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Abstract

Introduction Cellular metabolism is altered during cancer

initiation and progression, which allows cancer cells to

increase anabolic synthesis, avoid apoptosis and adapt to

low nutrient and oxygen availability. The metabolic nature

of cancer enables patient cancer status to be monitored by

metabolomics and lipidomics. Additionally, monitoring

metabolic status of patients or biological models can be

used to greater understand the action of anticancer

therapeutics.

Objectives Discuss how metabolomics and lipidomics can

be used to (i) identify metabolic biomarkers of cancer and

(ii) understand the mechanism-of-action of anticancer

therapies. Discuss considerations that can maximize the

clinical value of metabolic cancer biomarkers including

case–control, prognostic and longitudinal study designs.

Methods A literature search of the current relevant primary

research was performed.

Results Metabolomics and lipidomics can identify meta-

bolic signatures that associate with cancer diagnosis,

prognosis and disease progression. Discriminatory

metabolites were most commonly linked to lipid or energy

metabolism. Case–control studies outnumbered prognostic

and longitudinal approaches. Prognostic studies were able

to correlate metabolic features with future cancer risk,

whereas longitudinal studies were most effective for

studying cancer progression. Metabolomics and lipidomics

can help to understand the mechanism-of-action of anti-

cancer therapeutics and mechanisms of drug resistance.

Conclusion Metabolomics and lipidomics can be used to

identify biomarkers associated with cancer and to better

understand anticancer therapies.

Keywords Mass spectrometry � Nuclear magnetic

resonance � Leukemia � Stratified medicine � Nutraceutical �
Drug redeployment

1 Introduction: cancer metabolism

Cancer initiation and progression is associated with specific

changes to cellular metabolism that are not simply by-

products of the disease; instead they appear to drive the

disease (Boroughs and DeBerardinis 2015; Wishart 2015).

Activated oncoproteins alter cell metabolism (Kimmelman

2015; Sancho et al. 2015) and some metabolic enzymes are

now being considered as oncoproteins (Migita et al. 2009).

At the genetic level cancer is very complex and heteroge-

neous (Lohr et al. 2014), however at the metabolic level only

a few processes are altered (Wishart 2015). The identifica-

tion and measurement of cancer-specific metabolic and lipid

markers from low-invasive patient samples has the potential

to monitor prognosis and disease in cancer patients.

For metabolic or lipid markers to be robust indicators of

cancer they need to be anchored in biochemical knowledge
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of tumour metabolism (Fig. 1). High glucose demand and

aerobic glycolysis are common metabolic traits of cancer

cells (Vander Heiden et al. (2009); Warburg 1956). This is

often accompanied by mutagenic disruption to TCA cycle

enzymes (King et al. 2006), creating a metabolic phenotype

that directs glucose carbon towards anabolic synthesis

(Boroughs and DeBerardinis 2015). Additionally, this

favours NADPH recycling to maintain glutathione levels

and an optimal cellular redox status (Patra and Hay 2014)

(Fig. 1). Functional mitochondria are essential to cancer

cells with TCA cycle disruption (Wallace 2012). Mito-

chondria contribute towards anabolic biosynthesis in

tumours (Ahn and Metallo 2015), including de novo fatty

acid biosynthesis—a process that is upregulated in several

cancers (Currie et al. 2013). Glutaminolysis is a key

metabolic process in MYC driven cancers whereby carbon

from the catabolism of glutamine is imported into the

mitochondria to maintain mitochondrial membrane poten-

tial (Wise and Thompson 2010). Carbon from glutamine is

also used for the anabolic synthesis of proteins and

nucleotides (DeBerardinis et al. 2007). Additionally, the

local tumour environment plays a key role in the metabo-

lism of cancer cells. Here, nutrient- and oxygen-poor

tumour cells scavenge alternate carbon sources—lactate

(Doherty and Cleveland 2013), acetate (Kamphorst et al.

2014; Schug et al. 2015) and lipids (Kamphorst et al.

2013)—to maintain energy production and anabolic

synthesis.

This review will discuss considerations required for

metabolic monitoring of cancer patients in the clinic.

Current examples of its application to monitor disease risk

and incidence, disease staging and understand the mecha-

nism-of-action of anticancer therapeutics [pharma-

cometabolomics (Kaddurah-Daouk et al. 2008; Lindon

et al. 2006)] will be discussed.

2 Metabolomic and lipidomic strategies

2.1 Sample types

The identification of metabolic markers that can clinically

monitor cancer status requires access to patient samples

(Mayers et al. 2014). Analysis of tissue samples provides

mechanistic understanding of cancer (Ren et al. 2016;

Rocha et al. 2015; Wang et al. 2013), however such

invasive samples are less suited for regular patient moni-

toring. An exception is magnetic resonance imaging (MRI)

where metabolic profiles of tumour tissue can be non-in-

vasively obtained (Gill et al. 2014). Low-invasive patient

samples (e.g. serum, urine) are ideal for regular patient

monitoring as they offer minimal patient discomfort and

can justifiably be taken from healthy (control) patients. The

location of the cancer may influence the chosen sample

type, e.g. urine for bladder cancer (Jin et al. 2014), breath

for lung cancer (Li et al. 2015). Low invasive samples are

generally extracellular fluids. Here, the metabolic profile is

dependent on cellular uptake and excretion from all bodily

processes (not just the cancer), which must be considered

during data interpretation. Pharmacometabolomics analysis

to understand the mechanism-of-action of anticancer ther-

apeutics often begins in cell lines (Southam et al. 2015),

before progressing to ex vivo studies (Koczula et al. 2016)

and then patient samples (Schuler et al. 2015).

2.2 Analytical approaches

The study of cancer metabolism is most typically done by

steady-state metabolomics or lipidomics using liquid

chromatography-mass spectrometry (LC–MS) (Mayers

et al. 2014; Kuhn et al. 2016; Piszcz et al. 2016), gas

chromatography-MS (GC–MS) (Xie et al. 2015; Wittmann

et al. 2014), direct infusion MS (DIMS) (Southam et al.

2015; Li et al. 2013; Southam et al. 2007) or nuclear

magnetic resonance (NMR) spectroscopy (Fages et al.

2015; Lodi et al. 2013). To retain spatial information,

metabolic imaging approaches can be used [e.g. matrix-

assisted laser desorption/ionization MS (Krasny et al.

2015)]. Analytical techniques more suited to the clinical

setting are emerging, including liquid extraction surface

analysis (LESA) MS to profile lipids directly from dried

Fig. 1 A simplified overview of metabolic changes that occur in

cancer. Cancers often exhibit increased aerobic glycolysis resulting in

glucose carbon being directed towards lactate and the anabolic

synthesis of nucleotides, amino acids and lipids. This is associated

with disruption of the TCA cycle and the increased use of glutamine

as a carbon source (glutaminolysis). Cancer-induced increase of the

pentose phosphate pathway can increase NADPH recycling to protect

cells against oxidative stress
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blood spots (Griffiths et al. 2015); portable hand-held

Raman spectrometery (Mabbott et al. 2013); and rapid

evaporative mass spectrometry (Schaefer et al. 2009). The

intelligent knife (iKnife) where a surgical scalpel is cou-

pled to a MS detector to measure intraoperative real-time

lipidomics capable of distinguishing tumour tissue from

healthy tissue is an example for the latter (Balog et al.

2013).

2.3 Stable isotopic labelling analysis

Stable isotope-labelled compounds (that contain 13C, 2H,
15N atoms; most commonly 13C-glucose and 13C-glu-

tamine) can be traced into metabolites and lipids using MS

or NMR metabolomics and lipidomics. This provides

dynamic pathway information, which can inform on cancer

processes (Kamphorst et al. 2013) and the mechanism-of-

action of anticancer drugs (Southam et al. 2015). The non-

toxic nature of stable isotopes enables their use in patients,

including to demonstrate the heterogeneous metabolic

nature of lung cancers (Hensley et al. 2016). Furthermore,

stable-isotope labelling combined with hyperpolarized

MRI metabolomic imaging can monitor cancer stages and

therapy response in vivo by measuring the conversion of

hyperpolarized 13C glucose or 13C-pyruvate to 13C-lactate

in tumours (Rodrigues et al. 2014; Saito et al. 2015). The

large concentration differences of lactate between tumour

and healthy tissue allow for more sensitive and precise

tumour detection than 18fluoro-2-deoxyglucose positron

emission tomography (18FDG-PET) where tumour and

surrounding tissue 18FDG levels can sometimes show poor

contrast (Rodrigues et al. 2014).

3 Identification of metabolic cancer biomarkers

3.1 Maximising the clinical value of metabolic

cancer biomarkers

Several metabolic markers have been associated with

cancer status (Table 1), however this information is yet to

be used for routine cancer screening in the clinic. To ensure

future success of metabolic biomarkers in cancer patients

certain aspects must be considered. Biomarkers should be

more informative, less invasive and/or cheaper than current

approaches (e.g. histology). To identify specific metabolic

biomarkers of cancer, patient-to-patient variation—in-

cluding ethnicity, sex, nutritional status, general health—

should be minimised. The sampling procedure must be

technically reproducible and the study size large enough to

provide adequate statistical power. Different genetic

mutations create subtle differences in metabolism, for

instance RAS transformation will increase cellular glucose

uptake and use in anabolic processes (Boroughs and

DeBerardinis 2015). Therefore, genetic phenotyping of

patient cancers [e.g. RAS status (Bertini et al. 2012)] would

aid data interpretation and allow biomarkers to be assigned

to specific mutations. Spectral features identified as

biomarkers should be fully annotated and anchored in a

sound biochemical understanding of cancer. This includes

distinguishing metabolic cancer traits from general whole

body metabolism and the metabolism of therapeutic drugs.

Collections or ‘panels’ of markers are generally favoured

over single biomarkers (Zang et al. 2014) as they better

describe multifactorial metabolic processes. Furthermore,

to overcome inter-patient variation of baseline metabolite

levels, biomarkers can be measured as ratios of

pairs/groups of compounds rather absolute intensity mea-

surements of individual compounds (Zeng et al. 2015).

Effective study design is important (Fig. 2). Case–con-

trol studies compare a cohort of cancer patients against a

cohort of healthy patients to identify metabolic markers of

disease (Xie et al. 2015). Prognostic case–control studies

analyse patient samples taken before cancer diagnosis to

identify metabolic signatures that are indicative of cancer

risk (Mayers et al. 2014). Longitudinal studies take several

samples from patients over a time period—e.g. prior to

diagnosis, at diagnosis and in remission—meaning each

patient has a control sample to which other sample time-

points are compared. Longitudinal studies can be used to

identify metabolic markers indicative of (i) cancer prog-

nosis and risk of disease (Cook et al. 2016), (ii) patient

remission or relapse (Lodi et al. 2013) and (iii) the

mechanism-of-action and success of anticancer drug ther-

apies (Jobard et al. 2015).

3.2 Case–control studies to identify metabolic

markers of cancer

Case–control study design is the most commonly used

approach to identify metabolic markers associated with

cancer (Armitage and Barbas 2014) (Fig. 2). Many of these

biomarkers are related to lipid metabolism (Table 1). Free

fatty acids and lysophosphatidylcholines were shown to be

elevated in serum from lung (Li et al. 2014) and colorectal

cancer (Li et al. 2013) patients compared to controls, whilst

phospholipid composition was altered in the serum of

patients with breast (Yang et al. 2015), colorectal (Li et al.

2013) and ovarian (Buas et al. 2016) cancers. These

changes are consistent with the lipogenic phenotype asso-

ciated with cancer (Menendez and Lupu 2007) and cancer-

induced changes to phospholipid composition (Marien

et al. 2015). Other lipid changes include increased serum

acetylcarnitine and acylcarnitine levels in aggressive

chronic lymphocytic leukaemia (CLL) patients relative to

indolent CLL patients (Piszcz et al. 2016), and increased
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carnitine and select acylcarnitines in urine from bladder

cancer patients (Jin et al. 2014). This suggests an alteration

of mitochondrial fatty acid b-oxidation, which has been

shown as an anticancer target (Samudio et al. 2010). Non-

lipid metabolic markers of cancer mainly included gly-

colytic or TCA cycle metabolites (An et al. 2015; Jin et al.

2014; Wittmann et al. 2014). Alanine was identified as a

marker in three studies: elevated in gastric cancer (Chan

et al. 2016) and leptomeningeal carcinomatosis (An et al.

2015), and decreased in ovarian cancer (Buas et al. 2016).

Changeable alanine levels may be related to the glycolytic

cancer phenotype where pyruvate can be used to produce

alanine and other non-essential amino acids (Munoz-

Pinedo et al. 2012).

3.3 Prognostic case–control and longitudinal

approaches to identify metabolic markers

associated with the risk of developing cancer

With the correct study design, metabolomics and lipi-

domics can identify metabolic markers that are indicative

of future cancer risk. This could allow patients to be treated

earlier or enable the design of interventions that delay or

prevent cancer onset. For this approach, biological samples

are taken from multiple patients without cancer—repre-

senting pre-disease baseline metabolism. Patients are then

monitored over months/years for incidence of cancer. A

prognostic case–control study compares metabolic baseline

profiles from individuals who develop cancer against

matched control patients who do not develop cancer

(Fig. 2; Table 1) (Kuhn et al. 2016; Mayers et al. 2014). A

prognostic longitudinal approach requires further sampling

from each subject (e.g. on diagnosis, in remission; Fig. 2),

which can then be compared to baseline metabolism (Cook

et al. 2016). The collection of baseline samples before

cancer diagnosis requires years of forward planning or

access to archived patient samples. Also, an initial large

patient cohort is required to ensure sufficient patients will

develop cancer—often several thousand subjects (Kuhn

et al. 2016; Mayers et al. 2014). As a result, prognostic

studies are less common to standard case–control studies.

However, this approach has shown that metabolic markers

can indicate cancer risk years before diagnosis (Kuhn et al.

2016), demonstrating it to be clinically very powerful.

Recent prognostic case–control metabolomics studies

indicate that blood lipid composition is indicative of future

cancer risk (Table 1). Serum levels of lysophosphatidyl-

cholines, particularly LPC(18:0), are negatively associated

with breast, prostate and colorectal cancer risk, whereas the

phosphatidylcholine(30:0) level was positively associated

(Kuhn et al. 2016). A separate study showed that many

serum lipids—including free fatty acids and various

phospholipids—have a negative association with

aggressive prostate cancer (Mondul et al. 2015). A further

study showed that levels of unsaturated lipids in the serum

were negatively associated with hepatocellular carcinoma

incidence (Fages et al. 2015). This demonstrates the

importance of lipid metabolism in cancer and is consistent

with findings from case–control studies (above). Consid-

ering non-lipid prognostic markers (Table 1), altered serum

levels of energy-related metabolites were associated with

cancer: a-ketoglutarate and citrate were negatively asso-

ciated with prostate cancer (Mondul et al. 2015) and glu-

cose positively associated with hepatocellular carcinoma

(Fages et al. 2015). Elevated serum levels of branched-

chain amino acids are associated with a[twofold increased

risk of pancreatic ductal adenocarcinoma (Mayers et al.

2014), which is in contrast to hepatocellular carcinoma

where the opposite was reported (Fages et al. 2015). The

inconsistency may be explained by the effect the cancer has

on the function of the disease tissue—in pancreatic ductal

adenocarcinoma, altered pancreas function changes glu-

cose metabolism leading to whole-body protein breakdown

and elevated branched chain amino acids (Mayers et al.

2014). This emphasises the need to consider all bodily

processes when interpreting data acquired from patient

biofluids.

Currently, the application of longitudinal metabolomics

to monitor cancer prognosis is rare. However, this approach

has been used to analyse mouse urine and can successfully

predict the incidence of several different types of cancer

(Cook et al. 2016). A notable advantage of a longitudinal

approach over a prognostic case–control approach is the

analysis of metabolism both before diagnosis and on

diagnosis. This establishes metabolic indicators of cancer

risk while also understanding how and why these metabolic

processes change on cancer initiation.

3.4 Identification of metabolic markers of cancer

progression, relapse and remission

Longitudinal metabolomics is ideal to monitor cancer

progression, relapse and remission. Here, patient samples

are collected at cancer diagnosis and on several occasions

afterwards (Fig. 2). Analysis of the samples aims to iden-

tify metabolic features that correlate with—and can

therefore be indicative of—relapse or remission (Table 1).

Longitudinal studies have shown TCA cycle intermediates

and RNA degradation products to decrease in colorectal

cancer patients’ serum once remission or stable disease has

been reached (Zhu et al. 2015). Serum levels of carnitine

and acetylcarnitine were lower in remission and increased

in relapse in multiple myeloma patients (Lodi et al. 2013).

This indicates that mitochondrial b-oxidation is altered at

different cancer stages, which is consistent with case–

control studies above (Jin et al. 2014; Piszcz et al. 2016).
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Case–control metabolomics has also been applied to

greater understand cancer progression including a study

where aromatic amino acid levels in patient urine samples

were shown to be indicative of bladder cancer disease stage

(Alberice et al. 2013).

A key consideration when investigating cancer pro-

gression is the distinction between drug-induced metabolic

changes—as cancer patients will likely receive therapy on

diagnosis—and cancer-induced metabolic changes. This

issue is highlighted in a multiple myeloma study where the

biomarkers that were able to distinguish patients in

remission from those at diagnosis (glucose, citrate and

lactate) were likely attributable to bortezomib drug therapy

(Puchades-Carrasco et al. 2013). The value of these

markers as indicators of disease remission is unclear

without an understanding of the therapeutic drug

metabolism.

4 Using metabolomics and lipidomics
to understand the mechanism-of-action
of anticancer therapeutics

Metabolomics and lipidomics can be used to elucidate the

metabolic mechanism-of-action of anticancer therapeutics.

This information has the potential to improve therapies and

understand why some patients respond but others do not

(Nicholson et al. 2011; Holmes et al. 2015). The following

sections highlight how metabolomics and lipidomics con-

tribute to understanding drug action—including optimising

drug delivery strategies, understanding drug resistance and

exploration of nutraceuticals for anticancer therapy.

4.1 Anticancer therapeutics

Metabolomic and lipidomic investigation of anticancer

therapeutics has been applied to patient samples and

in vitro models (He et al. 2015; Schuler et al. 2015). The

most commonly studied drug is metformin, which was

originally intended to treat type II diabetes but also has

anticancer activity arising from its inhibition of mito-

chondrial complex I and production of energetic stress

(Pernicova and Korbonits 2014). Metabolomics analysis of

serum samples from metformin-treated breast cancer

patients revealed disruptions to glucose and insulin meta-

bolism (Lord et al. 2015). Further metabolomics analyses

indicated that metformin also alters methionine and folate

cycles to decrease nucleotide synthesis, which may further

contribute to the anticancer activity (Jara and López-

Muñoz 2015). Additional examples of metabolomic and

lipidomic investigation of anticancer therapeutics are

detailed in Table 2.

4.2 Drug redeployment

Drug redeployment (also known as drug repositioning or

drug repurposing) involves the use of existing drug(s) in a

situation it was not originally intended (Ashburn and Thor

2004). Candidate drugs would typically be identified by

screening a panel of licenced drugs for anticancer effect.

The benefit of this approach is that drug pharmacokinetics

and toxicity are already known, eliminating the need for

early stage clinical trials. However, the exact anticancer

mechanism of the drug is often unknown. Metabolomics

and lipidomics has been used to understand the metabolic

mechanism-of-action of redeployed anticancer drugs, e.g.

metformin (see above), aspirin (Liesenfeld et al. 2016) and

bezafibrate/medroxyprogesterone acetate (Southam et al.

2015) (Table 2). There are, however, important consider-

ations when using metabolomics and lipidomics to eluci-

date drug mechanism. Firstly, it can be challenging to

distinguish anticancer metabolic effects of the drug from

the whole body metabolic response to the drug. In this case,

further experimentation is required to prove that the

metabolic changes actually correlate to anticancer effect.

Additionally, redeployed drugs are often used as combi-

nations and different doses compared to their original

intended prescribed dose (Khanim et al. 2009). This could

alter drug effects and/or increase the number of metabolic

processes that are perturbed, making it more difficult to

distinguish anticancer metabolic effects from the general

metabolic perturbations caused by the drugs.

4.3 Stratified and personalised medicine

Stratified medicine aims to predict whether cancer patients

will respond to therapy (Trusheim et al. 2007). Using a

prognostic study design (Fig. 2b—where the outcome is

drug response rather than cancer incidence) it is possible to

identify metabolic profiles predictive of drug response,

which could be used to personalise treatments for indi-

vidual patients (Nicholson et al. 2011). Adopting this

approach, metabolomics has been utilised to understand

how mitomycin C should be used in the treatment of

pancreatic cancer (Navarrete et al. 2014). In this study,

patient pancreatic adenocarcinoma cells were xenografted

on to a murine tumour model and then cells were treated

with mitomycin C, rapamycin or a combination of both.

Mitomycin C had a greater anticancer effect than rapa-

mycin alone or the combined drugs. The authors propose

that the effectiveness of mitomycin C alone was due to its

effect on central carbon metabolism. Metabolomics has

also been used to stratify metformin treatment. It was

shown that cells with mutated isocitrate dehydrogenase 1

(IDH1) have a metabolic phenotype that increases their

vulnerability to metformin (Cuyàs et al. 2015). This
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suggests that metformin would be most effective against

tumours with IDH1 mutations [e.g. brain tumours and acute

myeloid leukaemia (Balss et al. 2008; Schnittger et al.

2010].

4.4 Novel drug administration strategies

Advancements in drug administration can allow drugs to

reach the target cancer tissue more effectively, e.g. poly-

mer-nanoparticle-encapsulation can co-deliver two drugs—

doxorubicin and paclitaxel—to cancer cells to maximise

the synergistic effect of the drugs (Wang et al. 2011). NMR

metabolomics has been used to investigate systemic toxic

effect(s) of the polymer-nanoparticle-encapsulation mate-

rial used to deliver doxorubicin and paclitaxel compared to

the free forms of the drugs in mice (Song et al. 2015). The

encapsulation material induced a slight and temporalT
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Fig. 2 Metabolomics and lipidomics study designs. a Case–control

studies utilise genetically different cohorts for control subjects and

subjects with cancer. b Prognostic case–control studies use samples

taken from patients before an event, e.g. cancer diagnosis. This

enables metabolic features to be correlated with future cancer risk.

c Longitudinal approaches analyse samples taken from each patient at

multiple time-points
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metabolic effect in the mice—supporting this as a low

toxicity approach—while encapsulation decreased the

toxicity of the drugs on the heart compared to adminis-

tration of free drugs (Song et al. 2015).

4.5 Drug resistance

Cancer cells often develop resistance towards drug thera-

pies (Gottesman 2002). Understanding why resistance

occurs could allow the therapy to be modified to overcome

the resistance. Metabolomics has informed on the resis-

tance mechanism of some anticancer drugs. Resistance to

the chemotherapeutic agent temozolomide is common

during the treatment of glioblastoma multiforme (St-Coeur

et al. 2015). Metabolomics has been used to understand the

mechanism of resistance in glioblastoma multiforme cell

lines and primary tumours, and also to explore the meta-

bolic effects of the temozolomide-sensitizing agent,

Lomeguatrib (St-Coeur et al. 2015). Glucose, citrate and

isocitrate were increased in resistant cells, whereas alanine,

choline, creatine and phosphorylcholine were increased in

sensitive cells, demonstrating a metabolic aspect to the

drug resistance (St-Coeur et al. 2015). These metabolic

signatures could predict drug responses and, once the

metabolic perturbations are understood, could help con-

tribute to the improvement of therapies in glioblastoma

multiforme. Additionally, the imaging approach, time-of-

flight secondary ion mass spectrometry (ToF–SIMS), has

been used to study metabolic regulation of hypoxia-in-

duced chemoresistance to doxorubicin treatment of multi-

cellular tumour spheroids (Kotze et al. 2013). Cholesterol

and diacylglycerols were implicated as response markers of

treatment in the hypoxic regions, which suggested that

lipids play a role in drug response and resistance in hypoxic

regions of tumours (Kotze et al. 2013).

4.6 Nutraceutical cancer treatments

Natural plant extracts or plant-derived nutrients can have

anticancer properties (Babbar et al. 2015), and therefore

often offer a viable alternative to pharmaceuticals. Meta-

bolomics and lipidomics can aid with the elucidation of the

mechanism-of-action of such compounds. Volatile oil

extracted from Saussurea lappa Decne in addition to cos-

tunolide and dehydrocostus lactone isolated from the oil

have shown anticancer properties against breast cancer

cells (Peng et al. 2015). Metabolomics of serum and urine

samples from MCF-7 xenograft mice revealed that the oil

and the extracted compounds can reverse the metabolic

phenotype associated with the MCF-7 xenograft (initial

MCF-7 xenograft increases glycolysis and steroid hormone

metabolism, and decreases unsaturated fatty acid metabo-

lism) (Peng et al. 2015). Halofuginone, extracted from

Dichroa febrifuga, can inhibit colorectal cancer growth

in vitro and in vivo (Chen et al. 2015). Metabolic flux

analysis showed halofuginone to decrease glycolytic and

TCA cycle intermediates, which was correlated with

reduced GLUT 1 activity and glucose uptake (Chen et al.

2015). Lipidomics revealed a decrease in phospholipids,

ceramide and sphingomyelin after treatment, which was

consistent with the reported halofuginone-induced decrease

of fatty acid synthase expression (Chen et al. 2015). These

findings suggest that halofuginone can target the known

metabolic cancer targets aerobic glycolysis and fatty acid

biosynthesis. Flexibilide isolated from coral (Sinularia

flexibilis) has anticancer properties (Gao et al. 2016).

Metabolomics analysis of flexibilide-treated HCT-116

colorectal cancer cells indicated that the compound mod-

ulates sphingolipid metabolism, amino acid metabolism,

phospholipid metabolism and pyrimidine metabolism,

which the authors suggest may be associated with the anti-

tumour activity (Gao et al. 2016). Nutmeg has also been

studied for its effect against colorectal carcinoma (Li et al.

2015a). Serum metabolomics revealed that colon cancer

bearing mice have elevated levels of uremic toxins cresol

sulfate, cresol glucuronide, indoxyl sulfate and phenyl

sulfate, which are likely generated from gut microbiota and

are implicated in tumorigenesis (Li et al. 2015a). Nutmeg

has been shown to attenuate the serum levels of these

compounds, potentially reflecting the antibacterial and

anticancer properties of nutmeg (Li et al. 2015a). This

study highlights that it is important to understand the role

of gut microbiota in cancer—an expanding and important

research topic. It has been shown that human colorectal

cancer cells carrying KRAS and BRAF mutations—giving

them a highly glycolytic phenotype—can be selectively

killed by high doses of vitamin C (Yun et al. 2015).

Metabolomics revealed that vitamin C causes pentose

phosphate pathway metabolites and glycolytic intermedi-

ates located up-stream of glyceraldehyde 3-phosphate

dehydrogenase (GAPDH) to increase in KRAS and BRAF

mutated colorectal cancer cells, whereas metabolites down-

stream of GAPDH were decreased (Yun et al. 2015).

Vitamin C was subsequently demonstrated to inhibit the

GAPDH enzyme through the accumulation of reactive

oxygen species (Yun et al. 2015).

5 Conclusions and future perspectives

Metabolomics and lipidomics are important tools for can-

cer research. They can be used to discover biomarkers

indicative of patient prognosis, diagnosis and treatment

efficacy, and to aid in the elucidation of the mechanism-of-

action of novel and existing anticancer therapeutics. To

identify robust and clinically useful biomarkers effective
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study design is essential. Prognostic studies—where sam-

ples are taken prior to cancer diagnosis—can identify

metabolic markers indicative of future cancer risk. Longi-

tudinal studies—involving analysis of multiple samples

taken the each patient over a time period—is a good

strategy to investigate the metabolic aspects of cancer

progression. Considering anticancer therapy development,

metabolomics and lipidomics have contributed to the

development and understanding of pharmaceutical thera-

pies, nutraceutical therapies and novel drug delivery

strategies. Key future research applications for metabo-

lomics and lipidomics are to investigate the role of gut

microbiota in cancer and to better understand how meta-

bolic therapies can be tailored using a stratified medicine

approach. Understanding gut microbiota in cancer is par-

ticularly important given that this can alter the metabolic

response to drug therapies (Li et al. 2015b) and also the

efficacy anticancer treatment (Vétizou et al. 2015).
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