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Abstract: Mangrove wetlands are rapidly being lost due to anthropogenic disturbances and natural
processes, such as sea-level rise (SLR), but are also recovering as a result of conservation efforts.
Accurate and contemporary mangrove maps to detect their distribution and changes are urgently
needed to understand how mangroves respond to global change and develop effective conservation
projects. Here, we developed a new change detection algorithm called temporal consistency checking
combining annual classification and spectral time series (TCC-CS) for tracking mangrove losses and
gains. Specifically, mangrove change events were determined by measuring the deviation of greenness
and wetness of candidate change segments from automatically collected mangrove reference samples.
By applying to the world’s largest mangrove patches, we monitored the 35-year mangrove trajectory
in the Sundarbans from 1988 to 2022 using all available Landsat images on the Google Earth Engine
platform. In the Sundarbans, 18,501.89 ha of mangroves have been gained, but these have been offset
by losses of 27,009.79 ha, leading to a net mangrove loss of 1.42% (8507.9 ha) in the past 35 years. We
further mapped the pixel-level change agents and found that SLR-induced erosion and degradation,
instead of human activities, were the major drivers of losses in the Sundarbans. Trend analysis on loss
agents indicates that mangrove losses caused by human activities, such as the expansion of croplands
and aquaculture ponds, have declined, but SLR is still a persistent threat to mangrove wetlands in this
iconic mangrove area. Our study provides a computationally efficient methodology for examining
large-scale mangrove changes, and the resultant annual mangrove maps provide strong support for
mangrove conservation in the Sundarbans.

Keywords: change detection; wetlands; sea-level rise; change agents; Landsat; Google Earth Engine

1. Introduction

Mangrove forests play a critical role in the global carbon cycle through their high pro-
ductivity and substantial blue carbon pools [1,2] and a functional link between terrestrial
and marine realms by receiving land-source carbon inputs and exporting carbon towards
the open ocean [3]. However, their spatial extent is highly dynamic, with unprecedented
losses from deforestation and sea-level rise (SLR) [4]. Indeed, increases in aquaculture,
urban areas, and agricultural activities have transferred a lot of mangrove forests to anthro-
pogenic landscapes [5,6], accounting for 62% of global mangrove losses [4], with annual
deforestation rates between 0.16% and 0.39% since 2000 [7]. Recent actions have called
for ambitious mangrove conservation and restoration targets at regional, national, and
global scales to counteract the rapid mangrove loss [8], which have paid off with sub-
stantial mangrove gains in some countries such as China [9]. Hence, understanding the
annual dynamics in mangrove cover is pivotal to identifying priorities for future mangrove
restoration and assessing the effectiveness of the current conservation efforts.
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Satellite-based remote sensing observation provides an effective and viable way to
monitor mangrove changes at the regional or larger spatial extents over a long period,
which is challenging if using ground-based investigations and field surveys due to the
high cost of comprehensive mapping and inaccessibility of intertidal environments [10].
Methodologies in detecting mangrove changes by satellite remote sensing can generally be
grouped into two types: post-classification comparison and spectral time-series anomalies.

Post-classification comparison detects change areas by contrasting mangrove extents
at different time points (i.e., classification before change detection). Often, this approach
involves mangrove classification at different years using medium-resolution satellite data,
such as Landsat [11] and Sentinel-2 [12]. It performs well when the mangrove extent maps
are accurate but is particularly sensitive to errors embedded in each mangrove map and
therefore suffers from error propagation [13,14]. Its temporal frequency is commonly low,
such as once classification per 5 or 10 years [12,13], to mitigate total errors in mangrove
maps. Instead, detecting changes through spectral time-series anomalies usually tracks
where and when changes happened first and classifies each temporal segment to a specific
land-cover type as a later step (i.e., detecting changes and then classification) [13–15].
This kind of approach can detect complete changes but requires high-quality time-series
observations at a high temporal frequency. However, since mangroves are located in
low-latitudinal tidal areas with frequent cloud cover and inundation [16], their time-series
spectral observations are usually noisy, with many false changes. Detecting changes from
time-series mangrove observations thus may suffer from the inherently dynamic nature of
mangrove wetlands and have large commission errors [17].

As the world’s largest single tract of continuous mangrove forests, the Sundarbans
presents an excellent example of ongoing mangrove dynamics. Several studies [18–20]
have observed the overall stable areal extent of mangrove forests in the Sundarbans, and
the net loss area accounted for only approximately 1.2% of the total mangrove area during
the recent decades, but the turnover between mangrove losses and gains is much greater,
mainly due to erosion and accretion. Although changes in the Sundarbans mangroves have
been successfully observed, previous studies have mainly relied on differencing multi-date
mangrove classification at a 5 or 10 year frequency, failing to detect mangrove changes at an
annual scale and thus are incapable of tracking the long-term trend of changes and causes.

Here, our goal is to map and characterize changes in the Sundarbans mangrove
forests from 1988 to 2022 at an annual scale. Specifically, we aimed: (1) to develop a
new algorithm for tracking mangrove changes at an annual frequency by integrating
classification differencing and spectral time-series anomaly detection, (2) to describe the
spatio-temporal pattern of mangrove changes in the Sundarbans, and (3) to map the
mangrove change agents and quantify their long-term trends.

2. Materials and Methods
2.1. Study Area

We focused our research on the Sundarbans mangrove forests (Figure 1), which are
distributed from the Hooghly river in the west to the Baleswar river in the east, encom-
passing the India–Bangladesh border with 62% in Bangladesh and 38% in India [21], split
by numerous tidal channels and creeks. The area experiences a tropical monsoon climate,
characterized by a mean minimum and maximum temperature between 21 ◦C and 35 ◦C
and an average annual rainfall between 1500 mm and 1800 mm [22], with a wet season
between March to November. The Sundarbans mangroves hold a wide range of flora
and fauna, including 27 true mangrove taxa and 40 species of mammals, such as the Ben-
gal tiger [18,23]. Given its high ecological importance, the Sundarbans mangrove forests
have been the focus of increased conservation attention since the establishment of the
Sundarbans Biosphere Reserve in 1997.
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Figure 1. Map of the study area and its location encompassing the India–Bangladesh border. The 
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was obtained from Landsat-8 median composite in 2022. 

2.2. Landsat Imagery and Pre-Processing 
The Sundarbans mangrove forests are intersected within the Landsat scenes 137-

138/44-45 (paths/rows). The complete Landsat archive of Thematic Mapper (TM), En-
hanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI) images from 
January 1988 to December 2022 over the study region was acquired and processed on the 
Google Earth Engine (GEE) platform [24], yielding 2624 multi-band surface reflectance 
(SR) Landsat measurements, of which 1555 (59%) were considered to be useable (cloud 
cover < 30%) based on the quality assurance band provided by the CFmask algorithm [25]. 
Median composites were generated for each year to obtain cloud-free Landsat images and 
to fix our analysis on the relatively stable water level. Due to the sensor differences be-
tween ETM+ and OLI and sufficient observations of Landsat-8, only the Landsat-8 OLI 
images were used since 2013. The average cloud-free observations per year were 427, with 
a standard deviation of 155 (Figure 2a). Figure 2b shows the number of used Landsat ob-
servations for each year. 

Figure 1. Map of the study area and its location encompassing the India–Bangladesh border. The
false-color (near-infrared (NIR), shortwave infrared band 1 (SWIR), and red bands as RGB) image
was obtained from Landsat-8 median composite in 2022.

2.2. Landsat Imagery and Pre-Processing

The Sundarbans mangrove forests are intersected within the Landsat scenes
137–138/44–45 (paths/rows). The complete Landsat archive of Thematic Mapper (TM),
Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI) images
from January 1988 to December 2022 over the study region was acquired and processed on
the Google Earth Engine (GEE) platform [24], yielding 2624 multi-band surface reflectance
(SR) Landsat measurements, of which 1555 (59%) were considered to be useable (cloud
cover < 30%) based on the quality assurance band provided by the CFmask algorithm [25].
Median composites were generated for each year to obtain cloud-free Landsat images
and to fix our analysis on the relatively stable water level. Due to the sensor differences
between ETM+ and OLI and sufficient observations of Landsat-8, only the Landsat-8 OLI
images were used since 2013. The average cloud-free observations per year were 427, with
a standard deviation of 155 (Figure 2a). Figure 2b shows the number of used Landsat
observations for each year.
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distribution of total cloud-free Landsat observations from 1988–2022, which provides pixel-level 
details of how many Landsat observations were available for classification. (b) Numbers of clear 
images (cloud coverage < 30%) by Landsat sensors for each year. 

2.3. Mapping Mangrove Extent for Each Year 
2.3.1. Collecting Unchanged Training Samples 

For detecting the mangrove change area, the first step in this study was to map the 
mangrove distribution for each year (Figure 3). The supervised strategy was chosen for 
classification due to its reliable performance. However, supervised classification requires 
abundant training samples, which are labor-intensive to collect, especially for an annual 
classification task [26]. Thus, we collected unchanged training samples for the classifica-
tion each year, comprising two types: mangroves and non-mangroves. 

 
Figure 3. Methodological workflow for the detection of mangrove changes. 

The unchanged mangrove samples were collected from existing global mangrove 
products, including Giri’s global mangrove map in 2000 [27] and Global Mangrove Watch 
version 3.0 [28] from 1996 to 2020. Specifically, we randomly selected 100 points within 
the intersection parts of these mangrove maps and then generated a buffer around these 
points with a radius of 300 meters (i.e., the length of 10 Landsat pixels) to increase the total 

Figure 2. The number of good Landsat observations used to map mangrove change. (a) The spatial
distribution of total cloud-free Landsat observations from 1988–2022, which provides pixel-level
details of how many Landsat observations were available for classification. (b) Numbers of clear
images (cloud coverage < 30%) by Landsat sensors for each year.

2.3. Mapping Mangrove Extent for Each Year
2.3.1. Collecting Unchanged Training Samples

For detecting the mangrove change area, the first step in this study was to map the
mangrove distribution for each year (Figure 3). The supervised strategy was chosen for
classification due to its reliable performance. However, supervised classification requires
abundant training samples, which are labor-intensive to collect, especially for an annual
classification task [26]. Thus, we collected unchanged training samples for the classification
each year, comprising two types: mangroves and non-mangroves.
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Figure 3. Methodological workflow for the detection of mangrove changes.

The unchanged mangrove samples were collected from existing global mangrove
products, including Giri’s global mangrove map in 2000 [27] and Global Mangrove Watch
version 3.0 [28] from 1996 to 2020. Specifically, we randomly selected 100 points within the
intersection parts of these mangrove maps and then generated a buffer around these points
with a radius of 300 meters (i.e., the length of 10 Landsat pixels) to increase the total number
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of training samples [4]. The intersections between the buffers and the mangrove intersection
map (i.e., the mangrove part within these buffers) were considered the initial unchanged
mangrove samples. Since the mangrove intersection map has different periods with this
study (1996–2020 vs. 1988–2022) and may have misclassification errors, we updated the
initial unchanged mangrove samples to each year by eliminating pixels having abnormally
low greenness, considering that mangroves are evergreen broadleaf woody plants and
usually have high greenness. In detail, we calculated the NDVI z-score for each Landsat
pixel from the initial unchanged mangrove samples and eliminated pixels with NDVI
z-scores below −2 [29]. The NDVI z-score measures the degree to which the pixel deviates
from the mangrove samples. Only 2.28% of the data-point’s z-scores lie below−2 if the data
follow a Gaussian distribution, so −2 is often selected as the threshold to detect statistical
outliers. The pixels within the intersection area of these annual mangrove samples were
finally determined as the unchanged mangrove samples.

The unchanged non-mangrove samples consist of five sub-classes, including inland
forests, croplands, water, tidal flats, and impervious surfaces. We manually collected
50 unchanged polygons for each subclass by referring to the median Landsat composites
in the first year (1988), the median year (2005), and the last year (2022). Together with the
unchanged mangrove samples, these unchanged non-mangrove samples were applied as
training samples for subsequent annual supervised classifications.

2.3.2. Binary Supervised Classification

An annual supervised classification was conducted on GEE by classifying every
Landsat pixel to either mangroves or non-mangroves. This binary strategy, compared to
multi-class classification (i.e., mangroves and multiple non-mangroves subclasses), could
improve classification accuracy even with fewer training samples [30]. The commonly used
random forest (RF) was used as the classifier due to its high accuracy and robustness [31].
The parameter NTrees (the number of trees) in RF was set as 200 according to our previous
experiment on mapping tidal wetlands [16]. To help distinguish mangroves and other
land-cover types, several quantile composites of Landsat images were concatenated as the
final image for classification, including 10%, 25%, median, 75%, and 90%. These quantile
composite images represented different phenological stages and water levels, providing
extra information for the classification compared to using only a median image [32,33].
Specifically, all spectral bands at a 30 m resolution and several spectral indices of these
quantile composite images (listed in Table 1) were used in the classification.

Table 1. Spectral indices used in the classification.

Index Full Name Equation References

NDVI Normalized Difference Vegetation Index (ρnir − ρred)/(ρnir + ρred) [34]
EVI Enhanced Vegetation Index 2.5× ρnir−ρred

ρnir+6ρred−7.5ρblue+1 [35]
NIRv Near-Infrared Reflectance of Vegetation NDVI × ρnir [36]
LSWI Land Surface Water Index (ρnir − ρswir1)/(ρnir + ρswir1) [37]
MVI Mangrove Vegetation Index

(
ρnir − ρgreen

)
/
(
ρswir1 − ρgreen

)
[38]

MMRI Modular Mangrove Recognition Index (|MNDWI| − |NDVI|)/(|MNDWI|+ |NDVI|) [39]
mNDWI modified Normalized Difference Water Index

(
ρgreen − ρswir1

)
/
(
ρgreen + ρswir1

)
[40]

NDSI Normalized Difference Soil Index
(
ρswir2 − ρgreen

)
/
(
ρswir2 + ρgreen

)
[41]

TCB Tasseled-Cap Brightness Coe f f icient1× Spectral bands [42]
TCG Tasseled-Cap Greenness Coe f f icient2× Spectral bands [42]
TCW Tasseled-Cap Wetness Coe f f icient3× Spectral bands [42]

Note: Spectral bands include blue, green, red, NIR, SWIR1, and SWIR2. Coefficients can be found in Crist. [43]
and Baig et al. [42].

2.3.3. Post-Processing

After running the binary supervised classification, three procedures were performed
to improve the annual classification results:
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1. Reserving vegetation-dominated pixels: The vegetation–water mixture is the main
commission error source in mapping mangroves [33,44]. As a hard-classification study,
the resulting mangrove pixels are expected to be dominated by vegetation. As such,
we manually selected 60 unchanged endmembers during 1988–2022 and performed
the linear unmixing technique for each year, estimating the percentage of sub-pixel
vegetation, water, and bare soil coverages. Only pixels classified as mangroves with
the largest vegetation proportion were retained. This step could eliminate commission
errors distributed along the edges between mangroves and water bodies;

2. Eliminating inland errors: Dense inland forest is another main commission error
source [44]. Inland commission errors were filtered out by intersecting the classifica-
tion results with those existing mangrove products (i.e., Giri’s mangrove map and
GMW v3.0). Specifically, we used the union of existing mangrove products as the
initial maximum mangrove extent (MME), which was intersected with our mangrove
classification results in 1988, 2005, and 2022 (i.e., the first, median, and last years) to
identify the true mangrove areas in these three years. Considering this MME layer
may omit some mangrove areas due to the period mismatch (1988–2022 vs. 1996–2020
of GMW), we manually retained those mangrove patches that were not intersected
by the MME layer in the three years. The union of the filtered mangrove areas in the
three years was used as the final MME during 1988–2022, which was intersected with
our mangrove results in other years to exclude inland errors;

3. Filling holes within mangrove patches: Lastly, the holes within the mangrove patches
were filled to mitigate omission errors. Our assumption is that the holes surrounded
by mangroves are either omission errors or low-vegetation-cover forest gaps. Thus,
we checked the NDVI values of each hole pixel and filled areas with high-enough
NDVI (i.e., NDVI z-score > −2) and the highest vegetation proportion (to ensure
they are vegetation-dominated areas). Through these three steps, high-quality annual
mangrove maps could be generated with minimized commission and omission errors.

2.4. Mangrove Change Detection
2.4.1. Temporal Consistency Checking

Considering changes by contrasting between classifications at two points in time
may be false-positive due to the error propagation, we checked the temporal contexts
of every potential change pixel (i.e., pixels with classification differences). Most existing
temporal consistency checking (TCC) approaches are solely based on temporal classification
results [45,46], ignoring the consistency of time-series spectral signals. Here, we developed
a new strategy (Figure 4) based on time-series of both classification results and spectral
signals (mainly NDVI and wetness in this study) to detect the true change, called the
TCC-CS algorithm:

1. Correcting ephemeral spikes: Real mangrove gains/losses are persistent, with dif-
ferent land-cover types before and after the change times. Therefore, spikes in the
time-series classification trajectory are assumed to be classification errors induced by
noise such as residual clouds, cloud shadows, or high tides. A three-year temporal
window was used to determine the spikes, including the prior year and the following
two years of the target year, and the spike length was set up to two, considering that
two consecutive isolated classification results were also highly likely to be misclassi-
fied. The classification state of the detected spikes was corrected between mangrove
(1) and non-mangrove (0) in chronological order (Figure 4a). This correcting process
was iterated until no spikes occurred.

2. Capturing spectral deviations relative to samples: Once the spikes within the clas-
sification time series were corrected, the trajectories of the classification results and
spectral indices were divided into several segments according to the breakpoints
(Figure 4b). Comparison analysis indicates that mangroves are the only land-cover
type with high greenness and wetness in the study area (Figure 5). Therefore, man-
grove segments should have both high greenness and wetness, and non-mangrove
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segments could have high greenness (inland forests) or high wetness (tidal flats), or
neither (impervious surfaces). We compared the segments’ average NDVI and TCW
spatial z-scores against a predefined threshold −2 to capture the spectral deviation
(Figure 4c). In contrast to the commonly used temporal z-score, spatial z-score nor-
malized the spectral signals to make the spectral trajectory more consistent across
the sensors. Notice that if the breakpoint occurred in the first three years (i.e., 1989
and 1990), the detected change event might be false because the classification results
before the breakpoint may contain errors (i.e., classification errors occurred in the
first three years). For this situation, we additionally tested the segment before the
breakpoint and corrected this to mangroves/non-mangroves if its average NDVI and
TCW spatial z-scores were above/below −2.

3. Culling redundant breakpoints: In this case, 0.52% of the change pixels were detected
to change more than twice after running the above correcting procedures. Since the
transitions between mangrove and non-mangrove are unlikely to occur more than
twice in a relatively short period, these breakpoints usually include false change
events. For these trajectories with three breakpoints, the shortest temporal segment
was corrected to the opposite state so that only one change was retained (Figure 4d).
We observed that the pixels detected with more than three changes were almost all
located at the edge of the mangroves (i.e., mixed pixels), mainly due to unstable
classification results caused by similar vegetation and water percentages. These
pixels were directly labeled as temporally stable (i.e., no real changes happened) and
classified as the mode of annual classification results.
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Figure 4. Annual classification results corrected by TCC-CS over a selected site (latitude: 22.385418◦N,
longitude: 89.646424◦E). Spikes in the (a) raw classification results were iteratively corrected first.
(b) Temporal segments were then corrected by their (c) average z-score of NDVI and TCW, generating
the black line in (d). Since the breakpoints were more than 2, the shortest segment was corrected to
its opposite state. Eventually, a mangrove gain event was detected in 1995.
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2.4.2. Identifying Change Agents

The mangrove changes were grouped into mangrove loss or gain. We classified the
Landsat median composites in the last year (i.e., 2022) into five land-cover classes using an
RF classifier, including impervious surfaces, water bodies, croplands, inland forests, and
bare soils, to determine the type of mangroves loss. These five classes roughly correspond
to the loss drivers of urbanization, erosion or aquaculture expansion, agriculture activities,
forest succession, and degradation, respectively. However, different causes may result
in the same land-cover consequence [47]. For example, both rising sea levels and the
expansion of aquaculture ponds can convert mangroves to water bodies. In addition,
bare soils may be caused by the mangroves degraded to unvegetated tidal flats or by
abandoned aquaculture ponds transferred from mangroves. Impervious surfaces may also
not be due to urbanization, but rather mangroves degraded to high-albedo sandy beaches.
To overcome this problem, the land-cover result in 2022 of the mangrove loss area was
intersected to the maximum seawater extent (MSE), and only water bodies, bare soils, and
impervious surfaces intersected with the MSE (i.e., seawater, tidal flats, and sandy beaches)
were considered as true erosion (i.e., mangrove loss areas covered by seawater in 2022) and
degradation (i.e., mangrove loss areas covered by tidal flats or sandy beaches in 2022) [4].
MSE here was determined from the largest permanent water polygon of the global surface
permanent water product [48].

Similarly, we conducted a classification on the Landsat median composite in 1988 to
determine from which land-cover type mangroves gained. Five land-cover types were
considered here, including water bodies, tidal flats, low-coverage vegetation, inland forests,
and cropland. Mangrove gains can be caused by both anthropogenic mangrove reha-
bilitation and natural expansion, which arediffcult to distinguish using only land-cover
information. As such, we focused on interpreting mangrove areas gained from seawater and
tidal flats as the accretion and propagation and only reported the land-cover information
instead of gain agents for mangrove areas increased from aquaculture ponds, impervious
surfaces, croplands, and inland forests.
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2.5. Validation of the Mangrove Maps

The accuracies of the annual mangrove maps and the change map were assessed
separately using stratified random sampling. For annual mangrove maps, we evaluated the
accuracy of maps in the first and last years (i.e., 1988 and 2022) to provide a comprehensive
understanding. Test samples were randomly selected within the two classes of the binary
mangrove maps with a sample size of 1145 determined by the following equations [49]:

n =
∑ WiSi

S(Ô)
(1)

where S(Ô) is the standard error of the estimated overall accuracy of class i, Wi is the
proportion of class i, and the Si was calculated as:

Si =
√

Ui(1−Ui) (2)

where Ui is the expected user’s accuracy of class i. The S(Ô) was set as 0.01 by referring to
Olofsson et al. [49] and the Ui for mangrove and non-mangrove were set as 0.9 and 0.85,
respectively, as mangroves are our target class.

The test sample size for the change map was determined with the same approach but
with different strata, including stable mangroves, stable non-mangroves, mangrove loss,
and mangrove gain. Note that we assigned two-thirds of the test samples to the change
classes (i.e., mangrove loss and gain) because they are our targets. Confusion matrixes
were then generated from these test samples and were used to derive the accuracy indices,
including the user’s accuracy (UA), producer’s accuracy (PA), overall accuracy (OA), and
F1 score.

3. Results
3.1. Accuracy Assessment

The OAs of the mangrove maps in 1988 and 2022 were around 98%, with the F1 score
of all classes greater than 0.98 (Table 2). UAs (Table 2) of mangroves were fairly consistent
over the two tested years, with a small reduction in 2022 compared to 1988. Consistent
PAs for mangroves were also achieved, with a 0.48% increase in 2022. Overall, stable
accuracies in independent classification results suggest that our approach achieved reliable
performance in mapping mangrove extents at multiple periods.

Table 2. Accuracies of mangrove maps in 1988 and 2022.

UA PA F1 Score
OA

Mangrove Non-Mangrove Mangrove Non-Mangrove Mangrove Non-Mangrove

1988 98.40% 99.22% 98.40% 99.22% 0.98 0.99 98.95%
2022 97.60% 99.16% 98.84% 98.84% 0.98 0.99 98.86%

Assessment of the mangrove change map shows a pixel-wise OA of 96.12%, with an
F1 score of all the change classes greater than 0.90 (Table 3). UA for all the change types
varied between 95% and 99%, while the PA of the stable mangrove class was below 90%,
mainly due to the commission errors in the mangrove loss and gain areas (Table 3). The
UA of the two target change classes (i.e., loss and gain) differed by about 1%, and both
were less than the respective PA. These consistent and high accuracies confirmed that the
proposed TCC-CS algorithm detected change areas in mangrove extents accurately.
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Table 3. Error matrix of sample counts at the mangrove change map.

References

Loss Gain Stable 1 Stable 0 Total UA (%) F1 Score

Map

Loss 155 0 7 1 163 95.09 0.97
Gain 0 157 5 1 163 96.32 0.97

Stable 1 0 3 78 1 82 95.12 0.91
Stable 0 1 0 0 81 82 98.78 0.98

Total 156 160 90 84 490
PA (%) 99.34 98.13 86.67 96.43
OA (%) 96.12

Note: Stable 0 and 1 represent stable mangroves and non-mangroves, respectively.

3.2. Pattern of Mangrove Changes in the Sundarbans

We observed both large areas of mangrove losses and gains in the Sundarbans from
1988 to 2022, with losses occurring mainly in the sea-facing parts of mangroves or along
tidal creeks and gains occurring in western and eastern riverbanks (Figure 6a). Mangrove
areas in the Sundarbans exhibited strong decreasing trends from 1988 to 2022, with a loss
rate of 236.74 ha per year (Figure 6b), mainly due to the larger losses over gains in most
years (Figure 6c). Around 27,009.79 ha of mangroves were lost, and 18,501.89 ha were
gained in the Sundarbans, indicating a net mangrove loss of 8507.9 ha. Annual gains in
mangrove forests were generally uniform during the period, except for two large increases
in 1989 and 1998 (Figure 6c). In contrast, annual losses in mangrove areas were highly
dynamic, with the most intensive net losses from 1992–1996 (Figure 6c).
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Our change map also illustrates pixel-wise timing of the loss/gain events (Figure 7a).
The gradual processes of losses in sea-facing mangrove areas were accurately detected
(Figure 7b,c), revealing patterns of natural erosion. In contrast, losses in land-ward man-
groves tended to be abrupt, evidencing deforestation in a short period, such as 1990–1995
(Figure 7d). Gradual processes of mangrove gains along rivers were also detected. Some
gains occurred around existing mangroves, reflecting the natural expansion of mangroves
(Figure 7e); others did not expand from existing mangroves but instead formed large
mangrove patches directly in the river (Figure 7f,g).
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Figure 7. (a) Spatial distribution of loss/gain timing in mangrove cover from 1988–2022. Six regional
subsets of (b–d) losses and (e–g) gains show case studies of mangrove change in the Sundarbans.
Note that the change map shown here delineates the last change year; that is, a single location
can change more than once during 1989–2022 (1988 as the baseline), but only the latest change
was indicated.

3.3. Mangrove Change Agents

The change agent map shows notable mangrove loss/gain patterns driven by natural
and anthropogenic processes (Figure 8). Erosion accounted for approximately 80.51%
(21,745.10 ha) of the total mangrove loss area (27,009.79 ha) in the Sundarbans, followed
by mangrove degradation accounting for 12.62% of the losses (3410.58 ha). The average
erosion and degradation areas were 639.56 ha and 100.31 ha per year, respectively. Anthro-
pogenic disturbances (i.e., aquaculture, agriculture, forest management, and urbanization)
accounted for only 6.87% of the total losses, of which agricultural and aquacultural expan-
sion were the leading causes of deforestation, with an average of 18.31 ha of mangrove
loss each year. These results indicate that mangrove losses in the Sundarbans were mainly
caused by natural stressors, such as sea-level rise, instead of human activities. Natural
processes also dominated mangrove gains in the Sundarbans. Mangroves transferred from
seawater, tidal flats, and low-coverage vegetation accounted for 65.92% (12,197.25 ha),
16.09% (2976.00 ha), and 14.95% (2766.22 ha) of the total gain area, respectively. Only 3.04%
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of mangroves were gained from cropland or aquaculture ponds, with an average of 8.27 ha
of human-driven mangrove increase per year.
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Figure 8. Change agent maps with some regional subsets. (a) Mangrove loss agents. (b) Land-cover
types from which mangroves gained.

By overlaying the timing and agents of mangrove losses, we extracted the loss agent
map to each year and calculated the area for each loss agent of each year to examine the
temporal trend of each loss agent during 1989−2022 (1988 as the baseline) (Figure 9). While
erosion was detected as the major agent of mangrove loss, we found they are significantly
declining with a trend at−9.537 ha per year (Figure 9). Conversely, mangrove losses caused
by degradation are increasing, with a sharp increase since 2018. Mangrove losses caused
by inland forests are slightly increasing, mainly between 2000 and 2015. The losses of
mangroves caused by cropland and aquaculture ponds show similar temporal trajectories,
with the largest between 1990 and 2000 and declining in recent years. There was no
significant trend and magnitude of mangrove losses caused by urbanization (p = 0.678),
indicating that urbanization was not the main driver of mangrove losses in the Sundarbans.
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4. Discussion
4.1. Change Detection with Temporal Consistency Checking

While mangrove changes have been detected from regional to global scales, most
studies focus on the accuracy of annual mangrove maps and usually have coarse temporal
intervals (e.g., 5 or 10 years), lacking consideration of the temporal textual information.
By combining time-series classification results and temporal information of greenness and
wetness, this study detected where and when mangrove changes happened and further
determined the pattern and temporal trends of change agents at the pixel level, producing
35-year annual mangrove maps in the Sundarbans with high accuracy.

Change detection by simple classification differencing detected a lot of false changes
due to classification errors in different years (Figure 10a). In contrast, TCC can improve
the accuracy of change maps based on temporal textual information (Figure 10b). There
are several contributions of the proposed TCC-CS approach for change detection. First,
compared to previous TCC approaches [45,46], TCC-CS not only removes temporal spikes
due to classification errors but also takes into account changes in greenness and wetness.
Only multi-date classification differences with large deviations in greenness or wetness
from mangrove samples would be considered true changes. This strategy could benefit
change detection by correcting pixels that have been misclassified for consecutive years.
Second, our approach can track the temporal trajectory of greenness and wetness with
no need for serious calibration across sensors by using the spatial z-score. This avoids
uncertainties of conventional NDVI thresholding methods [4,50] because NDVI changes
can be caused by sensor replacement [51] (e.g., from Landsat TM/ETM+ to OLI) and
drift [52] (e.g., MODIS). Another benefit of our approach is that mangrove changes can
be detected without masking out high-tide observations. The reflectance of mangroves is
highly impacted by water levels [16], and thus false changes can be detected when using
images with different instantaneous tide levels. Previous approaches using high-frequency
consecutive satellite observations may be invalid if consecutive high-tide observations
occur. In contrast, our approach fixes the tide level to a median using annual composites,
mitigating change errors caused by tidal fluctuations. Moreover, TCC-CS is computationally
efficient because there is no need to fit regression lines to reconstruct spectral trajectories [53].
Given these potential advantages, the TCC-CS approach presented here allows the detection
of land-cover changes in large regions.
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4.2. Improvement over Existing Global Mangrove Products

Comparing our annual mangrove maps to two widely used global mangrove products
(Giri et al. [27] and GMW v3.0 [28]), we found a considerable improvement in spatial
details and accuracy. We observed that Giri’s mangrove map underestimated the full
extent of mangrove areas compared to this study, mainly for small riverine mangrove
patches (Figure 11c). Moreover, many mangrove pixels around the canopy gaps were
detected as non-mangroves by Giri’s mangrove map, thus causing more omission errors.
Oppositely, mangrove areas in the GMW v3.0 contained large areas of water-dominated
tidal channels and forest gaps, thus with more commission errors (Figure 11d). Moreover,
mangrove patches in the GMW v3.0 cannot match the Landsat reference well (Figure 11d),
mainly due to the geometric misregistration within the L-band SAR mosaics from which
GMW v3.0 was generated [28]. In contrast, our annual mangrove maps contained riverine
mangrove patches, accurately detected forest gaps, and reserved spatial details, such as
narrow tidal channels (Figure 11e,f). These improvements are mainly due to the unmixing
procedure eliminating non-vegetation-dominated pixels and the hole-filling procedure in
the post-classification step.
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Figure 11. Visual comparison of this study to Giri’s mangrove map in 2000 and the GMW v3.0 in
2016. The left panels (a,b) show the false-color composite of the first three components of the tasseled
cap transformation (R: Brightness component; G: Greenness component; B: Wetness component). The
middle panels (c,d) indicate existing mangrove maps provided by Giri et al. [27] and GMW v3.0 [28].
The red boxes mark some obvious classification errors. The inset map in (d) illustrates the mismatch
between the Landsat image and GMW v3.0. The right panels (e,f) show the mangrove area detected
by this study. The yellow regions represent mangrove areas.
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4.3. Mangrove Losses with Sea-Level Rise

Due to their ecologically important value, the Sundarbans mangrove forests are des-
ignated as protected areas, and three wildlife sanctuaries within the Sundarbans were
recognized as World Heritage Sites in 1997 [54]. Indeed, we have not detected massive man-
grove logging after 1997 in the Sundarbans, which evidences the effectiveness of mangrove
conservation. However, our results suggest that erosion and degradation caused extensive
mangrove losses in this region, which pose new challenges for mangrove conservation.
These results fit perfectly with the findings of Goldberg et al. [4] that SLR-induced erosion
was the major natural cause of mangrove losses in the past decades.

SLR can cause the inundation regime (e.g., inundation depth, frequency, and duration)
to exceed the physiological thresholds of mangroves and has been considered a major threat
to global coastal wetland survival [55]. While mangroves can facilitate sediment deposition
to defend SLR, they would still lose when the rate of SLR exceeds the capacity of mangroves
to keep pace [56]. The rate of SLR in the Sundarbans is 6.04 mm per year [19], which is
nearly two-folds of the global average (3.32 mm per year) [57] and is close to the threshold of
6.10 mm per year detected by Saintilan et al. [58], beyond which mangroves will be unable
to sustain accretion. By increasing the pore water salinity and altering the inundation
regime beyond the physiological threshold of mangroves, SLR can convert mangroves to
unvegetated tidal flats (i.e., degradation) and further open water (i.e., erosion) [55]. The
detected increasing/decreasing trends for erosion/degradation (Figure 9) should thus be
interpreted as the time gap between degradation and submergence instead of decreasing
impacts of SLR. This means the large area of mangrove degradation since 2018 (Figure 9)
will convert to erosion in the next few years as SLR continues. While mangroves are resilient
to SLR by landward migration and expansion with sediment accumulation [59], the total
mangrove area is still declining with persistent SLR. These findings thus emphasize the
importance of mitigating the magnitude of rapid SLR and ensuring sediment supply for
enhancing the resilience of mangroves.

5. Conclusions

This study proposed a temporal consistency checking approach for detecting man-
grove changes using a 35-year Landsat archive at the annual scale. Applying this approach
to the Sundarbans, the world’s largest continuous mangrove patch, we confirmed its su-
perior performance through both qualitative (i.e., visual comparison) and quantitative
(i.e., statistical accuracy assessment) evaluation. We concluded that across the Sundarbans,
from 1988 to 2022, approximately 27,009.79 ha of mangrove forests have been lost but
18,501.89 ha of mangrove have been gained, resulting in a total net loss area of 8507.9 ha.
SLR-induced erosion and degradation were further identified as the main drivers of man-
grove losses in the Sundarbans. Applying our temporal consistency checking approach to
detect changes in mangroves and other wetland types in a larger region could be further
explored in future research.

Author Contributions: Conceptualization, Z.Z., M.R.A., Y.L. (Yi Li) and Y.L. (Yangfan Li); methodol-
ogy, Z.Z.; software, Z.Z.; validation, Z.Z.; writing—original draft preparation, Z.Z.; writing—review
and editing, Z.Z., M.R.A., Q.Z., Y.L. (Yi Li) and Y.L. (Yangfan Li). All authors have read and agreed to
the published version of the manuscript.

Funding: Y.L. (Yangfan Li) acknowledges the support from the National Natural Science Foundation
of China Grants (No. 42276232), the Innovation Group Project of Southern Marine Science and
Engineering Guangdong Laboratory (Zhuhai) (No. 311021004), and the Internal Program of State
Key Laboratory of Marine Environmental Science (No. MELRI2205).

Data Availability Statement: The output annual mangrove maps in the Sundarbans are available
here: https://figshare.com/articles/dataset/Annual_mangrove_maps_from_1988_to_2022_in_the_
Sundarbans/21779636 (accessed on 25 December 2022).

Acknowledgments: The authors would like to thank all the anonymous reviewers and the editor for
their constructive comments and suggestions on this manuscript.

https://figshare.com/articles/dataset/Annual_mangrove_maps_from_1988_to_2022_in_the_Sundarbans/21779636
https://figshare.com/articles/dataset/Annual_mangrove_maps_from_1988_to_2022_in_the_Sundarbans/21779636


Remote Sens. 2023, 15, 625 16 of 18

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the Most Carbon-Rich

Forests in the Tropics. Nat. Geosci. 2011, 4, 293–297. [CrossRef]
2. Lovelock, C.E.; Reef, R. Variable Impacts of Climate Change on Blue Carbon. One Earth 2020, 3, 195–211. [CrossRef]
3. Regnier, P.; Resplandy, L.; Najjar, R.G.; Ciais, P. The Land-to-Ocean Loops of the Global Carbon Cycle. Nature 2022, 603, 401–410.

[CrossRef]
4. Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global Declines in Human-driven Mangrove Loss. Glob. Change Biol.

2020, 26, 5844–5855. [CrossRef] [PubMed]
5. Richards, D.R.; Friess, D.A. Rates and Drivers of Mangrove Deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA

2016, 113, 344–349. [CrossRef]
6. Hagger, V.; Worthington, T.A.; Lovelock, C.E.; Adame, M.F.; Amano, T.; Brown, B.M.; Friess, D.A.; Landis, E.; Mumby, P.J.;

Morrison, T.H.; et al. Drivers of Global Mangrove Loss and Gain in Social-Ecological Systems. Nat. Commun. 2022, 13, 6373.
[CrossRef]

7. Hamilton, S.E.; Casey, D. Creation of a High Spatio-Temporal Resolution Global Database of Continuous Mangrove Forest Cover
for the 21st Century (CGMFC-21): CGMFC-21. Global Ecol. Biogeogr. 2016, 25, 729–738. [CrossRef]

8. Buelow, C.A.; Connolly, R.M.; Turschwell, M.P.; Adame, M.F.; Ahmadia, G.N.; Andradi-Brown, D.A.; Bunting, P.; Canty, S.W.J.;
Dunic, J.C.; Friess, D.A.; et al. Ambitious Global Targets for Mangrove and Seagrass Recovery. Curr. Biol. 2022, 32, 1641–1649.e3.
[CrossRef]

9. Wang, X.; Xiao, X.; Xu, X.; Zou, Z.; Chen, B.; Qin, Y.; Zhang, X.; Dong, J.; Liu, D.; Pan, L.; et al. Rebound in China’s Coastal
Wetlands Following Conservation and Restoration. Nat. Sustain. 2021, 4, 1076–1083. [CrossRef]

10. Taddeo, S.; Dronova, I.; Depsky, N. Spectral Vegetation Indices of Wetland Greenness: Responses to Vegetation Structure,
Composition, and Spatial Distribution. Remote Sens. Environ. 2019, 234, 111467. [CrossRef]

11. Lucas, R.; Otero, V.; Van De Kerchove, R.; Lagomasino, D.; Satyanarayana, B.; Fatoyinbo, T.; Dahdouh-Guebas, F. Monitoring
Matang’s Mangroves in Peninsular Malaysia through Earth Observations: A Globally Relevant Approach. Land Degrad. Dev.
2021, 32, 354–373. [CrossRef]

12. Zhang, R.; Jia, M.; Wang, Z.; Zhou, Y.; Mao, D.; Ren, C.; Zhao, C.; Liu, X. Tracking Annual Dynamics of Mangrove Forests in
Mangrove National Nature Reserves of China Based on Time Series Sentinel-2 Imagery during 2016–2020. Int. J. Appl. Earth Obs.
Geoinf. 2022, 112, 102918. [CrossRef]

13. Zhu, Z. Change Detection Using Landsat Time Series: A Review of Frequencies, Preprocessing, Algorithms, and Applications.
ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [CrossRef]

14. Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change Detection Techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [CrossRef]
15. De Jong, S.M.; Shen, Y.; de Vries, J.; Bijnaar, G.; van Maanen, B.; Augustinus, P.; Verweij, P. Mapping Mangrove Dynamics and

Colonization Patterns at the Suriname Coast Using Historic Satellite Data and the LandTrendr Algorithm. Int. J. Appl. Earth Obs.
Geoinf. 2021, 97, 102293. [CrossRef]

16. Zhang, Z.; Xu, N.; Li, Y.; Li, Y. Sub-Continental-Scale Mapping of Tidal Wetland Composition for East Asia: A Novel Algorithm
Integrating Satellite Tide-Level and Phenological Features. Remote Sens. Environ. 2022, 269, 112799. [CrossRef]

17. Yang, X.; Zhu, Z.; Qiu, S.; Kroeger, K.D.; Zhu, Z.; Covington, S. Detection and Characterization of Coastal Tidal Wetland Change
in the Northeastern US Using Landsat Time Series. Remote Sens. Environ. 2022, 276, 113047. [CrossRef]

18. Giri, C.; Pengra, B.; Zhu, Z.; Singh, A.; Tieszen, L.L. Monitoring Mangrove Forest Dynamics of the Sundarbans in Bangladesh and
India Using Multi-Temporal Satellite Data from 1973 to 2000. Estuar. Coast. Shelf Sci. 2007, 73, 91–100. [CrossRef]

19. Quader, M.A.; Agrawal, S.; Kervyn, M. Multi-Decadal Land Cover Evolution in the Sundarban, the Largest Mangrove Forest in
the World. Ocean. Coast. Manag. 2017, 139, 113–124. [CrossRef]

20. Samanta, S.; Hazra, S.; Mondal, P.P.; Chanda, A.; Giri, S.; French, J.R.; Nicholls, R.J. Assessment and Attribution of Mangrove
Forest Changes in the Indian Sundarbans from 2000 to 2020. Remote Sens. 2021, 13, 4957. [CrossRef]

21. Sahana, M.; Sajjad, H.; Ahmed, R. Assessing Spatio-Temporal Health of Forest Cover Using Forest Canopy Density Model and
Forest Fragmentation Approach in Sundarban Reserve Forest, India. Model. Earth Syst. Environ. 2015, 1, 49. [CrossRef]

22. Rodda, S.R.; Thumaty, K.C.; Fararoda, R.; Jha, C.S.; Dadhwal, V.K. Unique Characteristics of Ecosystem CO2 Exchange in
Sundarban Mangrove Forest and Their Relationship with Environmental Factors. Estuar. Coast. Shelf Sci. 2022, 267, 107764.
[CrossRef]

23. Mukul, S.A.; Alamgir, M.; Sohel, M.S.I.; Pert, P.L.; Herbohn, J.; Turton, S.M.; Khan, M.S.I.; Munim, S.A.; Reza, A.H.M.A.; Laurance,
W.F. Combined Effects of Climate Change and Sea-Level Rise Project Dramatic Habitat Loss of the Globally Endangered Bengal
Tiger in the Bangladesh Sundarbans. Sci. Total Environ. 2019, 663, 830–840. [CrossRef]

24. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial
Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

25. Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B.
Cloud Detection Algorithm Comparison and Validation for Operational Landsat Data Products. Remote Sens. Environ. 2017, 194,
379–390. [CrossRef]

http://doi.org/10.1038/ngeo1123
http://doi.org/10.1016/j.oneear.2020.07.010
http://doi.org/10.1038/s41586-021-04339-9
http://doi.org/10.1111/gcb.15275
http://www.ncbi.nlm.nih.gov/pubmed/32654309
http://doi.org/10.1073/pnas.1510272113
http://doi.org/10.1038/s41467-022-33962-x
http://doi.org/10.1111/geb.12449
http://doi.org/10.1016/j.cub.2022.02.013
http://doi.org/10.1038/s41893-021-00793-5
http://doi.org/10.1016/j.rse.2019.111467
http://doi.org/10.1002/ldr.3652
http://doi.org/10.1016/j.jag.2022.102918
http://doi.org/10.1016/j.isprsjprs.2017.06.013
http://doi.org/10.1080/0143116031000139863
http://doi.org/10.1016/j.jag.2020.102293
http://doi.org/10.1016/j.rse.2021.112799
http://doi.org/10.1016/j.rse.2022.113047
http://doi.org/10.1016/j.ecss.2006.12.019
http://doi.org/10.1016/j.ocecoaman.2017.02.008
http://doi.org/10.3390/rs13244957
http://doi.org/10.1007/s40808-015-0043-0
http://doi.org/10.1016/j.ecss.2022.107764
http://doi.org/10.1016/j.scitotenv.2019.01.383
http://doi.org/10.1016/j.rse.2017.06.031
http://doi.org/10.1016/j.rse.2017.03.026


Remote Sens. 2023, 15, 625 17 of 18

26. Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable Classification with Limited
Sample: Transferring a 30-m Resolution Sample Set Collected in 2015 to Mapping 10-m Resolution Global Land Cover in 2017.
Sci. Bull. 2019, 64, 370–373. [CrossRef]

27. Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and Distribution of Mangrove
Forests of the World Using Earth Observation Satellite Data: Status and Distributions of Global Mangroves. Glob. Ecol. Biogeogr.
2011, 20, 154–159. [CrossRef]

28. Bunting, P.; Rosenqvist, A.; Hilarides, L.; Lucas, R.M.; Thomas, N.; Tadono, T.; Worthington, T.A.; Spalding, M.; Murray, N.J.;
Rebelo, L.-M. Global Mangrove Extent Change 1996–2020: Global Mangrove Watch Version 3.0. Remote Sens. 2022, 14, 3657.
[CrossRef]

29. Brandt, M.; Wigneron, J.-P.; Chave, J.; Tagesson, T.; Penuelas, J.; Ciais, P.; Rasmussen, K.; Tian, F.; Mbow, C.; Al-Yaari, A.; et al.
Satellite Passive Microwaves Reveal Recent Climate-Induced Carbon Losses in African Drylands. Nat. Ecol. Evol. 2018, 2, 827–835.
[CrossRef]

30. Zhao, C.; Qin, C.-Z. Identifying Large-Area Mangrove Distribution Based on Remote Sensing: A Binary Classification Approach
Considering Subclasses of Non-Mangroves. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102750. [CrossRef]
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