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ABSTRACT

¥e propose a procedure for the detection of significant clusters of chronic
diseases, with particular reference to cancer. The procedure allows for variations
in population density and avoids the problem of 'post-hoc'" formation of hypotheses
or self-defined populations. This accounts for several of the principal problems
of cluster evaluations.

The procedure defines a set of overlapping "windows' or areas of constant
population size (n=2500, for example) centered on an irregular grid formed by the
centroids of Census block groups. The adjusted incidence rates are calculated for
each window. The (very large) number of resulting rates can be regarded as
identically distributed but not independent random variates. The distribution of
the extremes of this spatial process under a null hypothesis of randomness can be
obtained by permutation or Monte Carlo methods. The whole procedure is then
repeated for a succession of increasing window area population values. The
significance level of any observed extreme area disease rate or observed pattern of
disease case incidence can then be calculated from the computed null distributions.
The techniques are practical but 'computer-intensive'. The procedure, termed the
"Cluster Evaluation Permutation Procedure' (CEPP), is applied to leukemia incidence
data for an Upstate New York region obtained from the Cancer Registry and Census
files. We also make comparisons with two other recent clustering methods proposed
by Whittemore et al. (1) and by Openshaw et al. (R). Routine examination of disease
occurrence with CEPP would allow state health officials to prioritize case
investigations and to respond in a timely and efficient manner to inquiries of

reported clusters.



1. Introduction

In this paper we discuss statistical methodology for the definition and
detection of significant clusters of chronic diseases with particular reference to
cancer. This methodology could be used as part of a proactive disease surveillance
system by public health departments. The study of the possible existence of
clusters of cancer has a long history (3,4) yet the subject continues to stimulate
much publicity and controversy. The cases of Woburn, Massachussets and Dounreay,
Scotland are but two of many examples. The need for a systematic and objective way
to detect, prioritize and monitor the occurrence of statistically significant
clusters of disease is apparent. State Departments of Public Health expend sizeable
resources investigating reported clusters, only a few of which eventually turn out
to be of justifiable concern. In a survey of cancer cluster procedures of State
Health Departments, Warner and Aldrich (5) found that '"cluster investigations had
generally been unproductive in terms of etiologic discoveries, yet may have
important benefits in terms of public education, allaying public anxiety about
environmental concerns and engendering good will toward government agencies'. (See
also the remarks by Rothman (6) and by Schulte et al. (7).) Statistical methods for
assessing overall patterns of disease incidence should be a part of a proactive
surveillance program. With the results of such a program in hand, it will be

easier to respond to lay reports of perceived clusters in a timely manner.

For initial investigation, the eight contiguous counties in upstate New York,
Broome, Cayuga, Chenango, Cortland, Madison, Onondaga, Tioga, Tompkins, bordering
on and including Cortland County, were selected as '"'Study Region A'". (See
Figure 1.) These are eight of the nine counties that make up Region 7 as defined
by the New York State Department of Environmental Conservation. (Geocoded data for
the ninth county, Oswego, were unavailable at the time of this analysis.) This area
of Central New York of over one million people consists of rural communities
primarily but it does contain two large metropolitan areas, Syracuse and

Binghamton, and several smaller cities, including Cortland and Ithaca.

The initial disease to be studied is leukemia with the hopes that methods
generated for its surveillance will also be applicable to other forms of cancer.
Leukemia was selected as the ''model' cancer because of its remarkably uniform

distribution although apparent clusters have been known to occur. Some of these may



have been the result of point source environmental exposures such as might have

occurred in Woburn, Massachusetts (8,9).

The study region was divided up into 713 ''cells'. For Broome County the cells
were defined as the 55 U.S. Census tracts. For the other seven counties the smaller
Census block group units were used. (Typically a census tract contains 1000-4000
people and comprises of between two and five block groups.) Demographic data,
including population sizes, were obtained for each cell in the study region using
the 1980 U.S. Census. Centroids of the block groups are displayed in Figure 1. The
denser parts on the map reflect the more urban areas. In cooperation with the New
York State Cancer Registry, all 592 cases of leukemia in the study region reported
during the five year period 1978-1982 were geocoded and placed in the cells. (For
Broome County the geographic location of cases was available only at the larger
census tract level; more precise block group placement was possible for the other
seven counties.) The locations of these 592 cases are shown on Figure 2. Upon
comparing Figures 1 and 2, it becomes obvious that there is a need for taking into
account varying population density when assessing visual appearance of clusters on
a map such as Figure 2. Density equalized map projections or cartograms (10), i.e.
maps with land areas distorted to be proportional to population size, can assist
the presentation of the case residence data. For such a map of New York State, see
Figure 2 of Levison and Haddon (11). However such maps do not address directly the

statistical issue of significance of case clustering.

It should be noted that some of the cases could be geocoded only to one of two
or three possible block groups due to ambiguities in the address records.
Approximately 90% of the cases were geocoded precisely to the block group level and
95% to the census tract level. The incomplete data were handled in two ways. In
the first, such cases were assigned fractionally to the possible block groups
proportional to their corresponding population sizes. In the second way, such cases
were also fractionally assigned, but now proportional to the number of cases
observed in those areas. The first way tends to make the distribution of cases
seem less clustered, the second the opposite. All analyses were performed using
both methods of handling the incomplete geocoding. However little difference was
found between the two methods, and thus only results using the former method are
reported. Of course there might be differences in a situation in which the

geocoding was less complete.



In this paper we will describe a ''cluster evaluation permutation procedure'’
(CEPP) for analyzing spatial patterns with varying population density. The method
is compared to two other recently proposed procedures, the U-statistic test of
Whittemore et al. (1) and the "Geographical Analysis Machine" of Openshaw et al.
(2). It should be noted that all three methods can accommodate stratified
analyses; that is, where area rates are adjusted by age, sex and other demographic
variables that are available in the Census and Cancer Registry data. However, for
the sake of brevity and clarity of exposition, we describe only the unstratified
analyses which are appropriate for populations that are homogeneous
demographically. The Upstate New York leukemia data are used only to illustrate
and compare the methodologies; the results should not be interpreted as a full
analysis of the data. Such an analysis would include consideration of histologic
type of the disease, adjustments for stratifying and concomitant variables such as
age and sex, and a more critical examination of the geocoded case data, which might

include tracing residence histories of the cases.

2. The U-Statistic Test of Whittemore et al.

Suppose we wish to test a ''randomness' null hypothesis H that each member of
the study population is equally likely to be a 'case'. Whittemore et al. (1)
describe a test for the detection of clusters that is based on the mean distance
between all pairs of cases. The variance and expected value of the test statistic
are computed using underlying population data. Under the null hypothesis, the
numbers of cancer cases in each cell of the study region are treated as independent
Poisson random variables with means proportional to the populations of the cells.
The authors prove that their test statistic is asymptotically normally distributed
under the null hypothesis of random placement of the cases. The authors also
present a stratified version of their statistic. For our Upstate New York leukemia
data, the observed mean distance between all pairs of cases was 60.24 km., as
compared with an expected value of 59.01 km. and standard deviation of 0.96 km.

Thus Z = 1.29 which is not significant.

There are however two drawbacks of the method of Whittemore et al. (1). First, the
method does not indicate the position of significant clusters, if one or more

exist. Second and perhaps more serious, although its null distribution does depend



on the population density pattern, their test statistic depends on the position of
the cases only through their pairwise distances. Thus, for a given population
distribution, the test cannot differentiate between a situation with an apparent
cluster in an urban area (probably due to high population density) and one in a
rural area (high rate) when the pairwise distances are the same. The statistic will
tend to be negative if a cluster exists in an urban area, (many short arcs) but
positive if there is a cluster in a rural area (many long arcs). In particular the
statistic has poor power for detecting a cluster in a medium town. These intuitive

remarks are supported by simulation results (12).

3. The Geographical Analysis Machine of Openshaw et al.

Openshaw et al. (2) take a graphical approach, using what they term a
"Geographical Analysis Machine' (GAM). The method examines overlapping circular

areas and notes those with high rates. Their algorithm proceeds as follows:

1. Select a radiusr, e.g. 1, 2, or 4 km.
2. Lay down a closely spaced square lattice over the study region with grid

points even spaced at intervals r/5, say, apart. Label the grid points

3. Consider each of the K(r) grid points in turn. For the i'th grid point
compute cir’ the number of cases in a circle with radius r and centered at that
grid point. Draw in the circumference of that circle if the observed value of Cir
is two or more and exceeds the 99.8'th percentile of the distribution of the number
of cases to be found in this circle under the null hypothesis.

4. Now return to Step 1 and repeat the procedure for the next higher

value of r.

The result is a map covered with a number of circles. It should be noted that
because of the high degree of overlap, there is considerable correlation between
the Cir values of neighboring circles. Hence the circumferences that are drawn will
appear bunched densely together in clusters even under the null hypothesis.
However the drawn circles :will become more bunched if clustering is present.

The procedure is computer intensive because there may be several hundred

thousand grid points and four or five values of r. For each combination, both the



value of Cir and the 99.8 percentile cutoff point must be computed. In fact the
method is even more highly computer intensive because the authors propose using
Monte Carlo simulation to obtain these 99.8 percentile values. This involves
generating 499 replications of the spatial point process under the null hypothesis
that each of the N members of the population of the region is equally likely to be
one of the C cases, where C is the total number of cases in the study region. For
each replication the steps 1-4 are repeated. It is no surprise that the authors
needed a Cray XMP ''supercomputer' to analyze their data set which comprised of

C = 853 diagnosed cases of acute lymphoblastic leukemia in a population of

N = 1,544,963 children in Northern England. We used a less computationally
intensive method for obtaining the 99.8% cutoff value for our Upstate New York data
set. Instead we used the 99.8'th percentile of a Poisson distribution with mean
p= C’Pir/N where Pir is the population contained in the circle of radius r
centered at the i'th grid point. This drastically reduces the computing load by
eliminating the need to search 499 simulated case vectors for each grid point, but
even so the load is still considerable: with the three values of r, there were
83,587 circles to be examined ! The results for radii of 1,2, and 4 km. are

displayed in Figure 3.

The GAM procedure provides an excellent descriptive method for finding areas
with high rates that are free of geopolitical boundaries. However, before coming
to any conclusion on existence of clusters based on Figure 3, it should be noted
that the method does not lead to a quantitative assessment of significance of an
observed pattern. The .00R '"significance' level appears to have been chosen by ‘
convenience so that a reasonable number of circles appear on the maps. As
mentioned above, because of high correlation between overlapping circles, there
will be some apparent clusters even under a pure randomness assumption. Thus,
although the Figure perhaps indicates the existence of some clusters, it is not
clear whether the method is just picking out clusters which must occur at some
locations just by chance (11,13,14). Simulations can reveal what patterns of
""'significant" circles typically occur under the null hypothesis, but since these
depend on the disease rate, the area and the population density structure, the

entire exercise would have to be repeated for each new study.



4. Cluster Evaluation Permutation Procedure

The Cluster Evaluation Permutation Procedure is a procedure for defining and
detecting the presence of clusters and for assessing their significance, i.e. how

likely they are to be spurious due solely to chance.

The study region is divided up into a large fixed number I, say, of cells,
typically census tracts or block groups. The distance between two cells is defined
to be that between the geographical centroids of the two cells. We define Ni to be
the population of the i'th cell, and let N = zNi be the total population in the
region. Also let Ci be the number of cases in the i'th cell, usually 0 or 1. Of
course ZCi = C, the total number of cases. For each cell i, we form a 'window' or
two-dimensional '"ball" of neighboring cells so that its population is R, where R is
a fixed number of persons, e.g. 2500. More precisely the ball is formed as follows.
We consider each cell in turn. For cell i, assuming that its population Ni is less
than R, we examine the cell whose centroid is closest to that of cell i, say this
is cell j. If Ni+Nj = R, then cell j is included along with cell i, and the
formation of the i'th ball is completed. If Ni+Nj > R, then we take only a
"fraction', (R-Ni)/Nj of cell j, completing the formation of ball i. If Ni+Nj < R,
this cell is fully absorbed into ball i and we continue the process by examining
that cell whose centroid is the next closest to that of cell i, etc. Hence ball i
contains cell i and a collection of its nearest neighboring cells, the furthest one
being only '"fractionally' represented. If Ni>R then the ball consists only of a
fraction of cell i; however in our example R was chosen sufficiently large that
this did not happen. We now have a collection of I overlapping balls each with
constant population R. For ball i, we now compute CiR’ the number of cases
occurring in that ball. This is the sum of the numbers of cases in cells totally
included in that ball plus the corresponding fraction of those cases in the cell
only partially included. (The values CiR should not be confused with those of the
procedure of Openshaw et al.(2). Their values were based on equally spaced grid
points and circular areas of constant geographical radius.) Because the balls are
based on areas of equal population, the §CiR§ can be viewed as directly
proportional to the disease rates. Under the null hypothesis of randomness, the

values ECi i=1,2,...,I% can be considered as identically distributed (but not

R;
independent) random variables, and hence can be used to test this hypothesis.



Various test statistics can be constructed from the 3013; i=1,2,...,1¢ that will be
sensitive to departures from the null hypothesis. A natural choice is the extreme
value or maximum statistic MR= max(ClR,CZR, ...... ’CIR)’ as this might trigger an
alarm to a state health department. A statistical test can be based on the null
distribution of M

R
cutoff value K, where K is determined by the null distribution of MR and the

. The null hypothesis is rejected if MR is greater than some

significance level «. Alternatively the P-value is given by the probability,
computed under the null hypothesis, that MR exceeds its observed value. We also
note the identity of the cell that corresponds to this maximum MR value.

The null distribution of MR can be obtained by using the randomization test
ideas described by Fisher (15). Here the distribution is the collection of Mp
values obtained by considering all ways of assigning the C cases to the N persons
in the population, these assignments being equally likely. Usually the number of
such permutations, N!/(C!(N-C)!), will be too large to allow the distribution to be
computed exactly and it is necessary to take a Monte Carlo sample of the
permutations thereby obtaining an estimate the distribution. Monte Carlo tests were
proposed by Barnard (16) and their general properties have been investigated by
Hope (17) and Marriott (18). Applications to analysis of spatial patterns have been
described by several authors, including Ripley (19), Besag and Diggle (R0), and
Raubertas (21). This idea was also used by Openshaw et al. (R) as described
previously. However unlike Openshaw et al. who were looking at a very large number
of statistics, the occurrences in each of many circles, we obtain only the maximum

statistic, M Thus without the multiplicity effect it is not necessary to

estimate sucg small nominal significance levels (e.g. 0.002) with the resulting
need for a large number of Monte Carlo replications. For example with 99
simulations an exact test at level 1% rejects the randomness hypothesis if and only
if the observed value of MR exceeds the largest of the 99 simulated values.
Correspondingly the P-value would be the proportion of simulated values that exceed

the observed value of MR.

The results for our Upstate New York leukemia study are shown in Figure 4.
Because there is no natural choice for R, four representative values were chosen,
namely 2500, 5000, 10000, 20000 persons. The choices for R will depend on the
average size of the cells and on the disease and exposure pattern under

consideration. For example, if radon, air or water pollution point sources for the



disease are suspected, R could be chosen to be the typical number of people that
would be affected. The Monte Carlo simulation involved drawing 999 replications
from a multinomial distribution with C independent trials and N mutually exclusive
outcomes whose probabilities are each equal to 1/N. For our study, the population
is N=1,057,673 persons and the number of cases is C = 592. Figure 4 shows the
observed values of MR for the four values of R along with the upper one- and five-
percentiles , and the lower five-percentiles of the simulated distribution. As can
be seen none of the observed values of MR are significant at the 1% level; for

R = 20,000, it is just significant at the 5% level. However, since we are using 4
values of R, a Bonferroni adjustment (22, page 8) might be used to account for the
multiplicity of hypothesis tests, in which case the significance is even further
reduced (by a factor of 4). As might be expected because of correlation between
overlapping balls, the MR value for three of the four values of R come from the
same block group (M1), and the ball, centered on block group (H), that corresponds
to MR for R=20000 includes that same block group (M1) although it is not the
""center' of it. Both block groups are in the cluster in the west part of Cortland

County in Figure 3 as "identified" by the method of Section 3.

A similar exercise can be performed for looking at the second and third
highest, etc. of the area rates CiR (1<i<I). These would also be natural to look
at, as they might signal alarms to a state health department. The same simulations

can be used to get the null distributions for these statistics.

An important issue concerns the power of the cluster evaluation permutation
procedure in the presence of one or more clusters. Simulation studies (12) suggest
that the procedure described in this section does have good power to detect the
presence of one or more clusters. These results will be described in detail in a

forthcoming paper.

In a region with many areas, there will be by chance variation a wide variation
in disease rates. One area must of necessity have the highest rate. The question
is whether this highest rate is unusually large, compared to what the highest rate
could be expected to be under purely random variation. This question is the one

directly addressed by our method.



Rather than being used as an absolute measure, we might recommend that the P-
value be used in a relative way to prioritize areas for cluster investigations, in
fact the P-values can be compared even across different diseases. Alternatively,
orderings could be based on the ratio or difference of the observed maximum rate
MR/R relative to its expected or median value as computed under the null

hypothesis.

5. Conclusion

All three methods described here avoid the problems of testing significance of
a cluster in a self-defined population. However the CEPP method described in
Section 4 enables the quantitative assessment of the statistical significance of
apparent clusters. Furthermore, by considering various population radii, it is
possible to address the problem of defining the borders of a cluster. The
magnitude and type of cluster can be important for directing future epidemiologic
research and focussing on the different exposures which may be related to large
clusters or to patterns that suggest more intense point exposures. We intended
that this method be developed as a procedure for surveillance of chronic disease
occurrence. Routine examination of disease occurrence with CEPP would allow state
health officials to prioritize case investigations and to respond in a timely and

efficient manner to inquiries of reported clusters.
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Figure 1

STUDY REGION
Centroids of Census Block Groups
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Figure 2
LOCATION OF CASE RESIDENCES




Figure 3
OPENSHAW et al. GAM
1,2,4 km Radii
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