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Abstract

Terahertz technology is still an evolving research field that attracts scientists with very different backgrounds working
on a wide range of subjects. In the past two decades, it has been demonstrated that terahertz technology can provide
a non-invasive tool for measuring and monitoring the water content of leaves and plants. In this paper we intend to
review the different possibilities to perform in-vivo water status measurements on plants with the help of THz and sub-
THz waves. The common basis of the different methods is the strong absorption of THz and sub-THz waves by liquid
water. In contrast to simpler, yet destructive, methods THz and sub-THz waves allow for the continuous monitoring of
plant water status over several days on the same sample. The technologies, which we take into focus, are THz time
domain spectroscopy, THz continuous wave setups, THz quasi time domain spectroscopy and sub-THz continuous
wave setups. These methods differ with respect to the generation and detection schemes, the covered frequency
range, the processing and evaluation of the experimental data, and the mechanical handling of the measurements.
Consequently, we explain which method fits best in which situation. Finally, we discuss recent and future
technological developments towards more compact and budget-priced measurement systems for use in the field.
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Introduction

In comparison to other methods like measuring the water

potential of the leaves or comparing their fresh and dry

weight THz and sub-THz measurements have the advan-

tage of being a non-invasive technique. This means that

repeated measurements on the same sample over a long

period of time are possible. With invasive techniques such

measurements are problematic, because besides the obvi-

ous wastage of sample material with each measurement

the extraction of tissue from a living organism always

causes additional stress. This can obviously affect the

result of the experiment.

Electromagnetic radiation in the THz and sub-THz fre-

quency range is strongly absorbed by liquid water [1,2].

Various approaches for biological and medical applica-

tions of THz waves exist [3-10]. But the strong attenuation

by water often tends to be a problem as samples in this

field usually have a rather high water content [11,12].

As a result, this often makes these samples completely

opaque for THz and sub-THz waves. Yet, for measuring
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the water content of a thin sample like a plant’s leaf, the

strong absorption turns out to be very convenient [13-21].

Also radiation in the neighboring microwave and infrared

range has been used as a tool for water status measure-

ments [22,23]. Often this is done via remote sensing taking

several plants at once under observation [24], sometimes

even with airborne or spaceborne sensors [25-28]. In con-

trast to this, the techniques in the sub-THz range (i.e. the

upper microwave range) and the THz range, which we will

take into focus here, are designed to be used locally on

individual plants. Here, we review these new approaches

and hope that they will get accepted and widely used by

plant physiologists to monitor the water status of plants.

While the dry tissue of the leaf has little influence

on the transmitted signal, the attenuation of the sig-

nal can be used directly for a qualitative observation of

the leaf ’s water content. The high contrast between dry

biomass and liquid water is caused by the polarity of

the water molecules, which results in a high absorption

coefficient in the THz frequency range. The capability of

this approach for water status measurements was firstly

demonstrated by the pioneering work of Hu et al. [13]

and Mittleman et al. [14]. In their experiments Hu et al.
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recorded an image of a freshly cut leaf using THz time

domain spectroscopy. In this image the veins of the leaf

are clearly visible due to their higher water content and

their higher thickness. After two days, the measurements

were repeated and an increase of the overall transmis-

sion through the leaf was observed showing a decrease

of the leaf water content. By performing similar mea-

surements on a leaf of a living plant Mittleman et al.

visualized the water uptake of the plant, which was previ-

ously subjected to drought stress, after rewatering. In such

measurements a sample holder may be needed to keep a

leaf in a defined position. Yet, the actual measurement is

contact-free, which helps to keep the mechanical stress

on the sample to a minimum [3,16,19]. THz and sub THz

measurement systems, which are specially adapted for

water status detection, are still subject to active research

and development [17-19] and not commercially available

so far. Yet, several different technical realizations of the

underlying idea to use THz or sub-THz waves for water

status measurements have been implemented and eval-

uated. Among these are THz time domain spectroscopy

[29-33], THz continuous wave setups [34-38], and sub-

THz continuous wave setups [39]. These techniques have

different advantages and drawbacks, which make them

suitable in different experimental situations. In the fol-

lowing, we will discuss the capabilities of the different

approaches and the typical experimental configurations

in which they can be used. For each of the different

approaches we present experimental data, which demon-

strates the capabilities of the technology and might serve

as an inspiration for further experiments.

Review

Terahertz time domain spectroscopy

A typical THz time domain spectrometer consists of sev-

eral components which serve to generate and detect a

short electromagnetic pulse [29-33] and record its time

trace. As this pulse typically consists of frequency com-

ponents from a few hundred GHz to several THz, they

are located in the electromagnetic spectrum between

microwaves and infrared light. As shown in Figure 1 a

central component of such a setup is a laser, which emits

short pulses of light with a pulse duration of about 100 fs.

A common technique for emitting and detecting THz

pulses are photoconductive antennas [40-43]. The light

pulses from the laser are used to excite both the emitter

and the detector antenna by generating free carriers in the

substrate material. At the emitter antenna a bias voltage

is applied to accelerate the free carriers. This mecha-

nism generates one terahertz pulse for each incoming light

pulse. At the detector, the free carriers, which are gen-

erated by the light pulses, allow the terahertz pulses to

induce a photocurrent. This photocurrent is measured

using a lock-in amplifier or a transimpedance amplifier.

In the optical path, which guides the light from the laser

to the detector antenna, a delay unit is used to manip-

ulate the time of arrival of the optical light pulses. By

using this delay unit it is possible to scan across the THz

pulse and record its shape in the time domain. For each

measurement with a sample, a reference measurement is

performed without the sample to record the characteris-

tics of the measurement setup. Figure 2 shows an example

for a THz time domain pulse trace and its representation

in the frequency domain. The properties of the sample can

be calculated by comparing the results of the sample mea-

surement to the reference measurement. The figure shows

how the THz pulse is attenuated and retarded by the sam-

ple. Frequency dependent data evaluation is possible by

applying a Fourier transform to the time domain data.

A stationary laboratory setup is usually built upon an

optical table, which holds the optical components in place.

A more flexible and compact alternative are fiber-coupled

measurement systems where glass fibers are used to guide

the light from the laser to the photoconductive antennas.

Moreover, combinations of both techniques are possi-

ble. In the following sections we will present different

measurement systems, which can be used for different

purposes and in different locations.

Automated long-term experiments

The THz time domain setup shown in Figure 3 is designed

for long-term measurement series on a number of plants

Figure 1 Schematic of a typical THz time domain setup. A laser emits short pulses of light, which are used for generation and detection of THz
pulses. The delay unit enables scanning across the THz waveform (see also [29-33]).
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Figure 2 Example for a THz time domain measurement. The
comparison of reference and sample measurement shows that the
signal is attenuated and delayed by the sample. The data was
recorded using a laboratory free space setup. To magnify the effect of
the sample on the THz pulse, a 7mm thick block of polypropylene
was used as a sample in this measurement (see also [29-33]).

over a course of several days or even weeks [16]. Once

an experiment is started, all steps, which are necessary to

carry out themeasurements, are controlled by a computer.

This way, measurement data can be taken continuously

without any need for manual intervention.

The delay unit, which is used here, is built on an optical

table as a conventional free space delay line. The remain-

ing optical path to the antennas is fiber-coupled allowing

to move the THz antennas and THz optics around on the

table. These components are mounted on a measurement

head, which can be moved around on a circular route

by the motorized arm of a goniometer. Corresponding to

that, the plants are arranged on the table in a circular

Figure 3 Photograph of a setup for automated long-term

experiments. The plants (in this potograph: oat, lat. Avena) are
placed on the table in a circular arrangement similar to the one used
by Born et al. [16] to make them accessible to the measurement head
(a) on the motorized arm of the goniometer (b). One leaf from each
plant is placed in a sample holder (c). Below each pot a digital scale
(d) is placed to keep track of the weight of the pots.

shape and a leaf from each plant is kept in a fixed posi-

tion by a sample holder. The sample holders are adjusted

to be exactly on the circular path of the measurement

head. Thus, each leaf can be reached by the measurement

head and a fully automated operation is possible. When

15 plants are placed in the setup one roundtrip of the

measurement head takes about one hour. By using faster

mechanics and data acquisition [44] the speed of the mea-

surements could be increased at least by a factor of 20.

Additionally, each pot sits on a computer controlled dig-

ital scale to keep track of the pot’s weight as a measure

of the amount of water, which is available to the plants.

Above the table a high pressure sodium lamp is mounted

as a light source for the plants, which is controlled by a

time switch.

Figure 4 shows an example for long-term measure-

ment data, which was recorded using this setup. Over a

course of several weeks the water status of rye (Secale

cereale) plants was observed while they were put under

drought stress and finally rewatered. Besides the terahertz

transmission the weight of the pots was recorded, too.

Measurements were performed approximately once per

hour on each of the 15 plants. The plot in Figure 4 shows

the results from one of these plants. In the first days of

the experiment, the water available to the plants was kept

on a constant level. The plants were irrigated daily, which

reflects in the sawtooth-like shape of the weight plot in

these days. After 6 days, the plants were deprived from

water. Comparison of the plot for the terahertz transmis-

sion and pot weight shows that it takes several days until

the available amount of water is low enough to induce

drought stress. The two small peaks in the THz transmis-

sion around the 7th and the 13th day of the experiment

cannot be attributed to any particular event. The drought

Figure 4 Result of a measurement series with the automated

setup. The THz transmission through the leaf of a rye plant is plotted
together with the weight of the pot. In agreement with Born et al.
[16] higher transmission values stand for smaller water content in the
leaf. Comparison of the two graphs shows how drought stress builds
up while the amount of water available to the plant is decreased. Also
the immediate reaction of the plant to rewatering is visible.



Gente and Koch Plant Methods  (2015) 11:15 Page 4 of 9

stress response starts to become visible on the 19th day.

From the 20th day on the drought stress response dur-

ing daytime is larger than twice the standard deviation of

the transmission values before deprivation started (σ =
0.87%). This applies to the difference between day and

nighttime, too. We attribute the higher transmission val-

ues during daytime to the higher usage of water by the

plant during this time. Additionally the opening and clos-

ing of the leaves’ stomata might cause a slightly different

scattering behavior of the radiation on the leaves’ sur-

face. But this would imply a frequency dependent effect,

which has not been observed so far. The usage of water

by the plant is constituted by the amount of water which

is used for photosynthesis, and the amount which is lost

due to physical drying by the incident light. During night-

time the water uptake by the plant from the soil can

at least partly compensate for the water loss during the

day.

Also the end of the drought stress on the 23rd day

is clearly visible. The plot shows that the plant recov-

ers immediately after rewatering and THz transmission

comes back to its initial level.

An automated measurement setup like the one

described above allows for a variety of experiments,

where the development of leaf water content over time

is under observation. Possible experiments for the future

are the comparison of the behavior of different species of

plants under drought stress and the comparison of leaves

at different locations within one plant.

Mobile measurement systems for hand operation

Another approach for performing measurements on

plants is to bring the measurement system to the plant

rather than the plant to themeasurement system. Tomake

this possible, the measurement system needs to be a com-

pact, self-contained unit. Figure 5 shows a fiber-coupled

THz time domain system, which was designed to be used

in a greenhouse. To fit the components of the spectrom-

eter into one 19" rack case a solution for the delay unit

had to be found. One possibility is to put a free space

delay line in a sealed housing in order to address laser

safety regulations and to guard it from dust and other

environmental influences. But it is also possible to com-

pletely avoid free space optics by using a fiber-stretcher,

which periodically stretches and releases several meters of

optical fiber and thus generates the optical delay, which

is needed for scanning over the THz time domain signal.

While a free space delay line can be realized more cost-

efficiently a fiber-stretcher allows for higher measurement

speed. In either case, the bigger components of the spec-

trometer, like the laser and the delay unit, are located in

the 19" rack case and the THz emission and detection

take place in a handheld measurement head, which can be

moved to the plant.

Figure 5Mobile THz time domain setup for use in a greenhouse.

All the components of the spectrometer are integrated in a 19" rack
case which can be moved around on wheels [45,46].

This kind of setup allows for a flexible design of bio-

logical experiments as plants of different sizes in different

locations can be easily reached as long as there is a way to

bring the rack case with the spectrometer into a range of

about 2m from the plants. Though, the downside of this

concept is that measurements need to be carried out by

hand, which can be a time-consuming task depending on

the number of plants in the experiment.

Figure 6 shows a measurement series, which was

recorded to compare THz measurements using a mobile

THz time domain system and conventional gravimetric

measurements. These measurements were performed on

ten leaves, which were detached from a barley (Hordeum

vulgare) plant tomake the gravimetricmeasurements pos-

sible. The leaves were dried in an oven. During the drying

process they were taken out of the oven every ten minutes

and THz measurements and gravimetric measurements

were performed. As the THz measurements are non-

invasive they are feasible in the same way also on leaves

which are still alive and attached to a plant. How the water

content is calculated from the THz data is explained in the

next section.

Modeling a leaf as an effective medium

In Figure 4 we have shown that raw transmission values of

the THz signal can already act as an indicator for the water

status of a plant. But sometimes it’s desirable to know

the actual percentage of water in a leaf. Obtaining this

value with gravimetric measurements is trivial, but also

a destructive method. With sophisticated data analysis it

is possible to calculate these values from non-destructive

THz time domain measurements. One technique, which

aims at this goal, is to use linear transforms like principal
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Figure 6 Comparison of THz measurements and gravimetric

measurements of the water content of barley leaves [49]. For this
experiment 10 leaves were detached from a barley plant and their
water content was measured repeatedly. Detaching the leaves was
only necessary for the gravimetric measurements, which were
performed for comparison. The pearson correlation coefficient of the
THz measurements and the gravimetric measurements is r = 0.94. A
possible reason for the remaining deviations between the two
methods is that a gravimetric measurement gives an average value
for the whole leaf while a THz measurement is performed on a small
spot. The THz measurements are non-invasive and can also be
performed on living plants. The water content was calculated from
the THz data using an effective mediummodel of the leaves [49]. The
grey line is a ‘guide to the eye’.

component analysis on the measured data [47]. Here, we

will have a closer look at another concept, which is based

on a physical model describing the transmission of a THz

pulse through a leaf [48]. In this model a leaf consists of a

mixture of water, dry biomass and air. Using an effective

medium theory the dielectric properties of such a mix-

ture can be calculated incorporating the properties of the

components and their volumetric fractions. For building

such a model the dielectric properties of the components

need to be characterized separately. While the values for

water and air can be taken from literature [1], for the dry

biomass measurements in a laboratory setup are neces-

sary. The absorption coefficient of dry biomass is small

compared to the absorption coefficient of water, and thus

the effect of the dry biomass on the results of the mea-

surements is small, too. Still, for a reliable model the dry

biomass should be characterized separately for each plant

species. Jördens et al. [48] use the effective medium the-

ory of Landau, Lifshitz and Looyenga for calculating the

permittivity ǫL of the leaf material as follows:

3
√

ǫL = aW 3
√

ǫW+aS 3
√

ǫS+aA 3
√

ǫA , aW+aS+aA = 1

In this central formula of the model, the subindices W ,

S, and A stand for the three components water, solid mat-

ter, and air. One important property of this theory is that

it does not make any assumptions about the inner struc-

ture of the mixture. When simulating the transmission of

THz radiation through a leaf, also its thickness and surface

roughness need to be taken into account. For modeling

the surface roughness Jördens et al. use a Raleigh rough-

ness factor, which is based on the standard deviation of

the height profile of the surface [48]:

α = αabs +
(

(√
ǫL − 1

)

·
4πτ cos(θ)

λ

)2

×
1

T

In this formulation α is a combined expression for the

attenuation of the signal by the leaf, which is caused by

surface scattering and absorption. τ is the the standard

deviation of the leaf ’s height profile, θ the angle of inci-

dence (θ = 0 for normal incidence), λ the free space

wavelength, and T the thickness of the leaf. Based on this

model for the sample material the so called transfer func-

tion of the sample is calculated. The transfer function

is a frequency dependent representation of how electro-

magnetic radiation is delayed and attenuated when it is

transmitted through the sample. The next step after build-

ing such a model is to reverse the problem and extract

the model’s parameters from real measured data. This can

be done using an optimization algorithm, which fits the

model to the measured transfer function [49]. The data in

Figure 6, which has been mentioned before, was evaluated

using this method.

Continuous wave THz setups

Instead of short pulses continuous THz radiation can also

be used for water status measurements [17,18]. Contin-

uous wave THz setups often use photomixing for gener-

ation and detection of the THz waves [38]. The concept

is based on overlaying the light from two lasers, which

are slightly detuned against each other. When this opti-

cal signal is focused onto a photoconductive antenna THz

radiation at the difference frequency of the two lasers is

generated. Similar to a THz time domain setup a part of

the laser light is guided through a delay unit and onto the

detector antenna. Similar to the former mentioned meth-

ods, the amplitude of the THz signal, which is transmitted

through a leaf, is an indicator for the water status of the

plant. An example for a measurement series, which was

recorded with such a setup is shown in Figure 7. In the

experiment shown in the figure, Kinder et al. [18] deprived

a coffee plant (Coffea arabica) from water and performed

measurements with a terahertz continuous wave setup

over a course of 20 days. With evolving drought stress the

transmission of the THz signal through the leaf increases

accordingly.

Lasers for continuous wave generation are usually more

compact and cost-efficient than a femtosecond laser.

Though, as a usual continuous wave THz setup works at

one single frequency, it is not possible to apply the effec-

tive medium method here. One possibility to overcome

this limitation is to repeat the measurements with differ-

ent detuning between the two lasers to obtain data for
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Figure 7Water status measurement with a THz continuous wave

setup at [18]. A coffee plant was deprived from water. As drought
stress evolves, the Transmission through the leaf is increased (Figure
after Kinder et al. [18]).

different frequencies. A continuous wave setup can also

be operated at several frequencies at once, either by over-

laying more than two lasers or by using multimode laser

diodes, which emit light at several wavelengths at once

[50].

THz quasi time domain spectroscopy (QTDS)

A comparably new concept for generating THz radiation

is quasi time domain spectroscopy. The setup is almost

identical to a THz time domain spectrometer, but the fem-

tosecond laser is replaced by an inexpensive multimode

laser diode [51,52]. As such a laser diode generates light

at many different wavelengths at once, there is a large

number of difference frequencies, which are emitted by

the photoconductive emitter antenna. In contrast to a

continuous wave setup, which can also be operated with

two multimode laser diodes, here the difference frequen-

cies between the different modes of only one multimode

laser diode are used. This results in a signal which looks

like a train of THz pulses. These quasi pulses are where

the name quasi time domain spectroscopy comes from.

As shown in Figure 8 the difference frequencies show

up in the spectrum of the recorded time domain sig-

nal when it is transformed into the frequency domain.

THz QTDS setups for water status measurements are still

under development, but first measurements, which are

shown in Figure 9, show the feasibility of this approach.

In these measurements a leaf of corn salad (Valerianella

locusta) was periodically put in a QTDS setup for measur-

ing the transmission of the THz signal through the leaf.

Each QTDS measurement was accompanied by weighing

the sample, so the actual loss of water was known, while

the leaf was slowly drying. The plot shows a good corre-

spondence of water loss and increase of transmission.

Replacing the expensive femtosecond laser with a cheap

multimode laser diode enables QTDS setups to be built

muchmore compact and cost-effectively. Using the QTDS

Figure 8 Signal from a THz quasi time domain setup. The upper
graph shows the signal as it was recorded in the time domain. The
Fourier transform of the time domain signal in lower graph reveals
that the signal is constructed as the sum of many discrete frequency
components [51,52].

technology, compact, lightweight, battery-powered mea-

surement systems for the use in the field get within reach.

New compact, robust, and inexpensive delay concepts like

the one proposed by Probst et al. [53] are an important

step in this direction.

sub-THz-measurements

If we move to the upper part of the microwave spectrum,

which is also called the sub-THz regime, more powerful

emitters are available [39]. The longer wavelengths in the

sub-THz regime make it impossible to focus the radiation

onto a small spot, but instead the higher power can be

Figure 9 This experiment shows the feasibility of THz quasi time

domain spectroscopy for water status measurements. A leaf of
corn salad was periodically weighed and its THz transmission was
measured using a QTDS setup. The results show a good
correspondence of water loss and increase of transmission.
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used to performmeasurements on a bigger part of a plant.

For this bigger part an average value is obtained instead

of a measurement on one single leaf. When a plant is illu-

minated by a sub-THz beam with a diameter of several

centimeters, a part of the radiation is transmitted straight

through the plant, a part of it is absorbed and another

part is scattered away in random directions. The scattered

part of the radiation is one of the reasons why such mea-

surements are not trivial. The amount and direction of the

scattered radiation are determined by the random orien-

tation of the leaves in the illuminated part of the plant.

One possibility to take the scattered part of the radiation

into account is to capture it by scanning around the plant

with the detector [54]. In a setup like the one shown in

Figure 10 the emitter and the plant are kept in a fixed

position, while the detector is moved on a circular path

around the plant. The biggest part of the radiation is trans-

mitted straight through the plant and can be measured

when the detector is directly facing the emitter. But still

a significant amount of radiation can be detected at other

angles besides the direct forward direction. How much of

the radiation is scattered also depends on the water con-

tent of the plant. Because of this, the relationship between

the directly transmitted signal and the scattered signal

is nonlinear and the angular scan cannot be replaced by

a simple linear proportionality (see Figure 2b in [54]).

After integrating over the recorded data, the result of such

a measurement is the sum of transmitted and scattered

radiation. These values can directly be used as an indicator

for the water status of a plant. When additional informa-

tion about the size and geometry of the plant is available,

it is also possible to calculate the actual water content

of a plant in percent. Figure 11 shows the results of a

measurement series, where one group of 11 barley plants

emitter plant detector

Figure 10 Setup for sub-THz measurements on plants. Emitter
and the plant are kept in a fixed position. The detector scans around
the plant in order to capture radiation, which is scattered by the plant
[54].

Figure 11 Result of a sub-THz measurement series on barley

plants [54]. The red curve represents a group of 11 barley plants
under drought stress. The green curve shows the corresponding
results for the irrigated control group of the same size.

was sufficiently watered throughout the experiment, while

another group of 11 plants was deprived from watering.

Over a course of several weeks, sub-THz measurements

were carried out regularly. The diverging water content

of the two groups of plants is clearly visible in the plot.

While the water content of the control group stays basi-

cally on a constant level, the water content of the stressed

group starts to decrease some days after the last irriga-

tion of the plants. The calculation of the water content

was done using an effective medium model similar to the

one described above. But as measurement values are avail-

able for only one frequency, additional information about

the size of the plant is required [54]. Sub-THz setups still

need to be developed further. Yet, they are good can-

didates for integration into automated high throughput

phenotyping facilities, because no physical contact with

the plant is needed for the measurements. The speed of

themeasurements is limited by themechanical movement

of the detector around the plant and not by the sub-THz

technology. Additionally, in such phenotyping facilities

additional sensors like cameras or laser scanners, which

can be used to determine the size and geometry of the

plants, often already exist. While a qualitative assessment

of the development of a plant’s water status over time

is possible with the raw measurement data the accuracy

of the calculated water content strongly depends on the

information on the plants size and geometry. Compared

to measurements in the THz regime no information on

single leaves can be gained. If, for example, a plant gives

up only some leaves when drought stress emerges while

other leaves are still maintained, this behavior can not

be detected using sub-THz measurements. On the other

hand, averaging over a bigger part of a plant can also be an

advantage, because then the results of the measurements

do not depend on the individual variations of only a single

or a few leaves, which are picked for the measurements.
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Conclusions

We have outlined the early development and recent

advances in the use of THz and sub-THz waves for

water status detection. The pioneering work of Hu and

Mittleman [13,14] marked the beginning of the develop-

ment of THz measurement systems for water status mea-

surements. Since then, efforts have been made to make

these measurement systems more user-friendly, robust,

and cost-efficient, which is necessary for them to be

useful in a certain place, e.g. in a laboratory, in a green-

house or in the field. The current measurement systems

already allow for meaningful experiments to investigate

the water status dynamics of plants. Further developments

will have the aim to bring this technology into the hands

of biologists and plant-breeders for their everyday work.

In this context, especially the QTDS technology [51,52]

is a promising candidate for building compact devices at

competitive costs. But depending on the intended use,

fiber-coupled TDS systems for automated measurements

or sub-THz setups for high throughput facilities can also

be a good choice. One important aim for the approaches

discussed here is to reveal differences e.g. in the drought

stress resistance between different genotypes. In general,

this appears feasible. Yet, it is needless to say that the out-

come of such experiments will depend on how strongly

the drought stress tolerance differs between the geno-

types. Variations below 5% in any parameter investigated

will be hard to detect. With a broader use of these tech-

nologies in plant sciences more experience will be gained

concerning measurements on different species as well

as the detection of more subtle differences within one

species.
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