinderle, S., Reichert, M.: Change Patterns and Change Support Fea-
tures in Process-Aware Information Systems. In: Krogstie, J., Opdahl, A.L., Sin-
dre, G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 574–588. Springer,
Heidelberg (2007)

16. Westergaard, M.: Better Algorithms for Analyzing and Enacting Declarative
Workflow Languages Using LTL. In: Rinderle, S., Toumani, F., Wolf, K. (eds.)
BPM 2011. LNCS, vol. 6896. Springer, Heidelberg (2011)

17. Westergaard, M., Maggi, F.M.: Modelling and Verification of a Protocol for Oper-
ational Support using Coloured Petri Nets. In: Proc. of ATPN 2011 (2011)

	Monitoring Business Constraints with Linear Temporal Logic: An Approach Based on Colored Automata
	Introduction
	Background
	Running Example Using Declare
	LTL Semantics for Runtime Verification
	Translation of a Declare Constraint Model to Automata

	Colored Automata for Runtime Verification
	Strategies for Continuous Support
	Recovery by Ignoring Violated Constraints
	Recovery by Resetting Violated Constraints
	Recovery by Skipping Events for Violated Constraints

	Runtime Modification
	Related Work
	Conclusion
	References

