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ABSTRACT 

Continuous evolution is a key trait of software-intensive 
systems. Many research projects investigate mechanisms to adapt 
software systems effectively in order to ease evolution. By 
observing its internal state and surrounding context continuously 
using feedback loops, an adaptive system is able to analyze its 
effectiveness by evaluating quality criteria and then self-tune to 
improve its operations. The goals of these feedback loops range 
from keeping single variables in a prescribed range to satisfying 
non-functional requirements by regulating decentralized, 
interdependent subsystems. 

To be able to observe and possibly orchestrate continuous 
evolution of software systems in a complex and changing 
environment, we need to push monitoring of evolving systems to 
unprecedented levels.  It has been established that security has to 
be built into a system from the ground up and cannot be added as 
an afterthought—the same is probably true for intensive 
monitoring. We propose to monitor adaptive systems with 
autonomic elements to enhance their assessment capabilities. In 
this paper, we discuss how to build monitoring into Java 
programs from the ground up with reflection technology to detect 
normal and exceptional system behavior. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Design Tools and Techniques— 
Object-oriented design methods; D.2.11 [Software Engineering]: 
Software Architecture—Domain-specific architectures, Patterns; 
D.3.3 [Programming Languages]: Language Constructs and 
Features 

General Terms 
Design, Documentation, Languages, Management, Performance, 
Reliability, Standardization 

Keywords 
Continuous evolution, self-adaptive systems, autonomic elements, 
feedback, control loops, monitoring, reflection, introspection, 
metaobjects, exceptions, Java 
 

1. INTRODUCTION 
Continuous evolution has emerged as a key characteristic of 

software-intensive and ultra-large scale systems. According to a 
recent study conducted by the Software Engineering Institute 
(SEI) [22], such systems cannot be fully specified and engineered 
in a top-down manner as we are used to, but are rather constructed 
by satisfying requirements through regulating decentralized, 
interdependent subsystems. In such an environment, individual 
subsystems have to be more self-sufficient, robust and at the same 
time be able to adapt due to changes in their context and operating 
environment. In traditional engineering of software systems, 
many assumptions about the context of an application are fixed at 
design time and as a consequence, functional and non-functional 
requirements can be hard-wired into the systems and thus need 
not be monitored for continuous satisfaction. However, for 
software-intensive systems, which are subject to continuous 
changes in context and operating environment, monitoring of 
requirements satisfaction will likely be the norm rather than the 
exception. To regulate the satisfaction of requirements, individual 
subsystems must adapt. For example, Litoiu discusses hierarchical 
control in a class of Quality of Service and Service Oriented 
Architecture applications, including appropriate architectures and 
algorithms [18]. 

There are many research projects investigating approaches to 
adapt software systems effectively [6, 16, 17]. A common feature 
of all approaches is feedback (or control) loops as core 
components of adaptive systems [20]. Feedback loops observe the 
system’s internal state and its surrounding context, analyze its 
effectiveness by evaluating quality criteria and then adjust 
parameters and components to improve its operations [8].  

Hitherto, most developers had no need to instrument their 
software with sensors and effectors to observe its hard-wired 
requirements. For self-adaptive software-intensive systems 
however, a control loop with sensors and effectors is a necessity. 
The autonomic computing community, spearheaded by IBM, 
offers the notion of an autonomic element to implement such 
control loops [16]. This architectural element seems an ideal 
building block with which to design software systems from the 
ground up with adaptive mechanisms [15]. For example, at the 
lowest level, autonomic elements could monitor a system’s ‘vital 
signs,’ which are typically not made explicit in the source code 
(except, perhaps, in comments). The frequency of raised 
exceptions or run-time check violations could be monitored 
(similar to taking a person’s blood pressure or pulse) and then 
used to assess changes in a system’s health. Critical regression 
tests could be regularly performed while the system is in 
operation to observe satisfaction of selected requirements. One 
way to implement monitoring of internal state using such 
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autonomic elements is to employ reflective mechanisms offered 
by the underlying programming languages and run-time 
environments. 

In this paper, we explore how autonomic elements and 
reflection technology can be used to instrument Java programs 
from the ground up to recognize normal and exceptional behavior 
by monitoring Java exceptions over time. Section 2 describes 
related work in the area of code instrumentation. Section 3 briefly 
introduces autonomic computing and discusses the architecture of 
an autonomic element. Section 4 provides background on Java 
reflection. Section 5 discusses our approach to instrumenting 
programs from the ground up using Java’s reflective capabilities, 
especially dynamic proxy classes. Section 6 presents a small 
example of building a suitable Java-based infrastructure for 
monitoring raised exceptions that follows our approach. Section 7 
closes the paper with conclusions and future work. 

2. RELATED WORK 
There are many approaches to instrumenting existing systems 

with the goal to obtain information about their run-time behavior 
(e.g., sequences of method invocation or profiling of execution 
times). In Java, the bytecode representation of a class can be 
instrumented before a class is loaded. This can be conveniently 
achieved with tools such as the Apache Byte Code Engineering 
Library (BCEL) [2] or ASM [1], which provide APIs to inspect 
and manipulate Java classes at the level of JVM instructions. For 
example, BCEL has been used to realize a generic framework for 
collecting dynamic information of Java programs [4]. Another 
suitable tool is Javassist [5], which offers a source-level API that 
allows specifying of modifications as Java source text without 
requiring knowledge of the underlying bytecode implementation. 
It enables Java programs to define a new class at run-time and to 
modify a class file when it is loaded. 

Reflective middleware, which uses reflection to achieve 
openness and re-configurability of its behavior, can also be used 
to instrument systems. Huang et al. have implemented autonomic 
computing middleware based on underlying reflective middleware 
[14]. Specifically, they have built autonomic managers to observe 
and modify the behavior of a J2EE application server using 
reflection mechanisms. 

Aspect-oriented programming languages are also used to 
instrument code. For example, Briand et al. have leveraged 
AspectJ to instrument multi-threaded and distributed Java code 
[3]. There are also dedicated toolkits for monitoring and testing 
such as the Eclipse Test & Performance Tools Platform (TPTP) 
project [24]. All of the above approaches have different trade-offs 
in terms of expressiveness, learning curve, instrumentation at 
compile/load/run-time, or execution overhead. 

3. AUTONOMIC ELEMENTS 
Autonomic Computing presents a new paradigm where 

computing systems manage themselves, guided by high-level 
objectives [16]. The metaphor is derived from our autonomic 
nervous system, which controls normal and exceptional body 
functions, from respiration to pupil dilation, through the 
sympathetic and parasympathetic subsystems without our 
conscious awareness or effort.  

In an effort to define a common approach to building self-
managing systems, IBM has defined an architectural blueprint for 

autonomic computing [9]. The architectural blueprint suggests 
fundamental building blocks for designing self-configuring, self-
healing, self-protecting and self-optimizing software systems. 

Figure 1 depicts the main building block, an autonomic 
element, which consists of an autonomic manager and a managed 
element tied together via a closed control loop. The monitor in the 
autonomic manager senses the managed element and its context, 
filters the accumulated sensor data, and stores relevant events in 
the knowledge base for future reference. The analyzer compares 
event data against patterns in the knowledge base to diagnose 
symptoms and also stores the symptoms for future reference in the 
knowledge base. The planner interprets the symptoms and devises 
a plan to execute the change in the managed element through the 
effectors. An interface consisting of a set of sensors and effectors 
is called a manageability endpoint. To facilitate collaboration 
among autonomic elements, the control and data of manageability 
endpoints are standardized across managed elements. 

 

 
Figure 1 Autonomic Element [9] 

 
     A simple example of a managed end point could be a web 
service that provides weather information to subscribed users.  An 
autonomic manager could continuously sense the output of the 
service and describe this output as events in the knowledge base.  
The analyzer could interpret these events as normal or abnormal 
and store its analysis (symptoms) into the knowledge base.  The 
planner could determine an appropriate course of action based on 
the symptoms in the knowledge base and with guidance from a set 
of policy rules it must follow. 

The idea to describe and implement software systems with 
control loops is not a new concept. Over a decade ago, Shaw 
compared a software design method based on process control to 
an object-oriented design method [21]. The process control 
pattern described in that paper, which resembles an autonomic 
element, can be seen as a building block for creating software-
intensive systems that are more self-aware (e.g., by continuously 
monitoring normal and exceptional behavior). 
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4. JAVA REFLECTION 
The concept of reflection has been studied independently in 

many different areas of science and engineering and in the area of 
programming languages across language paradigms [7]. Examples 
of reflective programming languages include Lisp, Self, 
Smalltalk, Prolog, Python, C++, and Java. Over the past decade, 
reflection implementations for C++ and Java have matured 
enough to be practical for adaptive computing. 

The reflection mechanisms of a programming language 
provide a running program with the ability to examine itself and 
its environment. To perform self-examination, a program needs an 
accessible representation of itself; this level of indirection is 
facilitated through metadata and is fundamental to a reflective 
system. The two main aspects of self-manipulation are 
introspection and intercession, which are the abilities of a 
program to observe and modify (respectively) its own state and 
behavior. Both aspects require a mechanism for encoding 
execution state as data. In Java this is realized with so-called 
metaobjects, which provide access to the representation of Java 
classes and are available in the java.lang.reflect package. 

4.1 Metaobjects 
The Java programming language provides reflective access to 

metaobjects for many important language constructs including, 
but not limited to: classes, methods, fields, interfaces, modifiers 
(e.g., public, private, static, abstract, or synchronized), arrays, the 
call stack, and the class loader. For example, the metaobject 
classes Class and Method are used to represent the classes and 
methods of executing programs.  

Metaobjects not only provide reflective query access to the 
components of a program, but also provide an interface to change 
or adapt its structure and behaviour. During dynamic invocation, a 
Method metaobject can be used to invoke the method that it 
represents. Similarly, Field objects expose the attributes of a 
field (e.g., name and modifiers), allowing programs to query and 
modify values. This functionality allows programs to handle 
objects of classes that have not been specified at design time.  

4.2 Dynamic Loading 
Some adaptations can be accomplished by adjusting 

parameters, but more significant changes require modification of 
existing code or incorporation of new code during run-time. In 
Java, this can be accomplished with dynamic class loading. When 
combined with good object-oriented design (e.g., a plug-in 
architecture), dynamic loading provides additional flexibility, 
increasing the likelihood of accommodating changes in 
requirements [19]. 

In Java, dynamic loading can be accomplished using the 
reflective facility Class.forName(String). This static 
method returns a Class object given a fully qualified class 
name. This object can then be instantiated using reflective 
construction as follows:  
   Class myClass = Class.forName(“demo.ObjImpl”); 

   MyObject obj = (IObject) myClass.newInstance(); 

 
Dynamic loading can also be enhanced with the use of custom 

ClassLoaders which govern where to search for classes to 
load, which class gets loaded and used, or protocols to use when 
finding a class [8]. A program can provide its own custom class 

loaders to modify the default class loading behavior. Class 
loading can be considered a reflective facility because the ability 
to create and execute a new class as well as to modify the default 
class loading behavior is a form of intercession. This kind of 
intercession permits a large increase in application adaptability, 
which ranges from deciding what code is used to implement a 
class to replacing that code even when the class is active. 

Both dynamic loading and reflection facilitate delegation. 
Delegation provides a level of indirection between different parts 
of a program and allows them to vary independently from each 
other, while reflection increases the range of variation by making 
more kinds of objects available [11].  

4.3 Dynamic Proxies 
The Java reflection API includes a class called Proxy to 

realize so-called dynamic proxy classes. When a proxy class is 
created, a list of interfaces that the proxy will implement is given. 
Instead of instantiating and using an object obj for a class C 
directly, a proxy object prxy is created that takes obj as an 
argument: 

class C implements I { ... }; 

C obj = new C(...); 

Proxy prxy = Proxy.newProxyInstance ( 

           C.getClass().getClassLoader(), 

   C.getClass().getInterfaces(), 

   new MyIH(obj) ); 

The proxy prxy supports the same interface as the target 
object obj. As a result, proxies can be created and used 
transparently in place of any object in the system, including other 
proxies. Thus, dynamic proxies are an effective technique for 
adding properties and behaviors to objects.  

Generally, proxies can be used whenever code needs to 
execute before or after certain method invocations of an interface. 
To achieve this, a proxy needs to be provided with an extension of 
an InvocationHandler that overrides the inherited invoke 
method [23].  For example, the above proxy can intercede and 
delegate method invocation as follows (ignoring exception 
handling to simplify the code): 

class MyIH implements InvocationHandler { 

 public Object invoke(Object proxy, Method m, 
           Object[] args)  
      { 
   preProcessing(); 
   result = m.invoke(obj, args); //delegation 
   postProcessing(); 
   return result; 
 } 
  } 

The InvocationHandler is used to accomplish delegation 
by handling each method call on a proxy instance, and holding 
any references to the targets of that proxy instance. Overriding the 
inherited invoke method allows developers to add pre- and 
post-processing code surrounding method delegation (cf. Figure 
2). This form of intercession allows ‘wrapper’ code such as for 
monitoring and logging to be gathered in one place. This 
technique greatly simplifies maintenance, testing, and debugging, 
because proxies keep such functionality from becoming entangled 
with application logic, and allows developers to reuse application-
neutral wrapper code in other applications. 
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Because of Java’s introspection of argument interfaces at the 
time of the proxy’s creation, it is neither error-prone nor fragile to 
interface updates. This property yields several benefits. Since a 
proxy is instantiated by specifying its supporting interfaces—the 
corresponding implementation is created dynamically at run-time. 
Furthermore, a proxy can support interfaces that were not 
available when the application was compiled. This means that 
proxies can be used in combination with dynamic loading to 
enhance application flexibility [11]. 

 

 
Figure 2 Pre- and post-method delegation intercession 

 
The use of proxy classes increases flexibility or adaptability 

by creating modules that concentrate the code needed to give 
properties to an object and that may be reused in other contexts. 
Proxies are a flexible and modular approach to monitoring; 
however, as with any reflective mechanism, the use of proxies 
does of course incur a performance penalty for the extra level of 
indirection [13]. This is an important consideration when deciding 
on the number of proxies and the granularity of the monitoring for 
the system under observation. 

5. MONITORING WITH PROXIES 
In Java there are two techniques to facilitate behavioral or 

structural changes using the reflection API: (1) operations for 
using metaobjects such as dynamic invocation, and (2) 
intercession, in which code is permitted to intercede in various 
phases of program execution. Of these techniques, intercession—
facilitated through the use of Java’s dynamic proxy—provides a 
convenient (but not most efficient) method for implementing low 
level monitoring. 

 For example, instances of a single proxy class that 
implements monitoring can be used to bind to the run-time 
interfaces of any object that needs to be monitored, and intercede 
on any or all method invocations. In this way, any exceptions that 
a target object throws can be caught, traced, and logged with 
complete transparency to the objects user. The results can then be 
stored in the knowledge base of an autonomic element to identify, 
for instance, bursts or trends of raised exceptions. 

Using these reflective techniques at design time, we can lay 
the plumbing for problem determination and localization at run 
time. Proxies can be used to monitor selected objects and 

components, even those that are not necessarily known during 
design and compile-time. For example, a monitoring proxy that 
observes raised exceptions can be selectively enabled for objects 
that are critical to the operation of the system. Furthermore, 
monitoring and other behaviors such as tracing and profiling can 
be dynamically composed and enabled or disabled at run-time if 
each behavior is encapsulated in a proxy.  Such dynamic 
composition can be easily achieved by chaining proxies together. 

5.1 Chaining Proxies 
Chaining proxies together allows us to realize adaptive 

monitoring, which allows for the reconfiguration of monitors 
during run-time. Initially, for instance, we may want to monitor 
only the exceptions generated by the system. Bursts of 
exceptions, however, may trigger more aggressive monitoring 
such as tracing of method invocations and profiling of execution 
hot-spots.  

Constructing such a monitor can be accomplished with proxies 
via implementing the InvocationHandler interface to 
perform exception logging, tracing, profiling and instantiating a 
corresponding proxy object whenever the target objects needs that 
kind of monitoring. The intercessional capabilities of the proxies 
can be turned on and off as required. Depending on system 
demands, individual proxies can be made to intercede or not, or 
can be made to intercede with varying levels of aggression. 

Figure 3 demonstrates that arranging proxies in a chain has the 
effect of composing the properties and behaviors implemented by 
each proxy. The structure of the chain however, requires careful 
design.  When a client makes a call to what they perceive to be 
the real target, they are actually operating on a proxy. Likewise, 
individual proxies normally work under the assumption that their 
target is the real target, not another proxy [11].  

 

 
Figure 3 Compositional intercession 

 
If the target of a proxy is another proxy, the 

InvocationHandler may behave under an incorrect 
assumption. To overcome this difficulty, we can make use of an 
abstract class, AbstractInvocationHandler, from which 
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we will derive other handlers for all chainable proxies. This 
abstract class has the ability to recursively search the chain of 
proxies to locate the ‘real’ target at the end of the chain, and can 
make decisions about their intercessional behavior based on this 
knowledge [11]. 

6. EXAMPLE: AN ADAPTIVE EXCEPTION 
MONITOR 

The previous sections illustrated how Java reflection and 
dynamic proxies can be leveraged to facilitate the design of 
autonomic managers. The example in this section shows how to 
build such an autonomic observer to monitor Java exceptions over 
long periods of time. The assumption is that during normal 
operation exceptions are raised in predictable patterns, but in 
bursts during exceptional behavior. The exceptional behavior 
might be due to unexpected changes in the system’s internal state 
or its environment. Recognizing such changes using autonomic 
observers will give the system a chance to adapt and evolve. 

The reflective, adaptive exception monitor is implemented in 
Java by providing intercessional processing after method 
delegation to any object in the system. Specifically, it is able to 
transparently inspect each exception generated by specified 
objects. Exceptions are logged in the knowledge base of the 
autonomic element for future pattern or symptom analysis. The 
monitoring proxy is also designed to work in a chain so that other 
proxies can be composed together (e.g., tracing or profiling). 

The key to the development of a reflective, adaptive exception 
monitor resides in the implementation of a specialized 
InvocationHandler. Implementing the Invocation-
Handler interface allows us to write code that can intercede 
during Proxy method delegation to any Java object in the system. 
This is accomplished through reflective access to the Method 
metaobject of the target object as illustrated in Figure 2. 
Currently, monitored Java exceptions are captured through post-
method invocation intercession. 

The monitoring InvocationHandler will be able to 
perform adaptive monitoring of exceptions generated by any Java 
object. Its key capabilities include: 

• The ability to be turned on and off; 
• The ability to react to changing demands (e.g., bursts); 
• The ability to detect normal and abnormal system 

behavior over long periods of time; and 
• The ability to be composed together with other 

handlers. 
 
 Exceptions generated by the system are logged sequentially in 
time for each object for which a monitoring proxy is employed. 
As bursts of exceptional activity are recorded, the monitoring 
proxy will increase the aggressiveness with which it monitors. 
Likewise, when the system is operating normally, the monitor 
may choose to decrease its aggressiveness. Increases and 
decreases in aggressiveness can range from not monitoring at all, 
to simply logging the few exceptions that are generated under 
normal conditions, to logging every exception generated by every 
object and finally to employing the use of other proxies to chain 
other intercessional behaviors together such as tracing and 
profiling.  

Code Listing 1 in Appendix A shows the interface to a custom 
InvocationHandler, MyInvocationHandler. This 
interface specifies how proxies can be created and composed 
together in a chain. The methods addToFront(), 
addToBack(), contains(), and remove() illustrate that 
the proxy chain will exhibit functionality commonly associated 
with a linked list. This interface also specifies that proxies 
constructed with this type of handler can operate with varying 
degrees of aggressiveness expressed with a Java enumeration: 

 MONITOR_LEVEL {HIGH, MEDUIM, LOW, NONE}.  

Another important facility specified here is the ability to 
register event listeners for each proxy. This allows for adaptive 
orchestration of the entire proxy chain through a centralized 
Controller. 

The MyInvocationHandler interface is implemented by 
the AbstractInvocationHandler mentioned in Section 
5.1. Code Listing 2 in Appendix A shows that this base 
implementation contains a reference to the centralized 
Controller and a Logger. The Controller and Logger 
both work to close the control loop by monitoring events 
generated by the chain of proxies (such as the logging of an 
exception), and modifying the behavior of the proxy chain in 
response. 

In the example application we have created, the following 
processes take place: 

1. When a client attempts to instantiate a specific target 
object using the Factory design pattern [12], the object 
is created and a proxy to that object is generated and 
returned transparently to the client. 

2. During instantiation, the proxy that is created (called 
the primary proxy) registers itself with the controller. 
The purpose of the primary proxy is to maintain the 
head of the proxy chain. 

3. After a primary proxy has been registered with the 
Controller, the Controller can decide which 
proxies to add to the chain. In our example, only an 
exception monitoring proxy is initially chained.  

4. The Controller receives an event notification each 
time the exception monitoring proxy transparently logs 
another exception. 

5. The Controller can then analyze the exceptions that 
have been logged and adjust the MONITOR_LEVEL 
with which the object is monitored or chain additional 
proxies for tracing and profiling. 

It is important to note that the Controller can also dynamically 
load new InvocationHandlers that were not specified at 
design-time for the purpose of chaining new types of proxies. 

In our implementation, the monitoring proxy can intercede and 
inspect exceptions as they are generated for any object in the 
system. Exceptions are initially logged in the least aggressive 
mode. Only one in every three exceptions generated by a specific 
object is inspected. (This is for illustration purposes only. A more 
realistic example might be to inspect only application-defined 
exceptions.) The time between successive exceptions is then used 
to control the aggressiveness of the monitor. Large durations of 
time between exceptions will cause the monitor to maintain its 
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least aggressive monitoring mode (i.e., logging only one in three 
exceptions). Shorter durations may move the monitor from mild 
through moderate to highly aggressive monitoring modes, where 
most or all exceptions are logged and inspected for the purpose of 
problem determination and localization. 

The adaptive measures taken can easily be configured for 
control either through simple techniques such as observing 
thresholds, or more advanced techniques involving event 
correlation, event grouping, and scenario recognition. In the most 
aggressive monitoring mode, every exception that is generated is 
logged, and the monitor may now begin to employ the use of 
proxy chains to capture more system wide event data.  

6.1 Logging 
Extensions of the AbstractInvocationHandler also 

make use of a generalized logger that can be customized to log to 
one or more repositories (i.e., knowledge base of an autonomic 
element) simultaneously such as standard out, flat text files, 
relational databases, or web services. 

The generalization of the logging component also allows us to 
log significant system events in standards compliant formats such 
as the Common Base Event (CBE) or Web Services Distributed 
Management (WSDM) formats [10, 25] to facilitate further 
analysis. Information that is captured for logging purposes can 
include but is not limited to: 

• The object that generated the exception; 
• The exception itself (including the stack trace); 
• The time the exception was raised; and 
• Profiling and tracing information. 

 
Another benefit of the generalized logger is that it is 

customizable for usage by multiple components in the system. A 
monitor may use it to log exception information to a web service, 
while a tracing component might use it to simply log to a flat text 
file or another repository. 

7. CONCLUSIONS AND FUTURE WORK 
The need to regulate large, complex, decentralized systems by 

monitoring and tuning the satisfaction of requirements is upon us. 
We need numerous sensors, monitors, analysis/planning engines, 
and effectors to be able to observe and control independent and 
competing organisms in a dynamic and changing environment. A 
subsystem, which is instrumented with autonomic managers to 
monitor assertions, invariants, regression tests, or the hysteresis of 
non-functional requirements will be more self-sufficient, robust 
and, at the same time, be able to adapt to changes in its context 
and operating environment. This greatly enhances the ability of a 
system to determine and localize problems. 

In this paper we have proposed an approach based on the 
reflective capabilities of programming languages to build 
monitoring into a software system with adaptive capabilities. We 
have argued that monitoring should be built into an adaptive 
system from the ground up with autonomic observers. Addressing 
monitoring is important because it constitutes a tie between the 
managed element (i.e., the software system under observation) 
and the autonomic manager (cf. Figure 1). Thus, monitoring 
should be a concern during the whole system life cycle, including 
requirements engineering, design, architecture, and, 

implementation. Furthermore, there is a need for standard 
interfaces and event formats. 

Monitoring in a Java environment can be achieved with Java’s 
reflective capabilities, namely metaobjects and dynamic proxy 
classes. In this paper, we have described how proxies can be 
leveraged for monitoring and how adaptive monitors can be 
realized via chaining of proxies. Furthermore, we have discussed 
an example of an autonomic observer that monitors the Java 
exceptions that the system under observation generates. This 
observer monitors the system continuously over a long time 
period. The assumption is that during normal operation exceptions 
are raised in predictable patterns, but happen in bursts when the 
system exhibits anomalous behavior. 

For future work, we plan to build an autonomic system that 
uses our monitoring approach. Alternatively, we may be able to 
take a suitable existing Java system and inject proxies into it as 
well as augment it with an autonomic observer. Such a system 
could then serve as a basis for a case study to show the feasibility 
and trade-offs of our approach. For example, it would allow us to 
quantify the overhead that is imposed by proxies and other 
reflective monitoring mechanisms. Furthermore, it would allow us 
to study our hypothesis that monitoring raised exceptions can be 
used to indicate normal vs. anomalous system behavior. 
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APPENDIX A—Selected Java Code for Adaptive Exception Monitor 
 

 

Code Listing 1: MyInvocationHandler 
 
import java.lang.reflect.*; 
 
public interface MyInvocationHandler  
{ 
    public Object createProxy( Object obj );    
    public void addMyEventListener(MyEventListener myEventListener); 
     
    public MONITOR_LEVEL getMonLevel(); 
    public void setMonLevel(MONITOR_LEVEL mon_level); 
     
    public void setParent(Proxy prxy); 
    public Object getNextTarget(); 
    public Object getPrevTarget(); 
    public Object getRealTarget(); 
     
    public void setNextTarget(Object obj); 
    public void setPrevTarget(Object obj); 
    public void setRealTarget(Object obj); 
     
    public boolean isFront(); 
    public boolean isPrimary(); 
    public boolean isBack();     
     
    public void addInFront(Proxy prxy); 
    public void addInBehind(Proxy prxy); 
    public void addToFront(Proxy prxy); 
    public void addToBack(Proxy prxy); 
    public void removeFront(); 
    public void removeBack(); 
     
    public void remove(Proxy prxy); 
    public boolean contains(Proxy prxy); 
     
} 
 
 
 
Code Listing 2: AbstractInvocationHandler 
 
import java.lang.reflect.*; 
 
public abstract class AbstractInvocationHandler  
                implements InvocationHandler, MyInvocationHandler 
{ 
    protected Object parent; //the Proxy that contains this InvocationHandler  
    protected MONITOR_LEVEL mon_level = MONITOR_LEVEL.LOW;  
     
    protected Object prevTarget = null; 
    protected Object nextTarget = null; 
    protected Object realTarget = null; 
     
    protected Controller controller = Controller.getInstance(); 
    protected Logger logger = Logger.getInstance(); 
    protected EventListenerList listenerList = new EventListenerList(); 
               
    // ... 
 
} 
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