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Abstract: Two rapid vibrational spectroscopic appro-
aches (diffuse reflectance-absorbance Fourier transform
infrared [FT-IR] and dispersive Raman spectroscopy),
and one mass spectrometric method based on in vacuo
Curie-point pyrolysis (PyMS), were investigated in this
study. A diverse range of unprocessed, industrial fed-
batch fermentation broths containing the fungus Gib-
berella fujikuroi producing the natural product gibber-
ellic acid, were analyzed directly without a priori
chromatographic separation. Partial least squares re-
gression (PLSR) and artificial neural networks (ANNs)
were applied to all of the information-rich spectra ob-
tained by each of the methods to obtain quantitative
information on the gibberellic acid titer. These estimates
were of good precision, and the typical root-mean-
square error for predictions of concentrations in an in-
dependent test set was <10% over a very wide titer range
from 0 to 4925 ppm. However, although PLSR and ANNs
are very powerful techniques they are often described as
“black box’* methods because the information they use
to construct the calibration model is largely inaccessible.
Therefore, a variety of novel evolutionary computation-
based methods, including genetic algorithms and ge-
netic programming, were used to produce models that
allowed the determination of those input variables that
contributed most to the models formed, and to observe
that these models were predominantly based on the
concentration of gibberellic acid itself. This is the first
time that these three modern analytical spectroscopies,
in combination with advanced chemometric data analy-
sis, have been compared for their ability to analyze a real
commercial bioprocess. The results demonstrate une-
quivocally that all methods provide very rapid and ac-
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curate estimates of the progress of industrial
fermentations, and indicate that, of the three methods
studied, Raman spectroscopy is the ideal bioprocess
monitoring method because it can be adapted for on-line
analysis. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78:
527-538, 2002.
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INTRODUCTION

Many process industries are beginning to replace tradi-
tional chemical processes with bioprocesses because of
their chemical specificity and desirable reaction kinetics.
The ability to control a bioprocess is paramount for
product yield optimization, and therefore it is impera-
tive that the concentration of the fermentation product
(the determinand) is assessed accurately (Kell and
Sonnleitner, 1995; Pons, 1991). The development of such
monitoring methods (Scheper and Lammers, 1994) is
driven by economic and ecological needs, and by the
requirements for better process documentation.
Whereas many spectroscopic studies have concentrated
on measurements of biomass (Harris and Kell, 1985;
Validyanathan et al., 1999) and nutrient supply (Brim-
mer and Hall, 1993), comparatively few have attempted
to obtain quantitative information on the product, un-
less they are non-complex chemical processes (Adar
et al., 1997; Roberts et al., 1991).

Ideal methods for the rapid, precise, accurate analysis
of the biochemical composition of fermentor broths, and
the characterization of the organisms that they contain,
would permit the simultaneous estimation of multiple



determinands; would have minimum sample prepara-
tion; would analyze samples directly (i.e., would not
require reagents); and would be rapid, automated, ac-
curate, and (at least relatively) inexpensive. With recent
developments in analytical instrumentation, these requi-
rements are being fulfilled by spectroscopic methods, and
the most common are pyrolysis mass spectrometry
(PyMS) (Goodacre et al., 1994b; 1995; McGovem et al.,
1999), Fourier transform infrared spectroscopy (FT-IR)
(Mattu et al., 1997; McGovern et al., 1999; Timmins,
1998; Winson et al., 1997) and dispersive Raman micros-
copy (Goodacre et al., 1998; Shaw et al., 1999a). PyMS,
FT-IR, and Raman spectroscopies are physicochemical
methods that measure predominantly the bond strengths
of molecules (PyMS) and the vibrations of bonds within
functional groups (FT-IR and Raman) (Ferraro and
Nakamoto, 1994; Griffths and de Haseth, 1986; Meuze-
laar et al., 1982; Schrader, 1995). They therefore give
quantitative information about the total biochemical
composition of a sample. However, the extraction of this
information typically involves the use of advanced che-
mometric techniques.

Chemometrics is the application of statistical and
other mathematical techniques to analytical chemical
data (Lavine, 1998; Massart et al., 1988). These meth-
ods, in which we take an input of high dimensionality
and allow the extraction of information relevant to the
biological question of interest, can be subdivided into
two general classes. The first involves those methods
that cluster the data with no prior knowledge of the
samples analyzed, the so-called unsupervised analyzes.
In the second class, known as supervised analyzes or
multivariate calibration, one seeks to relate the multi-
variate spectral inputs to the membership of a prede-
termined class structure. In the present case, and others
of widespread interest, the target classes involve the
concentrations of target determinands—that is, gener-
ating a quantitative analysis. These types of methods
therefore exploit multidimensional curve fitting or re-
gression analysis, most commonly (for linear systems in
which the number of variables is in excess of the number
of samples) using variants of the partial least squares
regression (PLSR) algorithm (Martens and Nes, 1989).
A related approach (Zupan and Gasteiger, 1993), which
has been used to model and control bioprocesses, is the
use of (artificial) neural networks (ANNs) (Montague
and Morris, 1994).

Gibberellins are important biotechnological products
used in agriculture and horticulture for the regulation of
plant growth (Briickner and Blechschmidt, 1991).
Gibberellic acid 3 is produced industrially by Zeneca
Life Science Molecules in fed-batch fermentations of the
fungus Gibberella fujikuroi. The current protocol for
monitoring gibberellin levels involves removal of sam-
ples during the course of the fermentation and analysis
of extracts by high-performance liquid chromatography
(HPLC) analysis. On- or at-line monitoring in real-time

of gibberellin levels should allow more accurate control
of this bioprocess.

The aim of the present study was to assess the use of
FT-IR, Raman, and PyMS, in combination with
chemometrics, for at-line monitoring of the gibberellin
titer. However, it is known (Martens and Nes, 1989;
Zupan and Gasteiger, 1993) that, although PLSR and
ANNSs are excellent methods for quantitative analysis,
they do not lend themselves to easy interpretation; that
is, it is not obvious how the mathematical models exploit
information specifically in terms of the values of the
different inputs (i.e., absorbances or shifts in electro-
magnetic radiation for FT-IR and Raman analyzes, or
intensities of specific mass ions in PyMS spectra). For
this it is necessary to develop systems that produce
readily comprehensible mathematical models. Toward
this end, a number of methods involving evolutionary
computation (Bick et al., 1997; Goldberg, 1989; Hol-
land, 1992; Koza, 1992; Mitchell, 1992), including ge-
netic algorithms (GAs) (Broadhurst et al.,, 1997) and
genetic programming (GP) (Gilbert et al., 1997; Taylor
et al., 1998a), were employed to decrease the number of
input variables from these otherwise high-dimensional
spectra used in forming the models.

MATERIALS AND METHODS
Bioprocess

Samples were provided by Zeneca Life Science Mole-
cules. Gibberellic acid 3 (GA3) was produced by Gib-
berella fujikuroi in a complex undefined medium. Whole
broth samples were taken asceptically from the fer-
mentation vessels and methanol:water extracts were
analyzed by HPLC (the typical error in GA3 measure-
ment was 2% to 5%). The remaining unprocessed sample
was stored at —20°C prior to analysis at UWA by the
three spectrometric methods. Samples were collected
over a period of 3 months and assessed using four dif-
ferent HPLC rigs, as detailed in Table 1.

Diffuse Reflectance-Absorbance FT-IR

FT-IR analysis was performed using a Bruker IFS28
infrared spectrometer equipped with a diffuse-reflect-
ance TLC attachment (Bruker, Ltd., Coventry, UK) and
a liquid N»-cooled MCT (mercury—cadmium-—telluride)
detector, as previously described (Goodacre et al., 1996;
Timmins et al., 1998; Winson et al., 1997). Bioprocess
samples (5 pL; three replicates) were placed in the wells
of a 10 cm X 10 cm aluminium plate, containing 400
wells. After the samples were oven-dried at 60°C for 20
min, the plate was mounted on a motorized stage and
mid-infrared (IR) spectra were collected over the range
4000 to 600 cm™" (see Fig. 1A for typical spectra) with
256 co-adds, and with a spectral resolution of 4 cm™".
Note that, although near-IR spectra can be obtained in
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Table I. Details of fermentation and GA3 titer®.

Fermentation GA3 titer (ppm) Fermentation GA3 titer (ppm) Fermentation GA3 titer (ppm)
as' 2290¥ iS! o mS? 345t
as' 4000 is! 20t mS? 1195Y
as' 4925' is? 130" m S? 1905¥
as! 1705" is? 485" mS? 2345test
hS? 755Y is? 920" m S? 2960
b S? 1520¥ is! 685" mS? 2480"
bhS? 2175t is? 2475" n 1650"
b S? 3895test is! 3050 n 3620
hS? 4395test i St 1980' 0 940'
bS? 4860" j s* 3365 o 2560"
¢ s! 19451t kS? 1395% 0 3200
¢ S! 2765 kS’ 1875 p 1020
c¢s! 3515Y k S? 25]5tst p 1200
cS! 3780 k S? 2835Y p 1620t
¢ s! 3920 kS? 3080" P 1640
ds' 36607 /s 750" P 3110
es! 2365" /s 2930" P 3440
fs! 4345' /s 3950" p 3170
gs! 3770 m S? 20 P 3730
hS! 4230¥ mS? 65t p 3680

Superscripts: tr, train; v, validate; test, test. Fermentations n—p at one production cite. S'* are labels for the four different sites of HPLC analysis.
All fermentation samples were analyzed in triplicate by each of the three spectroscopic methods.
4GA3 titer was calculated by HPLC. The sample source is indicated by the bioprocess, labeled a—p.

the presence of H,O, water interference is concentra-
tion-dependent, and thus its influence on the spectra is
difficult to remove. Moreover, near-IR absorbance
spectra are very broad and lack any obvious detail,
whereas interrogation of samples in the mid-IR range
allows a wealth of molecular structure information to be
collected (Griffiths and de Haseth, 1986).

For chemometric processing, spectral data were con-
verted to ASCII format, using Opus software that
controls the FT-IR instrument and spectral files were
imported into MATLAB (The Mathworks, Inc., Natick,
MA). Spectra were either: (1) analyzed in raw format; or
(2) to minimize problems arising from unavoidable
baseline shifts, the spectra were first scaled so that the
smallest absorbance was set to 0 and the highest to +1
for each spectrum, and then the first Savitzky—Golay
derivative (Savitzky and Golay, 1964) was calculated
(see Table II).

Raman Spectroscopy

Spectra were collected using a Renishaw System 100
dispersive Raman spectrometer (Renishaw plc,
Gloucestershire, UK) as described previously (Williams
et al., 1994a, 1994b), with a near-IR 785-nm diode laser
with the power at the sampling point typically at 79
mW. The instrument grating was calibrated using neon
lines (Tseng et al., 1993) and was routinely checked with
a silicon wafer centered at 520 nm. Four milliliters of
each sample was pipetted into a 4-mL Supelco vial
(Supelco Park, Bellfonte, PA). The vial was placed into
a prefixed sample holder such that the laser was focused
into the center of the vial (12 mm from the collection

lens). A spectrum from each sample was collected for
10 s using the continuous-extended scan according to
the instrument software provided by the manufacturer
(so that the actual collection time was 60 s). Samples
were analyzed in triplicate on 2 separate days.

The Grams WIRE software package (Renishaw and
Galactic Industries Corp. Salem, NH) running under
Winpbows 95 was employed for instrument control and
data capture. Stokes spectra were collected over 100 to
3000 cm™' wavenumber shifts with 1735 data points;
therefore, the spectral resolution was ~1.67 cm™'. The
data were displayed as intensity of Raman photon
counts against the Stokes—Raman shift in wavenumbers
(see Fig. 1B for typical spectra). The spectral data were
extracted into text files and imported into Matlab. Note
that, although the fluorescence is relatively low when
biological materials are excited at 785 nm, the system
cannot discriminate whether individual photons arise by
fluorescence or are scattered via the Raman effect. Al-
though fluorescence is not seen in anti-Stokes—Raman
shifts, the strength of this scatter is typically much lower
than that compared with Stokes shifts.

Pyrolysis Mass Spectrometry

Clean iron—nickel foils (Horizon Instruments, Heath-
field, UK) were inserted, using clean forceps, into clean
pyrolysis tubes (Horizon Instruments), so that 6 mm
was protruding from the mouth of the tube. Five-micro-
litre aliquots of crude bioprocess samples were evenly
applied onto the foils. Prior to pyrolysis the samples
were oven-dried at 60°C for 20 min, then the foils were
then pushed into the tube using a stainless-steel depth
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Figure 1. (A) Diffuse reflectance—absorbance FT-IR spectra and (B)
dispersive Raman spectra of low- and high-titer GA3 bioprocess
samples with pure industrial GA3 crystal product (as its Na salt via the
addition of NaOH) and GA3 potassium salt (Sigma). The pyrolysis
mass spectrum of 200 pg GA3 is shown in (C).

gauge so as to lie 10 mm from the mouth of the tube.
Finally, Viton O-rings (Horizon Instruments) were
placed ~1 mM from the mouth of each tube. Samples
were run in triplicate.

The pyrolysis mass spectrometer used for this study
was a Horizon Instruments PYMS-200X device. The
sample tube carrying the foil was heated prior to pyro-
lysis, at 100°C for 5 s. Curie-point pyrolysis was at
530°C for 3 s, with a temperature rise time of 0.5 s. Data
were collected over the mass-to-charge (m1/z) range of 51
to 200 and normalized as a percentage of total ion count
(see Fig. 1C for a typical spectrum). Full operational
details may be found elsewhere (Goodacre et al., 1994a;
1997; Goodacre and Kell, 1996).

Cluster Analysis

The initial stage involved the reduction of the dimen-
sionality of the spectral data by principal components
analysis (PCA; Jolliffe, 1986; Causton, 1987). PCA is a
well-known technique for reducing the dimensionality of
multivariate data while preserving most of the variance,
and MATLAB was employed to perform PCA according
to the NIPALS algorithm (Wold, 1991). Discriminant
function analysis (DFA) was then used to cluster the
spectra by discriminating between groups on the basis of
the retained PC scores and the a priori knowledge of
which spectra were replicates (MacFie et al., 1978;
Windig et al., 1983), and thus this process did not bias
the analysis. DFA was programmed according to
Manly’s principles (Manly, 1994).

Supervised Analyzes

When the desired responses (targets) associated with
each of the inputs (spectra) are known, the system may
then be supervised. The goal of supervised learning is to
find a mathematical model that will correctly associate
the inputs with the targets; this is usually achieved by
minimizing the error between the target and the model’s
response (output). Briefly, a ‘““training” set of spectra
with known GAJ3 titers is used to form the model; the
“validation” set, also of spectra with known GA3 titres,
is used in conjunction with the training set to establish
the optimum model; and an independent ‘‘test” set,
consisting of spectra not seen by the model creation
program at any time, is used to test the effectiveness of
the calibrated system.

Creation of Training, Validation, and Test Data
Sets for Supervised Learning

It is important that the training data encompass the full
range under study (Bishop, 1995; Kell and Sonnleitner,
1995), because, although supervised methods are excel-
lent at being able to interpolate, they are likely to give
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Table II.
quantification of GA3 in bioprocess samples.

Comparison of FT-IR, Raman, and pyrolysis mass spectrometry in combination with various multivariate calibration methods for the

% RMS error of data sets

Slope of linear fit line

Calibration  Epochs/factors Number
method of runs Train Validation Test Train Validation Test
Fourier transform infrared spectroscopy”
ANN 882-10-1 4000 10 1.1 9.3 9.0 0.99 0.95 0.87
PLSRI 6 1 1.4 5.1 10.9 0.96 0.95 0.94
PC-ANN 4-2-1 4 10 59 5.7 9.2 0.92 0.97 0.90
GAIC (raw data) 60 11.2 8.2 11.8 0.89 0.95 0.93
GA-MLR 4 150 8.0 8.8 8.7 0.90 0.95 0.94
GP 50 2.9 44 7.5 0.97 1.00 0.95
Raman spectroscopy”
ANN 1735-12-1 2000 10 13.5 10.8 14.5 0.72 0.83 0.75
PLSR 1 9 1 1.9 8.0 11.9 0.99 0.93 0.82
PC-ANNs 5-2-1 10 8.3 8.6 9.6 0.87 0.85 0.80
GAIC 60 12.1 9.4 13.6 0.75 0.78 0.68
GP 150 7.5 6.8 10.4 0.92 0.89 0.85
Pyrolysis mass spectrometry®
ANNSs 150-8-1 7800 10 5.0 9.0 12.2 0.94 0.91 0.82
PLSR 1 8 1 5.7 9.7 13.3 0.93 0.95 0.94
PC-ANNs 15-2-1 15 10 6.8 8.9 14.1 0.89 0.91 0.79
GAIC 60 15.8 9.4 22.3 0.76 0.88 0.5
GA-MLR 4 150 8.7 14.2 10.3 0.89 0.93 0.98
GP 50 7.4 6.2 10.6 0.92 0.91 0.93

“Spectra were first scaled so that the smallest absorbance was set to 0 and the highest to + 1 for each spectrum, and then the first Savitzky-Golay
derivative (Savitzky and Golay, 1964) was calculated. For GAIC, the raw data were analyzed with no preprocessing.

Spectra were normalized so that the smallest photon count was set to 0 and the line at 255 cm™! was scaled to + 1 for each spectrum.

“Spectra were normalized so that the total ion count for each spectrum = 1.

poor estimates outside their “realm of knowledge’’; that
is, they cannot extrapolate sufficiently well. To achieve
this the spectral data from FT-IR, Raman, and PyMS
were partitioned using the in-house program Multiplex
(Jones et al., 1998). The Multiplex algorithm systemat-
ically placed samples into the training, cross-validation,
and test sets so that the problem domain (in terms of
GA3 titer) was adequately represented. Because the
partitioning was based solely on the GA3 titer (rather
than sample spectra), the training, cross-validation, and
test sets consisted of the same fermentation samples for
each of the spectroscopic methods investigated.

Common Supervised Analysis Methods

PLSR was used following the pseudocode given by
(Martens and Nes (1989); the inputs and outputs were
scaled to a standard deviation of 1 and mean centered
(Martens and Nes, 1989). Two types of ANNs were
trained by gradient descent using the standard back-
propagation (BP) algorithm (Rumelhart et al., 1986),
and these differed by the representation of their input
patterns. ANNs were trained with either: (1) full spectral
inputs; or (2) the scores of the first n principal compo-
nents as inputs. To determine the optimum number of
PCs that would represent a spectrum, a number of PC-
ANNs were trained with between 1 and 15 PCs. For
PyMS, the structure of ANN used consisted of three
layers containing 150 input nodes, 1 output node

(amount of GA3), and one “hidden” layer containing 8
nodes (a 150-8-1 topology), whereas, for PC-ANNS, the
architecture was 15-2-1. For FT-IR 883-10-1 ANNs
and 4-2-1 PC-ANNs were employed, and for Raman
1735-12—-1 ANNs and PC-ANNs with a 5-2—-1 topology
were used. Prior to training, each input and output
variable was scaled between 0.2 and 0.8.

During calibration of these models, the RMS (root-
mean-square) error, between the true and desired con-
centrations for the validation data, was calculated; the
lowest RMS error for this was used to find the optimal
calibration that would give the best general predictive
model. PLSR, ANNs, and PC-ANNs were carried out
using an in-house package developed by Dr. Alun Jones
(Jones et al., 1998), which runs under Microsoft WIN-
pows NT on an IBM-compatible PC.

Evolutionary Computation

When dealing with mathematical models that are built
with little, if any, a priori information about the system
under analysis it is often difficult to decide how many
variables to measure to build an adequate model. The
experimental methods described in this study provide
measurement of a large number of variables automati-
cally. It is very easy for the modeler to create a model
using all available variables. However, often many of
the measured variables contribute little to (or even de-
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grade) the predictive abilities of the final model pro-
duced (Broadhurst et al., 1997; Shaw et al., 1997). It has
been shown that it is advantageous to select the “best™
variables prior to the modeling process (Kell and
Sonnleitner, 1995; Miller, 1990; Seasholtz and Kowal-
ski, 1993) and, as a rule, adequate local solutions can be
found in a relatively short time.

Until recently, the most popular optimization strate-
gies were univariate in their approach (forward selec-
tion, backward selection, and stepwise multiple
regression [Wonnacott and Wonnacott, 1981]); that is,
each available variable is studied independently and
ranked appropriately, and no consideration is given to
variable interaction. To study the importance of un-
correlated groups of variables as well as individual
variables, a more global optimization method needs to
be used, where variables are selected or rejected simul-
taneously. These strategies are known as multivariate
optimization methods.

Three multivariate variable selection methods based
on evolutionary computation are presented in what
follows.

Genetic Algorithm-multiple Linear Regression
(GA-MLR) Methodology

The GA-MLR variable selection methodology as de-
scribed by Broadhurst et al., (1997) uses a genetic al-
gorithm (GA) (Goldberg, 1989; Holland, 1992) to
determine the optimal subset of variables with a prede-
termined (from PLS calibration on the same data)
maximum RMS error in an MLR (Wonnacott and
Wonnacott, 1981) model.

In the GA a population of n subsets is created (the
chromosome population size, n = 400), each containing
a random combination of variables. Each subset is
considered as a string of m 1’s and 0’s, where m is the
total number of variables to choose (where m = 882 for
FT-IR, 1735 for Raman, and 150 for PyMS). The state
of each variable is represented by a ““1”” (selected to be in
the model) or “0” (not selected). In genetic terms, each
variable is called a gene and a set of variables is called a
chromosome. For example, in a variable selection
problem starting with 8 variables, one possible chro-
mosome would be 00110101. This can be translated such
that variables 3.4, 6, and 8 are to be used in the mode-
ling process and variables 1, 2, 5, and 7 are to be
omitted.

The five steps of (1) encoding into chromosomes, (2)
initial population selection, (3) evaluation of the cost
function, (4) reproduction, and (5) testing for the stop-
ping criterion are the basic building blocks for all GAs.
However, there are various ways of carrying out each
step. In the current methodology, two-point crossover
was used. The selection of parent chromosomes for the
next generation was carried out using a rank-based

scheme (Whitley, 1994), where the top 20% of each
generation was included in the next generation to aid
algorithm efficiency. The probabilities of crossover and
mutation were set to 0.7 and 0.01, respectively, and the
evolution in silico took place for 400 generations.

Genetic Algorithm Identification of Calibration
(GAIC) Method

A second GA decoding method (Taylor et al., 1998b)
adapted from Williams and Paradkar (1997) was em-
ployed wherein the chromosome was composed of an
array of integers rather than binary digits. A chromo-
some comprised 10 genes, where a single gene was
composed of 4 consecutive integers that encode an ex-
pression term. This gene comprises the average meas-
urement value of a continuous region of spectral
variables (integers “b” and “c”); integer “a” was a
weighting value applied to this average, and this value
was then linked to the next gene by integer ““d”, which
encoded a simple arithmetic operator (+, —, *, or /) to
form an expression.

For FT-IR and Raman, the GA selects the weighting
values (integer ““a’), the position (integer “‘b’) and
width (integer “‘c”) of each of the spectral regions, and
the operators (integer ““d”) linking the terms together by
the use of standard one point, two-parent crossover and
various mutation strategies implemented as follows.
Standard, single-point random replacement mutation
was employed for the weighting value (integer “a”) and
the arithmetic operator modification (integer “d”). A
positional mutation (applied to integer “b”") was used to
exploit the continuous nature of the data. The point
selected was moved one variable place either to the left
or the right of the current position. This creates a
“sliding” region to scan the spectra. To optimize the
denoising effect of signal averaging, a resize mutation
was used (applied to integer ““c’’) to increase or decrease
by one variable the size of the continuous region to be
averaged. This resizing mutation strategy was switched
off when analyzing PyMS data because the spectrum
obtained from this instrument is composed of noncon-
tinuous variables. Therefore, each region was given a
constant region size of 1, and the mutation function was
disabled.

Genetic Programming (GP)

A GP is an application of the GA approach to derive
mathematical equations, logical rule, or program func-
tions automatically (Banzhaf et al., 1998; Koza, 1992;
1994). Rather than representing the solution to the
problem as a string of parameters, as in a conventional
GA, a GP uses a tree structure. The leaves of the tree, or
terminals, represent input variables or numerical con-
stants. Their values are passed to nodes, at the junctions
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of branches in the tree, which perform some numerical
or program operation before passing on the result fur-
ther toward the root of the tree. Mutations are per-
formed by selecting a parent and modifying the value or
variable returned by a terminal, or changing the oper-
ation performed by a node. Crossovers are performed
by selecting two parents and grafting subtrees at ran-
domly selected nodes within their trees. The new indi-
viduals so generated replace less-fit members of the
population.

For the GP implementations used here only the node
operator functions “add,” “‘substract,” “multiply,” and
“protected divide” (where n/0 = 1) were employed. All
GP analyzes with a population size of 5000 were carried
out using an in-house program (Gilbert et al., 1997),
following a procedure similar to that of Singleton
(1994), running under Microsoft Winbows NT on an
IBM-compatible PC.

RESULTS AND DISCUSSION

Typical FT-IR, Raman, and PyMS spectra from Gib-
berella fujikuroi fermentations accumulating gibberellic
acid are shown in Figure 1. The FT-IR spectra (Fig. 1A)
from the industrial fermentation broths show broad
complex spectral features and, although quantitative
differences were observed, it was difficult to relate a
single peak to that observed from pure GA3. From the
infrared spectra of known (bio)chemicals (Schrader,
1989; Stuart, 1997), the strongest vibrations observed in
GA3 can be assigned to hydroxyl groups (3450 to 3038
cm™), carbon hydrogen bonds (2940 cm™), and carb-
oxylate group (1786 to 1770 cm™") vibrations. More-
over, many of the sharp peaks seen between 1400 and
600 cm™' may also be assigned to the bending and stret-
ching of aromatic rings, alcohol and carbon hydrogen
bonds, and ether bonds, all of which appear in GA3. Two
distinct Raman peaks that appear only in the higher
GA3 titer samples (Fig. 1B), at 1138 cm™' and 1487.5
cm™!, may be attributed to GA3. Finally, whereas the
complex pyrolysis mass spectrum of gibberellic acid
(Fig. 1C) shows several dominant peaks, none was
found to scale with the GA3 titer (data not shown).
For all three spectral types there was very little
qualitative difference between the spectra, although, as
highlighted earlier, some complex quantitative differ-
ences between them were observed. Such spectra, es-
sentially uninterpretable by the naked eye, readily
illustrate the need to employ multivariate statistical
techniques for the analysis of FT-IR, Raman, and
PyMS data. The next stage was to employ unsupervised
learning to cluster the fermentation samples. Using FT-
IR as an example, the DFA plot shown in Figure 2
shows that the only sample accumulating no product of
interest is clearly separated in the second discriminant
function (DF2) from all other samples; moreover, DF1
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Figure 2. (A) Discriminant function analysis of the FT-IR spectra of
the 60 bioprocess samples. The labels shown are the GA3 titers. (B)
Enlarged version of the DFA separation on samples >0 ppm (GA3).

shows a clear linear trend from right to left for the low
to medium to high samples. It is significant that at least
some quantitative information was observed in DF1
because it was extracted by the DFA algorithm to
contain the most overall variance. This suggests that
supervised learning should be able to quantify these
fermentation broths in terms of their GAS titer. Similar
results were observed for DFA plots on Raman and
PyMS data (data not shown).

The next stage was therefore to use linear regression
and neural computation. As detailed earlier, the 60
fermentation samples, in replicate, were evenly split us-
ing the multiplex algorithm into training, validation,
and independent test data sets. Table I gives details of
how the samples were segregated, and also shown is the
origin of the broths from 16 different fermentations in-
dicating the wide diversity of samples that covered the
range of 0 to 4925 ppm. PLSR, ANNS, and PC-ANNs
were carried out as described earlier, and the RMS er-
rors for each of the three data sets are shown in Table II.
It was clear that all the models were satisfactory because
the percent RMS for the independent test was between
9% and 14%. The slopes of the best linear fit lines for
each of the three data sets are also shown in Table II,
and in most instances these are close to the true (y = x)
slope of 1.

Although a PLSR and the ANN methods were all
able to quantify accurately the GA3 titer, is preferable
to understand the modeling process in terms of which
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variables, either masses or wavenumbers, are of impor-
tance. For ANNSs, the information used can nominally
be found in the weights (the connections between the
input, hidden, and output layers); however, this infor-
mation is very abstract and almost impossible to extract
realistically, especially when these ANNSs are intercon-
nected, and for the full spectral ANNSs trained with the
PyMS, FT-IR, and Raman data sets contained 1217,
8841, and 20,845 weights, respectively. Whereas using
PC scores as input means that the number of weights is
much lower, PCs are also abstract and very difficult to
interpret. For PLSR the interpretation is potentially
simpler because the PLSR model is a summation of the
dot products of linear weighting vectors (latent variable
loadings) and the original spectral data. However, when
these latent variable loadings were plotted against the
original spectral data (not shown), for PyMS and FT-IR
they were as complex as the original spectra and no
single absorbance or m/z intensity was seen to be espe-
cially important. By contrast, although the latent vari-
able loading plots from the Raman spectra were
complex, they did show that shifts at 1138 and 1487.5
cm™! were important for the formation of PLSR models.

Therefore, a need to exploit supervised learning based
on methods that produce rules or equations that can
readily be interpreted. We have implemented a number
of methods based on evolutionary computation.

As detailed previously, using the same three data sets,
GAIC, GA-MLR, and GPs were evolved successfully to
quantify the level of GA3 in the fermentation broths
(typical rules and equations generated by these methods
are detailed in Table IIT). Table II also contains RMS
errors and slopes of best-fit lines for the training, vali-
dation, and test sets and these compare very favorably
with the more classical chemometric techniques used. To
highlight the success of these methods the estimates
from 10 GPs versus the true GA3 titer (as judged by
HPLC) are plotted in Figure 3. It can be seen that the
estimates are indeed very close to the true titer and, most
significantly, for the independent test set. Figure 3
contains the estimates of 10 separately evolved GPs and
one can clearly see that the estimates are very similar
and from the residuals plots have a precision of between
20 and 100 ppm. The next stage was therefore to inspect
these rules, and the expressions from the two GA-based
methods, to ascertain if any single or combination of

Table III. Examples of rules and functions produced from the evolutionary computation methods.
FT-IR data
GP rule:
9.44— Asg5) 4 2
. (it 45, Ao’ ) s ((Arrrs +7.45) i’ (Arres — Azsao) (422 +32.1) )
7 A1762 — Asos ’ As29A3919

GAIC function:

7.4(A1790) + 9.99(A2716) + 7.9(A1366) + 9.99(A3g34) /1.4(A2s73) — 9.99(A3572) + 9.99(A3368) — 9.99(A3931)/4.7(A2307) — 9.99(A1319)

GA-MLR function:

y =0.956A43501 — 1.6541319 + 3.304 780 — 0.887 41335

where 4 = absorbance per wavenumber (cm™!)

Raman data
GP rule:

281140 — S2723 — 281349 + S1as7 — Sie14 + Siago

—1.60 3L

GAIC function:

S2666

3.7(S1s83) — 4.9(S1379) * 9.02(S1029)/3.9(S224) * 8.5(S1369) + 8.4(S693)/3.9(S1342)/0.6(S2631) — 1.1(S1634) + 1.5(S1487) — 0.4(S1710)

GA-MLR function: not computable (see text)
where S = photons per scatter (cm™!)

PyMS data
GP rule:

76.1 +

—9.93 — M
M194 Ml95

My, n M3 A —12.90 _ <M161 B
Migq M7s

GAIC function:

My
Mg MI154 Mg

0.388 M4

7.49
+ 7.49M](,1> (— — (10.72Mg5)(M55 — 584))
Mis

92(M66) * 38(M177)/404(M156) * 4(M92) * 205(M]4}) - 95(M74)/34(M12|) * 75(M79) + 99(M30)

GA-MLR function:

y=—0.27TM75 —0.494M 14 + 1.04M 53 — 0.53M 6

where M = mass intensity (m1/z ratio)
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Figure 3. The estimates of trained GP models versus the amount of
GA3 in fermentation for (A;) FT-IR, (B;) Raman, and (C;) PyMS
spectra. The linear fits are shown for the training (open circles), vali-
dation (shaded squares), and test (filled triangles) sets. The expected
proportional fit (solid line) is also shown. (A;;, By, and C;;) The resi-
duals (standard deviations) are plotted for each of the estimates de-
rived from 10 separately evolved GPs. Dashed line: linear fit on
training set; dotted line: linear fit on validation set; dashed-dotted line:
linear fit on independent test set.

spectral region(s) was obviously quantitatively corre-
lated to the GA3 titer. Note, of course, that as well as a
region being positively correlated with GA3, it can also
be negatively or positively correlated with some bio-
chemical(s) that is disappearing from (by being meta-
bolized) or appearing (e.g., enzyme pathways involved
in the production of GA3) in a manner proportionate to
the analyte of interest.

For FT-IR the spectral region from 1786 to 1770 cm™
was found to dominate the evolved expressions and was
used in 89% of the 150 GA-MLR runs and 64% of 50
GAs, and of the 50 GPs this spectral area was selected in
82% of the function trees. It is known that vibrations in
this region are due to carboxylate groups (Stuart, 1997),
and because GA3 contains two of these bond types that
absorb IR radiation strongly it is possible that these
chemometric methods have uncovered the actual me-
tabolite in the complex fermentation background, rather
than, for example, detecting some substrate disappear-
ing. To test this hypothesis further, linear regression of

1
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each wavelength was carried out onto the GA3 titer
using product moment correlation (PMC) as detailed by
Gilber et al. (1997). Although their individual PMC
values were low it is noteworthy that the spectral region
from 1786 to 1770 cm™' was the only area positively
correlated with GA3. This region was investigated for its
usefulness in forming linear regression predictive mod-
els; as expected from the PMC, calculations using in-
dependent (single) wavenumbers gave very poor
predictions (data not shown). However, when multiple
wavenumbers in this region were used for MLR, this
combination gave very satisfactory results, and a defi-
nite linear trend between predicted and expected GA3
titer was observed.

Many masses in the PyMS were selected by the evo-
lutionary methods, and the consensus from this was that
m/z 75 and 153 were chosen most frequently with a
percentage frequency of 32 and 43, respectively. Some of
the masses selected (e.g., m/z 55, 58, 67, 71, 85, 86, and
114), including m/z 75, were negatively correlated with
GAZ3 titer, and whereas it would be valid to model on
something (a substrate) that is disappearing in a manner
proportionate to the analyte of interest, this approach
may be more hazardous because the disappearance of a
substrate does not guarantee its appearance in a prod-
uct. Moreover, PyMS has significant disadvantages in
that: (1) the in vacuo thermal degradation step means
that essentially all information on the structure or
identity of the molecules producing the pyrolysate is
lost; and (2) molecular reactions in the melt or pyroly-
sate—pyrolysate interactions in the gas phase can yield
new molecular species (Goodacre et al., 1994b). There-
fore, it is not sensible to use this destructive technique to
attempt to elucidate precise structural information when
the target analyte is a very complex, high-molecular-
weight molecule.

One of the advantages that Raman has over infrared
and PyMS is that measurements can be made on wet
samples, because, in contrast to FT-IR, the aqueous
media do not strongly absorb the interrogating beam at
785 nm (Ferraro and Nakamoto, 1994). However, it is
necessary for the far red laser beam to penetrate the
broth and thus, like any other optical technique, some
density-dependent phenomena will be observed. Most
notable (Fig. 1B) is that the total Raman signal increases
with increasing titer and biomass, and therefore the
PMC calculations for all variables were similar and
positively correlated at >0.7. The GA-MLR method
could not be applied to the Raman data because the
ratio of the number of objects to the variables was such
that the algorithm became unstable, and therefore op-
timization of simple MLR was not possible in this in-
stance. Although the GAIC method did not select any
single spectral region with any great frequency (>50%),
and Raman shifts were highlighted across the whole
spectra, the most popular shift chosen was 1138 cm™
and this was selected 14% of the time. By contrast, the

GP-approach used the Raman shifts at 1138 and 1487
cem™! with a frequency of 56% and 40%, respectively.
These variables were clearly visible as two strong peaks
in the Raman spectrum of the fermentation broth con-
taining 4925 ppm GA3, and were absent from the zero
titer broth (Fig. 1B). It is likely that these vibrations are
from the GA3 itself as the spectrum of the industrial
product (Fig. 1B) showed vibrations in these areas.
Moreover, the Stokes shift at 1487 cm™! can be attrib-
uted to ring and CH stretching in aromatic rings, and
the vibration at 1138 cm™' can be from ether bonds
(C—O—C) (Schrader, 1989) and/or CH stretching in
aromatic rings. All these molecular bonds are found in
gibberellic acid.

CONCLUSIONS

The three rapid spectroscopic approaches of Curie-point
PyMS, diffuse reflectance—absorbance FT-IR, and dis-
persive Raman spectroscopy were used to analyze a di-
verse range of unprocessed fed-batch fermentations
broths containing the fungus Gibberella fujikuroi pro-
ducing the natural product gibberellic acid. To obtain
quantitative information in terms of the gibberellic acid
titer, the modern chemometric-based techniques of
PLSR and ANNs were employed. However, although
these are very powerful techniques, the precise infor-
mation they use to construct the calibration is effectively
inaccessible. Therefore, a variety of evolutionary com-
putational-based methods, including genetic algorithms
and genetic programming, were used to decipher the
spectra. The results from the FT-IR and Raman studies
show that the models formed were based on spectral
features derived from the GA3 molecule itself, and
which could be used to quantify the product in these
industrial fermentations.

The typical accuracy by all methods when analyzed by
GP was between 7.5% and 10.6% (Table II), and con-
sidering that these spectroscopic approaches need to be
trained with “primary reference data” (gold standards)
based on HPLC measurements, which themselves have a
typical error in GA3 measurement of 2% to 5%, these
error measurements are suitably low. Moreover, because
HPLC takes 30 min plus additional extraction and
sample preparation time, the speed of the measurements
from PyMS (2 min), FT-IR (10 s), and Raman spectr-
oscopy (I min) makes them particularly attractive to
industry (Shaw et al., 1999b; Validyanathan et al., 1999).

Raman spectroscopy has the advantage over PyMS
and FT-IR in that it is capable of being used noninva-
sively. By contrast, PyMS is highly destructive because
the sample is thermally degraded in vacuo and, although
FT-IR is not destructive per se, mid-IR does require that
the sample is dry. These and the other features of the
three spectroscopic methods are detailed in Table IV.
FT-IR has the advantage of speed and, particularly
with our diffuse reflectance—absorbance approach, easily
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Table IV. Features of the spectroscopic approaches investigated.

Curie-point PyMS

Diffuse reflectance—absorbance

FT-IR Dispersive Raman
No No
Yes No
At-line At- or on-line
Good Good
5-10 pL Any volume
10 s ~1 min
Yes Yes
No No
882 1735
Easy Easy
Low High
Moderate Low

None, other than that

Stokes—Raman scattered

Destructive Yes
Sample dried Yes
On- or at-line At-line
Reproducibility Poor
Sample size for at-line SuL
Typical speed for 2 min
collection of spectra
Automatable Yes
Complex data capture No
Typical dimensionality 150
Data analysis Easy
Relative expense of equipment Moderate
Consumable costs High
Other significant problems Unable to analyze
volatiles

H,O vibrations swamp
mid-IR

photons can not be distinguished
from fluorescence

allows acquisition of 400 samples per hour on a single
10 x 10 cm aluminum plate. On the other hand, Raman
has a slightly slower sample throughput than FT-IR,
because the sample does not need to be dried and
spectral acquisition can be made directly on the fer-
mentation broth. Indeed, due to its confocal nature it is
possible to focus the laser into a liquid sample through a
window in the fermentation vessel, rather than intro-
ducing a probe. Thus, Raman spectroscopy appears to
be the ideal bioprocess-monitoring method as it is rapid,
on-line, noninvasive, and gives interpretable answers of
good precision.
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