

Monitoring in Adaptive Systems using Reflection
Dylan Dawson, Ron Desmarais, Holger M. Kienle, and Hausi A. Müller

Department of Computer Science
University of Victoria, Canada

{ddawson, rd, kienle, hausi}@cs.uvic.ca

ABSTRACT

Continuous evolution is a key trait of software-intensive
systems. Many research projects investigate mechanisms to adapt
software systems effectively in order to ease evolution. By
observing its internal state and surrounding context continuously
using feedback loops, an adaptive system is able to analyze its
effectiveness by evaluating quality criteria and then self-tune to
improve its operations. The goals of these feedback loops range
from keeping single variables in a prescribed range to satisfying
non-functional requirements by regulating decentralized,
interdependent subsystems.

To be able to observe and possibly orchestrate continuous
evolution of software systems in a complex and changing
environment, we need to push monitoring of evolving systems to
unprecedented levels. It has been established that security has to
be built into a system from the ground up and cannot be added as
an afterthought—the same is probably true for intensive
monitoring. We propose to monitor adaptive systems with
autonomic elements to enhance their assessment capabilities. In
this paper, we discuss how to build monitoring into Java
programs from the ground up with reflection technology to detect
normal and exceptional system behavior.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Design Tools and Techniques—
Object-oriented design methods; D.2.11 [Software Engineering]:
Software Architecture—Domain-specific architectures, Patterns;
D.3.3 [Programming Languages]: Language Constructs and
Features

General Terms
Design, Documentation, Languages, Management, Performance,
Reliability, Standardization

Keywords
Continuous evolution, self-adaptive systems, autonomic elements,
feedback, control loops, monitoring, reflection, introspection,
metaobjects, exceptions, Java

1. INTRODUCTION
Continuous evolution has emerged as a key characteristic of

software-intensive and ultra-large scale systems. According to a
recent study conducted by the Software Engineering Institute
(SEI) [22], such systems cannot be fully specified and engineered
in a top-down manner as we are used to, but are rather constructed
by satisfying requirements through regulating decentralized,
interdependent subsystems. In such an environment, individual
subsystems have to be more self-sufficient, robust and at the same
time be able to adapt due to changes in their context and operating
environment. In traditional engineering of software systems,
many assumptions about the context of an application are fixed at
design time and as a consequence, functional and non-functional
requirements can be hard-wired into the systems and thus need
not be monitored for continuous satisfaction. However, for
software-intensive systems, which are subject to continuous
changes in context and operating environment, monitoring of
requirements satisfaction will likely be the norm rather than the
exception. To regulate the satisfaction of requirements, individual
subsystems must adapt. For example, Litoiu discusses hierarchical
control in a class of Quality of Service and Service Oriented
Architecture applications, including appropriate architectures and
algorithms [18].

There are many research projects investigating approaches to
adapt software systems effectively [6, 16, 17]. A common feature
of all approaches is feedback (or control) loops as core
components of adaptive systems [20]. Feedback loops observe the
system’s internal state and its surrounding context, analyze its
effectiveness by evaluating quality criteria and then adjust
parameters and components to improve its operations [8].

Hitherto, most developers had no need to instrument their
software with sensors and effectors to observe its hard-wired
requirements. For self-adaptive software-intensive systems
however, a control loop with sensors and effectors is a necessity.
The autonomic computing community, spearheaded by IBM,
offers the notion of an autonomic element to implement such
control loops [16]. This architectural element seems an ideal
building block with which to design software systems from the
ground up with adaptive mechanisms [15]. For example, at the
lowest level, autonomic elements could monitor a system’s ‘vital
signs,’ which are typically not made explicit in the source code
(except, perhaps, in comments). The frequency of raised
exceptions or run-time check violations could be monitored
(similar to taking a person’s blood pressure or pulse) and then
used to assess changes in a system’s health. Critical regression
tests could be regularly performed while the system is in
operation to observe satisfaction of selected requirements. One
way to implement monitoring of internal state using such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SEAMS 2008, May 12–13, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-037-1/08/05…$5.00.

81

autonomic elements is to employ reflective mechanisms offered
by the underlying programming languages and run-time
environments.

In this paper, we explore how autonomic elements and
reflection technology can be used to instrument Java programs
from the ground up to recognize normal and exceptional behavior
by monitoring Java exceptions over time. Section 2 describes
related work in the area of code instrumentation. Section 3 briefly
introduces autonomic computing and discusses the architecture of
an autonomic element. Section 4 provides background on Java
reflection. Section 5 discusses our approach to instrumenting
programs from the ground up using Java’s reflective capabilities,
especially dynamic proxy classes. Section 6 presents a small
example of building a suitable Java-based infrastructure for
monitoring raised exceptions that follows our approach. Section 7
closes the paper with conclusions and future work.

2. RELATED WORK
There are many approaches to instrumenting existing systems

with the goal to obtain information about their run-time behavior
(e.g., sequences of method invocation or profiling of execution
times). In Java, the bytecode representation of a class can be
instrumented before a class is loaded. This can be conveniently
achieved with tools such as the Apache Byte Code Engineering
Library (BCEL) [2] or ASM [1], which provide APIs to inspect
and manipulate Java classes at the level of JVM instructions. For
example, BCEL has been used to realize a generic framework for
collecting dynamic information of Java programs [4]. Another
suitable tool is Javassist [5], which offers a source-level API that
allows specifying of modifications as Java source text without
requiring knowledge of the underlying bytecode implementation.
It enables Java programs to define a new class at run-time and to
modify a class file when it is loaded.

Reflective middleware, which uses reflection to achieve
openness and re-configurability of its behavior, can also be used
to instrument systems. Huang et al. have implemented autonomic
computing middleware based on underlying reflective middleware
[14]. Specifically, they have built autonomic managers to observe
and modify the behavior of a J2EE application server using
reflection mechanisms.

Aspect-oriented programming languages are also used to
instrument code. For example, Briand et al. have leveraged
AspectJ to instrument multi-threaded and distributed Java code
[3]. There are also dedicated toolkits for monitoring and testing
such as the Eclipse Test & Performance Tools Platform (TPTP)
project [24]. All of the above approaches have different trade-offs
in terms of expressiveness, learning curve, instrumentation at
compile/load/run-time, or execution overhead.

3. AUTONOMIC ELEMENTS
Autonomic Computing presents a new paradigm where

computing systems manage themselves, guided by high-level
objectives [16]. The metaphor is derived from our autonomic
nervous system, which controls normal and exceptional body
functions, from respiration to pupil dilation, through the
sympathetic and parasympathetic subsystems without our
conscious awareness or effort.

In an effort to define a common approach to building self-
managing systems, IBM has defined an architectural blueprint for

autonomic computing [9]. The architectural blueprint suggests
fundamental building blocks for designing self-configuring, self-
healing, self-protecting and self-optimizing software systems.

Figure 1 depicts the main building block, an autonomic
element, which consists of an autonomic manager and a managed
element tied together via a closed control loop. The monitor in the
autonomic manager senses the managed element and its context,
filters the accumulated sensor data, and stores relevant events in
the knowledge base for future reference. The analyzer compares
event data against patterns in the knowledge base to diagnose
symptoms and also stores the symptoms for future reference in the
knowledge base. The planner interprets the symptoms and devises
a plan to execute the change in the managed element through the
effectors. An interface consisting of a set of sensors and effectors
is called a manageability endpoint. To facilitate collaboration
among autonomic elements, the control and data of manageability
endpoints are standardized across managed elements.

Figure 1 Autonomic Element [9]

 A simple example of a managed end point could be a web
service that provides weather information to subscribed users. An
autonomic manager could continuously sense the output of the
service and describe this output as events in the knowledge base.
The analyzer could interpret these events as normal or abnormal
and store its analysis (symptoms) into the knowledge base. The
planner could determine an appropriate course of action based on
the symptoms in the knowledge base and with guidance from a set
of policy rules it must follow.

The idea to describe and implement software systems with
control loops is not a new concept. Over a decade ago, Shaw
compared a software design method based on process control to
an object-oriented design method [21]. The process control
pattern described in that paper, which resembles an autonomic
element, can be seen as a building block for creating software-
intensive systems that are more self-aware (e.g., by continuously
monitoring normal and exceptional behavior).

82

4. JAVA REFLECTION
The concept of reflection has been studied independently in

many different areas of science and engineering and in the area of
programming languages across language paradigms [7]. Examples
of reflective programming languages include Lisp, Self,
Smalltalk, Prolog, Python, C++, and Java. Over the past decade,
reflection implementations for C++ and Java have matured
enough to be practical for adaptive computing.

The reflection mechanisms of a programming language
provide a running program with the ability to examine itself and
its environment. To perform self-examination, a program needs an
accessible representation of itself; this level of indirection is
facilitated through metadata and is fundamental to a reflective
system. The two main aspects of self-manipulation are
introspection and intercession, which are the abilities of a
program to observe and modify (respectively) its own state and
behavior. Both aspects require a mechanism for encoding
execution state as data. In Java this is realized with so-called
metaobjects, which provide access to the representation of Java
classes and are available in the java.lang.reflect package.

4.1 Metaobjects
The Java programming language provides reflective access to

metaobjects for many important language constructs including,
but not limited to: classes, methods, fields, interfaces, modifiers
(e.g., public, private, static, abstract, or synchronized), arrays, the
call stack, and the class loader. For example, the metaobject
classes Class and Method are used to represent the classes and
methods of executing programs.

Metaobjects not only provide reflective query access to the
components of a program, but also provide an interface to change
or adapt its structure and behaviour. During dynamic invocation, a
Method metaobject can be used to invoke the method that it
represents. Similarly, Field objects expose the attributes of a
field (e.g., name and modifiers), allowing programs to query and
modify values. This functionality allows programs to handle
objects of classes that have not been specified at design time.

4.2 Dynamic Loading
Some adaptations can be accomplished by adjusting

parameters, but more significant changes require modification of
existing code or incorporation of new code during run-time. In
Java, this can be accomplished with dynamic class loading. When
combined with good object-oriented design (e.g., a plug-in
architecture), dynamic loading provides additional flexibility,
increasing the likelihood of accommodating changes in
requirements [19].

In Java, dynamic loading can be accomplished using the
reflective facility Class.forName(String). This static
method returns a Class object given a fully qualified class
name. This object can then be instantiated using reflective
construction as follows:
 Class myClass = Class.forName(“demo.ObjImpl”);

 MyObject obj = (IObject) myClass.newInstance();

Dynamic loading can also be enhanced with the use of custom

ClassLoaders which govern where to search for classes to
load, which class gets loaded and used, or protocols to use when
finding a class [8]. A program can provide its own custom class

loaders to modify the default class loading behavior. Class
loading can be considered a reflective facility because the ability
to create and execute a new class as well as to modify the default
class loading behavior is a form of intercession. This kind of
intercession permits a large increase in application adaptability,
which ranges from deciding what code is used to implement a
class to replacing that code even when the class is active.

Both dynamic loading and reflection facilitate delegation.
Delegation provides a level of indirection between different parts
of a program and allows them to vary independently from each
other, while reflection increases the range of variation by making
more kinds of objects available [11].

4.3 Dynamic Proxies
The Java reflection API includes a class called Proxy to

realize so-called dynamic proxy classes. When a proxy class is
created, a list of interfaces that the proxy will implement is given.
Instead of instantiating and using an object obj for a class C
directly, a proxy object prxy is created that takes obj as an
argument:

class C implements I { ... };

C obj = new C(...);

Proxy prxy = Proxy.newProxyInstance (

 C.getClass().getClassLoader(),

 C.getClass().getInterfaces(),

 new MyIH(obj));

The proxy prxy supports the same interface as the target
object obj. As a result, proxies can be created and used
transparently in place of any object in the system, including other
proxies. Thus, dynamic proxies are an effective technique for
adding properties and behaviors to objects.

Generally, proxies can be used whenever code needs to
execute before or after certain method invocations of an interface.
To achieve this, a proxy needs to be provided with an extension of
an InvocationHandler that overrides the inherited invoke
method [23]. For example, the above proxy can intercede and
delegate method invocation as follows (ignoring exception
handling to simplify the code):

class MyIH implements InvocationHandler {

 public Object invoke(Object proxy, Method m,
 Object[] args)
 {
 preProcessing();
 result = m.invoke(obj, args); //delegation
 postProcessing();
 return result;
 }
 }

The InvocationHandler is used to accomplish delegation
by handling each method call on a proxy instance, and holding
any references to the targets of that proxy instance. Overriding the
inherited invoke method allows developers to add pre- and
post-processing code surrounding method delegation (cf. Figure
2). This form of intercession allows ‘wrapper’ code such as for
monitoring and logging to be gathered in one place. This
technique greatly simplifies maintenance, testing, and debugging,
because proxies keep such functionality from becoming entangled
with application logic, and allows developers to reuse application-
neutral wrapper code in other applications.

83

Because of Java’s introspection of argument interfaces at the
time of the proxy’s creation, it is neither error-prone nor fragile to
interface updates. This property yields several benefits. Since a
proxy is instantiated by specifying its supporting interfaces—the
corresponding implementation is created dynamically at run-time.
Furthermore, a proxy can support interfaces that were not
available when the application was compiled. This means that
proxies can be used in combination with dynamic loading to
enhance application flexibility [11].

Figure 2 Pre- and post-method delegation intercession

The use of proxy classes increases flexibility or adaptability

by creating modules that concentrate the code needed to give
properties to an object and that may be reused in other contexts.
Proxies are a flexible and modular approach to monitoring;
however, as with any reflective mechanism, the use of proxies
does of course incur a performance penalty for the extra level of
indirection [13]. This is an important consideration when deciding
on the number of proxies and the granularity of the monitoring for
the system under observation.

5. MONITORING WITH PROXIES
In Java there are two techniques to facilitate behavioral or

structural changes using the reflection API: (1) operations for
using metaobjects such as dynamic invocation, and (2)
intercession, in which code is permitted to intercede in various
phases of program execution. Of these techniques, intercession—
facilitated through the use of Java’s dynamic proxy—provides a
convenient (but not most efficient) method for implementing low
level monitoring.

 For example, instances of a single proxy class that
implements monitoring can be used to bind to the run-time
interfaces of any object that needs to be monitored, and intercede
on any or all method invocations. In this way, any exceptions that
a target object throws can be caught, traced, and logged with
complete transparency to the objects user. The results can then be
stored in the knowledge base of an autonomic element to identify,
for instance, bursts or trends of raised exceptions.

Using these reflective techniques at design time, we can lay
the plumbing for problem determination and localization at run
time. Proxies can be used to monitor selected objects and

components, even those that are not necessarily known during
design and compile-time. For example, a monitoring proxy that
observes raised exceptions can be selectively enabled for objects
that are critical to the operation of the system. Furthermore,
monitoring and other behaviors such as tracing and profiling can
be dynamically composed and enabled or disabled at run-time if
each behavior is encapsulated in a proxy. Such dynamic
composition can be easily achieved by chaining proxies together.

5.1 Chaining Proxies
Chaining proxies together allows us to realize adaptive

monitoring, which allows for the reconfiguration of monitors
during run-time. Initially, for instance, we may want to monitor
only the exceptions generated by the system. Bursts of
exceptions, however, may trigger more aggressive monitoring
such as tracing of method invocations and profiling of execution
hot-spots.

Constructing such a monitor can be accomplished with proxies
via implementing the InvocationHandler interface to
perform exception logging, tracing, profiling and instantiating a
corresponding proxy object whenever the target objects needs that
kind of monitoring. The intercessional capabilities of the proxies
can be turned on and off as required. Depending on system
demands, individual proxies can be made to intercede or not, or
can be made to intercede with varying levels of aggression.

Figure 3 demonstrates that arranging proxies in a chain has the
effect of composing the properties and behaviors implemented by
each proxy. The structure of the chain however, requires careful
design. When a client makes a call to what they perceive to be
the real target, they are actually operating on a proxy. Likewise,
individual proxies normally work under the assumption that their
target is the real target, not another proxy [11].

Figure 3 Compositional intercession

If the target of a proxy is another proxy, the

InvocationHandler may behave under an incorrect
assumption. To overcome this difficulty, we can make use of an
abstract class, AbstractInvocationHandler, from which

84

we will derive other handlers for all chainable proxies. This
abstract class has the ability to recursively search the chain of
proxies to locate the ‘real’ target at the end of the chain, and can
make decisions about their intercessional behavior based on this
knowledge [11].

6. EXAMPLE: AN ADAPTIVE EXCEPTION
MONITOR

The previous sections illustrated how Java reflection and
dynamic proxies can be leveraged to facilitate the design of
autonomic managers. The example in this section shows how to
build such an autonomic observer to monitor Java exceptions over
long periods of time. The assumption is that during normal
operation exceptions are raised in predictable patterns, but in
bursts during exceptional behavior. The exceptional behavior
might be due to unexpected changes in the system’s internal state
or its environment. Recognizing such changes using autonomic
observers will give the system a chance to adapt and evolve.

The reflective, adaptive exception monitor is implemented in
Java by providing intercessional processing after method
delegation to any object in the system. Specifically, it is able to
transparently inspect each exception generated by specified
objects. Exceptions are logged in the knowledge base of the
autonomic element for future pattern or symptom analysis. The
monitoring proxy is also designed to work in a chain so that other
proxies can be composed together (e.g., tracing or profiling).

The key to the development of a reflective, adaptive exception
monitor resides in the implementation of a specialized
InvocationHandler. Implementing the Invocation-
Handler interface allows us to write code that can intercede
during Proxy method delegation to any Java object in the system.
This is accomplished through reflective access to the Method
metaobject of the target object as illustrated in Figure 2.
Currently, monitored Java exceptions are captured through post-
method invocation intercession.

The monitoring InvocationHandler will be able to
perform adaptive monitoring of exceptions generated by any Java
object. Its key capabilities include:

• The ability to be turned on and off;
• The ability to react to changing demands (e.g., bursts);
• The ability to detect normal and abnormal system

behavior over long periods of time; and
• The ability to be composed together with other

handlers.

 Exceptions generated by the system are logged sequentially in
time for each object for which a monitoring proxy is employed.
As bursts of exceptional activity are recorded, the monitoring
proxy will increase the aggressiveness with which it monitors.
Likewise, when the system is operating normally, the monitor
may choose to decrease its aggressiveness. Increases and
decreases in aggressiveness can range from not monitoring at all,
to simply logging the few exceptions that are generated under
normal conditions, to logging every exception generated by every
object and finally to employing the use of other proxies to chain
other intercessional behaviors together such as tracing and
profiling.

Code Listing 1 in Appendix A shows the interface to a custom
InvocationHandler, MyInvocationHandler. This
interface specifies how proxies can be created and composed
together in a chain. The methods addToFront(),
addToBack(), contains(), and remove() illustrate that
the proxy chain will exhibit functionality commonly associated
with a linked list. This interface also specifies that proxies
constructed with this type of handler can operate with varying
degrees of aggressiveness expressed with a Java enumeration:

 MONITOR_LEVEL {HIGH, MEDUIM, LOW, NONE}.

Another important facility specified here is the ability to
register event listeners for each proxy. This allows for adaptive
orchestration of the entire proxy chain through a centralized
Controller.

The MyInvocationHandler interface is implemented by
the AbstractInvocationHandler mentioned in Section
5.1. Code Listing 2 in Appendix A shows that this base
implementation contains a reference to the centralized
Controller and a Logger. The Controller and Logger
both work to close the control loop by monitoring events
generated by the chain of proxies (such as the logging of an
exception), and modifying the behavior of the proxy chain in
response.

In the example application we have created, the following
processes take place:

1. When a client attempts to instantiate a specific target
object using the Factory design pattern [12], the object
is created and a proxy to that object is generated and
returned transparently to the client.

2. During instantiation, the proxy that is created (called
the primary proxy) registers itself with the controller.
The purpose of the primary proxy is to maintain the
head of the proxy chain.

3. After a primary proxy has been registered with the
Controller, the Controller can decide which
proxies to add to the chain. In our example, only an
exception monitoring proxy is initially chained.

4. The Controller receives an event notification each
time the exception monitoring proxy transparently logs
another exception.

5. The Controller can then analyze the exceptions that
have been logged and adjust the MONITOR_LEVEL
with which the object is monitored or chain additional
proxies for tracing and profiling.

It is important to note that the Controller can also dynamically
load new InvocationHandlers that were not specified at
design-time for the purpose of chaining new types of proxies.

In our implementation, the monitoring proxy can intercede and
inspect exceptions as they are generated for any object in the
system. Exceptions are initially logged in the least aggressive
mode. Only one in every three exceptions generated by a specific
object is inspected. (This is for illustration purposes only. A more
realistic example might be to inspect only application-defined
exceptions.) The time between successive exceptions is then used
to control the aggressiveness of the monitor. Large durations of
time between exceptions will cause the monitor to maintain its

85

least aggressive monitoring mode (i.e., logging only one in three
exceptions). Shorter durations may move the monitor from mild
through moderate to highly aggressive monitoring modes, where
most or all exceptions are logged and inspected for the purpose of
problem determination and localization.

The adaptive measures taken can easily be configured for
control either through simple techniques such as observing
thresholds, or more advanced techniques involving event
correlation, event grouping, and scenario recognition. In the most
aggressive monitoring mode, every exception that is generated is
logged, and the monitor may now begin to employ the use of
proxy chains to capture more system wide event data.

6.1 Logging
Extensions of the AbstractInvocationHandler also

make use of a generalized logger that can be customized to log to
one or more repositories (i.e., knowledge base of an autonomic
element) simultaneously such as standard out, flat text files,
relational databases, or web services.

The generalization of the logging component also allows us to
log significant system events in standards compliant formats such
as the Common Base Event (CBE) or Web Services Distributed
Management (WSDM) formats [10, 25] to facilitate further
analysis. Information that is captured for logging purposes can
include but is not limited to:

• The object that generated the exception;
• The exception itself (including the stack trace);
• The time the exception was raised; and
• Profiling and tracing information.

Another benefit of the generalized logger is that it is

customizable for usage by multiple components in the system. A
monitor may use it to log exception information to a web service,
while a tracing component might use it to simply log to a flat text
file or another repository.

7. CONCLUSIONS AND FUTURE WORK
The need to regulate large, complex, decentralized systems by

monitoring and tuning the satisfaction of requirements is upon us.
We need numerous sensors, monitors, analysis/planning engines,
and effectors to be able to observe and control independent and
competing organisms in a dynamic and changing environment. A
subsystem, which is instrumented with autonomic managers to
monitor assertions, invariants, regression tests, or the hysteresis of
non-functional requirements will be more self-sufficient, robust
and, at the same time, be able to adapt to changes in its context
and operating environment. This greatly enhances the ability of a
system to determine and localize problems.

In this paper we have proposed an approach based on the
reflective capabilities of programming languages to build
monitoring into a software system with adaptive capabilities. We
have argued that monitoring should be built into an adaptive
system from the ground up with autonomic observers. Addressing
monitoring is important because it constitutes a tie between the
managed element (i.e., the software system under observation)
and the autonomic manager (cf. Figure 1). Thus, monitoring
should be a concern during the whole system life cycle, including
requirements engineering, design, architecture, and,

implementation. Furthermore, there is a need for standard
interfaces and event formats.

Monitoring in a Java environment can be achieved with Java’s
reflective capabilities, namely metaobjects and dynamic proxy
classes. In this paper, we have described how proxies can be
leveraged for monitoring and how adaptive monitors can be
realized via chaining of proxies. Furthermore, we have discussed
an example of an autonomic observer that monitors the Java
exceptions that the system under observation generates. This
observer monitors the system continuously over a long time
period. The assumption is that during normal operation exceptions
are raised in predictable patterns, but happen in bursts when the
system exhibits anomalous behavior.

For future work, we plan to build an autonomic system that
uses our monitoring approach. Alternatively, we may be able to
take a suitable existing Java system and inject proxies into it as
well as augment it with an autonomic observer. Such a system
could then serve as a basis for a case study to show the feasibility
and trade-offs of our approach. For example, it would allow us to
quantify the overhead that is imposed by proxies and other
reflective monitoring mechanisms. Furthermore, it would allow us
to study our hypothesis that monitoring raised exceptions can be
used to indicate normal vs. anomalous system behavior.

8. ACKNOWLEDGMENTS
This work was funded in part by the National Sciences and

Engineering Research Council (NSERC) of Canada (CRDPJ
320529-04 and CRDPJ 356154-07), IBM Corporation, and CA
Inc. via the CSER Consortium. We also would like to
acknowledge comments by Qin Zhu and Lin Lei on this paper.

REFERENCES
[1] ASM home page, WebObject Consortium,

http://asm.objectweb.org/
[2] BCEL home page. The Apache Jakarta Project,

http://jakarta.apache.org/bcel/
[3] Lionel C. Briand, Yvan Labiche, Johanne Leduc, Tracing

Distributed Systems Executions Using AspectJ. 21st IEEE
International Conference on Software Maintenance (ICSM
2005), pp. 81-90, Budapest, Hungary, September 2005.

[4] Anil Chawla and Alessandro Orso. A Generic
Instrumentation Framework for Collecting Dynamic
Information, ACM SIGSOFT ACM Software Engineering
Notes, Vol. 29, No. 5, pp. 1-4, September 2004.

[5] Shigeru Chiba. Javassist home page,
http://www.csg.is.titech.ac.jp/~chiba/javassist/

[6] Dagstuhl Seminar 08031 on Software Engineering for Self-
Adaptive Systems, January 13-18, 2008,
http://www.dagstuhl.de/08031

[7] François-Nicola Demers and Jacques Malenfant. Reflection
in Logic, Functional and Object-oriented Programming.
Proceedings of the IJCAI ’95 Workshop on Reflection and
Metalevel Architectures and their Applications in AI, pp. 29-
38, August 1995.

[8] Guy Dumont and Mihai Huzmezan. Concepts, Methods and
Techniques in Adaptive Control, Proceedings American

86

Control Conference (ACC 2002), Vol. 2, pp. 1137-1150,
2002.

[9] IBM Corporation. An Architectural Blueprint for Autonomic
Computing, White Paper, 4th Edition, June 2006,
http://www.ibm.com/autonomic/pdfs/AC_Blueprint_White_
Paper_4th.pdf

[10] IBM Corporation. CBE Common Base Event, IBM
developerWorks,
http://www.ibm.com/developerWorks/library/specification/
ws-cbe/

[11] Ira Forman and Nate Forman. Java Reflection in Action,
Manning Publications, October 2004.

[12] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, November 1994.

[13] Brian Goetz. Java theory and practice: Decorating with
dynamic proxies, IBM developerWorks, August 2005,
http://www.ibm.com/developerworks/java/library/j-
jtp08305.html

[14] Gang Huang, Tiancheng Liu, Hong Mei, Zizhan Zheng,
Zhao Liu, and Gang Fan. Towards Autonomic Computing
Middleware via Reflection, Proceedings 28th ACM
COMPSAC Conference on Computer Software and
Applications (COMPSAC 2004), Vol. 1, pp. 135-140, 2004.

[15] Duncan Johnston-Watt. Under New Management, ACM
Queue, Vol. 4, No. 2, March 2006.

[16] Jeff O. Kephart and David M. Chess. The Vision of
Autonomic Computing, IEEE Computer, Vol. 36, No.1, pp.
41-50, January 2003.

[17] Jeff Kramer and Jeff Magee. Self-Managed Systems: An
Architectural Challenge, FOSE 2007: 2007 Future of

Software Engineering, 29th ACM/IEEE International
Conference on Software Engineering (ICSE 2007),
Minneapolis, Minnesota, USA, pp. 259-268, May 2007.

[18] Marin Litoiu, Murray Woodside, and Tao Zheng.
Hierarchical Model-based Autonomic Control of Software
Systems. ICSE 2005 Workshop on Design and Evolution of
Autonomic Application Software (DEAS 2005), Workshop at
27th ACM/IEEE International Conference on Software
Engineering (ICSE 2005), St. Louis, Missouri, USA, pp. 34-
40, May 2005.

[19] Qusay H. Mahmoud. Understanding Network Class Loaders,
Sun Developer Network, October 2004,
http://java.sun.com/developer/technicalArticles/Networking/
classloaders/

[20] Hausi A. Müller, Mary Shaw, Mauro Pezzè. Visibility of
Control in Adaptive Systems, Second International
Workshop on Ultra-Large-Scale Software-Intensive Systems
(ULSSIS 2008), Workshop at 30th ACM/IEEE International
Conference on Software Engineering (ICSE 2008), Leipzig,
Germany, May 2008. In press.

[21] Mary Shaw. Beyond Objects, ACM SIGSOFT Software
Engineering Notes, Vol. 20, No. 1, pp. 27-38, January 1995.

[22] Software Engineering Institute. Ultra-Large-Scale Systems:
The Software Challenge of the Future, 134 pages, ISBN 0-
9786956-0-7, July 2006, http://www.sei.cmu.edu/uls/

[23] Sun Microsystems. Reflection,
http://java.sun.com/javase/6/docs/technotes/guides/reflection

[24] TPTP home page, Eclipse, http://www.eclipse.org/tptp/
[25] WSDM Web Services Distributed Management, OASIS,

http://www. oasis-open.org/committees/tc_home.php

87

APPENDIX A—Selected Java Code for Adaptive Exception Monitor

Code Listing 1: MyInvocationHandler

import java.lang.reflect.*;

public interface MyInvocationHandler
{
 public Object createProxy(Object obj);
 public void addMyEventListener(MyEventListener myEventListener);

 public MONITOR_LEVEL getMonLevel();
 public void setMonLevel(MONITOR_LEVEL mon_level);

 public void setParent(Proxy prxy);
 public Object getNextTarget();
 public Object getPrevTarget();
 public Object getRealTarget();

 public void setNextTarget(Object obj);
 public void setPrevTarget(Object obj);
 public void setRealTarget(Object obj);

 public boolean isFront();
 public boolean isPrimary();
 public boolean isBack();

 public void addInFront(Proxy prxy);
 public void addInBehind(Proxy prxy);
 public void addToFront(Proxy prxy);
 public void addToBack(Proxy prxy);
 public void removeFront();
 public void removeBack();

 public void remove(Proxy prxy);
 public boolean contains(Proxy prxy);

}

Code Listing 2: AbstractInvocationHandler

import java.lang.reflect.*;

public abstract class AbstractInvocationHandler
 implements InvocationHandler, MyInvocationHandler
{
 protected Object parent; //the Proxy that contains this InvocationHandler
 protected MONITOR_LEVEL mon_level = MONITOR_LEVEL.LOW;

 protected Object prevTarget = null;
 protected Object nextTarget = null;
 protected Object realTarget = null;

 protected Controller controller = Controller.getInstance();
 protected Logger logger = Logger.getInstance();
 protected EventListenerList listenerList = new EventListenerList();

 // ...

}

88

