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ABSTRACT

On a road network, the minimum cost path (or min-cost path for
short) from a source location to a destination is a path with the
smallest travel cost among all possible paths. Despite that min-cost
path queries on static networks have been well studied, the prob-
lem of monitoring min-cost paths on a road network in presence of
updates is not fully explored. In this paper, we present PathMon,
an efficient system for monitoring min-cost paths in dynamic road
networks. PathMon addresses two important issues of the min-cost
path monitoring problem, namely, (i) path invalidation that iden-
tifies min-cost paths returned to path queries affected by network
changes, and (ii) path update that replaces invalid paths with new
ones for those affected path queries. For (i), we introduce the no-
tion of query scope, based on which a query scope index (QSI) is
developed to identify affected path queries. For (ii), we devise a
partial path computation algorithm (PPCA) to quickly recompute
the updated paths. Through a comprehensive performance evalua-
tion by simulation, QSI and PPCA are demonstrated to be effective
on the path invalidation and path update issues.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—Spatial
databases and GIS

Keywords

Location-based services, path search and updates, road networks,
monitoring system

1. INTRODUCTION
Path search is one of the most popular and essential location-

based services in our daily life. By issuing a path query that speci-
fies a source address and a destination address to a path search ser-
vice provider (e.g., MapQuest, Google Maps, Yahoo� Maps, Bing
Maps1 etc.), one can receive a recommended route displayed as an
annotated path on the map together with an estimated mileage and

1http://www.mapquest.com/, http://maps.google.com/, http://
maps.yahoo.com/, http://www.bing.com/maps, respectively.
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turn-by-turn driving instructions. Dependent on various applica-
tion contexts, the path costs can be either physical distance, travel
time, toll charge or safety risk. Among all possible paths, the one
with the smallest cost is considered to be desirable to the querying
user. We call such a path the minimum cost path (or min-cost path
in short).

However, changes of the underlying network may cause the cost
of any min-cost path between a given source and a destination no
longer the smallest. In other words, min-cost paths are subject to
the underlying network status. In practice, keeping track of min-
cost paths are very important to many applications. For example,
trucking and courier companies expect their vehicles to travel on
min-cost paths to keep their operation costs low. Emergency ser-
vice vehicles need to take the fastest routes to arrive at the destina-
tions for life-critical missions. Hence, a min-cost path monitoring
system is demanded. In this paper, we present a min-cost path mon-
itoring system called PathMon, to monitor the changes of dynamic
road networks and determine the most current min-cost paths be-
tween specified sources and destinations.

1.1 Continuous Min-Cost Path Query
We model an ever-changing network as a set of time-stamped

graphs {Gt|Gt = �Nt� Et� �t�}, where Nt is a set of nodes rep-
resenting the end points of roads and road intersections present at
time t; Et = {�ni� nj�| ni� nj ∈ Nt} is a set of edges standing for
the road segments and �t = {C�ni�nj��t} is a set of positive values
suggesting the cost of the edges at time t. Here, the cost may be
the physical edge length, expected travel time, toll charge or others
defined by applications.

Upon Gt, a path from a source node s to a destination node
d (s� d ∈ Nt), denoted as p(s� d), is a sequence of interleaving
edges and nodes: p(s� d) = (ni0 , �ni0 � ni1�, ni1 , �ni1 � ni2��
· · · , nik�1

, �nik�1
� nik

�, nik
) where ni0 = s and nik

= d. Be-
cause in general, an edge can be uniquely identified with its end
nodes, we only use the nodes to represent a path, i.e. p(s� d) =
(ni0 � ni1 � · · · � nik

). The total cost of a path p(s� d) at time t, de-

noted by Cp�s�d)�t, is equal to
k�

j=1

C�nij�1
�nij

��t. Among all possi-

ble paths formed between s and d, the min-cost path in Gt denoted
by Pt(s� d) is one with the smallest total cost. Hereafter, we denote
the smallest path cost from s to d in Gt by ||s� d||t, and this is also
referred to as the network distance from s to d. We use network
distance and minimum path cost interchangeably in this paper.

Now, given a series of time-stamped graphs (i.e., Gt0 , Gt1 , Gt2 ,
· · · ) that represent a network at different times, a continuous min-
cost path query q(s� d), as formalized in Definition 1, provides a
series of min-cost paths, i.e. Pti

(st� d), corresponding to each Gti
.

Definition 1. Continuous min-cost path query. Given a dy-
namic road network Gt, a moving source node s �with the location
at time t denoted as st) and a fixed destination node d, a continuous
min-cost path query q(s� d) returns a series of the latest min-cost
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paths Pt(st� d) onGt from the source node st to d, invoked by road
network change at time t.2 �

In this paper, we address the issues of processing of continuous
min-cost path queries, which is also referred to as min-cost path
monitoring.

1.2 Research Issues and Our Solution
In a large-scale path monitoring system where a massive num-

ber of continuous min-cost path queries are running, an efficient
mechanism to identify updated min-cost paths whenever network
changes occur is needed. An intuitive approach to process con-
tinuous min-cost path queries is to reevaluate min-cost paths from
scratch whenever a network update occurs. This is apparently in-
efficient since not all paths are necessarily affected by a network
change. Moreover, path searches from scratch is computationally
expensive. In fact, re-computation of some non-affected paths can
be avoided and those affected queries can be partially recomputed.

Running example. In a simple road network as shown in Fig-
ure 1(a), a continuous min-cost path query is issued to monitor a
min-cost path from node s to d. At time t0, a result pathPt0(s� d) =
(s� e� f� d) is indicated in a dashed line with path cost 7. At time t1
(t1 > t0), the cost of edge �b� c� changes from 4 to 1. However, it
does not lead to a new min-cost path, i.e. Pt0(s� d) = Pt1(s� d). In
this case, �b� c� is a non-affecting edge with respect to Pt0(s� d).
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Figure 1: Example road network

Besides, at time t2 (t2 > t1), the cost of �e� d� decreases from
8 down to 3 (as shown in Figure 1(b)). Now, Pt2(s� d) becomes
(s� e� d). In this case, �e� d� is an affecting edge. �

From the example, we obtain two observations. First, with re-
spect to a determined min-cost path, not all edge changes result
in a new min-cost path. Therefore, those edges are non-affecting
edges. Whenever an edge is identified to be a non-affecting edge to
a min-cost path, it is safe to keep the original min-cost path. On the
other hand, by detecting changes happened to the affecting edges,
we can quickly identify which min-cost path queries are impacted
by the changes. Second, although an existing min-cost path may
be affected by an edge change, we expect a large portion of the
existing min-cost path remaining in the new min-cost path. Re-
call in the above example that the edge (s� e) remains in the new
path Pt2(s� d). As such, it is possible to reuse some common parts
of an existing path and only to compute a new portion in the new
min-cost path.

In light of these observations, we approach the min-cost path
monitoring problem by addressing two important issues, namely,
(i) path invalidation and (ii) path update, and develop a novel, ef-
ficient and scalable path monitoring system, called PathMon. The
system model of PathMon is depicted in Figure 2. Here, a path
monitoring server is responsible for coordinating path invalidation
and path updates. At the back end is a network monitoring sub-
system that reports the road network changes to the server. To the
front end, a number of users submit path queries and register them

2
We assume that a mobile user always follows the path returned by the

query. Hence if road costs in the network does not change, the previously
returned path needs no update.

on the server. Users are notified of the updated paths by the server
when their queried paths are affected by changes in the underlying
network and results are updated.

Figure 2: The system model of PathMon

The PathMon system contains two important components, namely,
the query scope index �QSI) and the partial path computation al-
gorithm �PPCA). QSI keeps track of query scopes, i.e., subnet-
works that are involved in derivation of answer paths for individ-
ual queries. In presence of edge cost updates within some query
scopes, corresponding queries are detected to be affected (and the
originally calculated min-cost path possibly becomes invalid). PPCA
utilizes the intermediate processing states captured in previous path
search processes to facilitate partial re-computation of affected paths.
Since paths computed by a deterministic search algorithm on a
slightly changed network would access almost the same set of road
network data in the same order, some path re-computation can be
alleviated by reusing some processing states of a previous search.

In summary, our contributions made in this paper are five-fold.

1. We analyze the min-cost path monitoring problem, identify
two essential issues, namely, path invalidation and path up-
date, and explore useful min-cost path properties to develop
efficient index and algorithms for min-cost path monitoring.

2. We introduce the notion of query scopes in the road network,
based on which we design the query scope index �QSI), to
facilitate identification of min-cost path queries affected by
network changes. Furthermore, QSI is extended to maintain
processing states for PPCA.

3. We develop the partial path computation algorithm �PPCA)
to quickly determine a new min-cost path based on the idea
of reusing the maintained processing states.

4. We develop PathMon, an efficient min-cost path monitoring
system. The core of PathMon includes QSI and PPCA.

5. We conduct a comprehensive performance evaluation based
on simulations. The experiment results show that our Path-
Mon significantly outperforms existing representative works
in identifying affected queries and the path re-computation.

The rest of this paper is organized as follows: Section 2 reviews
the existing works related to this study. Section 3 details our path
monitoring problem analysis and presents some useful properties
of road network based on which our solution is developed. Sec-
tion 4 details the design and implementation of the query scope
index (QSI) and related operations. Section 5 presents the partial
path re-computation algorithm (PPCA). In Section 6, we evaluate
our approach in comparison with representative approaches. Sec-
tion 7 concludes this paper and states our future work.

2. RELATEDWORK
In the following, we review related work on dynamic road net-

work models, path search algorithms, and continuous path search.
Dynamic Road NetworkModels. Some models such as stochastic
models, speed patterns, time-delay functions consider the change of
road networks to be predictable. In details, stochastic models [7]
handles the network changes in accordance with a distributed Markov
chain. Speed pattern [11, 12] specifies the road costs at different
time for different vehicle types. Time-delay functions [8] are used
to represent the travel costs on individual road segments. Based on
the predicted network costs, shortest paths can be determined. On

218



the other hand, some works consider the dynamic networks as un-
predictable. One of the most popular model is the quasi-dynamic
model, where the edge costs are assumed to change quickly and
then remain invariant until next changes [13, 5]. In this paper, our
study is based on this quasi-dynamic model.
Shortest path search. Shortest path search algorithms for static
network are well studied. Single-source shortest path search al-
gorithms include Bellman-Ford algorithm [1, 2], Dijkstra’s algo-
rithm [3] and A� algorithm [16], while all-pair shortest path al-
gorithms include Floyd-Warshall algorithm [4] and Seidel’s ap-
proach [6]. Since network traversal is a very expensive operation,
especially in a large network, HEPV [14], HiTi [18] and a grid-
based partition method in [17] were proposed to pre-compute and
materialize some shortest paths to facilitate online path searches.
Due to significantly large maintenance overhead, these approaches
are not favorable to dynamic networks.
Path update algorithms. Single source shortest path update algo-
rithms have been studied in [10, 15]. The basic idea is to propagate
the changes from an updated edge to a set of vertices succeeding
it in the shortest path tree. Then, all edges connecting to the af-
fected vertices are examined to see whether they can form a path
with smaller cost. However, these approaches are not scalable to
the number of queries and updated edges, because 1) they ignore
the path invalidation issue, checking each updated edge for every
path, incurring excessive invalidation cost, and 2) the algorithms
can only deal one edge update each time and take several rounds of
path computations for multiple updated edges.
Continuous min-cost path monitoring. Most recently, [9] has
studied the min-cost path monitoring problem. The main focus of
that work is to quickly identify path queries affected by a network
change. In [9], an ellipse bound method (EBM) is developed. By
EBM, Each min-cost path is associated with an elliptic geograph-
ical area called affecting area, within which all updated edges are
considered to affect the corresponding path. More specifically, for
a min-cost path between a source node s and a destination d and
a maximum speed Vmax in the network, the elliptic affecting area
is formed with s and d as the two foci and the length of the major
axis is ||s� d||×Vmax, where Vmax is the maximum travel speed in
the network. This affecting area is guaranteed to be large enough
to cover the corresponding min-cost path from s to d and all the
edges that can affect the path. Further, a grid index is adopted to
keep track of every affecting area as a number of cells. Then, each
cell can be associated with multiple queries simultaneously. As
long as the cost of an edge covered by a grid cell is updated, all
the associated queries are determined to be affected by the change.
The affected paths are then recomputed from scratch.

Nevertheless, using geographical areas to identify possible af-
fected min-cost paths, this approach in fact covers a lot of unre-
lated edges and triggers many unnecessary path re-computations.
Besides, the presumed maximum speed makes a conservative esti-
mation which usually turns out a huge affecting area, thus further
degrading the overall performance. Moreover, the geographical
affecting area does not support non-spatially related cost models
(e.g., toll charges, safety risks). Last but not least, since full re-
computation is used, this EBM is not very efficient, as indicated by
our performance evaluations.

3. PRELIMINARIES
In this section, we first provide a theoretical analysis on the prop-

erties of the road networks and min-cost path search algorithms.
Based on the analysis, we present the theoretical foundation of our
path invalidation and update algorithms. Then, we introduce the
architecture of our PathMon system.

3.1 Theoretical Analysis
To address the path invalidation and path update issues, we need

to look back to the fundamental operation, i.e. the path search al-
gorithm, which provides critical information and useful properties
for deriving solutions.

3.1.1 Min-cost path search properties
Without loss of generality, we consider Dijkstra’s algorithm here

due to its generality and popularity, and more importantly, its in-
sightful properties. Please note that although the following discus-
sions only focus on Dijkstra’s algorithm, our theorems and algo-
rithms can actually be easily generalized to other path search algo-
rithms.

Dijkstra’s algorithm employs the best-first strategy in network
traversal. Starting from the destination d, in each step, the algo-
rithm picks a node v with the minimum accumulative cost to d (de-
noted as cv) among all unexplored nodes to visit.3 Once v is being
visited, the accumulative cost to d is determined as the network dis-
tance ||v� d||. Then, each unvisited neighborw of v is assigned with
the accumulative distance cw = min{cw� ||v� d|| + C�w�v�}. This
process repeats until the source node s is visited, and the answer
path can be constructed by tracing back from s to d. A min-cost
path spanning tree T rooted at d is formed during the algorithm,
in which the path from any tree node n to d is the min-cost path
between n and d.

We illustrate the search process of Dijkstra’s algorithm with the
same sample road network as given in Figure 1(a). Two main data
structures are utilized to support the search process. One is a vis-
ited node set V that prevents re-visiting of nodes and maintains the
predecessor information for back tracking. The other is a priority
queue H that sorts the unvisited nodes in non-descending order of
accumulative costs to the destination.4 The trace of the search is
given in Figure 3.

Step Latest visited node content of the heap
(node id, predecessor, (after exploring edges)
accumulative cost)

0 ∅ (�d�⊥� 0))
1 �d�⊥� 0) (�f� d� 2), �g� d� 5), �e� d� 8))
2 �f� d� 2) (�a� f� 3), �e� f� 4), �g� d� 5),

�e� d� 8))
3 �a� f� 3) (�e� f� 4), �g� d� 5), �b� a� 8),

�e� d� 8), �c� a� 12))
4 �e� f� 4) (�g� d� 5), �s� e� 7), �b� a� 8),

�e� d� 8), �c� e� 10), �c� a� 12))
5 �g� d� 5) (�s� e� 7), �e� d� 8), �b� a� 10),

�c� e� 10), �s� g� 11)), �c� a� 12))
6 �s� e� 7) search terminates.

Figure 3: The trace of a search for P (s� d)

The min-cost path spanning tree formed by Dijkstra’s algorithm
is shown in Figure 4 in bold black lines (with the circled numbers
indicating the order of node being visited). This spanning tree (de-
noted as T ) has the following properties.

Property 1. The min-cost spanning tree properties.

1. Recursiveness. Let T̂ (u) denote the subtree of T rooted at

node u, then T̂ (u) is also a min-cost path spanning tree from

all nodes in T̂ (u) to u, i.e. ∀v ∈ T̂ (u), P (v� u) ⊆ T̂ (u).

2. Distance priority. ∀v ∈ T̂ (u), ||v� d|| ≥ ||u� d||.

3. Distance bound. ∀v ∈ T , ||v� d|| ≤ ||s� d||. On the other
hand, ∀v� �∈ T , ||v�� d|| ≥ ||s� d||.

PROOF. The proof is straightforward according to Dijstra’s al-
gorithm and we omit it here to save space. �

As exemplified in Figure 4, we have e ∈ T̂ (f), thus ||e� d|| =

4 > ||f� d|| = 2, and P (e� f) = {e� f} ⊂ T̂ (f). Also, all the
nodes covered by T have smaller or equal distances to d than s.

3
Since the source node moves as the driver travels in the road network, we

use the fixed destination as the starting node of the search.
4
When two nodes have the same accumulative costs to the destination, we

use the node IDs as the tie breaker.
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Figure 4: Illustration of the min-cost path spanning tree

3.1.2 Path invalidation with query scopes
Since s is a leaf node of T , if the min-cost path P (s� d) changes,

the structure of T must change. However, only monitoring the
edges on the path is not enough. To show the relationship between
the tree and the path in presence of changes, we consider the fol-
lowing cases (assuming Pt0(s� d) = (s� e� f� d), t1 > t0):

1. The updated edge is already in the tree T : e.g., �s� e� ∈ T .
If C�s�e��t1 increases to 10, Pt0(s� d) = (s� e� f� d) will be
invalid, and the new path will be Pt1(s� d) = (s� g� d).

2. The updated edge is not in T , but both of its end nodes are
covered by T : e.g., s� g ∈ T but �s� g� �∈ T . If C�s�g��t1
decrease to 1, then correspondingly we will have Pt1(s� d) =
(s� g� d), and the original path will become invalid.

3. Some updated edges have only one end node in T : e.g.,
e� a ∈ T , c �∈ T , so �e� c� �∈ T , �c� a� �∈ T . If C�e�c��t1
and C�c�a��t1 both decrease to 0.1, Pt0(s� d) will change to
Pt1(s� d) = (s� e� c� a� f� d).

4. None of the updated edges has any end node covered by T :
e.g., c� b �∈ T . If C�c�b��t1 changes, no matter what the new
value is, the path will not be affected.

From the above discussion, we can see that if an edge has at least
one end node covered by T , it may result in a change of the min-
cost path. In order to catch all possible affecting edge changes, we
need to monitor all edges linking to the nodes in T . In other words,
the key issue in path monitoring is to detect changes involving the
min-cost path spanning tree. Based on the spanning tree, we define
the query scope of a path query as in Definition 2.

Definition 2. Query scope. Given a min-cost path query q with
the answer pathPt(s� d) and the min-cost path spanning tree Tt(q),
the query scopeQSt(q) is a set of nodes covered by Tt(q). Only the
edges with at least one edge node in QSt(q) may be an affecting
edge of q with respect to Pt(s� d). �

According to the definition of query scope and the properties of
the min-cost path spanning tree, we obtain the following property
and condition for eliminating irrelevant network updates.

Property 2. Distance bound of query scope. For a query q(s� d),
at any time t, its query scope QSt(q) satisfies ∀v ∈ QSt(q),
||v� d||t ≤ ||s� d||t. Meanwhile, ∀v

� �∈ QSt(q), ||v
�� d||t ≥ ||s� d||t.

Lemma 1. If at time t1 > t0 no edge with at least one end
node in QSt0(q) is updated, i.e. ∀�x� y� whose cost is changed,
x �∈ QSt0(q) ∨ y �∈ QSt0(q), the min-cost path Pt(s� d) will not
be affected, i.e. Pt1(s� d) ≡ Pt0(s� d). �

PROOF. The lemma can be proven by contradiction and induc-
tion. Due to the space limitation, we omit the proof here. �

Further, when no edge inside the query scope is updated, it can
be proved that not only the original min-cost path does not change,
but the entire min-cost path spanning tree remains unchanged.

Lemma 2. Tt1(q) ≡ Tt0(q) if no edge with at least one end
node in QSt0(q) is updated at time t1. Hence, the query scope
QSt1(q) ≡ QSt0(q). �

PROOF. By treating each node in Tt0(q) as s and apply Lemma 1,
we see that no path in Tt0(q) has been changed at time t1. So,
Tt1(q) ≡ Tt0(q). �

Due to the distance bound property, we can express Lemma 1
and 2 using the distance criterion, as stated in Corollary 1.

Corollary 1. For a query q(s� d), if at time t1 > t0, ∀�x� y�
that is updated, ||x� d||t0 > ||s� d||t0 and ||y� d||t0 > ||s� d||t0 ,
then Pt1(s� d) ≡ Pt0(s� d), QSt1(q) ≡ QSt0(q). �

Given the query scope QSt(q) = {v|v ∈ Tt(q)} and the above
properties, we can derive our path invalidation algorithm based on
detecting the changes in the query scopes.

3.1.3 Path update with processing states
Next, let us consider the path update problem.
As we have discussed, to guarantee the correctness of the min-

cost path, the whole min-cost path spanning tree needs to be always
up-to-date. According to the definition of a min-cost path spanning
tree T (rooted at the destination node d), ∀v ∈ T , P (v� d) ⊆ T .
If after some network updates, some min-cost paths in T remain
unchanged, they may be reused as a part of the new spanning tree,
i.e. if ∃v ∈ Tt0 , Pt0(v� d) ≡ Pt1(v� d) and ||v� d||t1 < ||s� d||t1 ,
then Pt1(v� d) ⊆ Tt1 . In the path search algorithm, this min-cost
path information from each node in the spanning tree to the root is
stored in the visited node set V and priority queue H . From the
visited entries in V , we can depict the current structure of the span-
ning tree. Meanwhile, H provides a guidance for the future steps
without needing to retrieve the neighbors of nodes in V repeatedly.

From the trace in Figure 3, we can also observe that, the node to
be visited in a specific step is determined by the content of V andH
at that step, and then V and H are updated according to the neigh-
boring nodes and edges of the visited node. For instance, when
V = {(d�⊥� 0)}, H = ((f� d� 2), (g� d� 5), (e� d� 8)), the node to
be visited next must be f because it has the minimum accumulative
distance to d in H and is not in V . This process is deterministic,
i.e. if the network remains unchanged, the algorithm will always
follow the same steps and find out the same min-cost path, and the
final layout of the spanning tree will also be the same. Let us de-
note the content of V and H in the step that node n is visited as
V n and Hn, then (V n� Hn) represents the state of the search pro-
cess. We define (V n� Hn) as the processing state at node n (see
Definition 3), thus the entire search process can be viewed as a se-
quence of processing states, i.e. S(n1)� S(n2)� · · · � S(nk) where
S(ni) = (V ni � Hni), i = 1� 2� · · · � k.

Definition 3. Processing state. Given a min-cost path query
q(s� d), the processing state S(n) at a node n contains a set of
visited nodes V n and the current content of priority queueHn just
after n is visited. �

We exemplify the processing state in Figure 5. In the search for
P (s� d), the processing state S(f) at node f contains the visited

set V f = {(d�⊥� 0), (f� d� 2)} from which we can recover the

spanning tree at the time f is visited, and the priority queue Hf

with all nodes (a, e and g) linked to d and f but not yet explored.
Since (a� f� 3) is the first entry in Hf , the processing state S(f)
determines that the node a is going to be visited next.
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Figure 5: Example of processing state

Treating a min-cost path search as a process of growing a span-
ning tree, a processing state is generated each time a new node is
added to the tree. We have the following observations. Let G and
G� represent a network before and that after an edge change, re-
spectively. Given the same path query evaluated on G and G�, we
can obtain two sequences of states S and S �, respectively. If both
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S and S � are exactly the same, it indicates the spanning trees T
(obtained in G) and T � (obtained in G�) are identical (thus the min-
cost paths must be identical). We refer two sequences of states to
be the same if they consist of the same number of states and each
corresponding pair of states have the same sets of visited nodes and
contents of priority queues. On the other hand, if S and S � are dif-
ferent, the spanning tree onG� may possibly become different from
one obtained in G (even though the min-cost paths may or may not
be different). While determining S �, which equals to a full path
evaluation, is computationally expensive, it is economic to reuse
some of the states in S if they are previously determined on G and
maintained in the system. Logically, if not too many edges have
been updated in G, some paths in T will still appear in T �. With
the stored states of S, we can directly rebuild the part of T that is
unchanged in T � and avoid re-computation from scratch. Based on
this idea, we can restart a path search at a state S(nk) ∈ S which
guarantees that S(n1)� · · · � S(nk) are identical to their counter-
parts in S �. We explain this in Lemma 3.

Lemma 3. Let S(n) be the processing state at node n �||n� d||t0
≤ ||s� d||t0 ) in a search process for Pt0(s� d) before the network
changes. If ∀�x� y� whose cost is updated, ||x� d||t0 > ||n� d||t0
and ||y� d||t0 > ||n� d||t0 , and S

�(n) is the processing state at n in
a search process after the changes, then S�(n) is identical to S(n),
denoted as S�(n) ≡ S(n). �

PROOF. From Lemma 2 we know that ||x� d||t0 > ||n� d||t0 ⇒
||x� d||t1 > ||n� d||t1 , and similarly ||y� d||t1 > ||n� d||t1 . �x� y�
can be accessed only when x or y is visited. According to the
node ordering in H , i.e. non-descending order of the accumula-
tive cost to d, n has already been visited before the visit to x or
y. Therefore, S�(n) has already been determined by the search
process before accessing the any changed edge �x� y�. Since the
search process has only accessed unchanged edges by the time of
generating S�(n), due to the determinism of the path search algo-
rithm, S�(n) ≡ S(n). �

To illustrate Lemma 3, we consider the change of edge �s� e� as
shown in Figure 5. Since min{||s� d||� ||e� d||} = 4 and ||f� d|| =
2, S�(f) will remain the same as S(f). In fact, because d, f and a
are all nearer to d than �s� e�, S(d), S(f) and S(a) are not affected.
Finally, as ||a� d|| = 3 > ||f� d|| > ||d� d||, S(a) should be the
latest state not affected by the edge changed. Thus, the search can
restart with the visited nodes and the priority queue of S(a). This
is analogy to “cut” the spanning tree to the shape stored in S(a)
and let it grow again.

Besides, if a state S�(n) ∈ S �, which is obtained after incor-
porating the changed edges inside the (potentially enlarged) query
scope, is identical to the state S(n) ∈ S , it can be certain that the
rest of states in S and S � are exactly the same. Thus, the computa-
tion of S � can be terminated earlier by sharing the remaining states
after S(n) from S . Denote {�u� v�+} as the edges whose cost are
increased, and

�
ΔC�u�v�� gives the upper bound of query scope

enlargement (so that ||s� d||t1 ≤ ||s� d||t0 +
�

ΔC�u�v�� ). The
termination condition is stated in Lemma 4.

Lemma 4. Let S(n) be the processing state at node n �||n� d||t0
≤ ||s� d||t0 ) in a search process for Pt0(s� d) before the network
changes. Given that all updated edge �x� y� satisfies either 1)
||x� d||t1 > ||s� d||t0 +

�
ΔC�u�v�� and ||y� d||t1 > ||y� d||t0 +�

ΔC�u�v�� , or 2) ||x� d||t1 < ||n� d||t1 and ||y� d||t1 < ||n� d||t1 ,

and S�(n) is the processing state at n in a search process after
the changes, if S�(n) ≡ S(n), then for any node m such that
||n� d||t0 < ||m� d||t0 ≤ ||s� d||t0 , S

�(m) ≡ S(m). �

PROOF. We omit the proof here to save space. �

Our partial path re-computation algorithm can be derived based
on the above analysis. By ensuring two conditions: i) restart-
ing from a processing state which was generated in a previous
search and unaffected by updates; ii) terminating at another pro-
cessing state that guarantees the equality between the following

search steps and existing search results; we can effectively save
computation cost on unnecessary network traversals while preserve
the algorithm correctness.

3.2 PathMon System
The PathMon server, as shown in Figure 6, includes three ma-

jor components: a) the network data index, b) the query index, and
c) the path search/update processing engine. The data index main-
tains the network topological information, including nodes, edges
and edge costs. In the implementation, we index those nodes and
their edges as adjacent lists based on the CCAM storage scheme
designed for road networks [19]. The data index is mainly used
to support the evaluation of path queries and path updates. On the
other hand, the query index keeps track of the registered continu-
ous min-cost path queries. Upon network changes, the query in-
dex is looked up to determine affected path queries. Based on the
idea of query scopes, we devise a query scope index as the query
index. We leave the detailed discussion to Section 4. Last, the
path search/update processing engine, triggered by events, is re-
sponsible for search or update paths. For example, when an edge
is updated, the engine accesses the query index to identify affected
queries and then accesses the data index to recompute the corre-
sponding result paths. The engine also maintains the indices upon
query arrival/removal and network updates. To reduce the cost of
re-computation, we explore the partial path computation algorithm
and detail it in Section 5.

�����������
������

Figure 6: The PathMon system architecture

In the PathMon system, each continuous min-cost path query
goes through a life cycle of three stages: (i) query initialization,
(ii) path update and (iii) query removal. Query initialization starts
when a new path query is registered to the path monitoring server
( 1�). Then the server computes the answer path based on the cur-
rent state of the network ( 2�) and returns it to the user ( 3�). Mean-
while, the query index is updated to accommodate this newly regis-
tered continuous query. Path update takes place when network up-
dates from network monitoring subsystem are received ( 4�). While
network status and the data index are updated, the path update al-
gorithm is triggered to detect affected queries from the query index
( 5�) and accesses the data index for updated paths ( 6�). Then, up-
dated path is delivered to the user ( 7�). In case that a registered
query is not affected by the change, no path update is needed and
the path previously delivered to the user is asserted to be valid.
Query removal occurs when a query is terminated by the user. Ter-
minated queries are removed from the query index.

4. PATH INVALIDATION
In this section we study different query scope representations,

present the design of query scope index (QSI) and describe how to
efficiently look up affected queries via QSI.

4.1 Query Scope Representation
According to Definition 2, a min-cost path query q(s� d) has a

query scope QSt(q) that contains all nodes in the spanning tree
Tt(q). In our study, we consider three alternative representations
for query scopes in terms of representation precision and storage
overhead, as described in the following:
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1. All-node materialization. This approach records exactly
every node inside a query scope. It is the most precise one
(no irrelevant nodes are involved), but consumes the most
storage space.

2. Anchor node materialization. Observing that nearby nodes
(in terms of network proximity) are very likely to be accessed
together by the path search algorithm, we may pick only one
node among some nearby nodes as the “anchor” to refer a
query (e.g. the query identifier) and the distance from the an-
chor to the destination. Other nodes can obtain the informa-
tion by traversing neighboring subnetworks to visit nearby
anchors, and then decide whether it is in a query scope. With
only the anchor nodes recorded, the anchor node materializa-
tion reduces the storage cost, but upon checking the associ-
ation between nodes and query scopes, this approach incurs
additional computational and I/O cost due to extra network
traversals.

3. Grid-based materialization. Rather than individual nodes,
we use affecting edges to determine the bounding area for a
query scope. Here, we first partitioning the areas covered by
the road network into a grid. A grid cell is preserved as a part
of the query scope if it covers any affecting edges. Though
this representation is simple and takes less storage than the
above two, this geo-spatial partition suffers from false hits
since some edges within affected grid cells may not neces-
sarily be affecting edges.

In PathMon, we adopt the anchor node materialization for the
query scope as the system default, because it generalizes the all-
node materialization and fully exploits the network connectivity.
By carefully selecting anchor nodes, the storage overhead for keep-
ing the query scopes is effectively reduced while not incurring sig-
nificant extra traversal cost. We also implemented the grid-based
materialization for comparison purpose.

4.2 Query Scope Index
To alleviate the affected path detection, we store the query scopes

identified based on Definition 2 in the query scope index (in short,
the QSI). Let Q = {q} denote a set of continuous min-cost path
queries registered in the PathMon system. QSI provides a reversed
one-to-many mapping between queries and nodes covered by their
query scopes, i.e., m : N → Q. This mapping facilitates a quick
lookup of affected queries from end nodes of updated edges.

In the all-node based query scope materialization, this mapping
can be implemented by simply marking every node that is visited in
a search process with the query ID. However, due to the high stor-
age space overhead and update cost, we further consider the anchor
node materialization. Since the path search algorithm generates
a min-cost path spanning tree covering all nodes inside the query
scope, the anchor node assignment can be naturally integrated with
the search process with a minor computational overhead. The ba-
sic idea is to evenly spread a query (and its registered information)
to nodes within its query scope based on their min-cost path to the
destination node. A system parameter α is a preset number of max-
imum traversal steps between a new anchor node and its preceding
anchor node on the same path of the spanning tree, so that it can
control the number of anchor nodes. Thus, a node is assigned as an
anchor node if the number of nodes on its min-cost path to the des-
tination is a multiply of α. If α is small, more covered nodes will
be assigned as anchor nodes, which improves search efficiency by
consuming more storage. Otherwise, if α is large, storage overhead
is reduced with a deterioration of search efficiency.

Fig 7 illustrates the anchor node selection and affected path search
process. Here the min-cost path from s to d, along with the min-
cost path spanning tree rooted at d, are shown in bold lines. As-
sume α = 2, and the dark nodes are selected as anchor nodes.
The nodes in grey are non-anchors but covered by the query scope,
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Figure 7: Illustration of partial materialization

while other white nodes lay outside the query scope (and their dis-
tance to d is greater than ||s� d||t0 ). When an edge cost C�c�b�

changes, an expansion is performed from both c and b to visit the
nodes that are reachable within α − 1 hops (indicated by the dot-
ted, red lines). During the expansion from c, anchor nodes e and a
are found, and ||c� d|| can be calculated by ||c� d|| = min{||c� e||+
||e� d||� ||c� a||+||a� d||}. Similarly, for b, we have ||b� d|| = ||b� a||+
||a� d||. The calculation results show that ||b� d|| > ||s� d|| and
||c� d|| > ||s� d||, so we know that the edge �c� b� has no end node
inside the query scope, and this edge update could not possibly
change the min-cost path. On the other hand, consider another up-
date of edge �s� g�, since d is an anchor node visited in the expan-
sion of α − 1 hops from g (indicated by the dashed, blue lines),
||g� d|| = ||g� d||+ ||d� d|| < ||s� d||, we know that the edge �s� g�
has at least one end node covered by the query scope. The query
q(s� d) is then identified as an affected query.

In our implementation of PathMon server, QSI is realized by two
sets of lists {QSI.qlist(n)|n ∈ N} and {QSI.anchors(q)| q ∈
Q}, where QSI.qlist(n) is a list of query IDs for an anchor node
n and QSI.anchors(q) is a list of anchor node IDs for a query q.
Figure 8 illustrates the two basic data structures of QSI.
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Figure 8: The query scope index structure

With QSI.qlist(n) we can easily retrieve the queries that are
mapped with a node n, and with QSI.anchors(q) we can quickly
obtain all anchor nodes that maintain information regarding to a
query q. QSI is updated upon registration of a new query, as listed
in Algorithm 1. This is integrated with the path search algorithm,
which iteratively examines nodes in non-descending order of the
network distance to the destination d of the new query q. The
search starts from the destination d. A node n positioned at x
hops away (along the min-cost path) from d is an anchor node if
x mo�ulo α = 0 (line 6). The position of d is 0 (thus d is al-
ways an anchor node). The algorithm for finding queries affected
by an edge �n� n�� is shown in Algorithm 2. It performs a traversal
started from the end nodes of updated edges for at most α−1 nodes
apart, while collecting queries that are associated with the traversed
anchor nodes.

When a query q� is terminated, we first obtain all anchor nodes
of q� from QSI.anchors(q�), and for each anchor node m, remove
the entry of q� from QSI.qlist(m). After that, the entire list of
QSI.anchors(q�) is deleted.

5. PARTIAL PATH RE-COMPUTATION
In Section 3.1, we have already presented the main idea of the
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Algorithm 1 RegisterQuery(QSI ,q(s� d), t0)

1: Visited node set V ← ∅
2: heap H .insert�d�⊥� 0� 0)

3: whileH �= ∅ do
4: �n� pren� cn� xn) ← H.getMin�)

5: if n ∈ V then
6: break
7: end if
8: if xn mo�ulo α = 0 then
9: QSI.qlist�n).add�q� cn) {assign n as an anchor node}

10: QSI.anchors�q).add�n) {map n with q}

11: end if
12: V.insert�n) {||n� d|| = xn}

13: if n = s then break
14: for each n� such that �n�� n� ∈ E do

15: if n� �∈ V then
16: H.insert��n�� n� cn + C�n��n��t0

� xn + 1))

17: end if
18: end for
19: end while

Algorithm 2 SearchQuery(QSI ,�n� n��)

1: SQ ← ∅ {SQ is the set of affected queries}

2: Expand from n and n� for α− 1 hops using Dijkstra’s algorithm

3: for each visited node m do
4: ifQSI.qlist�m) �= ∅ then

5: for each q ∈ QSI.qlist�m) do

6: if ||n�m||t1 + ||m� dq||t0 <= ||sq� dq||t0 or ||n��m||t1 +

||m� dq||t0 <= ||sq� dq||t0 then

7: SQ.insert�q)

8: end if
9: end for
10: end if
11: end for
12: return SQ

path update algorithm, i.e. path update can start at a certain pro-
cessing state of the previous search and safely terminate at another
processing state existing in the previous search after incorporating
all updates in the query scope range. As such, part of the path re-
computation mandated for affected path queries can be eliminated.
This section mainly focuses on the issues of implementing and op-
timizing the path re-computation algorithm.

The key idea of our partial path re-computation is to reuse the
processing states explored in previous search processes. For this
purpose, in each path search process, we select a set of checkpoint
nodes at which the processing states are stored. Since it is expen-
sive to maintain the processing states V n� Hn for all visited nodes,
we select a few nodes as the checkpoint nodes. Below we present
five checkpoint node selection strategies. The performances of
these strategies will be studied in Section 6.

1. Random selection (RAND). Randomly pick a given number
of nodes as the checkpoint.

2. Associated with Anchor nodes (ANCH). Each anchor node
also is responsible for carrying its corresponding processing
state. Thus the restart point can be found along with the path
invalidation process.

3. Fixed step interval (FSI). Store a processing state every fixed
number of steps in the search. Thus the restarting processing
state is guaranteed to be within a pre-set number of steps
from visiting the updated edge.

4. Fixed cost interval (FCI). The checkpoint nodes are evenly
distributed according to the distance to the destination.

5. Adaptive-to-updates (ATU). Initially, use one of the above
strategies to select the checkpoint nodes. As the network up-
dates happen, dynamically add checkpoints near the frequent-
updated areas and remove the checkpoints where updates

rarely occur. If the update distribution is skewed in the net-
work, i.e. a few “hot-spots” are constantly updated while
other places remain almost static, this approach is expected
to achieve better performance.

Accordingly, we extend QSI to QSIU (namely, QSI for Update)
in order to facilitate a quick lookup of preserved state information
when affected queries are detected. Thus, while QSI is mainly de-
veloped for path invalidation, QSIU also supports efficient path up-
dates by the Partial Path Computation Algorithm (PPCA). In ad-
dition to QSI, a processing state repository QSIU.procs(q� n) is
introduced. Given a query q and a node n, QSIU.procs(q� n) re-
turns the processing state in the path search process for q at node
n. If n is not a checkpoint node of q, a NULL value is returned.
Meanwhile, we maintain a list QSIU .check(q) to record all the
checkpoint nodes for the query q to support query removal.

A processing state S(n) at a checkpoint node n consists of 1)
a visited node set V n, and 2) a priority queue Hn. Since there
are multiple queries registered in QSIU, we use a subscript q to
indicate that Sq(n) is the processing state of query q at node n,
i.e. Sq(n) = (V n

q � Hn
q ). Sq(n) is available in the path search

process of query q. When a node is selected as a checkpoint node,
we maintain the visited node set and the priority queue of current
state by adding Sq(n) into QSIU.procs(q� n).

QSIU is not only used for identifying the affected paths, but also
collecting important information in the search process for use in
PPCA, i.e., the affecting range. For a query q(s� d), the affect-
ing range is the range of the distances from the updated edges lo-
cated within the query scope to the destination. Let the affecting
range be denoted as [Xq� Yq], 0 ≤ Xq ≤ Yq . All the updated
edges �n� n�� in the network satisfy that Xq ≤ ||n� d|| ≤ Yq ∨
Xq ≤ ||n�� d|| ≤ Yq , or ||n� d|| > ||s� d|| ∨ ||n�� d|| > ||s� d||.
Xq provides the initialization information to PPCA, and Yq is used
to check whether all affecting updated edges have been visited and
thus the re-computation algorithm may terminate. Particularly, in
our algorithm we set Xq equal to the nearest distance from an up-
dated edge to the destination, and the upper bound Yq of the possi-
ble (updated) affecting range is determined as

Yq = max
ΔC�n�n�� �=0

{max{||n� d||� ||n�� d||}}+
�

ΔC�n�n��>0

ΔC�n�n��

in which each �n� n�� is an affecting edge for q. Here, we conserva-
tively incorporate all edge cost increments into the upper bound es-
timation. We will discuss the usage of the affecting range [Xq� Yq]
and the starting node later. Algorithm 3 lists the query identifica-
tion and re-computation information collecting process with QSIU.
Given a set of network updates, the algorithm returns all affected
query IDs and their corresponding [Xq� Yq].

It is noticeable that in Algorithm 3, the cost cn computed from
||n� a|| + ||a� dq|| may deviate from the actual ||n� dq|| at time t1
(after the network change) if a is not on the min-cost path from n
to dq or ||a� dq|| itself is updated. However, the correctness of the
algorithm can still be guaranteed because the smallest ||n� d|| value
must be consistent with the current network state. This is quite
clear with Lemma 2 and 3.

PPCA initializes the re-computation with a “stable” processing
state that does not change upon edge updates, in order to eliminate
the steps of path computation from destination node (the very be-
ginning state) to this state. According to Lemma 3, this initial state
is positioned in maximum number of steps from the destination
node, without being affected by edge changes. Thereafter, the al-
gorithm traverses the changed portion of road network, factoring in
the updates to obtain new processing states for affected nodes, until
either of the following termination conditions is satisfied: (1) early
termination - after all the changed edges within the query scope
are visited, there is a processing state at a certain node remaining
the same as it was in the previous search algorithm; (2) normal
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Algorithm 3 SearchQuery(QSIU , t1)

1: SQ ← ∅
2: for all q, Xq ←∞, Yq ← 0, ΔYq ← 0

3: for all �n� n�� that is updated do

4: ΔC ← C�n�n���t1
− C�n�n���t0

5: Expand �n� n�� for α− 1 hops using Dijkstra’s algorithm

6: for each anchor node a visited in the expansion do
7: for each q ∈ QSIU.qlist�a) do

8: cn ← ||n� a||+ ||a� dq||

9: cn� ← ||n�� a||+ ||a� dq||

10: if cn <= ||sq� dq||t0 or cn� <= ||sq� dq||t0 then

11: SQ.insert�q)

12: ifΔC > 0 thenΔYq ← ΔC + ΔYq

13: if cn < Xq or cn� < Xq thenXq ← min�cn� cn�}

14: if cn > Yq or cn� > Yq then Yq ← max�cn� cn�}

15: end if
16: end for
17: end for
18: end for
19: for all q do Yq ← Yq + ΔYq

20: return SQ,�[Xq� Yq ]}

termination - the source node st is visited. If the algorithm meets
condition (1), based on Lemma 4, the rest of states in the search
process remains unchanged and thus can be skipped. If condition
(2) is meet, the algorithm terminates naturally.

With the information collected in QSIU search algorithm, the re-
computation algorithm PPCA is performed in four steps, elaborated
below. Algorithm 4 lists the pseudo code for this update process.

1. Given the lower bound of affecting range Xq , find the latest
stable processing state Sq(m) (||m� d|| < Xq), initialize the
search algorithm with processing state Sq(m) (lines 1-7).

2. Re-run the path search algorithm from the initialized state to
update the min-cost path. In this step, update of the QSIU
is performed seamlessly. If a node n is selected as a check-
point node, the algorithm associates the new processing state
S�

q(n) to n by inserting new entries (if n was not a check-
point node of q) or updating existing entries (if n was orig-
inally a checkpoint node of q) in QSIU.procs(n) (lines 17-
19). If a previously selected checkpoint n is no longer a
checkpoint node in the new search, its associated process-
ing state expires and is removed from QSIU.procs(n) (lines
20-22). The anchor nodes of q are also updated with similar
operations (lines 13-16).

3. If s is visited, the search terminates anyway. Otherwise, af-
ter all updated edges affecting q have been explored (we may
check this by comparing the current expansion distance with
Yq), the path re-computation terminates if there exists an an-
chor node m� such that Sq(m

�) ≡ S�
q(m

�) (m� is then called
the termination node) (lines 24-25).

4. Finally, starting from s, trace back the precedences to con-
struct the entire path (line 30).

While retaining the same methodology, an incremental repre-
sentation of processing states is adopted in our PPCA implemen-
tation to further reduce the storage overhead, i.e. we differentiate
the current processing state (V n� Hn) from what has been stored at
the last checkpoint node (V m� Hm), and only keep the difference
(ΔV n�ΔHn). When (V n� Hn) is to be retrieved from the pro-
cessing state repository of QSIU, the incremental processing states
{(ΔV m�ΔHm)} corresponding to all the checkpoint nodes m
visited before n are retrieved and then merged with (ΔV n�ΔHn)
to recover the complete (V n� Hn).

6. EXPERIMENTAL EVALUATION
In this section, we evaluate the proposed QSI and PPCA, i.e.,

the core components of PathMon, via an extensive set of experi-
ments by simulation. Besides, we compare our approaches with the

Algorithm 4 UpdatePath(QSIU ,q(st� d)� stq� Xq� Yq)

1: Distmax ←∞, Sstart ← NULL
2: for allm ∈ QSIU.check�q) do

3: if ||m� d|| < Xq AND ||m� d|| > Distmax then

4: Sstart ← QSIU.procs�q�m)

5: Distmax ← ||m� d||

6: end if
7: end for
8: Visited node set V ← Sstart.V , priority queue H ← Sstart.H

9: whileH �= ∅ do
10: �n� pren� cn� xn) ← H.getMin�)

11: if n �∈ V then
12: V.insert�n� pren� cn)

13: if xn mo�ulo α = 0 then
14: QSIU.anchors�q).add�n)

15: QSIU.qlist�n).add�q)

16: end if
17: if n is selected as a checkpoint then

18: QSIU.procs�q� n).insert�V�H) {add a new processing state}

19: QSIU.check�q).add�n)

20: else ifQSIU.procs�q� n)<> NULL then {n is an expired checkpoint}

21: QSIU.procs.remove�q� n) {remove an obsolete processing state}

22: QSIU.check�q).remove�n)

23: end if
24: if (n = st) OR (cn > Yq AND Sq�n) ≡ QSIU.procs�q� n)) then

25: break
26: end if
27: for each n� such that �n�� n� ∈ E do

28: H.insert��n�� n� cn + C�n��n�� xn + 1))

29: end for
30: end if
31: end while
32: Trace back from st to construct the path P �st� d)

most related approach, namely, EBM (reviewed in Section 2, and a
naive approach that reevaluates all path queries upon any network
change. In what follows, we first describe the experiment setups.
Then, we examine the effectiveness of QSI and different checkpoint
selection heuristics. Finally, we evaluate the overall performance of
PathMon and compare it with EBM and the naive approach.

6.1 Experiment Setup
We implemented the aforementioned algorithms with GNU C++.

For QSI (denoted by QSI), we implemented both anchor node ma-
terialization and grid based materialization and compare their ef-
fectiveness in terms of the ratio of identified affected queries. For
PPCA and QSIU (denoted by QSIU�PPCA), we only used anchor
node materialization. For anchor node materialization, we defaulted
α to 10. For EBM (denoted by EBM), an elliptic affecting area is
formulated for every min-cost path. Here, we assume Vmax (see
Section 2) to be 1.5. The naive approach (labeled as Naive) reeval-
uates all path queries when updates occur in the network. We use
a grid file with 50 × 50 grid cells to support grid based material-
ization and as a grid index used by EBM. Here, except for PPCA

that recomputes path partially, all others, including QSI, EBM and
Naive, use Dijkstra’s shortest path algorithm and/or A� algorithm
to compute paths. Here, A� is applicable for situations where edge
costs are related to geometrical distance.

We ran the simulation for each setting for 30 times on Linux
2.6.9 servers with Intel Xeon 3.2GHz CPU and 4GB RAM and
report the average results. In each setting, we issued 1,000 contin-
uous min-cost path queries. Source nodes of the queries are ran-
domly picked, whereas destination nodes are selected about 0.15
through 0.35 of the network diameter away from respective source
nodes. We summarize all the experiment parameters in Table 9.

6.2 Effectiveness of Query Scope
Representations

We expect the representation of query scopes to have an impact
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Parameter Value Default

Network CA (21,048 nodes, 21,693 edges), CA
NY (46,254 nodes, 63,552 edges),
WM (61,333 nodes, 80,589 edges)

No. of queries 1,000 1,000
No. of changed 0.03%, 0.05%, 0.08%, 0.1% 0.05%
roads (|Eu|)
Length of paths 0.15, 0.20, 0.25, 0.30, 0.35 0.25
(Lp) of network diameter
Path search alg. Dijkstra’s, A∗ Dijkstra’s

Figure 9: The evaluation parameters

on performance of path monitoring system. In the naive approach,
the query scope contains the entire network, while in EBM, the
query scope is an ellipse approximated by grid cells. Our QSI and
QSIU�PPCA are based on the “network connectivity” and thus con-
sist of nodes covered by the query scope. In the first experiment, we
compare the path invalidation ability of these approaches in terms
of number of affected paths identified.

The result is plot in Figure 10. As shown, Naive incurs all path
recomputed (i.e., 100%) due to blind path reevaluation. EBM saves
some path re-computation for those edges not covered by the el-
liptic area. QSI, exploiting query scopes to precisely determine
non-affecting edges, has a significantly lower re-computation ratio.
QSIU�PPCA uses the same path invalidation method as QSI so they
have the identical re-computation ratio. Meanwhile, the grid-based
representation of QSI (denoted as Grid) has less false hits than EBM

because it is more precise. Comparing with QSI, however, some
redundant re-computations still exist in Grid.
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Figure 10: Re-computation ratio

In the scenario where certain geometric assumptions are appli-
cable in the path cost estimation, path search algorithms utilizing
the estimation heuristics can achieve a much smaller query scope
size. For example, the QSI-A� and Grid-A� curves represent the ra-
tio of recomputed queries identified by the query scope built based
on the A� algorithm. While Grid-A� incurs more re-computations
than QSI-A�, they both have quite low ratio compared with the ones
based on Dijkstra’s algorithm. This is because, in the heuristic-
based algorithms, both the connectivity and physical constraints of
the road network are considered, resulting in effective elimination
of the false hits.

6.3 Effectiveness of Checkpoint Selection
In QSIU�PPCA, five checkpoint placement strategies have been

presented, namely, random (RAND), anchor-node-association (ANCH),
fixed-step-interval (FSI), fixed-cost-interval (FCI) and adaptive-to-
update (ATU). Here, we study the effectiveness of these strategies.
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(a) I/O Cost
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(b) CPU Time

Figure 11: Checkpoint selection strategy comparison (CA)

In this set of experiments, the total number of checkpoints se-

lected by the strategies is set to |N |/100 where |N | is the num-
ber of nodes in the network. The results are plotted in Fig 11.
In terms of I/O cost, RAND, FSI and FCI incur almost the same
number of page accesses, because the checkpoint selected by these
strategies tend to be evenly distributed in the network. The running
times of these three strategies are also very close. Meanwhile, ATU
achieves slightly better I/O efficiency due to adaptively selecting
checkpoints that are close to the places where updates happen fre-
quently. Nevertheless, due to the extra computational costs needed
to re-allocate checkpoints, ATU takes longer CPU time to perform
the re-computation. Last, ANCH incurs both the most I/O cost and
CPU time among all five strategies, indicating that the anchor node
assignment is not suitable for selecting checkpoints.

6.4 Path Monitoring Performance
Next, we evaluate PathMon and compare its performance against

other techniques in terms of CPU time and I/O costs, the two com-
mon metrics considered for system performance. CPU time mea-
sures the time the system spends to update path queries. I/O cost
measures the number of disk pages accessed to detect/update af-
fected path queries.
Impact of path length. The current min-cost path length directly
affects the size of the query scope. Here, we evaluate its impact
on the performance of examined techniques by varying the path
length from 0.15 to 0.35 with a step of 0.05 of the network di-
ameter. The results are reported in Figure 12. As the path length
increases, the ratio of recomputed queries, processing time and I/O
cost of all approaches increase accordingly. Due to effective elimi-
nation of redundant path update, QSIU�PPCA reduces both I/O cost
and CPU time as shown in Figure 12(a) and Figure 12(b), respec-
tively. Also, we can see that Naive is the worst, while QSIU�PPCA

significantly outperforms EBM. With fewer paths recomputed, QSI

performs better than EBM but still incurs about 50% more I/O cost
and CPU time than QSIU�PPCA.
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Figure 12: Performance under various path length
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(a) I/O cost vs. # edges updated
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Figure 13: Performance under various � of updated edges

Impact of number of updated edges. If a network is highly dy-
namic, a large number of edges would be updated simultaneously.
In this experiment, we model the degree of network dynamics by
varying the number of updated edges up to 0.01% of the total num-
ber of edges. Please note that the query processing time is very
short for our proposed algorithm (i.e. a few seconds for QSIU�PPCA),
so the approach is capable to deal with high update frequency.
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Again, I/O cost and CPU time are significantly saved by QSIU�PPCA

as shown in Figure 13(a) and Figure 13(b), respectively. On the
other hand, this experiment shows a trend that both performance
of EBM and QSIU�PPCA degrade as the number of updated edges
increase. Naive will eventually prevail, which indicates a room for
future research in PathMon.
Impact of path search algorithm. The path search algorithm can
significantly affect the query scope, and potentially lead to more
efficient path monitoring. Here we show that, besides Dijkstra’s
algorithm, our proposed algorithms can be applied to other best-
first path search algorithms (e.g., A� algorithm) and also achieve
superior performance.
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(a) I/O cost vs. # edges updated
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(c) I/O cost vs. path length
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Figure 14: Performance under A� algorithm

We use Naive and QSIU as the baseline in our comparison. As
shown in Fig 14, when A� algorithm is applied, both the I/O and
time performance improve significantly for different query scope
representations (i.e. the grid-based and the anchor node-based rep-
resentation). Furthermore, we can see that the QSIU-A� approach
outperforms QSI-A� and Grid-A�.
Evaluation on various maps. To validate the efficiency of our ap-
proach, a set of experiments on various cities has been conducted.
We report the results in Fig 15. For all algorithms, as the network
size increases, both I/O cost and CPU time grow. QSIU is supe-
rior among all Dijkstra’s algorithm based approaches, and QSIU-A�

performs the best in the A� algorithm based approaches.
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(b) Time vs. different maps

Figure 15: Performance for various cities (Lp = 0.25DN ,
|Eu| = 0.05�|E|)

7. CONCLUSION
In this paper we addressed the continuous min-cost path moni-

toring problem, motivated by a great demand of LBS applications
requiring min-cost paths in dynamic road networks. We studied
two research issues of the problem, namely, path invalidation and
path update, and developed novel techniques based on our problem

analysis and our understanding of the min-cost path search prop-
erties. Based on the result of our analysis, we introduced an index
structure called query scope index (QSI) to record query scopes,
which consist of nodes in the min-cost path spanning trees and in
turns cover all affecting edges. QSI is efficient to identify affected
path queries. Also, we devised a partial path re-computation algo-
rithm (PPCA) to partially recompute a new min-cost path when the
old min-cost path becomes invalid, by resuming a search at certain
processing states. To facilitate PPCA, another index called QSIU
that extends QSI is devised to maintain processing states. Our Path-
Mon system seamlessly integrates QSI, QSIU and PPCA. PathMon
is a centralized system to support monitoring of massive continuous
min-cost path queries. Upon network changes, the PathMon server
identifies the queries affected by the changes from QSI/QSIU, and
quickly recomputes the new min-cost paths using PPCA. Through
comprehensive experiments, we examined the effectiveness of dif-
ferent designs for QSI and PPCA. Additionally, we studied the im-
pact of expected query path length, network update rates and net-
work size to the performance of the PathMon system. The experi-
ment results demonstrate that the new techniques proposed in this
paper outperform the representative approaches, in terms of both
I/O cost and processing time. Currently we are building a Path-
Mon system prototype. Besides, observing that some path queries
may specify similar destinations, we are examining the feasibility
of grouping multiple path queries in path monitoring as the next
step of this work.
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