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Abstract Distributed skyline computation is important for a wide range of domains,

from distributed and web-based systems to ISP-network monitoring and distributed

databases. The problem is particularly challenging in dynamic distributed settings,

where the goal is to efficiently monitor a continuous skyline query over a collection

of distributed streams. All existing work relies on the assumption of a single point of

reference for object attributes/dimensions: objects may be vertically or horizontally

partitioned, but the accurate value of each dimension for each object is always main-

tained by a single site. This assumption is unrealistic for several distributed applica-

tions, where object information is fragmented over a set of distributed streams (each

monitored by a different site) and needs to be aggregated (e.g., averaged) across sev-

eral sites. Furthermore, it is frequently useful to define skyline dimensions through

complex functions over the aggregated objects, which raises further challenges for

dealing with distribution and object fragmentation. We present the first known dis-

tributed algorithms for continuous monitoring of skylines over complex functions of

fragmented multi-dimensional objects. Our algorithms rely on decomposition of the

skyline monitoring problem to a select set of distributed threshold-crossing queries,

which can be monitored locally at each site. We propose several optimizations, in-

cluding: (a) a technique for adaptively determining the most efficient monitoring

strategy for each object, (b) an approximate monitoring technique, and (c) a strat-

egy that reduces communication overhead by grouping together threshold-crossing

queries. Furthermore, we discuss how our proposed algorithms can be used to adress

other continuous query types. A thorough experimental study with synthetic and real-
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life data sets verifies the effectiveness of our schemes and demonstrates order-of-

magnitude improvements in communication costs compared to the only alternative

centralized solution.

1 Introduction

Since the introduction of the skyline operator [3], the problem of efficiently con-

structing skylines in distributed environments has been widely studied. The bulk of

this work has typically focused on one-shot skyline computation, proposing CPU-

and communication-efficient strategies for one-time computation of the skyline ob-

jects across static, distributed multi-dimensional object collections. Such one-shot

techniques over static data are inadequate for new, rapidly-emerging classes of large-

scale event monitoring applications, which need to effectively manage, query, and

analyze large collections of distributed data streams. Prototypical examples include

wireless sensor networks (where multiple remote sensor measurements must be mon-

itored and analyzed for trends, patterns, intrusions, or other adverse events) and ISP

network-monitoring systems (where usage information from a multitude of monitor-

ing points must be tracked and correlated in order to quickly react to hot spots, floods,

failures, and attacks). Querying in such systems is naturally distributed (i.e., over a

collection of remote sites), and also continuous; that is, we require real-time monitor-

ing of query answers and events, not merely one-shot responses to sporadic queries.

Continuous skyline maintenance has been addressed in recent work, both for cen-

tralized [28,21,14] and distributed deployments [31]. Still, that work, as well as all

existing work in distributed skyline processing assumes, at most, horizontal or ver-

tical partitioning of the data: each site maintains a subset of the complete object

vectors [27], or a subset of the dimensions for all objects [2,26]. As such, all pre-

vious algorithms rely on the fundamental assumption that there exists a single site

in the network maintaining the accurate value for each object’s dimension. Thus,

each site can independently apply local filtering techniques on the observed updates,

drastically reducing the required network resources. Unfortunately, this assumption

is unrealistic for a number of real-world, distributed monitoring applications, where

the vector of each object is determined by aggregating (e.g., averaging) partial vector

values fragmented over many sites.

To make matters worse, skyline dimensions can often be defined through (possi-

bly) complex, non-linear functions over the aggregated object vectors. For example,

an ISP might be interested in monitoring the skyline of the aggregate packet vol-

ume and the variance of packet sizes routed to each subnet through each of the edge

routers. Such complex functional skyline queries are particularly challenging in the

case of fragmented objects: each site only has its partial view of the object vector val-

ues, and, for non-linear functions like variance, it is impossible to estimate the value

of the function on the global object vector from the local object position [23].

Example 1. Consider the problem of monitoring the network of a large ISP. A typical

configuration involves installing monitoring code at the edge routers of the ISP to

collect workload statistics over sliding windows for a set of IP addresses served by

the ISP. Skyline queries on the data aggregated over all edge routers are powerful
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router target	ip #packets vol.

1 121.11.*.* 134 1226

1 117.23.*.* 60 72

2 121.11.*.* 180 1280

2 117.23.*.* 80 100

3 121.11.*.* 160 1301

… … … …

target	ip #packets vol.

121.11.*.* 158 1269

117.23.*.* 70 86

201.7.*.* 627 4874

72.11.*.* 884 982

… … …

Aggregation	(average)

target	ip avg(#packets) var(vol.) sky

121.11.*.* 158 1497 YES

117.23.*.* 70 392 NO

201.7.*.* 627 0 NO

72.11.*.* 884 1208 YES

… … … …

Skyline	space:	avg(#packets),	var(vol.)

Fig. 1 Monitoring an ISP network: (a) the raw-distributed data, (b) the aggregated data, (c) the skyline
space.

tools for network administrators, for quickly identifying problematic IP addresses or

interesting network events. For example, the skyline of the average (over all routers)

number of packets and transfer volume, per target IP (data shown in Fig. 1(b)), helps

an administrator to focus on IPs potentially under attack. Skyline dimensions can

even be defined through complex, non-linear functions on the aggregated data, such

as the variance of the edge routers’ workload per IP (Fig. 1(c)) – a key indicator for

sites under DoS attack. Even though the industry standard in routers enables local

statistics maintenance, aggregation of the data in order to maintain the skyline space

is challenging due to the volume and volatility of the traffic update streams. Problem

is aggravated by the usage of non-linear functions for the definition of the skyline

dimensions, in which case a router observing a local update cannot even predict the

direction of the change at the skyline space. This calls for a distributed solution for

skyline maintenance, where each edge-router can react only to its local updates that

potentially invalidate the existing skyline, notifying the central monitor for further

analysis. ⊓⊔

Our Contributions. All previous distributed skyline techniques assume either hor-

izontal or vertical partitioning of the data, which implies that the accurate value of

each dimension for each object is known by one of the sites at any time. In this

work, we consider the fundamentally different (and, much more general) setting of

continuous fragmented skyline queries, where: (a) each dimension for each object is

fragmented over a number of sites, i.e., the actual values of each object are computed

by aggregating (e.g., averaging) the object’s (partial) vectors across all sites, and, (b)

the skyline space is defined through potentially complex functions, parameterized by

the aggregate object values. Our contributions are summarized as follows:

• We formally define the continuous fragmented skyline problem, and outline the key

underlying challenges.

• We present two algorithms for efficient processing of continuous fragmented sky-

line queries, with dimensions defined through arbitrarily complex functions over the

aggregate vectors. Our algorithms (termed PIVOT and DIRECT) employ different

methodologies for decomposing the problem to a select set of distributed threshold-

crossing queries that are guaranteed to fire when a change in the skyline occurs. We

show how these queries can be monitored efficiently using ideas from the geometric

method [15,23].

• We propose several optimizations that significantly improve the communication

efficiency of our fragmented skyline monitoring algorithms. These include several

techniques for effectively reducing the number of queries (which can result in sub-

stantial communication gains), an approximation technique for error-tolerant setups,
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and a technique based on random-walk models for adaptively determining the most

efficient monitoring strategy for each object.

• We discuss how PIVOT and DIRECT can be exploited and adapted for monitoring

other types of continuous queries over fragmented data.

• We present a thorough experimental study with synthetic and real-life data sets. The

results demonstrate substantial performance benefits compared to the (only alterna-

tive) centralized solution, which often exceed two orders of magnitude.

2 Related Work

Since the introduction of the skyline operator [3], several aspects of skyline computa-

tion have been explored, such as, continuous skylines, e.g., [28,21,14], functional (or,

dynamic) skylines [21] subspace skylines [25], and skylines over distributed and P2P

networks [13]. Our contribution lies on the intersection of the areas of distributed,

functional and continuous skyline queries, with a novel data fragmentation model.

Algorithms for efficiently constructing skylines in P2P and distributed networks

have been widely studied in recent years (see [13] for a recent survey). These algo-

rithms typically rely on three key ideas to reduce the network communication be-

tween participants: (1) Additivity of the Skyline Operator: The skyline over all re-

mote sites is always a subset of the union of the local skylines computed at each site,

e.g., [27]; (2) Point Filtering: Representative points, belonging to one or more sites’

local skylines, can help other sites effectively reduce their local skylines [2,26]; and,

(3) Site Filtering: Compact local site summaries can be used to target neighboring

sites that can potentially contribute skyline points [9]. However, at the core of all

these approaches is the requirement that the value of each dimension for each object

is always maintained by a single site; that is, objects are vertically or horizontally

partitioned, but not fragmented (as the IP data in our example above). Even though

both vertical and horizontal partitioning hold significant interest for real-life applica-

tions (and, in fact, can also be handled by our work), our contributions lie in devising

the first known schemes for the general case of fragmented data objects, as this arises

frequently in a wide range of network-based applications. Furthermore, we focus on

continuous skyline queries, and not on one-shot queries.

Perhaps most similar to ours is the work of Zhang et al. [31] for distributed contin-

uous skyline monitoring, which relies on installing filters at remote sites to control the

updates that need to be sent to the coordinator. The functionality of filters is similar to

that of threshold-crossing queries employed in this work. In fact, in the simple case

where data is partitioned but not fragmented, and no functions are used for produc-

ing the skyline space, the algorithm of [31] and our algorithms (without the adaptivity

extension) produce similar types of local constraints, yet, each following different op-

timization strategies. Note, however, that [31] supports neither fragmented data nor

functional skylines, the combination of which is the main focus of our work. Some

ideas from [31], i.e., near-optimal derivation of filters, as well as the sampling-based

extension that trades accuracy for performance, can potentially be adapted for the

case of fragmented functional skylines.
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Cheema et al. [4] recently proposed a centralized skyline monitoring algorithm

for moving skyline queries based on “safe zones”. Even though we also utilize (a

different notion of) “safe zones” in this work, we focus solely on distributed envi-

ronments, and address the challenges that arise due to data fragmentation. As such,

the way we define, construct, and exploit safe zones is completly unrelated to [4].

Instead, our techniques build on ideas from distributed geometric monitoring [15,

23].

To reduce pairwise comparisons, existing works rely on grouping and represent-

ing two or more objects with a single representative, i.e., a pivot point [18,30]. This

approach bears similarity to one of our algorithms (PIVOT), which relies on pivot

points to represent large space regions. However, PIVOT chooses and utilizes pivot

points in a completely different manner. First, pivot points in our setting are not ac-

tual object points; they are the cleverly-chosen points in the high-dimensional space.

The way of computing these pivot points (where to place them, and which objects to

represent with them) is a core contribution of our work, and makes substantial dif-

ference in terms of performance. Second, all the machinery of our algorithm focuses

on reducing the network cost, and not the computational overhead, in contrast to the

previous works.

Summarizing, none of the existing techniques handles, or can be easily extended

to address the problem considered in this work. The difficulty stems mainly from

the fact that in our setting, sites are not aware of the global object values – each site

only knows its own local values of each object. This hinders the additivity property,

which constitutes the core of most previous algorithms, and disables effective point

and site filtering. An additional difficulty comes from the fact that we are consider-

ing a streaming setup. Therefore, the skyline in our setup needs to be continuously

maintained, as it can be invalidated after each update.

An early version of this work has been presented in [22]. Compared to [22], this

article includes several novel contributions, including: (a) a new grouping technique

for threshold-crossing queries that can reduce network cost by up to a factor of two

(Section 5), (b) an extension of the ideas to enable approximate skyline monitor-

ing that can further reduce network in domains where small (bounded) inaccuracies

are acceptable (Section 4.5) (c) a discussion on how the proposed algorithms can be

used for addressing other continuous query types, e.g., skyband queries, constrained

skylines, and skylines over uncertain data (Section 7), and (d) a more extensive ex-

perimental evaluation (Section 8).

3 Preliminaries

Problem Formulation. We consider a distributed computing environment, compris-

ing a collection of N remote processing sites P = {p1, p2, . . . , pN} and a desig-

nated coordinator site. Remote sites receive continuous streams of data updates for

a collection of n multi-dimensional objects O = {o1, o2, . . . , on} that reside in the

system (possibly fragmented across multiple sites), while the coordinator is respon-

sible for maintaining answers to continuous user queries posed over the union of

remotely-observed streams (across all sites). The (sub)set of sites monitoring object
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oj is denoted by P(oj) ⊆ P , while O(pi) denotes the (sub)set of objects monitored

by site pi. Following earlier work in the area, e.g., [7,20,6,1,10], our distributed

stream-processing model does not allow direct communication between remote sites;

instead, remote sites exchange messages only with the coordinator, providing it with

state information on its (locally-observed) streams. Such a hierarchical processing

model is representative of several application domains, including ISP network moni-

toring and sensor networks.

At time t, the local state of each object oj at site pi is captured by a dynamic

d-dimensional local statistics vector v(oj , pi, t). The global state of oj is defined

as the average (or, more generally, any convex combination) of oj’s local statis-

tics vectors across all sites in P(oj), i.e., the global statistics vector v(oj , t) =
1

|P(oj)|

∑

pi∈P(oj)
v(oj , pi, t). (To simplify notation, we omit the explicit time de-

pendence when referring to the current value of local/global vectors.)

Problem Statement. Our goal is to define effective protocols for continuously mon-

itoring distributed skylines over complex functions of fragmented multi-dimensional

objects. More formally, assume that the skyline dimensions are defined through a

d′-dimensional function vector f : R
d → R

d′

, where each dimension f [k](v(·))
is a possibly complex function over the original d-dimensional global statistics vec-

tors of the objects. We define the notion of functional dominance (or, f -dominance)

over fragmented data objects as follows. (Wlog., in this article we assume that lower

values are preferred.)

Definition 1 (f -dominance) Let v(oi), v(oj) denote the global statistics vectors of
objects oi and oj . We say that oi f -dominates oj (denoted as oi ≺f oj) if and only if
f [k](v(oi)) ≤ f [k](v(oj)) for all k ∈ {1, . . . , d′}, and ∃k ∈ {1, . . . , d′} such that
f [k](v(oi)) < f [k](v(oj)).

The f -skyline of the set of objects O = {o1, . . . , on} fragmented over the remote

sites P is then simply defined as the subset of objects in O that are not f -dominated

by any other object in O.

Example 2. Building on the ISP monitoring scenario of Example 1, the set of re-

mote processing sites P includes all edge routers of the ISP, which collect workload

statistics for all target IP addresses (or, subnets) contained in O. Assume that we want

to monitor the 2-dimensional skyline shown in Fig. 1(c) (average number of packets

and variance of transfer volume across all routers, per IP address).

Since the f -skylines are defined on averaged global vectors, we rewrite the vari-

ance function using the average transfer volume and the average squared transfer vol-

ume per IP at all routers. In particular, each router pj maintains a three-dimensional

vector v(oi, pj) for each IP address oi: v[0](oi, pj) stores the count of all observed

packets destined for oi and routed through pj , v[1](oi, pj) stores the sum of the

packet sizes, and v[2](oi, pj) stores (v[1](oi, pj))
2. The global statistics vector for

each IP address oi is the average of the local statistics vectors over all routers, i.e.,

v(oi) =
∑

pj∈P(oi)
v(oi, pj)/|P(oi)|. The desired skyline space is then defined by func-

tion f : f [0] = v[0](oi), i.e., the identity function of the average number of pack-

ets for each IP address, and f [1] = V ar({v(oi, pj)|pj∈P(oi)}) =
∑

pj∈P(oi)
v[2](oi,pj)

|P(oi)|
−

(

∑

pj∈P(oi)
v[1](oi,pj)

|P(oi)|

)2
= v[2](oi)− (v[1](oi))

2. ⊓⊔
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We address the challenging task of continuously maintaining the f -skyline over a

large collection of fragmented multi-dimensional objects O that are dynamically up-

dated across multiple remote sites P . Our protocols aim to minimize communication

across remote sites and the coordinator — a critical requirement in large-scale moni-

toring systems, owing to either network-capacity restrictions (e.g., in ISP monitoring,

where the volumes of collected utilization and traffic data are huge [8]), or power and

bandwidth restrictions (e.g., in wireless sensor networks, where communication over-

head is the key factor determining sensor battery life [19]). The centralized solution

that ships all updates to a coordinator can easily introduce network, computation,

and power bottlenecks, overwhelming the underlying network infrastructure. Simi-

larly, simplistic solutions based on batch or periodic updates to the coordinator can

either cause large amounts of unnecessary network traffic or fail to react to important

transitions in a timely manner. Most importantly, such techniques cannot offer useful

guarantees on the quality of the skyline between updates. Instead, our proposed algo-

rithms are reactive (based on the observed stream of object updates) and guarantee

the continuous correctness of the f -skyline at the coordinator.

3.1 Background: The Geometric Method

Our algorithms decompose functional fragmented skyline monitoring to a small set

of distributed threshold crossing queries, which can be monitored locally at each site

using the geometric method. We now describe the required elements of the geometric

method. Further details can be found in [23].

The geometric method addresses the basic problem of monitoring distributed

threshold-crossing queries; that is, monitor whether f(v(o)) < τ or f(v(o)) > τ , for

any arbitrary, possibly complex, non-linear function f() of a global statistics vector

v(o) fragmented over N sites, and a fixed threshold τ . The core idea is that, since it is

generally impossible to connect the values of f() on the local statistics vectors to the

global value f(v(o)), one can employ geometric arguments to monitor the domain

(rather than the range) of f().
To initialize the monitoring process, at time t0 all nodes p ∈ P(o) send their

local statistics vectors for the object v(o, p, t0) to a coordinator, where the global

statistics vector v(o, t0) is computed. This global statistics vector is also called the

global estimate vector e(o), and is sent to all network nodes. Whenever a node pj
receives a new local value for o, say, at time t, it updates its local statistics vector

and checks whether the new value may cause a threshold crossing. For this check,

pj extracts the statistics delta vector ∆v(o, pj) = v(o, pj , t)− v(o, pj , t0). The drift

vector is then defined as u(o, pj) = e(o) +∆v(o, pj). These vectors can be used to

bound the location of the global statistics vector, which is guaranteed to lie within

the convex hull formed by the drift vectors of all nodes and e(o) [23]. Therefore,

by checking that the convex hull does not overlap the inadmissible region (i.e., the

region {v ∈ R
2 : f(v) > τ} in Fig. 2) we can guarantee that the threshold has not

been violated.

The problem of course is that the drift vectors are distributed across the nodes.

Therefore, the global convex hull is unknown to the individual nodes. To transform
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Fig. 2 Estimate vector e, delta vectors ∆v(pi) (arrows out of e), convex hull enclosing the current global
vector v (dotted outline), and bounding balls B(e, ∆v(pi)).

the global condition into a local constraint, we place a d-dimensional bounding ball

around each local delta vector, of radius ||e(o)−u(o, pj)||/2 and centered at (e(o)+
u(o, pj))/2 (see Fig. 2). It can be shown that the union of all these balls completely

covers the convex hull of the drift vectors [23]. Therefore, as long as the bounding

ball constructed individually at each node is monochromatic, i.e., it does not overlap

with the inadmissible region, the threshold has not been violated, and the node can

refrain from sending the local update to the coordinator. If this is not the case, we

have a local threshold violation, and the site communicates its local ∆v(pi) to the

coordinator. The coordinator then initiates a synchronization process that typically

tries to resolve the local violation by communicating with some of the sites in order

to “balance out” the violating ∆v(pi). This process involves collecting the current

delta vectors from a subset of the sites, and recomputing the minimum and maximum

values of f(v) according to the new, partial, average. In the worst case, the delta

vectors from all N sites are collected, leading to an accurate estimate of the current

global statistics vector.

In more recent work, Sharfman et al. [15] show that the local bounding balls

defined by the geometric method are special cases of a more general theory of Safe

Zones (SZs), which can be broadly defined as convex subsets of the admissible region

of a threshold query. As long as the local drift vectors stay within such a SZ, the global

vector is guaranteed (by convexity) to be within the admissible region of the query.

4 Monitoring Fragmented Skylines

We propose two novel algorithms for continuous fragmented skylines: (1) the Pivot-

Based (PIVOT) algorithm, and (2) the Direct Monitoring (DIRECT) algorithm. Both

algorithms rely on effectively decomposing the continuous fragmented skyline com-

putation into a collection of threshold-crossing queries, which can be efficiently mon-

itored at the participating sites using the geometric method. Their main difference lies

in the details of this decomposition into queries. Still, since both algorithms share a

common framework, we describe them in parallel, with references to their particular-

ities.



Monitoring Distributed Fragmented Skylines 9

f(v(o1,t))

f(v(o4,t))

f(v(o3,t))

f(v(o2,t))

R
d’
 space

pp
2,4

pp
1,2

pp2,3

f(v(o5,t))

pp
2,5

f(v(o1,t))

f(v(o4,t))

f(v(o3,t))

f(v(o2,t))

R
d’
 space

pp
2,4

pp
1,2

pp
2,3

f(v(o5,t))

pp
2,5

Fig. 3 Pivot-based method: (a) the four pivot points for o2 in the R
d′ space, (b) the safe region for o2.

We start with a high-level description of the distributed-monitoring protocol. Ini-

tially, the user configures the continuous skyline query, by defining the (possibly

complex) functions over the global statistics vector v to derive the skyline dimen-

sions. The system goes through an initialization phase, during which the coordinator

requests the current local statistics vectors from all sites, and uses them to compute

the initial global statistics vectors, the f values for all objects in O, and an initial f -

skyline, using any standard, centralized algorithm. Then, for each object oi ∈ O, the

coordinator extracts a set of threshold-crossing queries, denoted as Q(oi). While the

details of these query sets depend on the employed algorithm (PIVOT or DIRECT),

their key property is that they guarantee skyline correctness: as long as no threshold

violation is observed at any site, the skyline is guaranteed not to change. Finally,

the computed global statistics vectors and threshold-crossing queries are shipped to

the remote sites observing the corresponding objects, where they are monitored using

the geometric method. All updates not violating any threshold query are registered lo-

cally at the sites, and only the remaining updates are sent to the coordinator, invoking

a synchronization process.

As discussed in Section 3.1, a threshold-crossing query focuses on detecting when

the value of a function g() over a fragmented dynamic vector crosses a threshold

value τ . Let t0 denote the query construction time and let v(t) be the dynamic vector.

Then, using the sign function sgn(), we can define this general threshold-crossing

query Qt0(g,v, τ) as the boolean condition:

Qt0(g,v, τ) ≡ sgn(g(v(t))− τ) 6= sgn(g(v(t0))− τ). (1)

The above boolean condition will become true at any time t only if there is a thresh-

old crossing of g(v(t)), i.e., g(v(t)) > τ and g(v(t0)) < τ , or vice-versa. Clearly,

both g() and τ can be multi-dimensional, giving rise to a query that is equivalent to

the OR of the boolean conditions across all dimensions. To keep our descriptions con-

cise, we employ the multi-dimensional form of Query (1) over our skyline function

vector f : Rd → R
d′

. Obviously, only the subset of relevant dimensions of Rd are

accounted for monitoring each component function f [k] (k = 1, . . . , d′).
In the remainder of this section, we first explain how the two algorithms extract

the threshold-crossing queries. Then, we outline the local monitoring and synchro-

nization processes, which are largely common to both algorithms.
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4.1 Threshold-Crossing Query Decomposition

We now discuss the details of decomposing a continuous fragmented skyline into

threshold-crossing queries. PIVOT constructs threshold-crossing queries that pair each

object with a set of carefully selected fixed pivot points. The purpose of these queries

is to ensure that the object remains within a “safe” region, defined by its pivot points

in R
d′

. DIRECT, on the other hand, constructs threshold-crossing queries that corre-

late each object with a small set of other (also moving) objects from O. The purpose

of the queries in this case is to detect when the dominance relation between the ob-

jects changes.

The PIVOT Algorithm. PIVOT constructs threshold-crossing queries that pair an ob-

ject oi ∈ O with a set of fixed points in the R
d′

space, termed pivot points. Specif-

ically, during initialization phase at time t0, for each pair of objects {oi, oj}, the

coordinator computes the pivot point −→ppi,j as the midpoint between the f -values of

oi and oj , that is, −→ppi,j = 1
2 (f(v(oi, t0)) + f(v(oj , t0))). Then, it constructs the

two threshold-crossing queries: Qt0(f ,v(oi),
−→ppi,j) (installed at sites P(oi)) and

Qt0(f ,v(oj),
−→ppi,j) (installed at sites P(oj)). As an example, Fig. 3(a) depicts a

sample data set with five 2-dimensional points in the f -skyline space, including the

four pivot points defined for o2 with respect to all other objects. Any site observing

o2 then has to monitor the following threshold-crossing queries (one per pivot point):

Qt0(f ,v(o2),
−→pp1,2), Qt0(f , v(o2),

−→pp2,3), Qt0(f , v(o2),
−→pp2,4), and Qt0(f , v(o2),

−→pp2,5).
Consider the geometric interpretation of the PIVOT technique. Each pivot point

−→ppi,j partitions the R
d′

space into 3d
′

subspaces: three subspaces per dimension

k = {1, . . . , d′}, namely, {x : x[k] < −→ppi,j [k]}, {x : x[k] > −→ppi,j [k]}, and

{x : x[k] = −→ppi,j [k]}. For each dimension k, f(v(oi)) belongs in exactly one of

these subspaces. The intersection of these d′ subspaces containing f(v(oi)) across

all threshold-crossing queries for object oi effectively defines a safe region for oi;
that is, as long as f(v(oi)) remains in this region, its relative positioning in the sky-

line with respect to all other objects in O remains unchanged. For example, Fig. 3(b)

depicts the (shaded) safe region for o2. The threshold-crossing queries installed at

P(oi) monitor exactly this safe-region condition for oi. It is not difficult to se that

this scheme is correct: as long as no threshold-crossing query fires for any object, the

relative positioning of any object pair in the fragmented skyline (i.e., their relative

dominance) remains unchanged, and, thus, the previously-computed skyline remains

valid.

The DIRECT Algorithm. Rather than placing fixed pivot points somewhat arbitrar-

ily at the midpoint of two objects, DIRECT directly monitors the relative dominance

relation across each pair of fragmented objects, based on the vector difference of

their f -values. Formally, consider any pair of objects oi, oj ∈ O and, for the time

being, assume that both objects are observed at the same subset of remote sites,

i.e., P(oi) = P(oj). We define the function-difference vector g(v(oi)|v(oj)) =
f(v(oi))− f(v(oj)), where v(oi)|v(oj) denotes the concatenation of the objects’

global statistics vectors; thus, g : R2d → R
d′

. Then, for each such object pair, the

coordinator simply constructs the threshold-crossing query Qt0(g, v(oi)|v(oj), 0)
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and installs it at all sites in P(oi) = P(oj) to monitor updates to either oi or oj (0

denotes the all-zero d′-dimensional vector). For instance, in the example of Fig. 3, the

set of DIRECT threshold queries extracted for o2 is Q(o2) = {Qt0(g, v(o2)|v(oj),
0) : j = 1, 3, 4, 5}. Again, it is easy to see that the skyline does not change as long

as none of the threshold-crossing queries fire.

A number of issues with DIRECT are worth noting. First, it effectively doubles the

dimensionality of the local geometric bounding constraints since it needs to account

for updates to both objects. This increased dimensionality typically leads to more

frequent local threshold violations and to higher communication costs. (This issue

can be avoided for certain function types, e.g., when f is linear, but not in the general

case.)

A second, and perhaps more subtle, issue concerns the extension of DIRECT to

handle the general case of object pairs {oi, oj} that are observed at different sites

(i.e., P(oi) 6= P(oj)), and its effectiveness in such settings. To ensure correctness,

the threshold query over v(oi)|v(oj) needs to be monitored across all sites in S =
P(oi) ∪ P(oj) (with parts of the local statistics vector zeroed out at sites observ-

ing only one of the objects). To keep the average correct, we need to scale each of

the local statistics vectors of oi by |S|/|P(oi)| (and, similarly for oj). This scaling,

however, has the adverse effect of increasing the radius of the local bounding balls,

thereby increasing the number of local violations. Theorem 1 formalizes this obser-

vation, in comparison to PIVOT.

Theorem 1 Monitoring the DIRECT threshold-crossing query Qt0(g, v(oi)|v(oj),
0) for object oi at sites S = P(oi) ∪ P(oj) is provably less communication-efficient

than monitoring the corresponding PIVOT threshold query Qt0(f , v(oi),
−→ppi,j),

when all functions in f are linear, and r = |S|
|P(oi)|

> 2.

Proof We will use Qp to denote the threshold-crossing query between objects oi and
oj monitored by PIVOT, and Qd the query monitored by DIRECT. We will show that
when both queries are instantiated with the same data, i.e., with identical object val-
ues at time t0, the minimum required update ud of oi that will cause a threshold
crossing on Qd is smaller than the corresponding minimum required update up for
Qp. Therefore, Qd will be violated more frequently, causing more synchronizations.
For simplicity, we examine only the case for a function vector f where all constitut-
ing functions are linear, and we focus only on object oi, i.e., we consider oj to be
stationary on the node receiving the update of oi. This can happen, e.g., when the
node p monitoring oi does not monitor oj , or when it did not receive any update for
oj since the last synchronization.

Consider any node p ∈ P(oi) receiving an update u for oi at time t. This update
will cause a threshold crossing for Qp only if sgn(f(v(oi, t))−τ) 6= sgn(f(v(oi, t0))−
τ), with τ = (f(v(oi, t0)) + f(v(oj , t0)))/2. Since f is linear, f(v(oi, t)) =
f(v(oi, t0) + u) = f(v(oi, t0)) + f(u).

Recall that f is a function vector. We need to consider each dimension k of f sep-
arately. A threshold crossing due to dimension k will occur when sgn(f(v(oi, t0))[k]+
f(u)[k] − τ [k]) 6= sgn(f(v(oi, t0))[k] − τ [k]). Without loss of generality, assume
that f(v(oi, t0))[k] < f(v(oj , t0))[k] (the other case is symmetric). Then, τ [k] >
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f(v(oi, t0))[k], and threshold crossing on Qp can occur only when f(u)[k] surpasses

τ [k]− f(v(oi, t0))[k], i.e., f(up)[k] >
f(v(oj ,t0))[k]−f(v(oi,t0))[k]

2 .

Now consider the case of DIRECT. Qd will be violated in dimension k when

sgn(f(v(oi, t))[k]− f(v(oj , t))[k]) 6=

sgn(f(v(oi, t0))[k]− f(v(oj , t0))[k]) (2)

By our assumption that f(v(oi, t0))[k] < f(v(oj , t0))[k], we know that sgn(f(v(oi, t0))[k]−
f(v(oj , t0))[k]) = −1. Therefore, a threshold crossing will be caused only when the
LHS of ineq. 2 becomes positive:

sgn(f(v(oi, t))[k]− f(v(oj , t))[k]) = +1 ⇒

f(v(oi, t))[k]− f(v(oj , t))[k] > 0 (3)

As discussed in the paper, to account for the fact that oi is not monitored by all nodes,
we need to scale the local statistics drift vector for oi by r = |S|/|P(oi)|. Since f

is linear, f(v(oi, t)) = f(v(oi, t0) + ru) = f(v(oi, t0)) + rf(u). Substituting
f in Eqn. 3, and since v(oj , t) = v(oj , t0), we get f(v(oi, t0))[k] + rf(u)[k] −
f(v(oj , t0))[k] > 0. Therefore, the condition for threshold crossing becomes f(ud)[k] >
f(v(oi,t0))[k]−f(v(oj ,t0))[k]

r . Thus, if r > 2, for all dimensions k, f(ud)[k] will be

smaller than f(up)[k], which directly implies that Qd will be violated with a smaller
magnitude update. ⊓⊔

4.2 Elimination of Redundant Queries

Both algorithms maintain the skyline by monitoring the pairwise dominance between

all objects in O. For this, they require O(|O|2) queries. However, not all changes in

pairwise dominance relations between objects in O are necessary. For example, the

skyline will not change if o4 (Fig. 3(a)) is updated such that it no longer f -dominates

o5, since both o4 and o5 continue to be dominated by o2. In fact, only two types of

threshold-crossing queries can signify a change in the skyline: (1) Queries monitoring

the domination of a non-skyline object by a skyline object and (2) Queries monitoring

the pareto optimality of a skyline object. All other queries are redundant and can be

safely dropped.

(1) Queries Monitoring Domination of a Non-Skyline Object: The key observation

here is that a non-skyline object cannot enter the skyline as long as it is f -dominated

by at least one skyline object. Thus, for any given non-skyline object oi, it suf-

fices to monitor a single threshold-crossing query between oi and a skyline object

oj that f -dominates oi. Having no knowledge on the distribution of future updates,

the best threshold condition to monitor is the one that maximizes the minimum dis-

tance (slack) between oi and the resulting pivot point −→ppi,j along all d′ dimensions.

In the example of Fig. 3(a), this gives rise to threshold queries for the pairs {o2, o4}
and {o2, o5}.

(2) Queries Monitoring Pareto-optimality of a Skyline Object: A skyline object oi
may exit the skyline only when another skyline object oj moves to f -dominate oi. (A

non-skyline object can cause the removal of a skyline object only after itself enters
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the skyline, thereby causing another threshold query of the previous class to fire.)

However, not all pairs of skyline objects need to be monitored, since some skyline

objects impose tighter threshold constraints than others, and will always be violated

first. For example, o1 cannot move to dominate o3 without first crossing its thresh-

old query with o2. Specifically, for any skyline object oi, the coordinator constructs

a threshold-crossing query between oi and all other skyline objects whose f val-

ues immediately precede or follow f(oi) along any dimension of the R
d′

space. In

our Fig. 3(a) example, this gives rise to threshold queries for the pairs {o2, o3} and

{o2, o1}.

Using the above ideas, the total number of threshold-crossing queries in the sys-

tem is effectively reduced from Θ(|O|2) to (at most) 2(|O| + s(d′ − 1)), where s
denotes the size of the skyline (and, typically, s << |O|). This set of threshold

queries is sufficient and minimal for accurate fragmented-skyline monitoring.

Theorem 2 The extracted threshold queries are sufficient for accurate fragmented

skyline monitoring, i.e., as long as no threshold violation occurs, the skyline is guar-

anteed to stay the same. They are also minimal, in the sense that omitting any of the

queries breaks the correctness guarantees.

Proof We will prove that the threshold queries are sufficient for detecting whenever
an object changes status, i.e., enters or leaves the skyline. The proof is valid for both
PIVOT and DIRECT. First, we consider the simpler case of an object oi not belonging
in the skyline at time t0, to show that it cannot enter the skyline without first caus-
ing a threshold violation. For oi, the algorithm constructs a threshold crossing query
between oi and an object oj that dominates oi. As long as the threshold query is not
violated by an update of either oi or oj , oj continues to dominate oi, which guarantees
that oi does not enter the skyline.

Second, we consider an object oi that belongs in the skyline at time t0. We will
prove that oi cannot be removed from the skyline without first causing a threshold
violation, which will enable the coordinator to detect the change in the skyline. oi
can be removed from the skyline only due to an update of oi or an update of any
object oj , which will dominate oi. We have the following cases:

• oj , which did not belong in the skyline at time t0, is updated and dominates oi.
Since oj dominates an object that was previously skyline object, this means that oj
first needs to become part of the skyline. This, of course, corresponds to the case
addressed earlier, thus causing a violation of the thresold query that monitors oj and
enabling the coordinator to detect the skyline update.

• Object oj , which belonged in the skyline at time t0, is updated and now dominates
oi. Since at time t0 object oj did not dominate oi, there existed at least one dimen-
sion k for which f(v(oi, t0))[k] < f(v(oj , t0))[k]. Also, since oj also belonged in
the skyline, our monitoring algorithm constructed a threshold query between oj and
its immediate skyline neighbor oh at dimension k that satisfies f(v(oh, t0))[k] <
f(v(oj , t0))[k]. There are two cases: (a) oh is the object oi, in which case the corre-
sponding threshold query will be violated, or (b) oh is not oi, in which case f(v(oi, t0))[k] <
f(v(oh, t0))[k] (by the definition of oh), and the threshold query of oj corresponding
to oh will be violated. In both cases, the violation will cause synchronization, which
will enable the coordinator to detect the change in the skyline. (Note that oh will also
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be monitoring its nearest dominating neighbor in the skyline (say, ol) so that, if ol
at some point takes the position of the nearest neighbor of oj , then oh would fire;
in general, it is not difficult to see that some monitoring rule will fire if the nearest
skyline neighbor of oj changes, so we can assume that the monitored nearest skyline
neighbor is always current.)

We also need to prove that all constructed threshold queries are required for cor-
rectly monitoring the skyline. Again, we need to consider the two types of queries
separately.

• Queries monitoring domination of a non-skyline object: Recall that only one query
is constructed. If this query is removed for any non-skyline object oi, then the algo-
rithm will not be able to track the location of oi, possibly masking skyline updates.

• Queries monitoring dominance of a skyline object: Two queries are constructed
per dimension, with the two immediate skyline neighbors. By removing any of these
queries for a skyline object oi, then we will not be able to track the location of the
object in the corresponding dimension, possibly masking skyline updates. ⊓⊔

4.3 Local Monitoring

The threshold-crossing queries produced by the decomposition do not directly trans-

late to local monitoring conditions, since these are defined over the aggregate ob-

ject values (the global statistics vectors). However, nodes can exploit the geometric

method to efficiently monitor these queries without imposing centralization of up-

dates. Briefly, a node receiving an update for an object o forms the bounding ball

(see Section 3.1), and tests for monochromicity w.r.t. all threshold queries. This test

is performed by finding the minimum and maximum values of the monitored func-

tion inside the bounding ball. If both values are on the same side of the threshold,

the update is safe, i.e., it cannot invalidate the skyline. Otherwise, the site notifies the

coordinator to initiate the synchronization process.

An example is depicted in Fig. 4, with two sites (p1 and p4) receiving updates for

the same object o2, and constructing the local bounding balls, B1 and B4 (Fig. 4(a)).

Let −→m1/
−→
M1 denote the minimum and maximum values of f inside B1, as computed

at p1, and −→m4/
−→
M4 the ones inside B4. Since both −→m1 and

−→
M1 remain within the safe

region defined by the threshold queries in R
d′

(the gray-shaded area in Fig. 4(b)), the

update at p1 is safe and registered locally at p1. However, the update at p4 is unsafe,

since −→m4 violates the query corresponding to −→pp2,3. Thus, p4 notifies the coordinator

of its current local vector, initiating a synchronization process.

The local monitoring algorithm also makes use of the more general safe zone

mechanism for testing local violations (Section 3.1). Safe zones can be defined for

various classes of monitoring functions, and recent work has shown that they can

reduce network cost for monitoring threshold-crossing queries by an order of magni-

tude [17].



Monitoring Distributed Fragmented Skylines 15

v(o2,p1,t’)
B1

B4

v(o1,t) v(o2,t)

v(o4,t)

v(o3,t)

R
d
 space

v(o5,t)

v(o2,p4,t’’) f(.)

f(v(o1,t))

f(v(o4,t))
f(v(o3,t))

R
d’
 space

pp
1,2

pp
2,3

f(v(o5,t))

m4

m1

M1

M1

M4
pp

2,4

pp
2,5

Fig. 4 Handling updates with the pivot-based method: (a) constructing the balls in the R
d space, (b)

constructing the boxes in the R
d′ space.

4.4 Synchronization

Consider a PIVOT threshold-crossing query Q monitoring the relative dominance re-

lation of the object pair {oi, oj} that raises a local violation due to an update of object

oi at some site in P(oi). As discussed briefly in Section 3.1, the coordinator initiates

a balancing process to resolve the violation on oi. If the process fails to resolve the

local threshold violation even after contacting all sites, the coordinator computes the

updated v(oi) out of the collected local statistics. Then, if the dominance relation

between oi and oj has not changed, the coordinator recomputes the pivot point for Q,

and sends it to P(oi) and P(oj). Otherwise, it updates the skyline according to the

updated global statistics (using a centralized continuous skyline algorithm to reduce

computation cost [28]), and recomputes only the threshold queries involving at least

one of the two objects and a skyline object, according to the process described in Sec-

tion 4.2. All updated and new threshold queries are then sent to the sites monitoring

the corresponding objects, and the monitoring protocol continues. The above process

relies on cached global statistics vectors of some objects (i.e., oj), to extract the new

threshold queries. It is therefore possible that the local statistics vectors at some of

the sites cause immediate threshold violations with the updated threshold queries. In

such cases, synchronization is invoked recursively, until no more threshold violations

are observed.

An important optimization here is lazy query updating, which postpones the re-

placement of all queries that are still valid, even if the participating objects have

changed their skyline status. For example, when an object is removed from the sky-

line but still dominates a large number of objects, the coordinator does not update

the corresponding query. Instead, sites continue monitoring the query until an update

causes a threshold crossing.

A slight modification is required at the synchronization process for the DIRECT

algorithm: since DIRECT threshold queries are defined on pairs of objects, balancing

is always performed for both objects. The rest of the synchronization scheme remains

the same.
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4.5 Approximate monitoring

To further reduce network cost, both PIVOT and DIRECT support approximate moni-

toring. With approximate monitoring, we target applications that can tolerate errors in

the skyline, as long as the misclassified objects are very near the skyline border. For

example, consider monitoring the skyline of IP addresses with the highest number of

packets and transfer volume across all ISP routers. Small errors around the skyline

region can often be tolerated; for instance, it is acceptable if an IP address is misclas-

sified as belonging in the skyline, as long as it is very close to the skyline border, i.e.,

it can become a member of the skyline with a small shift. It is even the case that, due

to sampling or sketching (both of which are frequently used in network monitoring),

IP statistics may already be approximate. Similar inaccuracies are also introduced in

sensor networks, due to hardware limitations of the sensors. As such, small errors are

already inherent in many applications, without reducing the importance or utility of

skyline queries.

Moving along the lines of previous works (ADRs [16] and skylines of coarser

scales [12]), we define approximation quality by bounding the maximum allowed er-

ror per object. That is, any misclassified object must be very near the skyline border,

i.e., with maximum distance ǫ at each dimension. This is achieved by defining ap-

proximate threshold queries (as opposed to standard threshold queries generated by

the exact PIVOT and DIRECT algorithms), which are represented as follows:

Qt0(g,v, τ, ǫ) ≡ sgn(g(v(t0))− τ) 6= sgn(g(v(t))− τ + λ) with

λ =

{

−ǫ, if g(v(t0)) < τ

+ǫ, if g(v(t0)) > τ

Intuitively, an approximate threshold query allows a local violation by a maximum

of ǫ without initiating the synchronization process. This local violation does not nec-

essarily translate to a skyline update, since in most cases a local violation does not

translate to a global threshold violation.

Approximate threshold queries can be utilized by PIVOT and DIRECT as fol-

lows. PIVOT guarantees a maximum error ǫ by constructing approximate threshold

queries with an acceptable error ǫ/2: since each object can violate the pivot point by

at most ǫ/2 (in opposite directions), the dominance relation between two objects will

be violated by at most ǫ. DIRECT does not need to pre-allocate this error, since the

dominance relation between object pairs is always checked with a threshold query

that includes both objects. Therefore, DIRECT constructs approximate queries with

error parameter ǫ.
Clearly, there exist alternative expressions of approximate threshold queries, e.g.,

ǫ could be relative on the pivot point location, or it could be a d’-dimensional vector

enabling different accuracy requirements per dimension. The best approach is deter-

mined by the application scenario; it is straightforward to adapt PIVOT and DIRECT

to handle alternative expressions.
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5 The Adaptive Method

The geometric method (and, in effect, the proposed algorithms) relies on the exis-

tence of a small slack for each object, for effectively filtering local updates. In ex-

treme situations, the constructed threshold queries may be too tight, leaving no slack

for updates and causing frequent synchronizations (e.g., when two objects are very

close in R
d′

). Depending on the frequency and cost of these synchronizations, it is

more network-efficient to identify these few threshold queries, and exclude their cor-

responding objects from the geometric monitoring protocol. All updates for these

objects are directly streamed to the coordinator, thereby introducing a cost for send-

ing the updates, but eliminating the need for frequent costly synchronizations.

We now propose an adaptive module for identifying such cases. The module is

executed by the coordinator each time an object causes a threshold violation, and

operates by estimating and comparing the communication cost for keeping the object

under geometric monitoring versus directly streaming all its updates. Note that this

module is only applicable to PIVOT; since DIRECT considers objects in pairs, the

dependencies across objects make it impossible to exclude an individual object from

geometric monitoring.

With Agm and Ast we denote the two alternative monitoring schemes, the first

based on the geometric method (i.e., PIVOT) and the second based on streaming up-

dates. We distinguish two types of threshold violations: (a) true threshold violations,

where the global statistics vector of the object changes sufficiently to cause a thresh-

old violation in the query; and, (b) false-positive threshold violations, where only a

local statistics vector causes a violation that can be resolved with balancing, without

changing the threshold query.

To decide between Agm and Ast for any object o, the coordinator needs to predict

the network cost required by each scheme for monitoring o until the next true thresh-

old violation for o. Let t denote the time of the last global synchronization for o, and

t′ the time of the next true threshold violation caused by o. For illustration purposes

only, assume that the coordinator has full knowledge of the updates arriving between

t and t′ (we will remove this assumption later). Let Nt′ denote the number of updates

arriving for o in this time range, Nfp(o) the number of false positive threshold viola-

tions, and Cfp(o) the average cost of resolving each such violation. Then, the cost for

monitoring o with Agm is Cgm = Cfp(o) × Nfp(o) (for resolving all false positive

threshold violations), whereas the cost for Ast is simply Cst = c×Nt′ , where c is the

cost of a single update message, since Ast does not incur false-positive violations.

The coordinator chooses the algorithm with the smallest network cost, and notifies

the sites monitoring o to switch to that algorithm.

Clearly, the challenge now is to estimate the values of Nfp(o), Cfp(o) and Nt′(o),
since these depend on future parts of the stream. The coordinator estimates these val-

ues through extrapolation on recently observed updates for o. We now first describe

the mathematical models for obtaining these estimates, and then present the detailed

algorithm that exploits these models to predict the cost of the geometric and stream-

ing schemes.
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5.1 Estimating threshold violation costs

Mathematical Preliminaries. To estimate the resolution cost Cfp(o), the coordina-

tor employs the average cost for resolving false positive threshold violations over the

last κ observed violations, where κ is a small number, e.g., 100. Estimating Nt′ and

Nfp requires a prediction model for future object updates. In the absence of knowl-

edge on the distribution characterizing the updates, we employ a random walk model

to capture the behavior of object updates. Precisely, the changes in both the global

and local statistics vectors for each object o are modeled as d-dimensional random

walks. The step length for these walks is determined empirically, by averaging the

magnitudes of change for all observed updates of o across all sites.

Let vector s(o) denote the average of change magnitudes on the global statistics

vector v(o), for the updates observed by all sites in P(o). According to the random

walk model [11], v(o) follows a d-dimensional binomial distribution, with variance

σg[i]
2 = s(o)[i]2

∑

p∈P(o) np, where np denotes the number of updates received for

object o at site p since time t. A similar random walk is used to model the local

statistics vector v(o, p) at each site p ∈ P(o). To simplify computation, rather than

using per-site update statistics, our model employs the single aggregate change vector

|P(o)| × s(o) for all sites in P(o). Then, the probability distribution describing the

local statistics vector of object o at p is a d-dimensional binomial distribution with

variance σl[i]
2 = (|P(o)| × s(o)[i])2np.

Through one-sided Chebyshev inequalities we probabilistically bound the loca-

tion of the global and local statistics vectors of each object, after np updates: for any

dimension i and any point l < v(o, t)[i], the probability of v(o, t′)[i] crossing l along

dimension i is Pr[v(o, t′)[i] < l] ≤ σg [i]
2

σg [i]2+(v(o,t)[i]−l)2 . Therefore, the value of l

satisfying Pr[v(o, t′)[i] < l] > pr for a desired minimum probability pr is:

l ≥ v(o, t)[i]− σg[i]
√

(1− pr)/pr (4)

Similar inequalities hold for Pr[v(o, t′)[i] > r] for all r > v(o, t)[i], as well as for

the probability of a local statistics vector dimension being less than l or greater than

r.

Estimation Algorithm. The derived inequalities can be exploited to estimate Nt′(o)
and Nfp (cf. Alg. 1). Starting from number of steps n = 1, and using a combination

of doubling and binary search (lines 5-13), we find the maximum number of steps n,

such that any point p reachable from v(o, t) with probability higher than pr = 0.5,

does not cause a threshold violation. Formally, let Vn = {p1,p2, . . .} denote the

(possibly infinite) set of points, such that any p ∈ Vn satisfies the following condition

after n updates, for all dimensions i = 1, . . . , d:

d
∏

i=1

pri ≥ 0.5,with pri =

{

Pr[v(o, t′)[i] < p[i]], if p[i] < v(o, t)[i]

Pr[v(o, t′)[i] > p[i]], if p[i] > v(o, t)[i]

The significance of Vn is that each of the points in the set is likely to be reached

from v(o, t) after n updates, i.e., with probability ≥ 0.5. Nt′(o) is set to the maximum

value n, such that for all points p ∈ Vn, f(p) does not cause a threshold violation

for any of the threshold queries of object o.
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Algorithm 1: Adaptivity Estimation Algorithm

// Executed at the coordinator

1 function EstimateNt′ ()
2 begin

3 n← 1
4 TC← false // Set to true when I find a threshold crossing

// Doubling to determine upper bound

5 repeat

6 TC← probe(n) // check for threshold crossing

7 if (!TC) then n← 2n;

8 until (TC);
// Binary search: I know that n/2 < Nt′ ≤ n

9 maxN← n, minN← n/2
10 while (maxN-minN>1) do

11 n = minN + (maxN-minN)/2
12 if (probe(n)) then maxN← n ;
13 else minN← n ;

14 end

15 return n

16 end

// Checks for threshold crossing, for a given n

17 function probe(int n)
18 begin

19 for (dim = 1→ d) do

// Compute left/right bounds for prob 0.5 (see Eqn.2)

20 l[dim]← computeLeftBound(n, 0.5)
21 r[dim]← computeRightBound(n, 0.5)

22 end

// sampleN determines the sampling resolution

23 for (int sample=0→ sampleN) do

24 p←UniformSampleFromHyperCube(l, r)
// Compute prob to reach p after n steps (see Eqn.3)

25 prp ←probToReachPoint(p,v(o, t), n)
26 if (prp ≥ 0.5 and f(p) causes threshold crossing) then return true

27 ;

28 end

29 return false

30 end

To test the above constraints efficiently, the points p are uniformly sampled over

the range defined by l and r, as these are computed per dimension for probability

0.5, using Equation 4. This test is performed by function probe (lines 16-28). The

function first computes the left and right bounds per dimension using Eqn. 4, and then

performs uniform sampling (using a superimposed grid) to check if the probability

to reach the point after n steps is above the probability threshold pr. In this case, the

point is checked for possible threshold crossing. The algorithm returns the smallest

value of n for which there exists a point p reachable from v(o, t) in n steps with

probability higher than pr, that can cause a threshold crossing. The number of repeti-

tions required to estimate Nt′(o), is logarithmic in Nt′(o), and linear in the resolution

of the grid.

The same process is used to predict the number of steps for the next false positive

threshold violation, required for estimating the total number of false positive thresh-
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old violations Nfp. Using the described formulas for Cgm and Cst, we compute the

expected cost for Agm and Ast and select the most efficient monitoring scheme.

Due to sampling and extrapolation, this process may fail to detect some local or

global threshold violations. A sudden change in stream characteristics may also result

in an overestimate or underestimate of the values of Nfp or Nt′ . Such inaccuracies,

however, do not introduce errors in the skyline; the only possible negative conse-

quence is that the adaptive module selects a suboptimal monitoring algorithm for an

object, thereby increasing the monitoring cost.

Special cases. The described algorithm relies on sampling to estimate the frequency

of threshold crossings. Sampling can be avoided for certain function types by com-

puting directly the necessary minimal shift in the R
d space that causes a threshold

violation. For instance, for a linear function f , the necessary minimal shift in the R
d

space that causes a threshold violation corresponds to the minimum absolute distance

per dimension of the current global statistics vector of the object, and the coordinates

in the set {f−1(−→pp1), f
−1(−→pp2), . . .}, where f−1 denotes the inverse function of f ,

and −→ppi are used to denote the pivot points constructed for the object. Then, we can

employ the probabilistic inequalities (e.g., Equation 4) to estimate the minimal values

of Nfp(o) and Nt′(o) that will lead to threshold violations. The same optimization

is applicable to weakly-monotonic non-linear functions, as well as multimodal func-

tions.

6 Grouping Of Threshold Queries

Since all threshold crossing queries need to be propagated and monitored in the net-

work, the number of queries influences the algorithm’s network performance. In Sec-

tion 4.2 we have shown how to eliminate all queries that are not necessary for guar-

anteeing the correctness of the skyline, reducing the total number from O(|O|2) to

O(|O|). However, even after this reduction, skyline objects with dense dominance

regions may end up participating in a large number of queries. We now show how to

further reduce these queries by grouping. Our discussion first focuses on PIVOT. We

discuss grouping for DIRECT in Section 6.3.

PIVOT forms groups of pivot points for each skyline object oi, and replaces each

group with a single “composite” pivot point that imposes equivalent threshold con-

straints on oi. Threshold queries are constructed based on the composite pivot points,

which are much fewer than the original ones, and typically enable enlarging the

safe regions for the non-skyline objects. The coordinator decides which pivot points

should be grouped for each object oi on the basis of the position of the pivot points

(basic grouping), and of the expected maintenance cost for the resulting composite

threshold queries (advanced grouping).

6.1 Basic grouping for PIVOT

Any two pivot points −→ppi,j and −→ppi,h for an object oi can be grouped together only if

they reside on the same side of f(v(oi)) in all d′ dimensions, i.e., sgn(f [k](v(oi))−
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−→ppi,j [k]) = sgn(f [k](v(oi))−
−→ppi,h[k]) for k = 1, . . . , d′. All pivot points belonging

in the same group G = {−→ppi,j ,
−→ppi,h, . . .} are then replaced by a composite pivot point

−→ppi,G that imposes equivalent constraints on f(v(oi, t)). If oi dominates the pivot

points in G, −→ppi,G takes the minimum value per dimension out of all the pivot points

in the group (otherwise the maximum value is taken). Formally, the composite point is

defined as follows: −→ppi,G[k] =







min−→pp∈G
−→pp[k] if min−→pp∈G(

−→pp[k]) ≥ f [k](v(oi, t))

max−→pp∈G
−→pp[k] if max−→pp∈G(

−→pp[k]) < f [k](v(oi, t))

for k = 1, . . . , d′. The pivot points in G for objects {oj , oh, . . .} are also replaced by

the composite pivot point −→ppi,G, which can enable additional slack for these objects.

For example, for object o2 from Fig. 3(b), basic grouping will replace G = {−→pp2,4,
−→pp2,5} with a single composite pivot point that coincides with −→pp2,4. Basic group-

ing guarantees that the total number of queries is effectively reduced to (at most)

n+ 2sd′.
Basic grouping performs cost-agnostic grouping, which can be problematic in

some cases. We illustrate this limitation with an example. Consider the setup shown

in Fig. 5. For simplicity assume that each object is monitored by 2 nodes, and nodes

do not overlap, i.e., P(oi) ∩ P(oj) = ∅, for all objects oi, oj . Basic grouping will

construct a single query for both non-skyline objects with a pivot point that coincides

with pp1,2. However, since pp1,2 is very close to o1 and o2, it will likely be frequently

violated. Each true threshold crossing will require updating the pivot point also to the

two nodes holding o3, even though f(v(o3)) is very far from f(v(o1)). Instead, if we

keep pp1,2 and pp1,3 ungrouped, we will only need to update the nodes holding o1
and o2, thereby saving two messages at every threshold crossing violation. Our next

algorithm addresses this limitation.

6.2 Advanced grouping for PIVOT

Advanced grouping method (Alg. 2) avoids this limitation by taking into account

both the expected frequency of threshold crossings and the cost of updating the pivot

f(v(o2,t))

R
d’
 space

pp
1,2

pp
1,3

f(v(o1,t))

f(v(o3,t))

Fig. 5 A problematic scenario for basic grouping.
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points in order to decide which pivot points should be grouped together. First, the

coordinator executes the basic grouping algorithm and extracts an initial set of groups

Gi = {Gi,1, Gi,2, . . .} for each skyline item oi. Each group Gi,j ∈ Gi is further

split to a set of sub-groups G′
i,j = {G′

1, G
′
2, . . .}, as follows. For each pivot point

−→pp ∈ Gi,j , the coordinator simulates the addition of −→pp in each of the groups of

G′
i,j (initially empty), and estimates the increase on the amortized network cost per

update of oi until the next true threshold violation of the group’s composite threshold

query. Also, the expected amortized network cost for adding a new group in G′
i,j that

contains only −→pp is computed. The pivot point is added to the group that minimizes

the expected cost increase, or, more formally, to the group min argg∈{G′

i,j
∪∅} C(g ∪

−→pp)− C(g), where C(·) denotes the amortized cost of the group.

The challenge in the above process is to estimate the network cost of each po-

tential query group. This cost corresponds to the network resources required for de-

ploying the corresponding composite query to all relevant nodes, plus the resources

for handling the false positive threshold violations through balancing. An observa-

tion that simplifies our calculations is that the number of false positive threshold

violations, and the cost of handling them, are orthogonal to the grouping method –

they only depend on the coordinates on the ungrouped pivot points. As such, these

can be ignored for our computation, and we can focus on finding the grouping that

minimizes the deployment cost only.

Note however that each potential group has a different lifetime. The lifetime of a

group (and its corresponding composite query) is defined as the number of updates

arriving for the object between the query construction time and its next true threshold

violation. To make queries comparable, we amortize the cost of each query over its

whole lifetime, which can be estimated using the approach presented in Section 5.

In detail, let P(G′) denote the set of sites monitoring at least one of the objects

corresponding to the pivot points in G′, QG′ the corresponding (candidate) threshold

query, and NG′

t′ (oi) the estimated number of updates of oi until the next true threshold

violation of QG′ (cf. Section 5). A true threshold violation can only be resolved

by updating the composite pivot point at all sites monitoring the threshold query.

Therefore, the network cost for the lifetime of a constructed group will be |P(G′)|
messages. The same cost amortized per update will be |P(G′)|/NG′

t′ (oi). The cost

increase due to an addition of a pivot point in G′ is computed by subtracting the old

amortized cost per update for G′ (before adding the candidate pivot point) by the new

amortized cost (after adding the new pivot point). The algorithm is sketched in Alg. 2.

Clearly, the discussed greedy algorithm does not always lead to the optimal group-

ing, since its results depend on the processing order of the pivot points. Errors may

also be introduced due to the estimation algorithm for the lifetime of each query.

However, these errors do not lead to inaccuracies in the maintained skyline; they may

only lead to suboptimal grouping and network performance of the algorithm. As we

show later with experiments, advanced grouping performs well in both real-world

and synthetic data, addressing the weaknesses of the basic grouping strategy.
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Algorithm 2: Advanced grouping

// Executed at the coordinator

// Set of groups Gi for object oi is constructed by basic grouping

1 function groupP ivotPoints(Gi)
2 begin

3 for (group Gi,j ∈ Gi) do

4 G′i,j ← ∅

5 for (pivot point −→pp ∈ Gi,j ) do

6 bestGroup← findBestGroup(G′i,j ,
−→pp)

7 if (bestGroup=NEWGROUP) then

8 Construct a new group G′ containing −→pp
9 G′ ← G′ ∪G′

10 else

11 Add −→pp to bestGroup
12 end

13 end

14 end

15 return G′

16 end

// Find the best group for the pivot point

17 function findBestGroup(G′i,j ,
−→pp)

18 begin

19 minDiff←∞, bestGroup←NULL
20 for (Group G′ ∈ G′i,j ) do

21 NG′

prev′ ← EstimateNt′ ()

// Simulate addition of −→pp to the group

22 pnew ← new composite pivot point for G′ ∪ −→pp

23 NG′

t′
← EstimateNt′ ()

24 diff = |P(G′ ∪ −→pp)|/NG′

t′
− |P(G′ ∪ −→pp)|/NG′

prev′

25 if (diff<minDiff) then

26 bestGroup← G′

27 minDiff← diff

28 end

29 end

// Simulate creation of a new group for −→pp

30 pnew ←
−→pp

31 NG′

t′
← EstimateNt′ ()

32 if (|P(−→pp)|/NG′

t′
<minDiff) then bestGroup←NEWGROUP

33 ;
34 return bestGroup

35 end

6.3 Grouping for DIRECT

It is straightforward to adapt both basic and advanced grouping for DIRECT: instead

of building composite pivot points, we build composite ’dynamic’ objects, which get

updated with the objects participating in the query. Notice however two important dif-

ferences compared to PIVOT. First, grouping in DIRECT does not increase the slack

of threshold queries for non-skyline objects, since there are no fixed pivot points in-

volved. Second, grouping does not affect the cost of handling threshold violations,

since only the invalidated parts of the threshold query need to be replaced. Never-
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theless, basic grouping can still be combined with the described representation for

computational performance at the monitoring sites.

7 Extensions and additional applications

Besides classic skyline queries, many other interesting skyline variants and applica-

tion domains have emerged in the last few years, e.g., skycubes, constrained skylines,

skybands, and skylines over sliding windows. To illustrate the flexibility provided by

PIVOT and DIRECT, we now explain how the two algorithms can be applied to some

of these contexts.

Constrained skyline queries. Constrained skyline queries [21] restrict the input

domain of a skyline to the objects that satisfy some pre-defined constraints. For ex-

ample, when booking a hotel room, a traveler may want to set an acceptable price

range (between $100 and $200) as a hard constraint. The constrained skyline is not

necessarily a subset of the full skyline, and therefore it cannot be produced by filter-

ing out the objects of the full skyline according to the constraints. Instead, the objects

not satisfying the constraints should be filtered out at the input of the algorithm. This

is not straightforward to achieve in the case of data fragmentation, since each node

cannot know whether the system-wide average values of any of its objects satisfies

the constraints or not.

Both PIVOT and DIRECT can be used to directly track constrained skylines over

fragmented data, by computing the skyline over an auxiliary space defined by helper

functions. In particular, we only need to define one helper function per dimension

that penalizes the tuples not satisfying all constraints. As an example, consider im-

plementing the constraint that the room price is between $100 and $200. To get the

distance Vs price skyline under this constraint, we compute the skyline over the space

produced by the functions fdist and fprice, defined for pushing the objects not sat-

isfying the constraints outside of the skyline, as follows: fdist = distance if 100 ≤
price ≤ 200, or fdist = ∞ otherwise (fprice is defined similarly). The constraints

are not necessarily rectangular, as in the described example; any constraint that can

be formally described by a function of any form (not necessarily linear) can be inte-

grated in the method.

Monitoring many concurrent skyline queries We frequently require concur-

rent monitoring of many skyline queries on (partially) overlapping dimensions for

the same data input. For instance, a user may need to monitor the skyline of hotel

vacancies using price and distance from the beach, whereas another user may be in-

terested on the skyline of hotel vacancies using price and distance from the city center.

Concurrent execution of many constrained skyline queries with different constraints

(e.g., different price ranges for the hotel rooms) is another example.

Clearly, we can execute multiple independent instances of PIVOT and DIRECT.

However, if the skylines to be tracked contain overlapping dimensions, we can save

network and computational effort by reducing the number of threshold-crossing queries.

In particular, after the coordinator extracts all threshold-crossing queries for each of

the desired skylines, it uses the rules described in Section 4.2 to select the tight-

est threshold-crossing queries, and propagates only these queries to the nodes for
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monitoring. Threshold violations and synchronizations are then used for updating all

skylines in parallel.

The performance improvement compared to the individual monitoring of each

skyline depends on the overlap of the threshold-crossing queries of the different sky-

lines. However, high overlap of threshold-crossing queries is expected in many appli-

cation scenarios, e.g., when maintaining the skycube [29], or when monitoring many

skyline queries with different constraints [21].

Sliding window skylines Algorithms for maintaining skylines over sliding win-

dows have also been proposed, e.g., [24]. However, none of them considers data frag-

mentation. Both PIVOT and DIRECT can maintain sliding window skylines straight-

forwardly, by monitoring the auxiliary space defined by a sliding window function,

i.e., f will be a sliding window function.

Skyband queries A k-skyband query includes all objects dominated by at most

k other objects [21] (skyline queries are in fact specializations of skyband queries,

with k = 0). A key observation towards efficient monitoring of k-skyband queries

over fragmented data is that before applying the reduction rules (cf. Section 4.2),

both PIVOT and DIRECT will construct sufficient threshold-crossing queries to en-

able monitoring the dominance relations of all pairs of objects. Therefore, a first

approach is to monitor all threshold-crossing queries. As such, the k-skyband query

will not change as long as none of these dominance relations is invalidated. To fur-

ther reduce network and monitoring complexity, we can rewrite the reduction rules

such that: (a) each object not belonging in the k-skyband only needs to monitor that

it is still dominated by k objects from the skyband and (b) each object oi from the

k-skyband needs to monitor that it does not become dominated by any new object

oj . The number of threshold crossing queries can be reduced further by noticing that,

for the second type of queries, it is sufficient to monitor only the pairwise relation

of oi with all objects that are immediate neighbors to at least one dimension (the

correctness proof is similar to the one provided for the standard PIVOT and DIRECT

algorithms, in Section 4.2). Furthermore, we can use query grouping to reduce the

number of threshold crossing queries even more.

Alternative aggregation functions Up to now, we have considered that aggregate

values are computed by averaging the object values across several sites. However,

any convex combination of the values of each object across the sites can be used (a

combination of values is convex if the aggregate value lies within the convex hull

of all values). For instance, a weighted average can also be used, where weights may

represent, e.g., the trustworthiness or the coverage of the node. Weights that vary with

time, and individual weights per dimension are supported by utilizing the ability of

PIVOT and DIRECT to define skyline spaces through abritrary functions, as follows:

Let vector w(o, pi, t) denote the varying weight per node for all dimensions. Then,

the skyline dimension is defined by function vector f =
∑

pi∈P(o) w(o, pi, t) ×

v(o, pi, t)/
∑

pi∈P(o) w(o, pi, t), which can again be monitored with the geometric

method.

Operating on uncertain data Uncertain data occurs in many domains, e.g., be-

cause of inaccuracies in the data extraction process. Bounding boxes are often uti-

lized in these domains, to represent the area where each uncertain point may lie (see,

e.g., [5]). In these cases, it may be required to maintain the skyline of bounding
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boxes, i.e., the set of bounding boxes that are not fully dominated by another box.

Both PIVOT and DIRECT can be used for monitoring this skyline, albeit with some

modifications. This is achieved by constructing threshold-crossing queries that mon-

itor the relative positioning of bounding boxes. In particular, at initialization time

we extract the aggregate bounding box per item, and compute the initial skyline of

bounding boxes. Then, we extract the threshold crossing queries to monitor the fol-

lowing: a) for each bounding box that belongs in the skyline, we need to monitor

that this does not become fully dominated by another bounding box, and b) for the

bounding boxes that do not belong in the skyline, we need to monitor that they remain

fully dominated by at least one bounding box. These bounding-box threshold cross-

ing queries are essentially reduced to simple threshold-crossing queries between the

upper-right coordinate of the dominating bounding box and the lower-left coordinate

of the dominated bounding box. As such, the reduction rules and all optimizations

proposed in the previous sections can also be used.

8 Experimental evaluation

The experiments were focused on evaluating the network efficiency and scalability

of PIVOT and DIRECT, and on providing guidelines for selecting the best algorithm

for each configuration. As a baseline, we have used the only available alternative for

continuous fragmented functional skylines, which streams the updates to a central

node (only the updates that actually altered the local statistics vector of an object

were considered). In the following, the baseline will be denoted as CENTR, due to

its central nature. Unless otherwise mentioned, PIVOT and DIRECT will be used to

denote the full-fledged algorithms, i.e., PIVOT with advanced grouping and adaptive

monitoring, and DIRECT with basic grouping.

Data sets. We have used two publicly available real-world data sets, denoted as

WEATHER and MOVIES. WEATHER, was downloaded from the National Oceanic At-

mospheric Administration website (http://www.ncdc.noaa.gov/isd), and

includes weather statistics collected in 2010-2011 from a network of 5423 sensors

distributed around 257 countries. It contains 93.6 million readings of temperature and

dew point (only the updates that altered the local values were considered). MOVIES is

the largest of the Movielens data sets (http://grouplens.org/datasets/

movielens/), containing 10 million ratings of 10681 movies, provided by 71567

users. Since the data set does not contain user demographics, we have introduced a

random distribution of users to 200 sites.

Furthermore, a set of massive synthetic data streams generated with the data

generator of [3] allowed us to study the behavior of the algorithms under differ-

ent data characteristics. Since the generator creates only static data sets, updates

were simulated by randomly selecting a site pi and an object oj at each step, and

shifting the local value of the object to a value uniformly selected within the range

[(1−maxRC)v(oj , pi, t), (1+maxRC)v(oj , pi, t)], with maxRC denoting the max-

imum relative change chosen for the experiment.

Monitored functions. The algorithms were evaluated using both linear and non-

linear functions. For linear functions, we will report results for the identity function
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Fig. 6 (a) MOVIES data set, (b) WEATHER data set.

on the average object values, i.e., f(v(o, t)) = v(o, t), which enables us to directly

observe the influence of data characteristics to the performance of the algorithms.

For non-linear functions, we considered three frequently used functions, variance of

a dimension across all sites, euclidean norm on two dimensions, and L2 distance on

four dimensions.

Performance indicators. We measured the number of messages and transfer volume

required by each algorithm. To enable direct comparison with the baseline, the cost

for DIRECT and PIVOT will always be presented as a percentage of the corresponding

cost of CENTR on the same setup. We do not report accuracy since both PIVOT and

DIRECT offer strict error guarantees, i.e., all errors are always at most equal to the

chosen acceptable error ǫ.
Table 1 summarizes the configuration parameters varied in our experiments, and

the default values for each parameter. To avoid repetition, in our discussion we will

be noting only the parameters with values different from the default.

8.1 Evaluation of algorithmic components

We start by evaluating the proposed algorithm extensions, i.e., query grouping for

PIVOT and DIRECT, and adaptive monitoring for PIVOT. We conduct our experiments

using the real-world data sets WEATHER and MOVIES. An interesting characteristic

of WEATHER is that, even though the value of each object (country) is fragmented

over many sensors, each sensor always maintains the data of a single object, i.e., the

weather statistics of a single country. As shown by Theorem 1, DIRECT is provably

worse than PIVOT for such a setup, and is therefore not used on this data set.

Figures 6(a)-(b) present the total network cost (both initialization cost and run-

ning cost) induced by all algorithmic variants of PIVOT and DIRECT for maintaining

two indicative skylines: (1) for MOVIES, the movies with the highest average ratings

and the highest number of ratings in the network, and, (2) for WEATHER, the skyline

of countries with lower average temperature and dew point. Costs for PIVOT and DI-

RECT are reported as a percentage of the corresponding cost of CENTR (248 Mbytes

for MOVIES and 2.8 Gbytes for WEATHER).

Our first observation from the MOVIES data set (Fig. 6(a)) is that all algorithmic

variants enable substantial network savings compared to CENTR. For this data set,

DIRECT is the most efficient algorithm, closely followed by PIVOT with grouping

(both basic and advanced grouping). In terms of number of messages (not shown
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Data sets

Name synthetic, WEATHER, MOVIES

Correlation bet. dim. Independent, Correl., Anti-correl.
Max. relative change 0.01, 0.02, 0.04, 0.08, 0.16
# objects [257 - 50.000] (default 2000)

Experimental Configuration

Function Linear, Norm, L2 dist., Var.
Dimensions d′ ∈ {2, 3, 4, 5}, d ∈ {2, 3, 4, 5}
# sites [200 - 50.000] (default 1000)
Acceptable error ǫ 0, 0.0005 - 0.05

Table 1 Experimental parameters (default value is bold). Fig. 7 Total and runnning cost per algo-
rithm

in the figure), all variants require less than 1% of the corresponding messages of

CENTR).

As expected, grouping has no noticeable effect on the network performance of

DIRECT (cf. Section 6.3). In contrast, grouping for PIVOT not only enables sending

of fewer pivot points, but also increases the available slack for non-skyline objects,

further reducing the network requirements by a factor of 2. Interestingly, advanced

grouping and adaptive monitoring do not provide additional benefits for this data

set. This is simply because the skyline stabilizes very early in this data set (after a

few thousand updates). As such, there are very few threshold violations, and both

optimizations, which focus on reducing the number and cost of threshold violations,

have a negligible effect.

Fig. 6(b) plots the required transfer volume for WEATHER. The best performing

variant is the full-fledged algorithm (advanced grouping and adaptive monitoring).

Interestingly, basic grouping has a negative effect for this setting. This result is due

to the cost-agnostic property of basic grouping, which causes problems in scenarios

where objects are monitored by subsets of nodes. We also see that adaptive monitor-

ing is beneficial for this data set, further reducing network cost by a factor of two, by

setting 3 cities on average on streaming monitoring (cf. Table 2).

The initialization phase of both algorithms induces a small network cost for send-

ing all threshold queries to the participating sites. This is a one-time cost, with a

small significance for long-running continuous queries, where running cost is ex-

pected to be the dominant factor. For comparison purposes, Fig. 7 presents both total

and running cost of each algorithm for the two data sets, as measured at regular

stream intervals. For clarity, the plot includes only the transfer volume ratio for the

best performing variants of the algorithms, i.e., PIVOT with advanced grouping and

adaptive monitoring, and DIRECT with basic grouping. We see that this one-time ini-

tialization process raises the total cost ratio of both algorithms at the early stages of

the stream. This behavior is particularly visible with the MOVIES data set, which has

a larger number of objects that translate to many threshold queries. However, as more

updates arrive in the stream, the total transfer volume of the proposed algorithms con-

verges to their running transfer volume. Since most real-world applications involve

long-running – possibly infinite – streams, the one-time initialization cost of the al-

gorithms is not an important concern. Instead, the running cost of each algorithm is a

more interesting evaluation indicator.
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PIVOT: Independent Correlated Anti-correlated
DIRECT: Independent Correlated Anti-correlated

Fig. 8 Effect of dimensions correlation to PIVOT and DIRECT: (a) transfer volume, (b) # messages.

We also see that running cost for the MOVIES data set is close to zero, for both al-

gorithms. This is expected, since MOVIES has a relatively stable skyline. WEATHER

on the other hand is more challenging, having a running cost that fluctuates between

5% and 10%. This is attributed to two properties of the data set: (a) the similar

weather statistics observed in nearby countries, leading to tight threshold queries, and

to frequent changes in the skyline, and, (b) the periodicity of the readings due to the

day-night cycle, which causes frequent changes in the skyline. Extreme weather situ-

ations, such as the extremely low temperatures in continental Europe in the winter of

2010-2011 (starting at around 50% of the stream), also cause drastic skyline changes

and increased network requirements. Nevertheless, the overall network savings are

significant, reaching 90% by the end of the stream.

Summarizing, the first set of experiments has shown that both PIVOT and DIRECT

substantially outperform CENTR. In the remainder of this section, we will be focusing

on the best variants of the two algorithms, i.e., PIVOT with advanced grouping and

adaptive monitoring, and DIRECT with basic grouping.

8.2 Influence of data characteristics

We now resort to synthetic data sets in order to investigate the influence of the fol-

lowing data characteristics to the performance of the compared algorithms:

• Correlation between dimensions: correlated (e.g., price Vs performance for com-

puters), anti-correlated (price Vs mileage for used cars), or independent (shipping

cost Vs item price).

• Maximum change: We consider values from 1% to 16%.

We have generated different synthetic streams of 2000 two-dimensional objects,

varying the properties described earlier. The network was configured such that all

objects were monitored at all sites. In order to maintain the stream properties also

in the skyline space, f [0] and f [1] were set to be the identity functions on the two

dimensions of the objects. The total cost of CENTR in these experiments was always

10 million messages totaling 305 Mbytes.

Correlation between dimensions. Figures 8(a)-(b) present the running cost of PIVOT

and DIRECT for data sets with different correlations, as measured at regular stream
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Data Set # streaming objects

MOVIES 0.07
WEATHER 3.03
Independent 5
Correlated 0.35
Anti-correlated 138.5

Table 2 Average number of streaming ob-
jects in PIVOT.

ε

PIVOT: Indep. Corr. Anti-corr.
DIRECT: Indep. Corr. Anti-corr.

Fig. 9 Effect of approximation to cost of PIVOT and DIRECT

intervals. Y axis is interrupted at y = 0.0065 for illustration purposes. Clearly, both

PIVOT and DIRECT enable substantial savings for all data sets. Both algorithms re-

quire two to three orders of magnitude less transfer volume compared to CENTR on

the data sets with independent and correlated dimensions. The data set with anti-

correlated dimensions is more challenging since most objects end up close to the

skyline border, leading to frequent skyline updates. Nevertheless, even for this data

set, PIVOT and DIRECT still enable around 80% and 65% respectively network re-

duction compared to CENTR.

Also notice that DIRECT is more efficient than PIVOT for the streams with the cor-

related and independent dimensions, whereas PIVOT substantially outperforms DI-

RECT for the more challenging stream with anti-correlated dimensions. The reason

for this discrepancy is the adaptivity extension, which is supported only by PIVOT.

For the anti-correlated data set, the adaptivity extension switches around 7% of all

objects to streaming monitoring (cf. Table 2). These are objects that end up to be

very close to each other due to the anti-correlated dimensions. The effect of adaptive

monitoring is not evident in the other two data sets, which induce far less threshold

crossings, and are almost solely monitored using geometric monitoring. Since thresh-

old queries of DIRECT are more compact than the ones of PIVOT, DIRECT turns out

to be more efficient in the experiments with these two data sets.

Maximum Change. Streams up to now were generated assuming a maximum rel-

ative change maxRC = 0.02 per update. To verify the applicability of PIVOT and

DIRECT for fast-changing streams, we have also conducted experiments with differ-

ent maximum change values, up to 0.16. Fig. 11(a) plots the network cost of PIVOT

and DIRECT for data sets generated with independent dimensions. As expected, in-

creasing maxRC results to an increase of the network cost of both algorithms. Never-

theless, even for maxRC = 0.16, both algorithms enable network savings of around

88% compared to CENTR. For small maxRC values, network savings of both algo-

rithms are substantially higher, approximating 100%.

8.3 Approximate monitoring

All previous experiments considered exact monitoring, i.e., ǫ = 0. Figure 9 plots

the network cost in relation to ǫ for data sets with different correlations between di-

mensions. We see that an increase in the acceptable error can drastically reduce the
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Fig. 10 Effect of (a) network size, (b) number of objects.

network cost. This is particularly visible in the experiments with anti-correlated di-

mensions where more threshold crossings are expected. We also observe that DIRECT

utilizes error tolerance better, since it does not need to pre-allocate the error slack to

objects, i.e., DIRECT allocates a total of ǫ tolerance per pair, whereas PIVOT pre-

allocates the tolerance to ǫ/2 per object. Notice that, as expected, the observed error

in all experiments was always less than the guaranteed maximum error ǫ.

8.4 Scalability

To evaluate the scalability of the proposed algorithms, both algorithms were repeated

on larger networks and with more objects. For the first series of experiments, we

examined the cost of monitoring a fixed set of 1000 objects on networks of different

sizes (all objects were monitored by all nodes). Fig. 10(a) plots the running cost of

PIVOT and DIRECT as a ratio of CENTR for networks of up to 50.000 nodes. We see

that the cost of both algorithms stays below 1.5% and presents no systematic increase

with the network size.

For the second set of experiments, we examined the cost of monitoring object sets

of different sizes over a fixed network of 1000 nodes. We again observe (Fig. 10(b))

that there is no systematic increase of network cost ratio with the number of objects.

As such, our algorithm scales well with both number of objects and number of nodes.

8.5 Number and type of functions

The final set of experiments focused on investigating the influence of the number and

type of functions to the performance of PIVOT and DIRECT.

Fig. 11(b) presents the performance of PIVOT and DIRECT when monitoring up

to 5 linear functions. We observe that an increase of the number of functions leads to

higher network cost for both algorithms. The main reason for this is that by adding

functions, we increase the frequency of synchronizations (recall that a threshold vio-

lation on a single dimension is sufficient to invoke a synchronization). For up to four

functions, PIVOT is substantially more efficient than CENTR, reducing the transfer

volume by 70%, and the messages by more than 80%. For more than four functions,

both PIVOT and DIRECT become less efficient than CENTR. We should note that sky-

lines of higher dimensions are rarely considered in practical, real-world applications.
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Fig. 12 Effect of types of functions.

The problem, of course, is that, in high dimensions, a large fraction of the objects end

up in the skyline (due to the “dimensionality curse”), rendering it practically useless.

We also conducted experiments with more complex functions, namely the Eu-

clidean norm on two dimensions (Norm(v(o, t)) =
√

∑2
i=1 v(o, t)[i]

2), the L2 distance

on four dimensions (L2(v(o, t)) =
√

∑2
i=1 v(o, t)[i]

2 − v(o, t)[i+ 2]2), and the variance

of one dimension on all sites (V ar(v(o, t)[i]) =
∑

p∈P(o)(v(o, t, p)[i])
2 − v(o, t)[i]2). In

all experiments, the skyline space was 2-dimensional, with f [0] set as the identity

function, and f [1] set as one of the three functions above. f [0] and f [1] were set to

use different dimensions, in order to avoid introducing correlations.

Fig. 12 plots the network cost incurred by the two algorithms. For comparison,

the figure also includes the cost for the case where both functions are set to the iden-

tity function. We see that the proposed algorithms substantially outperform CENTR,

also on skylines defined through non-linear functions. The only exception involves

the experiments with DIRECT used for monitoring the pair of identity and L2 dis-

tance functions. For this configuration, DIRECT reduces the transfer volume only by

20% compared to CENTR. DIRECT does not perform well in this configuration due

to its local monitoring process, which requires constructing balls in the 2d-space for

each function, i.e., in the 10 dimensions for L2 (cf. Section 4.1). This substantially in-

creases the frequency of threshold crossings, and, consequently, the transfer volume.

PIVOT, on the other hand, reduces the network cost to around 20% of the baseline,

since: (a) it constructs balls in the d-dimensional space, and not in the 2d-dimensional
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space and, (b) it uses the adaptivity extension, which avoids a large number of thresh-

old crossings.

8.6 Summary

The experimental evaluation showed that the proposed algorithms substantially out-

perform CENTR, the only available alternative. Cost reduction was frequently in the

range of two orders of magnitude, as shown with experiments on both real and syn-

thetic data sets, and using different number and types of functions. Both PIVOT and

DIRECT were shown to scale well with the number of objects, and number of sites.

Furthermore, a thorough experimental comparison of the two algorithms was used to

reveal the preferred algorithms for each situation:

• PIVOT is the algorithm of choice for monitoring dense skyline spaces, i.e., with

anti-correlated dimensions, and with many functions, due to the adaptivity exten-

sion which detects tight threshold queries and assigns their corresponding objects to

streaming monitoring.

• PIVOT substantially outperforms DIRECT when monitoring skylines that include

non-linear functions operating on high dimensions, e.g., the L2 distance.

• For 2-dimensional skylines with correlated or independent dimensions, DIRECT

is more efficient than PIVOT, since it does not introduce fixed pivot points, allowing

higher slack to the objects, and more compact threshold queries. For the same reason,

DIRECT also utilizes error tolerance better than PIVOT.

9 Conclusions

In this article we formally introduced the problem of continuous fragmented skyline

queries. To address the problem, we proposed two distributed algorithms that rely on

geometric monitoring to reduce the number of updates that need to be streamed to

a central node, thereby reducing the total network cost for maintaining the skyline.

We discussed several network optimizations for the two algorithms: (a) an approxi-

mation extension for error-tolerant applications, (b) grouping extensions which allow

handling groups of objects more efficiently, and, (c) an adaptivity module which en-

ables detecting highly volatile data and handling them more efficiently. The proposed

algorithms were thoroughly evaluated with experiments on massive real-world and

synthetic data sets. The experimental results demonstrated the scalability of the algo-

rithm, as well as its significantly improved network efficiency compared to the only

available baseline algorithm.
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