
D. Krishnaswamy, T. Pfeifer, and D. Raz (Eds.): MMNS 2007, LNCS 4787, pp. 64–75, 2007.
© IFIP International Federation for Information Processing 2007

Monitoring Flow Aggregates with
Controllable Accuracy

Alberto Gonzalez Prieto and Rolf Stadler

KTH Royal Institute of Technology
Stockholm, Sweden

{gonzalez, stadler}@ee.kth.se

Abstract. In this paper, we show the feasibility of real-time flow monitoring
with controllable accuracy in today’s IP networks. Our approach is based on
Netflow and A-GAP. A-GAP is a protocol for continuous monitoring of network
state variables, which are computed from device metrics using aggregation
functions, such as SUM, AVERAGE and MAX. A-GAP is designed to achieve a
given monitoring accuracy with minimal overhead. A-GAP is decentralized and
asynchronous to achieve robustness and scalability. The protocol incrementally
computes aggregation functions inside the network and, based on a stochastic
model, it dynamically configures local filters that control the overhead and
accuracy. We evaluate a prototype in a testbed of 16 commercial routers and
provide measurements from a scenario where the protocol continuously
estimates the total number of FTP flows in the network. Local flow metrics are
read out from Netflow buffers and aggregated in real-time. We evaluate
the prototype for the following criteria. First, the ability to effectively control the
trade off between monitoring accuracy and processing overhead; second,
the ability to accurately predict the distribution of the estimation error; third, the
impact of a sudden change in topology on the performance of the protocol. The
testbed measurements are consistent with simulation studies we performed for
different topologies and network sizes, which proves the feasibility of the
protocol design, and, more generally, the feasibility of effective and efficient
real-time flow monitoring in large network environments.

1 Introduction

Several key management tasks, such as SLA verification, accounting and intrusion
detection depend on monitoring state variables in the network. For many such tasks, the
IP flow has emerged as the appropriate level of abstraction and granularity for
monitoring. This has made flow monitoring an active research topic [14][17][18]. Its
high relevance in practical scenarios has led the IETF to create the IP Flow Information
Export (IPFIX) working group, focused on standardizing different aspects of flow
monitoring, such as information models and information exchange protocols [15].

One of the key challenges in flow monitoring is controlling the trade off between
the costs (e.g., processing resources, memory requirements, management traffic) and
the accuracy of the monitored metrics. Examples of research efforts in this area are
[16][17][18].

 Monitoring Flow Aggregates with Controllable Accuracy 65

Select
Aggregation
Function

Select
Accuracy
Objective

Show
Aggregation
Tree

Evolution of the
Aggregate

(True Value and
A-GAP Estimation)

Real-time
Estimation of
Error Distribution
and Trade-off

Overhead
Distribution and
Evolution

Select
Root Node

Fig. 1. Interface on the management station for evaluating A-GAP on the testbed. It shows the
effect of changing the accuracy objective from 0 to 15 flows. at time 14:42:30 in a testbed
scenario. As a consequence, A-GAP reduces the overhead at the cost of an increased error in
estimating the aggregate. The interface provides also real-time estimation of the error
distribution and of the trade-off curve accuracy vs overhead.

A relevant technique in this context is aggregation. It consists on computing
network-wide metrics from device-level metrics across a network. Examples of
aggregation functions are SUM, AVERAGE, MIN, MAX, and HISTOGRAM. Sample
flow aggregates are the total number of VoIP flows, the most popular flow destination,
or a histogram of flow sizes in a network domain. Monitoring flow aggregates enables
administrators to learn the volume of traffic different applications generate and infer
the performance requirements of end users. Monitoring flow aggregates also permits
identifying elephant flows, a key task in traffic engineering [20].

While it is often crucial to know how accurate aggregate estimates are, network
management solutions deployed today usually provide only qualitative control of the
accuracy and do not support the setting of an accuracy objective [4].

The focus of this paper is on providing continuous estimates of flow aggregates
with controllable accuracy in today’s IP networks.

Our solution is based on Netflow [14] and A-GAP [11], a generic aggregation
protocol with controllable accuracy. Router-level flow metrics are read from Netflow
buffers. A-GAP continuously aggregates these router-level metrics into network-wide
metrics by (i) creating and maintaining a self-stabilizing spanning tree and (ii)
incrementally aggregating the metrics along the tree. A-GAP is push-based in the
sense that changes in monitored metrics are sent towards the management station
along the aggregation tree. The protocol controls the management overhead by
filtering updates that are sent from monitoring nodes to the management station. The
filters periodically adapt to the dynamics of the monitored variables and the network
environment. All operations in A-GAP, including computing the aggregation function
and filter configuration, are executed in a decentralized and asynchronous fashion to

66 A. Gonzalez Prieto and R. Stadler

ensure robustness and achieve scalability. [11] contains the description of the
stochastic model A-GAP uses for filter computation and performance prediction.

This paper reports on our prototype for flow monitoring with controllable accuracy
and its evaluation on a testbed of commercial routers. At the cost of introducing an
overlay of monitoring nodes, no changes to the routers are required. The results
presented validate the protocol design and suggests the feasibility of real-time flow
monitoring in large-scale dynamic network environments.

The paper is organized as follows. Section 2 provides an overview of A-GAP.
Section 3 discusses the implementation of A-GAP. Section 4 contains the evaluation
scenarios and the testbed results. Section 5 discusses related work. Section 6
concludes the paper.

2 Overview of A-GAP

2.1 Problem Statement

We consider a dynamically changing network graph G(t) = (V(t), E(t)) in which nodes
n ∈ V(t) and edges/links e ∈ E(t) ⊆ V(t) x V(t) may appear and disappear over
time. Each node n has an associated local variable wn(t). The term local variable is
used to represent a local state variable or device counter that is being subjected to
monitoring. Local variables are updated asynchronously with a given sampling rate.

The objective is to engineer a protocol on this network graph that provides a
management station with a continuous estimate of Σnwn(t) for a given accuracy. The
protocol should execute with minimal overhead in the sense that it minimizes the
(maximum) processing load over all nodes. The load is expressed as the number of
updates per second a node has to process. The accuracy is expressed as the average
error of the estimate over time.

Throughout the paper we use SUM as aggregation function. Other functions can be
supported as well, as discussed in [11].

2.2 A-GAP

A-GAP is based on GAP (Generic Aggregation Protocol), an asynchronous
distributed protocol that builds and maintains a BFS (Breadth First Search) spanning
tree on an overlay network [1]. The tree is maintained in a similar way as the
algorithm that underlies the 802.1d Spanning Tree Protocol (STP) [5]. In GAP, each
node holds information about its children in the BFS tree, in order to compute the
partial aggregate, i.e., the aggregate value of the local management variables from all
nodes of the subtree where this node is the root. GAP is event-driven in the sense that
messages are exchanged as results of events, such as the detection of a new neighbor
on the overlay, the failure of a neighbor, an update to an aggregate or a change in the
local management variable.

A drawback of such an approach is that it can cause a high load on the root node or
on nodes close to the root, specifically in large networks. In order to reduce this
overhead, A-GAP introduces filters in the nodes. When the partial aggregate (or the
local variable in the case of a leaf node) of a node n changes, then n sends an update
to its parent if the difference between the value reported in its last update and the
current value exceeds the local filter width Fn.

 Monitoring Flow Aggregates with Controllable Accuracy 67

Minimizing the Protocol Overhead. Estimating the network variable at the root
node with minimal overhead for a given accuracy can be formalized as an
optimization problem. Let n be a node in the network graph, ωn the rate of updates
received by node n from its children, Eroot the distribution of the estimation error at
the root node, and ε the accuracy objective. We formulate the problem as

Minimize { }n

n
Max ω s.t. () ε≤rootEE (1)

whereby ωn and Eroot depend on the filter widths (Fn)n, which are the decision
variables.

We have developed a stochastic model for the monitoring process. The model is
based on discrete-time Markov chains and describes individual nodes in their steady
state. For each node n, it relates the error of the partial aggregate of n, the step sizes
that indicate changes in the partial aggregate, the rate of updates n sends and the
width of the local filter. The model is described in detail in [11]. The model permits
us to compute the distribution of the estimation error at the root node and the rate of
updates processed by each node.

A-GAP continuously estimates the evolution of the management variables that the
protocol aggregates, one of the variables in our model. Based on these estimates, all
others model variables, such as the error distributions and incurred overhead, are
dynamically computed. Such an approach lets A-GAP adapt quickly, compared to an
approach whereby all model variables are estimated.

A Local Heuristic. An optimal solution to (eq. 1) can be computed using a
(centralized) grid search algorithm, a well-known optimization technique, where the
model variables for all nodes in the aggregation tree are computed bottom-up. Such
an approach, however, is not feasible for large networks, since the computational cost
of this algorithm grows exponentially with the number of nodes. A-GAP realizes a
distributed heuristic, which attempts to minimize the maximum processing load on all
nodes by minimizing the load within each node’s neighborhood. A-GAP maps (eq. 1)
onto a local problem for each node n as follows:

Minimize { }π

π
ωMax s.t. () nn

outEE ε≤ , (2)

where π is the set composed by the node n and its children. This means that node n
attempts to minimize the maximum load in a neighborhood for a given accuracy
objective εn of its partial aggregate.

The node attempts to solve (eq. 2) by periodically re-computing the filters and
accuracy objectives of its children, based on the stochastic model. Re-computing the
filters (Fc)c allows node n to influence its own load ωn, while re-computing the
accuracy objective εc of a child c allows the node to influence the load ωc on c.

A-GAP computes the local filters and accuracy objectives in a decentralized and
asynchronous fashion, as described in detail in [11].

The two keys configuration parameters of A-GAP are (i) the maximum number of
children whose filters and accuracy objectives are recomputed during a control cycle
|Ω|, and (ii) the period of the control cycle τ. As discussed in [11], both parameters
influence the adaptability and computational cost of A-GAP.

68 A. Gonzalez Prieto and R. Stadler

3 Implementation

A-GAP executes on a distributed management architecture, whereby each network
device participates in the monitoring task by running a management process, either
internally on the network element or on an external associated device. In our testbed,
the management processes execute on Linux PCs, or alternatively, on low-cost mini-
computers. Each computer, which we also call a monitoring node, runs the
management process associated with one of the routers. Monitoring nodes
communicate with each other via overlay links.

Figure 2 shows the design of a monitoring node. The node manager is responsible
for executing the commands from overlay peers and the management station. These
include the invocation of services and protocols. Local services a node supports are
overlay maintenance, node/link failure detector, reliable communication and local
device access. The overlay maintenance service constructs and maintains the overlay
that interconnects the monitoring nodes. The failure detector detects the failing of a
neighboring node. The reliable communication service provides reliable and secure
message passing across overlay links. The device access service provides access to
local variables on the network device through SNMP, CLI, Netflow, etc.

A monitoring node is implemented in Java. A-GAP alone is in the order of 2500
lines of code. The heuristic used for solving the problem shown in (eq. 2) is
implemented using JSci (v0.94) for solving systems of linear equations [2]. Message
exchange between monitoring nodes is implemented using XML. All protocol
invocations and services run as threads in a single JVM.

The interface on the management station shown in figure 1 facilitates the
evaluation of A-GAP. It allows setting configuration parameters of the protocol,
including the aggregation function, the accuracy objective, and the root node of the
aggregation tree. Once the protocol has set up the aggregation tree on the overlay, the
tree topology is displayed in the lower left corner. On the right side, the interface
provides real-time information on A-GAP’s performance. First and foremost, the
estimate of the aggregate
and its evolution over time
(top right). Second, the
distribution of the estim-
ation error for the current
networking conditions and
objective (bottom center).
Third, the estimated trade-
off curve between the
protocol overhead and
the error objective for the
current networking condi-
tions (bottom right). The
current operating point on
the curve is displayed as
well. Furthermore, the
interface provides data
from an application that
monitors the execution of

Management
Protocols

Node Manager

reportscommands

A-GAP

Other
Protocols

Overlay
Maintenance

Device Access

Reliable
Communication

CLI SNMP Netflow

Network device

Local Services

Failure Detector

Management
Interface

In
te

rf
ac

e
to

P
ee

r
M

on
ito

rin
g

N
od

es

Fig. 2. Design of a monitoring node

 Monitoring Flow Aggregates with Controllable Accuracy 69

A-GAP, namely, the true aggregate over time, as well as the distribution and
evolution of the management overhead (blue curves in figure 1). These metrics are
pushed by the management processes to a collecting node. The interface is built with
JFreeChart (v.1.0.2) [3] that draws the graphs in real-time.

4 Evaluation

4.1 Testbed Setup

Figure 3 gives the setup of our testbed for the evaluation and shows an aggregation
tree on the overlay created by A-GAP. The testbed includes 16 Cisco 2600 Series
routers and 16 rack-mounted PCs running the monitoring nodes. Routers and PCs are
connected through four 100Mbps Ethernet switches (a Netgear FSM750S and three
Netgear FSM726S). An NTP server synchronizes the clocks on the PCs for the
purpose of estimating the “true” aggregate. A Spirent Smartbits 6000 programmable
traffic generator injects flows into the testbed.

4.2 Measured Metrics

During the experiments, we collect the following metrics. First, we trace A-GAP’s
estimation of the aggregate by logging all updates of the aggregate at the root node.
Second, we trace the
value of the local
variable of each node
(obtained by reading the
router’s Netflow cache)
by logging all updates to
this variable on the node.
The first and the second
metrics are used to
compute the estimation
error, which we define as
the average difference
between the sum of all
the local variables (called
the true value throughout
the paper) and the
estimation of the
aggregate by A-GAP.
Third, we trace the
management overhead of
each node by counting
the number of updates
each node receives during
a control cycle. This data
is used to compute the
maximum load over all
nodes in the testbed.

A
gg

re
ga

tio
n

T
re

e
P

hy
si

ca
l

N
et

w
or

k

Management
Station

Node 1

Node 2 Node 3

Node 4 Node 5 Node 6 Node 7

Fig. 3. Testbed configuration. The area at the bottom represents
the physical network: 16 commercial routers. Each router is
associated with a monitoring node. Monitoring nodes
communicate via an overlay (middle area). The management
station on top interacts with the root node of the aggregation
tree.

70 A. Gonzalez Prieto and R. Stadler

4.3 Scenarios Description

The local management variable in the experiments is the number of FTP flows
entering the network through that node. Therefore, the monitored aggregate is the
number of FTP flows in the network. The traffic generator injects flows into the
testbed following a random walk process with barriers. For the experiments in this
paper, the aggregate takes values between 0 and 450 flows.

The local variables are sampled asynchronously, once every second, and are read
from the Netflow caches of the Cisco routers through CLI.

During all experiments, the overlay topology does not change, and the aggregation
tree set up by the protocol has the structure given in figure 3. The control cycle of A-
GAP is set to 5 seconds, and the number of children whose filters are recomputed
during a control cycle is set to 2.

All experiments start with an initialization phase of some 30 seconds, in which the
aggregation tree is set up and the model variables are estimated or computed. This is
followed by a transient period of up to 60 seconds. After that, the measurement period
starts, which is 350 seconds for all experiments. The accuracy objective is set at the
beginning of the experiment and it is not changed during a run.

4.4 Measurement Results

Estimation accuracy versus protocol overhead. We have run a set of experiments
with different accuracy objectives, and we have measured the protocol overhead
in function of the experi-enced error. Every point in figure 4 corresponds to a run on the
testbed.

We observe that the overhead decreases as the estimation error increases. As the
error grows larger, the decrease becomes smaller. Estimation errors above 10 flows
do not significantly reduce the overhead anymore.

This observation is consistent with simulation results of A-GAP, where we see the
same qualitative behavior for different overlay topologies and network sizes ranging
from tens of nodes to several hundreds [11].

Meeting the accuracy
objective. A further ana-
lysis of the measurement
data shows that the
difference between the
accuracy objective and
the experienced esti-
mation error is small. For
all the experiments in this
evaluation, which include
dozens of runs, it has
been less than one flow
(considering that typical
aggregate values in our
experiments are around
200 flows).

0

1

2

3

4

5

6

0 2 4 6 8

Avg Error

U
p

d
at

e
s

/s
ec

Fig. 4. Testbed measurements: management overhead incurred
by A-GAP as a function of the accuracy of the estimation

 Monitoring Flow Aggregates with Controllable Accuracy 71

The difference between accuracy objective and the experienced estimation error
has two main causes. First, updates from different nodes in the network experience
different delays in reaching the root, which distorts the evolution of the estimate at the
root node. (This distortion is not captured by our stochastic model [11], since, for
reasons of simplicity, it does not consider networking and processing delays). A
second cause is the inaccuracy in the stochastic model variables used for filter
computation, for instance, as a result of errors in the estimation of the evolution of the
local variables.

These measurement results demonstrate that we can effectively control the
accuracy of the estimation that A-GAP provides. Second, we can control the trade off
between the accuracy of the estimation and the protocol overhead. Specifically, the
larger the error A-GAP is allowed to make, the smaller the overhead it incurs.

Robustness: A router gets disconnected. In this experiment, we assess the
adaptability of A-GAP to the disconnection of a router (and the computer running its
associated management process). The disconnection happens instantly and the failure
detectors in the neighbors of the disconnected node detect the failure in a sub-second.

When a failure is detected, A-GAP reconstructs the spanning tree. At the same
time, the partial aggregates in some nodes are recomputed. The local mechanism for
filter re-computation assures that the filters in the nodes adapt to the new tree
structure.

In this particular experiment, node 6 (shown in figure 3) is disconnected from the
network at time ≅ 101 seconds. The spanning tree is reconstructed on the overlay (not
shown in the figure). Figure 5 shows traces of the experiment. In the upper graph,
which shows the maximum load across all nodes, we see no apparent transient period.
In the lower graph, which shows the estimation of the aggregate provided by
A-GAP and the true
value, we observe a
spike during a trans-
ient period of a
sub-second. For this
experiment, the accu-
racy objective is 4
flows, and we see
that the objective is
achieved both before
and after the failure.

This observation
is consistent with the
properties of pro-
tocols that use aggre-
gation trees [9][1]
and with our results
from simulating A-
GAP [11], where we
observe brief spikes

0

1

2

3

4

5

60 80 100 120 140 160 180 200 220 240 Time

M
ax

im
um

 L
oa

d
 (u

pd
at

es
/s

ec
)

170

180

190

200

210

220

230

240

95 96 97 98 99 100 101 102 103 104 105 106 107Time

A
g

g
re

g
at

e

Node
disconnected

Estimation by A-GAP True Value

Node
disconnected

Fig. 5. Estimation error at the root node and management overhead
caused by a node disconnection

72 A. Gonzalez Prieto and R. Stadler

in estimation errors. During tree reconstruction, some local variables may be
considered more than once, or not at all, in the estimation of the global aggregate,
which explains the spike in the estimation error at the root node. Specifically, in this
experiment, the local variables of the children of node 4 are not considered at the root
until updates from their new parents in the tree reach the root.

When simulating A-GAP for large networks, we have seen a significant peak in the
overhead for cases where tree reconstruction involves a large number of nodes–a
phenomena that we did not expect to see in our small testbed.

Distribution of the estimation error. In this experiment, we evaluate the capability
of A-GAP for providing performance estimation. Based on our stochastic model,
A-GAP can provide, for a given error objective, the distribution of the estimation
error and the expected overhead at the nodes.

Figure 6 shows the error distribution for a run where A-GAP constructs a tree as
shown in figure 3. The accuracy objective is 4 flows. One curve shows the error
distribution estimated by A-GAP, the other gives the result from measuring the errors
on the testbed.

We observe that both curves are close to each other, and the estimation by A-GAP
is accurate in this sense. We see also that both distribu-tions have long tails. The
maximum poss-ible error (i.e., the sum of all filter widths) in this run is 26. The
estimated probability of having such a large error, though, is very small, in the order
of 10-13. The actual maximum error during the experiment is 14. (The observation
that the maximum error is a rare event is also made by other authors [9][12]. This
confirms our choice of the average error as control parameter for the protocol, rather
than the maximum error, which other authors advocate [10].)

Other measurements from our testbed also show that A-GAP accurately estimates
the expected protocol overhead. Results can be found in [13].

Real-time Monitoring with Netflow. While we have developed A-GAP as a protocol
for estimating aggregates of local variables in real-time, the accuracy of this
estimation depends on the accuracy of the local variables, which capture device
counters, local MIB
objects, etc. In the
measurements pre-
sented in this paper,
the local variable is
the number of entries
in a Netflow cache.
Netflow keeps an
entry of a flow
traversing a router as
long as its latest
packet has traversed
the router within the
interval [now()-Δt,
now()]. (In our setup
Δt is 10 seconds.). As
Netflow defines

0

0,02

0,04

0,06

0,08

0,1

0,12

-30 -20 -10 0 10 20 30Error

Absolute
Avg Error

Measured Error

Error Estimated
by A-GAP

Fig. 6. Distribution of the error predicted by A-GAP and the actual
error at the root node

 Monitoring Flow Aggregates with Controllable Accuracy 73

flows in terms of packet inter-arrival times, counting the flows in a Netflow cache
generally overestimates the number of flows currently traversing a router. In this
sense, the figures in this paper overestimate the number of flows on the testbed. By
taking into account flow statistics, such as flow duration, a more accurate estimation
of the number of flows that currently traverse a router can be computed, and we are
implementing such an algorithm on the monitoring nodes. Note though that local
algorithms for obtaining the local variables are needed by but independent of A-GAP.

4.5 Comparative Evaluation on a Simulator

In order to compare the results from the testbed with those from the simulation-based
evaluation of A-GAP [11], we have run testbed experiments where the local variables
are based on the packet traces used in the simulations. The traces were captured on
two 1 Gbit/s links that connect University of Twente to a research network. We have
compared testbed results with simulation experiments for the same A-GAP
configuration and traces. For the simulation runs, the link speeds in the overlay are set
to 100 Mbps. The communication delay is set to 4 ms, and the time to process a
message at a node is set to 1 ms. For a more detailed description of the simulation
framework and set up, see [11].

This comparative evaluation is one way to strengthen our prediction on how A-GAP
would perform in large networks that we have simulated [11]. This would be case, if
the simulation results for the testbed configuration turn out to be very similar to the
measurement results from the actual testbed. Alternatively, this comparative evaluation
will give us some insight into potential limitations of our simulation-based studies.

Our results [13] (not included in this paper due to space restrictions) show that the
trade-off curves for a simulation run and testbed measurements are very close. The
difference in overhead is below 3,5%.

When considering the difference between the accuracy objective and the estimation
error, we observe that the simulation gives results that are closer to the objective, but
the differences between testbed and simulation results are very small. We explain this
difference with the fact that the simulation model is simplified compared to the reality
of the testbed.

5 Related Work

Recently, there has been significant research in real-time monitoring of network
aggregates with the goal of achieving accuracy at low cost. For an overview, see [10].
Most of the proposed approaches have been evaluated using simulation. An example
of a scheme that has been evaluated in a prototype implementation is described in [6].
The scheme in [6] differs from A-GAP in two ways. First, it is centralized in the sense
that the management station computes the filter widths for all nodes, and all nodes
communicate directly with the management station. Like A-GAP, [6] requires an
execution environment on the nodes. Second, the accuracy objective in [6] is the
maximum error, while A-GAP uses the average error as objective (which we argue is
more significant for practical applications). [6] reports on an evaluation in a similar
testbed setting. The authors show that they can effectively control the trade off
between accuracy and overhead and provide a trade off curve that is qualitatively
similar to figure 4.

74 A. Gonzalez Prieto and R. Stadler

[7] and [8] report on implementations of real-time monitoring of aggregates in the
context of sensor networks. Similar to A-GAP, the above two works are based on in-
network aggregation along spanning trees. They aim at providing periodically a
snapshot of the aggregate, while A-GAP gives a continuous estimation of the
aggregate. The focus of [7] and [8] is on studying the impact of lossy links on the
accuracy of the estimated aggregate.

6 Conclusions

In this paper we have presented testbed results from our prototype for flow monitoring
with controllable accuracy on a testbed with 16 commercial routers. Our prototype is
based on Netflow and A-GAP. A-GAP is decentralized and asynchronous, two key
properties for achieving robustness and scalability. At the cost of introducing an
overlay of monitoring nodes, no changes to the routers have been required.

The experimental results show that we can effectively control the trade off between
estimation accuracy and protocol overhead for A-GAP on a testbed. For the scenarios
considered in this paper, A-GAP reduces the overhead by one order of magnitude,
when allowed an error of 8 flows (figure 4), which is a relative error of less than 1%.
The results also show that the protocol adapts quickly to a node failure on the testbed,
in a manner that is consistent with what we expect from simulation results.

We also demonstrate the capability of A-GAP for providing accurate performance
estimation in real-time. The management station can obtain, in real-time, an accurate
view of (i) the distribution of the estimation error for the aggregate, and (ii) the
expected overhead for each node in the system.

All the above results are consistent with simulation results that have been obtained
for different topologies and much larger network sizes (up to some 700 nodes) [11].
Furthermore, the experimental results discussed in section 4.5 show that the behavior
of our A-GAP implementation is very similar to that of the protocol running in a
simulation environment. This validates our simulation model, proving that its
assumptions and simplifications are reasonable. As a consequence, we are much more
confident in the simulation results reported in [11], which have been obtained for
different topologies and much larger network sizes, and the overall understanding of
the behavior of A-GAP.

Together with [11], the results in this paper validate the protocol design and
suggest the feasibility of real-time monitoring in large-scale dynamic network
environments, in an efficient and effective manner.

Both simulation and testbed experiments [13] have shown that the choice of the
overlay topology can have a significant impact on A-GAPs performance, and we plan
to study this aspect in more detail A second issue that we plan to focus on is reducing
the cost of computing the filters in A-GAP. We currently solve the local problem in
(eq 2) through exhaustive search, and are searching for an efficient heuristic that
yields close to optimal results. Future work also includes the design of algorithms for
flow identification. In this paper, the identification of FTP flows is based on the
transport port of the flow. This simple algorithm might not be valid for all
applications. For instance, a popular VoIP application as Skype can use randomly
chosen ports [19].

 Monitoring Flow Aggregates with Controllable Accuracy 75

Acknowledgments. This paper describes work undertaken in the context of the
Ambient Networks –an FP6 IST project that is partially funded by the Commission of
the European Union.

References

1. Dam, M., Stadler, R.: A Generic Protocol for Network State Aggregation, Radiovetenskap
och Kommunication (RVK), Linkoping, Sweden (June 2005)

2. JSci (December 2006), http://jsci.sourceforge.net/
3. JFreeChart (December 2006), http://www.jfree.org/jfreechart/
4. Olston, C., et al.: Adaptive Precision Setting for Cached Approximate Values. In: ACM

SIGMOD 2001, Santa Barbara, USA (May 2001)
5. IEEE. ANSI/IEEE Std 802.1D, 1998 Edition. IEEE (1998)
6. Olston, C., Jiang, J., Widom, J.: Adaptive Filters for Continuous Queries over Distributed

Data Streams. In: ACM SIGMOD 2003, San Diego, USA (June 2003)
7. Madden, S.R., et al.: TAG: a tiny aggregation service for ad-hoc sensor networks. In: 5th

Symposium on Operating Systems Design and Implementation, Boston, USA (December
2002)

8. Zhao, J., et al.: Computing aggregates for monitoring wireless sensor networks. In: 1st
IEEE International Workshop on Sensor Network Protocols and Applications, Anchorage,
USA (May 2003)

9. Boulis, A., Ganeriwal, S., Srivastava, M.B.: Aggregation in sensor networks: an energy -
accuracy tradeoff, Elsevier Ad-hoc Networks Journal (s.i. on sensor network protocols and
applications) (2003)

10. Gonzalez Prieto, A.: Adaptive Management for Networked Systems, Licentiate thesis,
KTH Royal Institute of Technology, Sweden (June 2006), Available at
http://www.ee.kth.se/~gonzalez

11. Gonzalez Prieto, A., Stadler, R.: A-GAP: An Adaptive Protocol for Continuous Network
Monitoring with Accuracy Objectives, IEEE Transactions on Network and Service
Management 4(1) (June 2007)

12. Sharaf, M.A., et al.: Balancing energy efficiency and quality of aggregate data in sensor
networks. ACM International Journal on Very Large Data Bases 13(4), 384–403 (2004)

13. Gonzalez Prieto, A., Stadler, R.: Implementation and Evaluation of A-GAP: Adaptive
Monitoring with Controllable Accuracy, KTH Technical Report (January 2007), Available
at http://www.ee.kth.se/~gonzalez

14. Cisco Netflow, http://www.cisco.com/warp/public/732/netflow/index.html
15. IETF IP Flow Information Export working group, http://www.ietf.org
16. Keys, K., Moore, D., Estan, C.: A robust system for accurate realtime summaries of

internet traffic, SIGMETRICS Perform. Eval. Rev. 33(1), 85–96 (2005)
17. Molina, M., Chiosi, A., D’Antonio, S., Ventre, G.: Design principles and algorithms for

effective high-speed IP flow monitoring. Computer Communications 29(10), 1653–1664
(2006)

18. Yang, L., Michailidis, G.: Sampled based estimation of network traffic flow characteristics.
In: IEEE Infocom 2007, Anchorage, USA (May 2007)

19. Suh, K., Figueiredo, D.R., Kurose, J., Towsley, D.: Characterizing and detecting skype-
relayed traffic. In: IEEE Infocom 2006, Barcelona, Spain (April 2006)

20. Mori, T., et al.: Identifying elephant flows through periodically sampled packets. In: 4th
ACM SIGCOMM conference on Internet measurement, Taormina, Italy (October 2004)

	Monitoring Flow Aggregates with Controllable Accuracy
	Introduction
	Overview of A-GAP
	Problem Statement
	A-GAP

	Implementation
	Evaluation
	Testbed Setup
	Measured Metrics
	Scenarios Description
	Measurement Results
	Comparative Evaluation on a Simulator

	Related Work
	Conclusions
	References

