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Abstract. In this paper, we show the feasibility of real-time flow monitoring 
with controllable accuracy in today’s IP networks. Our approach is based on 
Netflow and A-GAP. A-GAP is a protocol for continuous monitoring of network 
state variables, which are computed from device metrics using aggregation 
functions, such as SUM, AVERAGE and MAX. A-GAP is designed to achieve a 
given monitoring accuracy with minimal overhead. A-GAP is decentralized and 
asynchronous to achieve robustness and scalability. The protocol incrementally 
computes aggregation functions inside the network and, based on a stochastic 
model, it dynamically configures local filters that control the overhead and 
accuracy. We evaluate a prototype in a testbed of 16 commercial routers and 
provide measurements from a scenario where the protocol continuously 
estimates the total number of FTP flows in the network. Local flow metrics are 
read out from Netflow buffers and aggregated in real-time. We evaluate  
the prototype for the following criteria. First, the ability to effectively control the 
trade off between monitoring accuracy and processing overhead; second,  
the ability to accurately predict the distribution of the estimation error; third, the 
impact of a sudden change in topology on the performance of the protocol. The 
testbed measurements are consistent with simulation studies we performed for 
different topologies and network sizes, which proves the feasibility of the 
protocol design, and, more generally, the feasibility of effective and efficient 
real-time flow monitoring in large network environments.  

1   Introduction 

Several key management tasks, such as SLA verification, accounting and intrusion 
detection depend on monitoring state variables in the network. For many such tasks, the 
IP flow has emerged as the appropriate level of abstraction and granularity for 
monitoring. This has made flow monitoring an active research topic [14][17][18]. Its 
high relevance in practical scenarios has led the IETF to create the IP Flow Information 
Export (IPFIX) working group, focused on standardizing different aspects of flow 
monitoring, such as information models and information exchange protocols [15]. 

One of the key challenges in flow monitoring is controlling the trade off between 
the costs (e.g., processing resources, memory requirements, management traffic) and 
the accuracy of the monitored metrics. Examples of research efforts in this area are 
[16][17][18]. 
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Fig. 1. Interface on the management station for evaluating A-GAP on the testbed. It shows the 
effect of changing the accuracy objective from 0 to 15 flows. at time 14:42:30 in a testbed 
scenario. As a consequence, A-GAP reduces the overhead at the cost of an increased error in 
estimating the aggregate. The interface provides also real-time estimation of the error 
distribution and of the trade-off curve accuracy vs overhead. 

A relevant technique in this context is aggregation. It consists on computing 
network-wide metrics from device-level metrics across a network. Examples of 
aggregation functions are SUM, AVERAGE, MIN, MAX, and HISTOGRAM. Sample 
flow aggregates are the total number of VoIP flows, the most popular flow destination, 
or a histogram of flow sizes in a network domain. Monitoring flow aggregates enables 
administrators to learn the volume of traffic different applications generate and infer 
the performance requirements of end users. Monitoring flow aggregates also permits 
identifying elephant flows, a key task in traffic engineering [20]. 

While it is often crucial to know how accurate aggregate estimates are, network 
management solutions deployed today usually provide only qualitative control of the 
accuracy and do not support the setting of an accuracy objective [4]. 

The focus of this paper is on providing continuous estimates of flow aggregates 
with controllable accuracy in today’s IP networks.  

Our solution is based on Netflow [14] and A-GAP [11], a generic aggregation 
protocol with controllable accuracy. Router-level flow metrics are read from Netflow 
buffers. A-GAP continuously aggregates these router-level metrics into network-wide 
metrics by (i) creating and maintaining a self-stabilizing spanning tree and (ii) 
incrementally aggregating the metrics along the tree. A-GAP is push-based in the 
sense that changes in monitored metrics are sent towards the management station 
along the aggregation tree. The protocol controls the management overhead by 
filtering updates that are sent from monitoring nodes to the management station. The 
filters periodically adapt to the dynamics of the monitored variables and the network 
environment. All operations in A-GAP, including computing the aggregation function 
and filter configuration, are executed in a decentralized and asynchronous fashion to 
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ensure robustness and achieve scalability. [11] contains the description of the 
stochastic model A-GAP uses for filter computation and performance prediction.  

This paper reports on our prototype for flow monitoring with controllable accuracy 
and its evaluation on a testbed of commercial routers. At the cost of introducing an 
overlay of monitoring nodes, no changes to the routers are required. The results 
presented validate the protocol design and suggests the feasibility of real-time flow 
monitoring in large-scale dynamic network environments. 

The paper is organized as follows. Section 2 provides an overview of A-GAP. 
Section 3 discusses the implementation of A-GAP. Section 4 contains the evaluation 
scenarios and the testbed results. Section 5 discusses related work. Section 6 
concludes the paper. 

2   Overview of A-GAP 

2.1   Problem Statement 

We consider a dynamically changing network graph G(t) = (V(t), E(t)) in which nodes 
n ∈  V(t) and edges/links e ∈  E(t) ⊆  V(t) x V(t) may appear and disappear over 
time. Each node n has an associated local variable wn(t). The term local variable is 
used to represent a local state variable or device counter that is being subjected to 
monitoring. Local variables are updated asynchronously with a given sampling rate. 

The objective is to engineer a protocol on this network graph that provides a 
management station with a continuous estimate of Σnwn(t) for a given accuracy. The 
protocol should execute with minimal overhead in the sense that it minimizes the 
(maximum) processing load over all nodes. The load is expressed as the number of 
updates per second a node has to process. The accuracy is expressed as the average 
error of the estimate over time. 

Throughout the paper we use SUM as aggregation function. Other functions can be 
supported as well, as discussed in [11]. 

2.2   A-GAP 

A-GAP is based on GAP (Generic Aggregation Protocol), an asynchronous 
distributed protocol that builds and maintains a BFS (Breadth First Search) spanning 
tree on an overlay network [1]. The tree is maintained in a similar way as the 
algorithm that underlies the 802.1d Spanning Tree Protocol (STP) [5]. In GAP, each 
node holds information about its children in the BFS tree, in order to compute the 
partial aggregate, i.e., the aggregate value of the local management variables from all 
nodes of the subtree where this node is the root. GAP is event-driven in the sense that 
messages are exchanged as results of events, such as the detection of a new neighbor 
on the overlay, the failure of a neighbor, an update to an aggregate or a change in the 
local management variable.  

A drawback of such an approach is that it can cause a high load on the root node or 
on nodes close to the root, specifically in large networks. In order to reduce this 
overhead, A-GAP introduces filters in the nodes. When the partial aggregate (or the 
local variable in the case of a leaf node) of a node n changes, then n sends an update 
to its parent if the difference between the value reported in its last update and the 
current value exceeds the local filter width Fn. 
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Minimizing the Protocol Overhead. Estimating the network variable at the root 
node with minimal overhead for a given accuracy can be formalized as an 
optimization problem. Let n be a node in the network graph, ωn the rate of updates 
received by node n from its children, Eroot the distribution of the estimation error at 
the root node, and ε the accuracy objective. We formulate the problem as 

Minimize { }n

n
Max ω    s.t.   ( ) ε≤rootEE                             (1) 

whereby ωn and Eroot depend on the filter widths (Fn)n, which are the decision 
variables. 

We have developed a stochastic model for the monitoring process. The model is 
based on discrete-time Markov chains and describes individual nodes in their steady 
state. For each node n, it relates the error of the partial aggregate of n, the step sizes 
that indicate changes in the partial aggregate, the rate of updates n sends and the 
width of the local filter. The model is described in detail in [11]. The model permits 
us to compute the distribution of the estimation error at the root node and the rate of 
updates processed by each node. 

A-GAP continuously estimates the evolution of the management variables that the 
protocol aggregates, one of the variables in our model. Based on these estimates, all 
others model variables, such as the error distributions and incurred overhead, are 
dynamically computed. Such an approach lets A-GAP adapt quickly, compared to an 
approach whereby all model variables are estimated. 

A Local Heuristic. An optimal solution to (eq. 1) can be computed using a 
(centralized) grid search algorithm, a well-known optimization technique, where the 
model variables for all nodes in the aggregation tree are computed bottom-up. Such 
an approach, however, is not feasible for large networks, since the computational cost 
of this algorithm grows exponentially with the number of nodes. A-GAP realizes a 
distributed heuristic, which attempts to minimize the maximum processing load on all 
nodes by minimizing the load within each node’s neighborhood. A-GAP maps (eq. 1) 
onto a local problem for each node n as follows: 

Minimize { }π

π
ωMax    s.t.   ( ) nn

outEE ε≤ ,                               (2) 

where π is the set composed by the node n and its children. This means that node n 
attempts to minimize the maximum load in a neighborhood for a given accuracy 
objective εn of its partial aggregate. 

The node attempts to solve (eq. 2) by periodically re-computing the filters and 
accuracy objectives of its children, based on the stochastic model. Re-computing the 
filters (Fc)c allows node n to influence its own load ωn, while re-computing the 
accuracy objective εc of a child c allows the node to influence the load ωc on c. 

A-GAP computes the local filters and accuracy objectives in a decentralized and 
asynchronous fashion, as described in detail in [11]. 

The two keys configuration parameters of A-GAP are (i) the maximum number of 
children whose filters and accuracy objectives are recomputed during a control cycle 
|Ω|, and (ii) the period of the control cycle τ. As discussed in [11], both parameters 
influence the adaptability and computational cost of A-GAP. 
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3   Implementation 

A-GAP executes on a distributed management architecture, whereby each network 
device participates in the monitoring task by running a management process, either 
internally on the network element or on an external associated device. In our testbed, 
the management processes execute on Linux PCs, or alternatively, on low-cost mini-
computers. Each computer, which we also call a monitoring node, runs the 
management process associated with one of the routers. Monitoring nodes 
communicate with each other via overlay links. 

Figure 2 shows the design of a monitoring node. The node manager is responsible 
for executing the commands from overlay peers and the management station. These 
include the invocation of services and protocols. Local services a node supports are 
overlay maintenance, node/link failure detector, reliable communication and local 
device access. The overlay maintenance service constructs and maintains the overlay 
that interconnects the monitoring nodes. The failure detector detects the failing of a 
neighboring node. The reliable communication service provides reliable and secure 
message passing across overlay links. The device access service provides access to 
local variables on the network device through SNMP, CLI, Netflow, etc. 

A monitoring node is implemented in Java. A-GAP alone is in the order of 2500 
lines of code. The heuristic used for solving the problem shown in (eq. 2) is 
implemented using JSci (v0.94) for solving systems of linear equations [2]. Message 
exchange between monitoring nodes is implemented using XML. All protocol 
invocations and services run as threads in a single JVM. 

The interface on the management station shown in figure 1 facilitates the 
evaluation of A-GAP. It allows setting configuration parameters of the protocol, 
including the aggregation function, the accuracy objective, and the root node of the 
aggregation tree. Once the protocol has set up the aggregation tree on the overlay, the 
tree topology is displayed in the lower left corner. On the right side, the interface 
provides real-time information on A-GAP’s performance. First and foremost, the 
estimate of the aggregate 
and its evolution over time 
(top right). Second, the 
distribution of the estim-
ation error for the current 
networking conditions and 
objective (bottom center). 
Third, the estimated trade-
off curve between the 
protocol overhead and  
the error objective for the 
current networking condi-
tions (bottom right). The 
current operating point on 
the curve is displayed as 
well. Furthermore, the 
interface provides data 
from an application that 
monitors the execution of 

Management
Protocols

Node Manager

reportscommands

A-GAP

Other
Protocols

Overlay
Maintenance

Device Access

Reliable 
Communication

CLI SNMP Netflow

Network device

Local Services

Failure Detector

Management 
Interface

In
te

rf
ac

e 
to

   
   

   
   

   
   

P
ee

r 
M

on
ito

rin
g

N
od

es

 

Fig. 2. Design of a monitoring node 
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A-GAP, namely, the true aggregate over time, as well as the distribution and 
evolution of the management overhead (blue curves in figure 1). These metrics are 
pushed by the management processes to a collecting node. The interface is built with 
JFreeChart (v.1.0.2) [3] that draws the graphs in real-time. 

4   Evaluation 

4.1   Testbed Setup 

Figure 3 gives the setup of our testbed for the evaluation and shows an aggregation 
tree on the overlay created by A-GAP. The testbed includes 16 Cisco 2600 Series 
routers and 16 rack-mounted PCs running the monitoring nodes. Routers and PCs are 
connected through four 100Mbps Ethernet switches (a Netgear FSM750S and three 
Netgear FSM726S). An NTP server synchronizes the clocks on the PCs for the 
purpose of estimating the “true” aggregate. A Spirent Smartbits 6000 programmable 
traffic generator injects flows into the testbed. 

4.2   Measured Metrics 

During the experiments, we collect the following metrics. First, we trace A-GAP’s 
estimation of the aggregate by logging all updates of the aggregate at the root node. 
Second, we trace the 
value of the local 
variable of each node 
(obtained by reading the 
router’s Netflow cache) 
by logging all updates to 
this variable on the node. 
The first and the second 
metrics are used to 
compute the estimation 
error, which we define as 
the average difference 
between the sum of all 
the local variables (called 
the true value throughout 
the paper) and the 
estimation of the 
aggregate by A-GAP. 
Third, we trace the 
management overhead of 
each node by counting 
the number of updates 
each node receives during 
a control cycle. This data 
is used to compute the 
maximum load over all 
nodes in the testbed. 
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Fig. 3. Testbed configuration. The area at the bottom represents 
the physical network: 16 commercial routers. Each router is 
associated with a monitoring node. Monitoring nodes 
communicate via an overlay (middle area). The management 
station on top interacts with the root node of the aggregation 
tree.  
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4.3   Scenarios Description 

The local management variable in the experiments is the number of FTP flows 
entering the network through that node. Therefore, the monitored aggregate is the 
number of FTP flows in the network. The traffic generator injects flows into the 
testbed following a random walk process with barriers. For the experiments in this 
paper, the aggregate takes values between 0 and 450 flows. 

The local variables are sampled asynchronously, once every second, and are read 
from the Netflow caches of the Cisco routers through CLI.  

During all experiments, the overlay topology does not change, and the aggregation 
tree set up by the protocol has the structure given in figure 3. The control cycle of A-
GAP is set to 5 seconds, and the number of children whose filters are recomputed 
during a control cycle is set to 2. 

All experiments start with an initialization phase of some 30 seconds, in which the 
aggregation tree is set up and the model variables are estimated or computed. This is 
followed by a transient period of up to 60 seconds. After that, the measurement period 
starts, which is 350 seconds for all experiments. The accuracy objective is set at the 
beginning of the experiment and it is not changed during a run. 

4.4   Measurement Results 

Estimation accuracy versus protocol overhead. We have run a set of experiments  
with different accuracy objectives, and we have measured the protocol overhead  
in function of the experi-enced error. Every point in figure 4 corresponds to a run on the 
testbed. 

We observe that the overhead decreases as the estimation error increases. As the 
error grows larger, the decrease becomes smaller. Estimation errors above 10 flows 
do not significantly reduce the overhead anymore.  

This observation is consistent with simulation results of A-GAP, where we see the 
same qualitative behavior for different overlay topologies and network sizes ranging 
from tens of nodes to several hundreds [11]. 

Meeting the accuracy 
objective. A further ana-
lysis of the measurement 
data shows that the 
difference between the 
accuracy objective and 
the experienced esti-
mation error is small. For 
all the experiments in this 
evaluation, which include 
dozens of runs, it has 
been less than one flow 
(considering that typical 
aggregate values in our 
experiments are around 
200 flows). 
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Fig. 4. Testbed measurements: management overhead incurred 
by A-GAP as a function of the accuracy of the estimation 
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The difference between accuracy objective and the experienced estimation error 
has two main causes. First, updates from different nodes in the network experience 
different delays in reaching the root, which distorts the evolution of the estimate at the 
root node. (This distortion is not captured by our stochastic model [11], since, for 
reasons of simplicity, it does not consider networking and processing delays). A 
second cause is the inaccuracy in the stochastic model variables used for filter 
computation, for instance, as a result of errors in the estimation of the evolution of the 
local variables.  

These measurement results demonstrate that we can effectively control the 
accuracy of the estimation that A-GAP provides. Second, we can control the trade off 
between the accuracy of the estimation and the protocol overhead. Specifically, the 
larger the error A-GAP is allowed to make, the smaller the overhead it incurs. 

Robustness: A router gets disconnected. In this experiment, we assess the 
adaptability of A-GAP to the disconnection of a router (and the computer running its 
associated management process). The disconnection happens instantly and the failure 
detectors in the neighbors of the disconnected node detect the failure in a sub-second.  

When a failure is detected, A-GAP reconstructs the spanning tree. At the same 
time, the partial aggregates in some nodes are recomputed. The local mechanism for 
filter re-computation assures that the filters in the nodes adapt to the new tree 
structure.  

In this particular experiment, node 6 (shown in figure 3) is disconnected from the 
network at time ≅ 101 seconds. The spanning tree is reconstructed on the overlay (not 
shown in the figure). Figure 5 shows traces of the experiment. In the upper graph, 
which shows the maximum load across all nodes, we see no apparent transient period. 
In the lower graph, which shows the estimation of the aggregate provided by  
A-GAP and the true 
value, we observe a 
spike during a trans-
ient period of a  
sub-second. For this 
experiment, the accu-
racy objective is 4 
flows, and we see 
that the objective is 
achieved both before 
and after the failure. 

This observation 
is consistent with the 
properties of pro-
tocols that use aggre-
gation trees [9][1] 
and with our results 
from simulating A-
GAP [11], where we 
observe brief spikes 
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Fig. 5. Estimation error at the root node and management overhead 
caused by a node disconnection 
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in estimation errors. During tree reconstruction, some local variables may be 
considered more than once, or not at all, in the estimation of the global aggregate, 
which explains the spike in the estimation error at the root node. Specifically, in this 
experiment, the local variables of the children of node 4 are not considered at the root 
until updates from their new parents in the tree reach the root. 

When simulating A-GAP for large networks, we have seen a significant peak in the 
overhead for cases where tree reconstruction involves a large number of nodes–a 
phenomena that we did not expect to see in our small testbed. 

Distribution of the estimation error. In this experiment, we evaluate the capability 
of A-GAP for providing performance estimation. Based on our stochastic model,  
A-GAP can provide, for a given error objective, the distribution of the estimation 
error and the expected overhead at the nodes.   

Figure 6 shows the error distribution for a run where A-GAP constructs a tree as 
shown in figure 3. The accuracy objective is 4 flows. One curve shows the error 
distribution estimated by A-GAP, the other gives the result from measuring the errors 
on the testbed.  

We observe that both curves are close to each other, and the estimation by A-GAP 
is accurate in this sense. We see also that both distribu-tions have long tails. The 
maximum poss-ible error (i.e., the sum of all filter widths) in this run is 26. The 
estimated probability of having such a large error, though, is very small, in the order 
of 10-13. The actual maximum error during the experiment is 14. (The observation 
that the maximum error is a rare event is also made by other authors [9][12]. This 
confirms our choice of the average error as control parameter for the protocol, rather 
than the maximum error, which other authors advocate [10].) 

Other measurements from our testbed also show that A-GAP accurately estimates 
the expected protocol overhead. Results can be found in [13]. 

Real-time Monitoring with Netflow. While we have developed A-GAP as a protocol 
for estimating aggregates of local variables in real-time, the accuracy of this 
estimation depends on the accuracy of the local variables, which capture device 
counters, local MIB 
objects, etc. In the 
measurements pre-
sented in this paper, 
the local variable is 
the number of entries 
in a Netflow cache. 
Netflow keeps an 
entry of a flow 
traversing a router as 
long as its latest 
packet has traversed 
the router within the 
interval [now()-Δt, 
now()]. (In our setup 
Δt is 10 seconds.). As 
Netflow defines 
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Fig. 6. Distribution of the error predicted by A-GAP and the actual 
error at the root node 
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flows in terms of packet inter-arrival times, counting the flows in a Netflow cache 
generally overestimates the number of flows currently traversing a router. In this 
sense, the figures in this paper overestimate the number of flows on the testbed. By 
taking into account flow statistics, such as flow duration, a more accurate estimation 
of the number of flows that currently traverse a router can be computed, and we are 
implementing such an algorithm on the monitoring nodes. Note though that local 
algorithms for obtaining the local variables are needed by but independent of A-GAP. 

4.5   Comparative Evaluation on a Simulator 

In order to compare the results from the testbed with those from the simulation-based 
evaluation of A-GAP [11], we have run testbed experiments where the local variables 
are based on the packet traces used in the simulations. The traces were captured on 
two 1 Gbit/s links that connect University of Twente to a research network. We have 
compared testbed results with simulation experiments for the same A-GAP 
configuration and traces. For the simulation runs, the link speeds in the overlay are set 
to 100 Mbps. The communication delay is set to 4 ms, and the time to process a 
message at a node is set to 1 ms. For a more detailed description of the simulation 
framework and set up, see [11]. 

This comparative evaluation is one way to strengthen our prediction on how A-GAP 
would perform in large networks that we have simulated [11]. This would be case, if 
the simulation results for the testbed configuration turn out to be very similar to the 
measurement results from the actual testbed. Alternatively, this comparative evaluation 
will give us some insight into potential limitations of our simulation-based studies. 

Our results [13] (not included in this paper due to space restrictions) show that the 
trade-off curves for a simulation run and testbed measurements are very close. The 
difference in overhead is below 3,5%.  

When considering the difference between the accuracy objective and the estimation 
error, we observe that the simulation gives results that are closer to the objective, but 
the differences between testbed and simulation results are very small. We explain this 
difference with the fact that the simulation model is simplified compared to the reality 
of the testbed. 

5   Related Work 

Recently, there has been significant research in real-time monitoring of network 
aggregates with the goal of achieving accuracy at low cost. For an overview, see [10]. 
Most of the proposed approaches have been evaluated using simulation. An example 
of a scheme that has been evaluated in a prototype implementation is described in [6]. 
The scheme in [6] differs from A-GAP in two ways. First, it is centralized in the sense 
that the management station computes the filter widths for all nodes, and all nodes 
communicate directly with the management station. Like A-GAP, [6] requires an 
execution environment on the nodes. Second, the accuracy objective in [6] is the 
maximum error, while A-GAP uses the average error as objective (which we argue is 
more significant for practical applications). [6] reports on an evaluation in a similar 
testbed setting. The authors show that they can effectively control the trade off 
between accuracy and overhead and provide a trade off curve that is qualitatively 
similar to figure 4.  
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[7] and [8] report on implementations of real-time monitoring of aggregates in the 
context of sensor networks. Similar to A-GAP, the above two works are based on in-
network aggregation along spanning trees. They aim at providing periodically a 
snapshot of the aggregate, while A-GAP gives a continuous estimation of the 
aggregate. The focus of [7] and [8] is on studying the impact of lossy links on the 
accuracy of the estimated aggregate. 

6   Conclusions 

In this paper we have presented testbed results from our prototype for flow monitoring 
with controllable accuracy on a testbed with 16 commercial routers. Our prototype is 
based on Netflow and A-GAP. A-GAP is decentralized and asynchronous, two key 
properties for achieving robustness and scalability. At the cost of introducing an 
overlay of monitoring nodes, no changes to the routers have been required. 

The experimental results show that we can effectively control the trade off between 
estimation accuracy and protocol overhead for A-GAP on a testbed. For the scenarios 
considered in this paper, A-GAP reduces the overhead by one order of magnitude, 
when allowed an error of 8 flows (figure 4), which is a relative error of less than 1%. 
The results also show that the protocol adapts quickly to a node failure on the testbed, 
in a manner that is consistent with what we expect from simulation results. 

We also demonstrate the capability of A-GAP for providing accurate performance 
estimation in real-time. The management station can obtain, in real-time, an accurate 
view of (i) the distribution of the estimation error for the aggregate, and (ii) the 
expected overhead for each node in the system. 

All the above results are consistent with simulation results that have been obtained 
for different topologies and much larger network sizes (up to some 700 nodes) [11]. 
Furthermore, the experimental results discussed in section 4.5 show that the behavior 
of our A-GAP implementation is very similar to that of the protocol running in a 
simulation environment. This validates our simulation model, proving that its 
assumptions and simplifications are reasonable. As a consequence, we are much more 
confident in the simulation results reported in [11], which have been obtained for 
different topologies and much larger network sizes, and the overall understanding of 
the behavior of A-GAP. 

Together with [11], the results in this paper validate the protocol design and 
suggest the feasibility of real-time monitoring in large-scale dynamic network 
environments, in an efficient and effective manner.  

Both simulation and testbed experiments [13] have shown that the choice of the 
overlay topology can have a significant impact on A-GAPs performance, and we plan 
to study this aspect in more detail A second issue that we plan to focus on is reducing 
the cost of computing the filters in A-GAP. We currently solve the local problem in 
(eq 2) through exhaustive search, and are searching for an efficient heuristic that 
yields close to optimal results. Future work also includes the design of algorithms for 
flow identification. In this paper, the identification of FTP flows is based on the 
transport port of the flow. This simple algorithm might not be valid for all 
applications. For instance, a popular VoIP application as Skype can use randomly 
chosen ports [19]. 
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