
Statistical Science
2006, Vol. 21, No. 4, 463–475
DOI: 10.1214/088342306000000583
In the Public Domain

Monitoring Networked Applications With
Incremental Quantile Estimation1

John M. Chambers, David A. James, Diane Lambert and Scott Vander Wiel

Abstract. Networked applications have software components that reside on
different computers. Email, for example, has database, processing, and user
interface components that can be distributed across a network and shared by
users in different locations or work groups. End-to-end performance and re-
liability metrics describe the software quality experienced by these groups of
users, taking into account all the software components in the pipeline. Each
user produces only some of the data needed to understand the quality of the
application for the group, so group performance metrics are obtained by com-
bining summary statistics that each end computer periodically (and automat-
ically) sends to a central server. The group quality metrics usually focus on
medians and tail quantiles rather than on averages. Distributed quantile esti-
mation is challenging, though, especially when passing large amounts of data
around the network solely to compute quality metrics is undesirable. This
paper describes an Incremental Quantile (IQ) estimation method that is de-
signed for performance monitoring at arbitrary levels of network aggregation
and time resolution when only a limited amount of data can be transferred.
Applications to both real and simulated data are provided.

Key words and phrases: Aggregated data, data stream, performance moni-
toring, reliability.

1. MONITORING NETWORKED APPLICATIONS

A stand-alone software application like a text proces-
sor resides entirely on one computer and is accessed
only by the people who use that computer. The com-

John M. Chambers retired in 2005 as Member of the
Technical Staff, Communications and Statistics Research,
Bell Labs, Lucent Technologies, Murray Hill, New Jersey
07974, USA (e-mail: jmc@r-project.org). David A. James is
a Member of the Technical Staff, Communications and
Statistics Research, Bell Labs, Lucent Technologies,
Murray Hill, New Jersey 07974, USA (e-mail:
dj@bell-labs.com). Diane Lambert is a Research Scientist,
Google, New York, New York 10018, USA (e-mail:
dlambert@google.com). Scott Vander Wiel is a Technical
Staff Member, Statistical Sciences Group, MS F600, Los
Alamos National Laboratory, Los Alamos, New Mexico
87545, USA (e-mail: scottv@lanl.gov).

1Discussed in 10.1214/088342306000000600,
10.1214/088342306000000619 and
10.1214/088342306000000628; rejoinder at
10.1214/088342306000000592.

ponents and users of a networked software application
like email, though, span multiple computers. The data-
base that stores current email messages may reside on
one (or more) computers, the database of previously
read messages may reside on another computer, the
mail processing software may reside on yet another
computer, and the user interface that allows email to
be read and sent easily may reside on many personal
computers. That is, the components of the networked
software, the users of the software, and the requests and
actions by users are all distributed over the network.

Networked services can fail in many ways, and the
failures are often localized to a set of nodes that share
a small fraction of the network infrastructure. Email
transactions for only a subset of users may be delayed
by server problems that disrupt a region of a network,
or database accesses may be slow because of heavy
seasonal tasks that are performed by only some of the
workers. Consequently, system administrators need to
assess availability, reliability and performance with the
structure of the network in mind, without specifying in

463

http://www.imstat.org/sts/
http://dx.doi.org/10.1214/088342306000000583
mailto:jmc@r-project.org
mailto:dj@bell-labs.com
mailto:dlambert@google.com
mailto:scottv@lanl.gov
http://dx.doi.org/10.1214/088342306000000600
http://dx.doi.org/10.1214/088342306000000619
http://dx.doi.org/10.1214/088342306000000628
http://dx.doi.org/10.1214/088342306000000592

464 J. M. CHAMBERS, D. A. JAMES, D. LAMBERT AND S. VANDER WIEL

advance which pieces of the network or which work
groups to monitor together.

Monitoring the health of networked applications is
challenging. First, the desktop computers or end user
nodes that access the application may have only lim-
ited resources to allocate to processing metrics. At best,
each end user may be able to compute limited sum-
maries of its performance. Moving all the performance
data concerning all transactions from all end users to
a dedicated server does not circumvent the problem of
weak end nodes because transferring large amounts of
data can place too high a load on the network. Thus,
both the data and computational resources needed to
compute quality metrics for networked software appli-
cations need to be distributed over the network. Finally,
there are statistical challenges too. For example, users
in the same building may have dissimilar tasks, so the
aggregated performance data from that location look
like a sample from a mixture with multiple modes and
long tails rather than like a sample from a simple para-
metric model.

This paper describes an approach to monitoring net-
worked applications that we developed in response to
the needs of a business unit of Lucent Technologies.
To accommodate a wide range of statistical distrib-
utions, monitoring is based on tracking medians and
upper quantiles rather than averages and higher-order
moments. The nature of the specific problem, the con-
straints on computing that have to be addressed, and a
high-level view of the approach we took are described
in Section 2; related approaches are discussed in Sec-
tion 3. Our design has two parts: a lightweight sequen-
tial method that summarizes the performance data that
are collected at each user’s computer (Section 4) and
a slight variant of the sequential method that further
aggregates the user summaries over arbitrary subsets
of the network and time (Section 5). (Using nearly the
same algorithm at the end-user and server levels was
one of the constraints specified by the engineers of our
application.) Enhancements to achieve better accuracy
are discussed in Section 6. Performance of the user-
level algorithm is evaluated on simulated data (Sec-
tion 7). Performance of the server algorithm that com-
putes group-level metrics is evaluated on transaction
time data collected from a group of corporate users and
simulated work-group data (Section 8). Some ideas for
generalizing the methods are given in Section 9.

2. MONITORING NETWORKED SOFTWARE

Networked software provides applications such as
email, database access, and voice and conferencing ser-
vices to an enterprise. In a typical configuration, por-

tions of the software live on servers and employees
of the enterprise access it using clients that live on
their desktop computers. Monitoring agents are special
clients that observe the performance details for each
attempted and completed software transaction: round
trip time, server response time, bandwidth used, com-
pletion status, packet loss, total transaction time, and
so on. It is these performance data that describe the
software quality that the user has experienced, and the
data for a group of users describe the software quality
delivered to the group. The monitoring agents summa-
rize the data and periodically send the summaries to a
central server that is responsible for monitoring the re-
liability and performance of the application across the
network. Figure 1 illustrates the high-level flow of data
and summary records in the monitoring application. In
these applications, reliability problems are failures of
the network, servers and applications to deliver ade-
quate performance to the end users. Problems may not
be exhibited through complete failure of the infrastruc-
ture, but rather through soft metrics such as overly long
response times on high volume transactions.

To save space on the end user’s computer, the mon-
itoring agents summarize the performance data with
a fixed-length record, one record for each transac-
tion type, that is updated with new performance data
whenever the networked application is used. Often the
record is too small to hold all the raw data, and in this

FIG. 1. Data flow for monitoring networked software.

QUANTILE MONITORING 465

case it must hold summaries of the data rather than the
full set of data values. Periodically, say at the end of
every hour, the summary record is sent to a server. The
server then aggregates the summary records across lo-
cations, work groups, business units and longer periods
of time as required by system administrators investigat-
ing reliability and performance issues. Server records
are also fixed-length.

Figure 2 shows a histogram of times to complete
email transactions with SMTP or POP3 servers aggre-
gated over 15 employees in a one-month period. The
shortest transaction time is 1 ms, while the longest is
2.33 × 105 ms or 233 seconds. No standard transfor-
mation of these data induces normality or even sym-
metry. Moreover, as would be expected when aggregat-
ing over agents and times, the histogram for the work
group is multimodal.

Summarizing such data quickly and reliably while
preserving as much information as possible about the
entire distribution is especially challenging because the
transaction times are obtained sequentially across a
group of end users, there is not enough memory to store
all the data for many metrics on many transaction types
before they are analyzed, and the data cannot be re-
duced to a small set of sufficient statistics by appealing
to a parametric family of distributions. Simple statisti-
cal summaries such as the mean and variance are sta-
tistically inadequate (unfortunately so, since they are
inexpensive to compute). Under these circumstances,
we prefer to summarize the distribution in terms of its
median and tail quantiles.

FIG. 2. Times to complete 41,928 email transactions over a
one-month period.

3. INCREMENTAL QUANTILES

In statistical notation, agent a (the agent monitoring
your computer, say) sees a multivariate data stream

Xa = {Xast , s = 1, . . . , S, t = 1,2, . . .},
where Xast is the value of the sth metric (response
time, e.g.) on the t th transaction (email access, e.g.)
seen by agent a.

Users of the software application are typically orga-
nized in multiple hierarchies according to geographic
location and business unit. The interesting subsets of
agents correspond to these hierarchies or to groups de-
fined by common network infrastructure. Time adds
another dimension, and the interesting periods may be
five-minute periods, hours, days or months depending
on the purpose of the analysis. Often, the agent hier-
archy and time resolution are chosen dynamically as
an analyst explores the data. But whatever the choices,
the analyst is to be provided quantiles for the aggre-
gated data {Xast :a ∈ A, s ∈ S, t ∈ T } where A, S and
T are subsets of agents, metrics and time, respectively.
Quantile estimates for the aggregate data are produced
from records that are periodically provided by agents.
Each of the agent records in turn contains a set of quan-
tile estimates that were produced by that agent using
the same kind of sequential updating algorithm that the
server uses.

Sequential quantile estimation, which is called in-
cremental quantile estimation in the computer science
literature, is not a new topic. Robbins and Monro
(1951) introduced the idea of stochastic approxima-
tion for quantile estimation, for example. Munro and
Paterson (1980) then used it for sorting and selection
with limited memory, Tierney (1983) used it for mon-
itoring computer simulations, and Chen, Lambert and
Pinheiro (2000) used it for monitoring nonstationary
user profiles. Stochastic approximation is best suited
for continuous data because it requires an estimate of
the density near the quantile. The data in our applica-
tion, such as packet sizes, are often discrete and can
often have preferred values and spikes, so any conti-
nuity assumption is suspect. Liechty, Lin and McDer-
mott (2003) proposed an algorithm to estimate a sin-
gle quantile by maintaining a buffer of data values that
is intended to bracket the desired quantile. Their al-
gorithm works well for simulated data, but it tracks
only a single quantile. McDermott, Babu, Liechty and
Lin (2003) extended the algorithm to track a prespec-
ified set of quantiles. The Incremental Quantile (IQ)
method represents a different emphasis, on estimating

466 J. M. CHAMBERS, D. A. JAMES, D. LAMBERT AND S. VANDER WIEL

distribution functions as a whole and combining those
estimates for a general data-analytic tool. Future nu-
meric comparisons with alternative algorithms such as
those referenced above may lead to improved estimates
within this general approach.

Computer scientists have considered sequential
quantile estimation without density estimates, but with
the twist that reported quantiles must be observed data
values. See Manku, Rajagopalan and Lindsay (1998)
and Greenwald and Khanna (2001, 2004). Simply
stated, these methods attempt to keep “typical” val-
ues, so that the goal is perhaps more akin to sorting the
data than to estimating an underlying distribution. Our
application does not have the constraint that quantile
estimates must be observed data values. The advantage
of the computer science methods is that they guarantee
precision to within a prespecified error on the proba-
bility level of the quantile estimate. Such guarantees
can be useful, but much less so when interest is in tail
quantiles. For example, it may be adequate to estimate
the median to within the interval defined by the 0.49
and 0.51 empirical quantiles, but a fixed ±0.01 error
on the probability level is nearly useless for estimating
the 0.999 quantile. In our application, interest centers
on the accuracy of the estimated quantile value itself
rather than its probability level.

Three simple principles underlie our approach to se-
quentially estimating and aggregating quantiles:

1. Empirical distributions are appropriate for all sorts
of numerical data.

2. Averaging cumulative distribution functions (CDFs)
is easy.

3. Converting a CDF to a set of quantiles and vice
versa is straightforward.

To aggregate sets of quantiles provided by many
agents, we collect a batch of agent records until a fixed
number has been reached, and then convert the quan-
tiles on the records to empirical CDFs and the quantile
record at the server to another CDF. Then we aver-
age the CDFs with appropriate weights and compute
quantiles of the average CDF to complete one round
of the aggregation algorithm. Of course, the way that
a set of quantiles is converted to a CDF may affect
the quality of the final estimates, as does the choice of
the probability levels for the quantiles in each set. This
procedure is simple, but it seems not to have been used
previously. Details and performance comparisons are
provided in the remainder of this paper.

4. IQ AGENT ALGORITHM

4.1 Requirements for Aggregation Algorithms

The monitoring architecture requires two types of
algorithms, one for the agent and one for the server.
The agent algorithm should require only one continu-
ous pass through the data stream and should be light-
weight in both memory and CPU usage because many
copies of the algorithm (one for each transaction type
for each networked application and monitored quan-
tity) will run in the background on the desktops of cor-
porate users. Hourly records produced by the algorithm
should be fixed-length to simplify the design and small
to reduce the burden of transmitting them to the server
for further aggregation.

Figure 3 depicts the major steps in the IQ agent
algorithm. A data buffer D at the agent holds the
most recent observations from a stream {X1,X2, . . .}.
A quantile buffer Q corresponding to probability
values PQ = (p1, . . . , pM) holds the quantiles Q =
(Q1, . . . ,QM) estimated from the data that have al-
ready been processed. When D fills with data, it is
first used to update Q and then it is cleared in order
to accumulate the next batch of data from the stream.
When a report is required, a predetermined subset of
Q is provided to the server as a summary of the entire
stream processed by the agent. Notice that more quan-
tiles may be tracked in the Q-buffer than are reported
in the agent summary to improve the accuracy of the
agent record.

At the server, a second algorithm summarizes agent
records by estimating quantiles of the mixed distribu-
tion of their combined data. Like the agent algorithm,
the server algorithm should be lightweight and oper-
ate in one pass through a set of agent records. Ideally,

FIG. 3. Major steps in the IQ agent algorithm.

QUANTILE MONITORING 467

the server algorithm should create records of the same
form as agent records to keep the design simple and to
provide a uniform method for aggregating in stages up
the levels of a hierarchy.

Details of the agent algorithm are provided in the re-
mainder of this section. The server algorithm is dis-
cussed in Section 5.

4.2 Updating the Q-Buffer

Suppose that T data values have been processed
with the IQ algorithm so that Q holds estimated quan-
tiles of the set {X1, . . . ,XT }. Then the data buffer D
is filled with the next N values, {XT +1, . . . ,XT +N }.
When full or at prespecified times, D is converted to
an empirical CDF FD(x), Q is converted to a CDF
FQ(x), and a weighted average of the two CDFs is
computed. Quantiles of the average CDF are used to
update Q.

Linearly interpolating FQ models the data as uni-
formly distributed between adjacent quantiles in Q,
which is reasonable if no other information is avail-
able and the tails of the data are not overly long. If a
variable such as round-trip time or transaction time has
a long right tail, then accuracy is improved by apply-
ing the algorithm to logged data or by using nonlinear
interpolation as described in Section 6.

The updating algorithm has four basic steps, illus-
trated in Figure 4 and detailed as follows.

For each x ∈ Q ∪ D:

1. Compute the CDF of Q (Figure 4, left panel) as

FQ(x) =

0, if x < Q1,

1, if x ≥ QM,

interp(x,Qm,Qm+1,p
∗
m,p∗

m+1),

if Qm ≤ x < Qm+1,

m = 1, . . . ,M − 1,

(1)

where interp interpolates the given points as

interp(x, x0, x1,p0,p1)

= p0 + (p1 − p0)
x − x0

x1 − x0

(see Section 6 for nonlinear interpolation) and

p∗
m = median(pm,0.5/T ,1 − 0.5/T),

which is pm trimmed to the interval [0.5/T ,1 −
0.5/T]. Trimming imposes jumps in the CDF at the
minimum (Q1) and maximum (QM) data values,
so the minimum and maximum over all data val-
ues processed so far are kept in Q. This means that
half of the 1/T mass associated with an extreme
value (minimum or maximum) is allocated to an in-
terval strictly less extreme than the observed value,
and the other half of the 1/T mass is allocated to the
extreme value itself. It may be reasonable to replace
the jump with a smooth extrapolation, but then some
extreme quantiles would extend beyond the range of
the observed data, which we choose to avoid.

FIG. 4. Quantile updating with Q of size 5 with probabilities PQ = (0,0.25,0.5,0.75,1) and D of size 10. Q has been updated twice,
so T = 20. The left plot shows FQ before updating where vertical segments indicate the stored quantiles. The middle plot shows the ten
data values in D as ticks on the horizontal axis and the empirical CDF FD . The right plot shows the updated F (a weighted average of
FQ and FD). The updated quantiles for Q are shown as ticks along the horizontal axis.

468 J. M. CHAMBERS, D. A. JAMES, D. LAMBERT AND S. VANDER WIEL

2. Compute the empirical CDF of D (Figure 4, center
panel) and its left-continuous value as

F+
D (x) = |D ≤ x|

|D| ,

(2)

F−
D (x) = |D < x|

|D| ,

where | · | indicates the number of elements in the
indicated set.

3. Compute the weighted average CDF (Figure 4, right
panel) and its left-continuous value as

F±(x) = T · FQ(x) + N · F±
D (x)

T + N
.

For each pm ∈ PQ:

4. Compute the updated quantile, Qm (Figure 4, ar-
rows in right panel), by inverting the weighted aver-
age CDF as follows. Find bracketing values

x+ = min
F+≥pm

{Q ∪ D},

x− = max
F−≤pm

{Q ∪ D}

and set

Qm =
{

x−, if x+ = x−,

ρx− + (1 − ρ)x+, otherwise,
(3)

where ρ = [F+(x+) − pm]/[F+(x+) − F−(x−)]
for linear interpolation. The nonlinear case is dis-
cussed in Section 6.

Finally, refill Q with the updated quantiles and clear
D in order to resume accumulating new data from the
stream.

The quality of IQ quantile estimates depends on the
quality of the estimate of the CDF F (i.e., F±) from
which they are computed, which in turn depends on
the buffer sizes and probability levels PQ. In particu-
lar, the assumed F is linear between distinct adjacent
quantiles (or linear on a transformed scale), and this
may be a better assumption over small intervals than
over long intervals. Thus, keeping more quantiles in
Q is desirable, even if only a few quantiles can be re-
ported ultimately.

When all the data have been processed, an agent
record can be formed to summarize the results. The
agent record is (Ta,Ra) where Ta is the total number
of observations processed and Ra is typically a fixed

subset of the quantiles in Q, including the minimum
and maximum values. However, if Ta is smaller than
the record size, then all the raw data values are inserted
into Ra .

4.3 An Example of IQ Updating

As an example, consider the transaction time data
shown in Figure 2. Empirical quantiles (EQ) were com-
puted in the standard way by sorting all the test data,
and IQ quantiles were computed using buffer sizes
|D| = |Q| = 100 and linear interpolation on the logged
data. However, even the logged data remained long-
tailed. The probabilities in PQ were 0 and 1 (corre-
sponding to the minimum and maximum data values)
and 98 probabilities uniformly spaced from 0.0025 to
0.9975 on the log(p/(1−p)) scale, so that more quan-
tiles are devoted to tail probabilities.

Table 1 shows the IQ and EQ estimates, their differ-
ences, and approximate EQ standard errors computed
by plugging a local density estimate into the asymp-
totic standard error formula. The IQ estimates repro-
duce the EQ values well with differences never more
than two standard errors of the empirical quantiles.

5. IQ SERVER ALGORITHM

The next task is to merge sets of agent quantiles to
estimate performance for a set of users, or to merge
server quantiles to obtain estimates for combined work
groups or longer periods of time, for example. To
be specific, this section describes merging of agent
records, but the ideas also apply to higher levels of
aggregation. Figure 5 illustrates the major steps: agent
summary records are placed into a data buffer D; when
D is full it is used to update a quantile buffer Q; once all
records have been processed, a subset of Q is selected
to form a summary record of the aggregation.

As in the agent algorithm, Q holds the approxi-
mate quantiles Q = (Q1, . . . ,QM) with corresponding

TABLE 1
IQ estimated quantiles compared to empirical quantiles (EQ) of

the 41,928 transaction times illustrated in Figure 2

Quantile 0.5 0.75 0.9 0.95 0.99 0.995

IQ 190 323 821 1338 4674 5154
EQ 189 320 826 1280 4807 5147
Difference 1 3 −5 58 −133 7
2 × s.e.(EQ) 1.3 5.4 32 72 134 130

For IQ, D and Q both have size 100. Absolute differences between
IQ and EQ are less than two standard errors of the empirical quan-
tiles.

QUANTILE MONITORING 469

FIG. 5. Major steps in the IQ server algorithm.

probability levels PQ. These quantiles are a summary
of all agent records that have been processed so far.
When Q is updated, two ancillary quantities are also
updated—NA, the total number of agent records that
have been processed and T , the total number of data
values represented by the NA agents.

D holds the next set of agent records to be included
in the aggregation, some of which contain quantiles
and some of which may contain raw data values. The
combined set of raw data values over all records in D is
denoted by X = {X1, . . . ,XN }. A quantile record from
agent a is denoted (Ta,Ra), where Ta is the number
of values represented and Ra = (Ra,1 ≤ · · · ≤ Ra,I) is
a vector of I quantiles with probability levels PR , in-
cluding both 0 and 1.

Updating Q at the server is similar to updating Q at
the agent. Both D and Q are converted to CDFs, the
CDFs are averaged, and then the average is inverted to
update Q.

For each x ∈ Q ∪ D:

1. Compute FQ(x) using (1).
2. Compute the CDF, Fa(x), of each set of agent quan-

tiles using (1) with Ra and PR in place of Q and PQ,
respectively.

3. Compute the empirical CDF, F+
D (x), of the data val-

ues X ⊂ D and its left-continuous value, F−
D (x), us-

ing (2) with X in place of D.
4. Compute the weighted average CDF and its left-

continuous value as

F±(x) = T FQ(x) + NF±
D (x) + ∑

a TaFa(x)

T + N + ∑
a Ta

.

For each pm ∈ PQ:

5. Compute the updated quantile estimate Qm by in-
verting F±(x) using (3) where the definitions of the
bracketing values x+ and x− are unchanged.

Finally, refill Q with the updated quantile estimates,
clear D, and resume accumulating new records.

When the full set of agent records has been pro-
cessed, a server record is produced to summarize the
result. The server record consists of T , NA and a sub-
set of the quantile estimates in Q, including the mini-
mum and maximum values. A set of server records of
this form can be aggregated further by applying the IQ
server algorithm a second time. Aggregation can thus
proceed hierarchically, as Section 8 illustrates.

6. ALGORITHM ENHANCEMENTS

Increasing the sizes of D and Q improves accuracy.
A larger D allows the subtle features of the underly-
ing distribution to be better represented in the empir-
ical CDF before folding into Q. A larger Q reduces
interpolation errors because interpolation is used over
shorter intervals.

If memory cannot be increased, it is sometimes de-
sirable to sacrifice accuracy in the central quantiles for
improved accuracy in the tails. This trade-off can be
achieved by manipulating the probability levels PQ as-
sociated with quantiles in Q. Generally, if good accu-
racy is desired for a quantile with probability level p,
then it is helpful for PQ to place probability values
more densely near p. But focusing on p leaves fewer
probabilities elsewhere with the result that, while ac-
curacy of the pth quantile improves, accuracy of other
quantiles degrades. We have used probability levels
that are either uniformly spaced between 0 and 1 or
uniformly spaced on the scale log(p/(1 − p)), as in
the example in Section 4.3.

Tail quantile accuracy may also be improved by ap-
plying nonlinear interpolation to Q, which is equiva-
lent to applying linear interpolation to a transformation
of Q. In most applications it is not feasible to deter-
mine an optimal transformation because the shape of
the distribution is unknown, so it is often desirable to
choose a transformation that performs well over a wide
variety of datasets. The performance study in Section 7
compares uniformly spaced probability values and lin-
ear interpolation with logit spaced probability values
and logit interpolation, which is defined by taking

interp(x, x0, x1,p0,p1)

= g−1
(
g(p0) + (

g(p1) − g(p0)
) x − x0

x1 − x0

)

470 J. M. CHAMBERS, D. A. JAMES, D. LAMBERT AND S. VANDER WIEL

in (1) and

ρ = g(F+(x+)) − g(pm)

g(F+(x+)) − g(F−(x−))
(4)

in (3), where g(p) = log(p/(1 − p)) is the logit func-
tion and g−1(x) = 1/(1+exp(x)) is its inverse. In prin-
ciple, g should be chosen so that g(F (x)) is nearly
linear, but F is unknown. Although logit interpolation
may not be optimal, it should be better than linear in-
terpolation if exponential tails are expected.

7. PERFORMANCE OF THE AGENT ALGORITHM

The core of our network monitoring methodology
is the IQ agent algorithm that computes incremental
quantiles from raw data. To study its performance, we
simulated it with D and Q of size 41 each. Linear inter-
polation with uniform probability values (shown as in-
ner ticks along the top axes in Figure 6) and logit inter-
polation with logit probability values (inner ticks along
the bottom axes) were used in the simulation. The logit
probabilities are actually at 41 convenient round values
that are approximately uniformly spaced on the logit
scale. Three distributions are considered: the standard
normal, standard log-normal and beta(9,2), which has
a very long left tail and sharp rise to a mode in the right
tail. Quantiles were estimated after 1000 and 10,000 in-
dependent observations, which implies that the buffers
were emptied 24 and 243 times, respectively, and then
one more time at the 1000th and 10,000th observations,
respectively.

Simulated performance is measured by the ratio of
the root mean squared errors (RMSEs) of the IQ and
empirical quantile (EQ) estimates where the RMSEs
are computed over 1000 runs of the simulation. The
horizontal axes in Figure 6 are on the logit scale to
show the behavior of the extreme quantiles.

Not surprisingly, Figure 6 shows that uniformly
spaced probability values and linear interpolation per-
form poorly in the tails of the normal distribution. At
N = 1000 and p = 0.005, the IQ RMSE is about four
times the EQ RMSE. Moreover, relative performance
degrades with N . By N = 10,000 the IQ RMSE is
about 20 times larger than the EQ RMSE. Plots not
shown here suggest that this degradation is due to
the bias in the IQ estimates which does not diminish
with N . Similarly, Figure 6 shows that linear inter-
polation and uniformly spaced probability values do
not provide good performance in the long right tail
of the log-normal and the long left tail of the beta,
and that performance relative to the EQ estimates de-
grades with N , again due to bias. At the 0.99 quantile
of the log-normal, the ratio of RMSEs is about 15 for
N = 1000 and about 75 for N = 10,000. A similar
pattern is seen near the 0.01 quantile for the beta distri-
bution. That is, when the uniform scale does not tame
the tails of a distribution sufficiently, the IQ estimates
with uniform probabilities and linear interpolation may
be noticeably worse than the empirical quantiles. The
RMSEs of the IQ and EQ estimates are nearly identical
for the most extreme quantiles under all distributions

FIG. 6. Performance of IQ on three distributions. Logit p’s combined with logit interpolation perform well in the tails but generally not
as well as uniform p’s and linear interpolation for the center of the distribution. As the sample size increases from 1000 to 10,000, IQ
performance degrades relative to empirical quantiles because the IQ estimates are biased whereas empirical quantiles are not.

QUANTILE MONITORING 471

because these are computed from the minimum and
maximum data values, which the IQ algorithm keeps
in Q.

For logit probability values and logit interpolation,
there are ripples in the ratio of IQ RMSE to EQ RMSE
in the center of the log-normal and beta distributions.
These ripples become more pronounced with increas-
ing N . The low points of the ripples occur for quantiles
that are kept in Q, while the high points are between
adjacent quantiles. Degrading relative performance
with increasing N is again due to the bias in the IQ esti-
mates that occurs in regions where the density changes
rapidly with respect to the logit-spaced probability lev-
els. But in all cases, the IQ RMSE is within a factor of
2 of the EQ RMSE even though the IQ algorithm never
computes with more than 82 data values while the em-
pirical quantiles require knowing all 1000 or 10,000
data values at once. In this sense, the IQ algorithm pro-
duces usable estimates over a range of distributions.

A second simulation experiment with log-normal
data, logit-spaced p’s, logit interpolation, and D- and
Q-buffers of size 1000 was run to focus on the behav-
ior of IQ estimated quantiles for large N . The qual-
ity of the IQ estimates was evaluated at N = 10K ,
for k = 3,4, . . . ,7. For all values of k, the IQ RMSE
tracked the EQ RMSE closely in the middle of the
distribution. For instance, the ratio of IQ RMSE to
EQ RMSE averaged over the middle 95% of the log-
normal, p ∈ (0.025,0.975), increases from 1.00000 at
N = 103 to 1.01338 at N = 107, an increase of only
about 1%. The ratio of IQ RMSE to EQ RMSE does
increase more with N in the tails. For example, at
p = 0.99 the ratio increases 31.5% as N increases from
106 to 107, but even this bias would not make the IQ
estimates unusable in our application. Thus, the IQ es-
timates are adequate if the probability levels for the Q
and interpolation schemes are suitable.

8. PERFORMANCE OF THE AGGREGATED
GROUP QUANTILES

Networked software monitoring focuses on the quan-
tiles of the performance experienced by groups of
users. We explore the behavior of the aggregated quan-
tiles that are computed by the IQ server algorithm in
this section.

Transaction Time Data. The data shown in Figure 2
represent 41,928 email transactions for 15 corporate
users over one month. Hourly sets of quantiles were
computed for each user, and the hourly user quan-
tiles were aggregated to produce hourly records for the

group of 15 users. Finally, the hourly group records
were aggregated to produce daily quantile estimates for
the group.

The IQ agent (user) and server (group) algorithms
both used D- and Q-buffers of size 100 with uniformly
spaced probabilities PQ and linear interpolation on log
transaction times. Each agent and server record con-
tained only 11 quantiles corresponding to probability
levels PR = {0,0.05,0.10,0.25,0.50,0.75,0.90,0.95,

0.99,0.999,1}.
Figure 7 compares the incremental and empirical

quantiles for a week of hourly group records and Fig-
ure 8 compares these quantiles for a month of daily
aggregates. In each figure, the lower line tracks em-
pirical medians and the upper line tracks empirical 0.9
quantiles. Darker vertical segments connect empirical
quantiles to the corresponding IQ estimates, so longer
lines correspond to poorer IQ estimates. Figure 7 rep-
resents results after two stages of processing: one at the
agent and one at the server. Figure 8 shows results after
an additional application of the IQ server algorithm to
compute daily quantiles.

The IQ estimates track empirical quantiles reason-
ably well, especially at the daily level where most dif-
ferences are imperceptible. At the hourly level, some
errors in the 0.9 quantiles are noticeable, but this re-
flects the limits on the accuracy that can be achieved
when each agent record consists of only 11 quantiles.
Table 2 reports the fraction of cases in which incremen-
tal quantiles were within 10% of the correct empirical
values.

Simulated Inhomogeneous Agents. The data from
different users of networked applications are typically
not homogeneous because their network environments
and software usage differ. Here we report the results
of a simulation that gives some insight into how the
IQ algorithm responds to outlying users. These results
also address the question of whether the order in which
the records from inhomogeneous agents are received
matters, given that the server processes records sequen-
tially. The following simulation is meant to be realistic,
but only exemplary because it is not possible to test or
even specify the full range of conditions that could be
encountered in a real network monitoring application.

In the simulation, agent records of length I = 10
(i.e., 10 quantile estimates, not raw data values) are
constructed for 1000 agents independently: 99% of the
agents are nominal and 1% are outlying. In either case,
the simulated record Ra for agent a (a = 1, . . . ,1000)
is formed as follows. First an i.i.d. sample of Ta = 1000

472 J. M. CHAMBERS, D. A. JAMES, D. LAMBERT AND S. VANDER WIEL

FIG. 7. Hourly quantiles of email transaction times over a one-week period. Lines track empirical 0.5 and 0.9 quantiles while vertical bars
connect empirical quantiles to IQ estimates in order to highlight differences. Two rounds of IQ were performed: first, agents prepared hourly
records; then the server combined agent records to obtain the aggregate hourly results shown.

FIG. 8. Daily 0.5 and 0.9 quantiles of email transaction times over a one-month period. IQ results are obtained from aggregating hourly
records such as displayed in Figure 7, which corresponds to Week 3 in this figure.

TABLE 2
Fraction of cases in which IQ estimates are within 10% of the empirical quantiles for

email transaction times

Aggregation
level

Number
of cases

Fraction within 10%

0.5 quantile 0.9 quantile

Hourly 768 0.999 0.929
Daily 32 0.969 1.000

QUANTILE MONITORING 473

values is drawn from a log-normal (base 10) distribu-
tion:

Xa,t |ma ∼ 10N(ma,V1), t = 1, . . . ,1000.

The agent record consists of I = 10 empirical quantiles
Ra = (Ra,1 ≤ · · · ≤ Ra,10) corresponding to probabil-
ities of 0, 1 and eight values equally spaced between
0.005 and 0.995 on the logit scale. The medians ma

of the logged agent distributions are independent and
log-normally distributed:

ma|Ma ∼ 10N(Ma,V2),

where

Ma =
{

0, with probability 0.99,

2, otherwise.

Nominal agents are those with Ma = 0; outliers are
those with Ma = 2. We set V1 = V2 = 0.0924, resulting
in

Q(0.99|Ma)

Q(0.01|Ma)
= 100 for Ma = 0 and 2,

where Q(p|Ma) is the pth quantile of [Xa,t |Ma]. That
is, the central 98% of nominal data cover two orders
of magnitude, as do the central 98% of outlying data.
Furthermore, with Ma taking values of 0 and 2, the out-
lying data are centered two orders of magnitude larger
than the nominal data. The complete mixture covers

about four orders of magnitude between its 0.01 and
0.999 quantiles. Note, however, that agents are not ho-
mogeneous. Both nominal and outlying agents have
random medians and thus each agent record summa-
rizes a different distribution of data. Agent records con-
structed using empirical quantiles as above do not have
any errors associated with agent-level IQ estimation.
Thus, this simulation only considers performance of
the server-level algorithm.

At the server, the D-buffer is sized to hold 100
length-10 records and the Q-buffer holds 1000 quan-
tile estimates with probabilities of 0, 1 and 998 values
equally spaced between 10−6 and 1−10−6 on the logit
scale. Interpolation uses g(·) = logit(·) as described
in Section 6.

Figure 9 plots the ratio of IQ RMSE to EQ RMSE
after processing the agent records representing, in ag-
gregate, 1000 data values for 1000 agents, or one mil-
lion data values in all. The plot has two curves, one
for aggregation on the nominal data scale (solid line)
and one for aggregation of logged agent records (dot-
ted line). Logit interpolation is used in both cases. The
most obvious feature is that transforming the data to the
log scale improves performance, especially in the cen-
tral part of the distribution. In fact, the worst relative
performance occurs near the median when aggregating
nominal data, but with logged data the IQ median esti-
mate has the same RMSE as the empirical median.

FIG. 9. Server performance on inhomogeneous agents. The server processes 1000 length-10 agent records, each of which summarizes
1000 data values. Marginally, a data value from the group of agents follows a mixture of log-normal distributions that covers four orders of
magnitude. Agent records are processed at the server in batches of 100 using a Q-buffer of length 1000. The resulting RMSEs are less than
twice those of empirical quantiles for nominal-scale updating and less than 120% of the EQ RMSEs with log-scale updating. Results are
averaged across 500 simulation runs.

474 J. M. CHAMBERS, D. A. JAMES, D. LAMBERT AND S. VANDER WIEL

Both curves in Figure 9 show that the far upper tail,
corresponding to the 1% of outlying agents, is esti-
mated with essentially the same accuracy as empirical
quantiles. This is not a trivial result because, even with
logged data, each agent describes a different distribu-
tion and the complete mixture is not Gaussian. Some
additional experimentation showed that nominal-scale
performance in the central portion of the distribution
can be improved by increasing the agent record length
above 10. We chose length-10 records, however, be-
cause this closely matched the stringent requirements
imposed for monitoring networked applications.

As a second experiment, we fed the agent records to
the server algorithm sorted by increasing values of their
log-medians ma rather than in random order. In partic-
ular, most outlier records were processed after nearly
all nominal records had been processed. Remarkably,
performance curves (not shown) for aggregating the or-
dered records are indistinguishable from the curves of
Figure 9. In this experiment, at least, it made no differ-
ence whether inhomogeneous agent records were pre-
sented in random or sorted order.

9. DISCUSSION

Most corporate software is highly reliable, so it is
only the tail behavior (and, hence, tail quantiles) of
performance data that are of interest. Moreover, soft-
ware performance and reliability are often monitored
for groups of users, not individual users, partially be-
cause any one user may access the software so infre-
quently that statistics based on individual users are too
unreliable to be interesting. Thus, monitoring the relia-
bility and performance of networked applications nat-
urally leads to distributed monitoring and aggregating
quantiles over groups of users and time. We have pre-
sented one approach to estimating aggregated quantiles
from distributed monitoring data, and shown that it can
give trustworthy estimates using limited agent and net-
work resources even if the agents are not homogeneous
and their records arrive in what seems to be perverse
(smallest first) order.

While this paper has focused on networked soft-
ware, the need for estimating aggregated quantiles for
highly reliable business systems arises in other con-
texts, too. Examples include communications software
that routes calls to appropriate support staff in techni-
cal help centers and package tracking software used by
delivery services to route shipments at way-points in
a network of transit sites. Each of these applications
can generate huge amounts of data such as transaction

time, size and completion status that can be used to
monitor performance and reliability. For example, the
call center for one computer manufacturer has on the
order of 10,000 agents that together handle millions
of transactions per day, each of which can, in princi-
ple at least, be monitored for setup and response time.
The transactions for an agent can be measured, quan-
tile records computed, and then aggregate performance
by work group or location can be estimated.

This paper has shown that IQ estimation provides a
way to track performance at several levels of aggrega-
tion over time, agents or space simultaneously, where
the set of agents, portion of the network, and time pe-
riod of interest are not necessarily fixed in advance.
Although IQ estimation can be applied whenever mul-
tiple quantiles are needed, it is probably most useful
when interest focuses on tail quantiles or the data are
not expected to follow a parametric distribution. This
paper shows that IQ estimates provide useful informa-
tion throughout the range of the data if logit probability
values are combined with logit interpolation. This is
especially important for evaluating the reliability and
performance of networks and other systems that nearly
always perform well. For such systems, only tail quan-
tiles are of interest.

The IQ method can be characterized as “quick and
dirty” in the sense that we work under the tight compu-
tational constraints imposed by the application, notably
the fixed sizes of buffers and summary records and the
desire for simplicity. We are also willing to proceed
with a method whose conventional statistical proper-
ties (e.g., bias and convergence) are not yet fully un-
derstood, partially because standard sampling and dis-
tributional assumptions seem unlikely to hold in the
motivating applications. As would be expected with
a quick and dirty method, there are limitations to the
resulting estimates. For example, they assume that in-
terest centers on aggregate performance over the en-
tire workgroup or reporting interval rather than on the
details of the performance experienced by individual
users during the interval. Similarly, IQ estimates do
not take account of trends over time or time-of-day pat-
terns, such as the difference between peak and off-peak
hours. It would be straightforward to allow trends by
incorporating exponential weighting into the averaging
steps for updating Q. Time-of-day or day-of-week pat-
terns could be incorporated by starting each reporting
period with a Q specific to the time period instead of an
empty buffer or one that is continuously updated over
all time periods. These can also be accommodated by
defining the duration over which a Q-buffer is filled.

QUANTILE MONITORING 475

Longer periods give more stable estimates, but may in-
clude data with dissimilar distributions.

On a mixed distribution with spikes, some empiri-
cal quantiles will be exactly correct with high proba-
bility in large samples. IQ estimates do not behave as
well, but if the spikes are known in advance, then the
IQ algorithm could be easily modified to count hits at
the spikes separately and process the remaining data
through the IQ algorithm. There are, for example, pre-
ferred packet sizes in network data that cause spikes in
the size distributions, but these are known in advance
and so can be planned for.

Finally, the spacing in the probability values affects
the performance of IQ estimates, but our algorithm
makes no attempt to adjust the probability values over
time. An algorithm that adjusted the probability val-
ues to minimize interpolation error associated with FQ

would perform better, but probably not be as quick or
straightforward. A simpler approach would be to col-
lect some training data to get a ballpark estimate of
the shape of the distributions of interest and use that
shape to inform the choice of probability values for Q.
If extreme tails are of interest, it may help to gradu-
ally extend the most extreme probabilities into the tails
as the total sample size builds. For example, the small-
est nonzero probability could be maintained at approx-
imately 0.5/T , and nearby probabilities could be ad-
justed correspondingly.

While there are many ways in which IQ estimates
could be improved, the fact that they are easy to ex-
plain, easy to interpret, easy to implement, and provide
useful information about tail behavior, even for aggre-
gates over time, users and space, makes IQ estimates an
attractive choice for monitoring performance and reli-
ability.

ACKNOWLEDGMENT

The problem of monitoring networked applications
was first brought to our attention by engineers in a busi-

ness unit of Lucent Technologies when we were all in
the Statistics Research Department of Bell Labs. The
approach developed in this paper was designed to meet
their needs and has been implemented by them.

REFERENCES

CHEN, F., LAMBERT, D. and PINHEIRO, J. C. (2000). Incremen-
tal quantile estimation for massive tracking. In Proc. Sixth ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining 516–522. ACM Press, New York.

GREENWALD, M. B. and KHANNA, S. (2001). Space-efficient on-
line computation of quantile summaries. In Proc. 2001 ACM
SIGMOD International Conference on Management of Data
58–66. ACM Press, New York.

GREENWALD, M. B. and KHANNA, S. (2004). Power-conserving
computation of order-statistics over sensor networks. In Proc.
23rd ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems (PODS 2004) 275–285. ACM Press,
New York.

LIECHTY, J. C., LIN, D. K. J. and MCDERMOTT, J. P. (2003).
Single-pass low-storage arbitrary quantile estimation for mas-
sive datasets. Stat. Comput. 13 91–100. MR1963325

MANKU, G. S., RAJAGOPALAN, S. and LINDSAY, B. G. (1998).
Approximate medians and other quantiles in one pass and with
limited memory. In Proc. 1998 ACM SIGMOD International
Conference on Management of Data 426–435. ACM Press, New
York.

MCDERMOTT, J. P., BABU, G., LIECHTY, J. C. and
LIN, D. K. J. (2003). Data skeletons: Simultaneous esti-
mation of multiple quantiles for massive streaming datasets
with applications to density estimation. Technical Report
#03-02, Dept. Statistics, Pennsylvania State Univ.

MUNRO, J. and PATERSON, M. (1980). Selection and sorting with
limited storage. Theoret. Comput. Sci. 12 315–323. MR0589312

ROBBINS, H. and MONRO, S. (1951). A stochastic approximation
method. Ann. Math. Statist. 22 400–407. MR0042668

TIERNEY, L. (1983). A space-efficient recursive procedure for es-
timating a quantile of an unknown distribution. SIAM J. Sci.
Statist. Comput. 4 706–711. MR0725662

http://www.ams.org/mathscinet-getitem?mr=1963325
http://www.ams.org/mathscinet-getitem?mr=0589312
http://www.ams.org/mathscinet-getitem?mr=0042668
http://www.ams.org/mathscinet-getitem?mr=0725662

	Monitoring Networked Applications
	Monitoring Networked Software
	Incremental Quantiles
	IQ Agent Algorithm
	Requirements for Aggregation Algorithms
	Updating the Q-Buffer
	An Example of IQ Updating

	IQ Server Algorithm
	Algorithm Enhancements
	Performance of The Agent Algorithm
	Performance of the Aggregated Group Quantiles
	Discussion
	Acknowledgment
	References

